JP4048965B2 - Fiber composite material made of biodegradable resin - Google Patents

Fiber composite material made of biodegradable resin Download PDF

Info

Publication number
JP4048965B2
JP4048965B2 JP2003024230A JP2003024230A JP4048965B2 JP 4048965 B2 JP4048965 B2 JP 4048965B2 JP 2003024230 A JP2003024230 A JP 2003024230A JP 2003024230 A JP2003024230 A JP 2003024230A JP 4048965 B2 JP4048965 B2 JP 4048965B2
Authority
JP
Japan
Prior art keywords
fiber
biodegradable resin
composite material
hydrolysis
hydrolysis inhibitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003024230A
Other languages
Japanese (ja)
Other versions
JP2004232153A (en
Inventor
征士 山下
祥夫 原
裕史 影山
剛 森山
智子 小田
泰充 礒部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003024230A priority Critical patent/JP4048965B2/en
Publication of JP2004232153A publication Critical patent/JP2004232153A/en
Application granted granted Critical
Publication of JP4048965B2 publication Critical patent/JP4048965B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、強度が高く、耐加水分解性に優れ、かつ生分解性を有する繊維複合材に関する。
【0002】
【従来の技術】
一般にプラスチックは化学的にきわめて安定な化合物であり、耐久性が高く、多くの分野において利用されている。このプラスチックは安定であるがため、本来の利用が行われる限りは問題がないが、不要となった際の廃棄には多くの問題が伴う。すなわち、廃棄プラスチックは現在一般的に埋め立てや焼却によって処分されているが、埋め立て処分の場合には長期にわたって分解せず、また焼却すれば高温を発生するため焼却炉を傷める原因となり、さらにはいわゆるダイオキシン等の有害物質の発生源ともなり、大きな社会問題となっている。
【0003】
そこで、これらの問題を解決するために、土中や水中において微生物等によって水と二酸化炭素に分解する生分解性樹脂が提案されている。この生分解性樹脂は、水の存在下で、容易に加水分解する特性により、汎用樹脂として使用する場合には、廃棄後に環境を汚染することなく分解するために環境にやさしく、医療用材料として生体内に留置する場合には、目的達成後に生体に与える影響がないか少なく、生体内で分解・吸収されるために生体にやさしい優れた材料であることから、医療用材料や汎用樹脂の代替物として注目されてきた。
【0004】
しかしながら、生分解性樹脂は汎用樹脂と比較して一般に機械的強度が低いという問題がある。そこで、この生分解性樹脂の強度不足という欠点を補うために、各種天然繊維からなる強化材を用いることが提案されている。すなわち、生分解性樹脂の繊維と天然繊維とを組み合わせて複合材とすることにより、機械的強度を高めている(例えば、特許文献1参照)。
【0005】
また、生分解性樹脂は、特に高温高湿環境下において耐加水分解性が低いという問題もある。この耐加水分解性を高めるため、生分解性樹脂に加水分解防止剤を添加することが提案されている(例えば、特許文献2参照)。
【0006】
【特許文献1】
特開2001−181975号公報(第2頁)
【特許文献2】
特開2000−290515号公報(第2頁)
【0007】
【発明が解決しようとする課題】
しかしながら、生分解性樹脂の耐加水分解性を高めるために、生分解性樹脂に加水分解防止剤を単に添加するのみでは、多量の加水分解防止剤が必要であり、効果的でない。特に、生分解性樹脂繊維と天然繊維の複合材においては、生分解性樹脂繊維と天然繊維の界面において加水分解を防止することにより、複合材の加水分解による破壊を効果的に防止することができる。
【0008】
本発明は、耐加水分解性を効果的に高めた生分解性樹脂繊維と天然繊維の複合材を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記問題点を解決するために本発明によれば、生分解性樹脂からなるバインダー繊維と、表面上に加水分解防止剤を被覆した天然繊維とを混合してなる繊維複合材が提供される。
【0010】
生分解性樹脂の繊維と天然繊維からなる複合材において、天然繊維を加水分解防止剤で被覆しておくことにより、生分解性樹脂繊維と天然繊維の界面に加水分解防止剤が存在し、この界面における生分解性樹脂の加水分解を防止することによって複合材の崩壊を効果的に防止することができる。
【0011】
【発明の実施の形態】
本発明で用いられる生分解性樹脂は生分解性を有していればよく、特に限定されるものではない。この生分解性樹脂としては、ポリ乳酸、ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリ(ブチレンサクシネート/アジペート)、ポリ(ブチレンサクシネート/カーボネート)、ポリエチレンサクシネート、ポリビニルアルコール、酢酸セルロース、デンプン変性樹脂、セルロース変性樹脂等を用いることができる。この生分解性樹脂は繊維の形態、例えばマルチフィラメント、モノフィラメント、ステープルファイバー、フラットヤーン、スパンボンドとして用いる。
【0012】
また、天然繊維としては、例えば麻(亜麻、ラミー、マニラ麻、サイザル麻、ケナフ、ジュート)、綿、パルプ等を用いることができる。この天然繊維の形態は、例えば単繊維を取り出して用いることもでき、単繊維を束状にして用いることもでき、あるいは単繊維及び/又は束状繊維を織った状態で用いることもできる。
【0013】
上記生分解性樹脂繊維及び天然繊維の長さは、特に制限はないが、繊維の長さが短いと強化材として機能しないため、得られる複合材の強度を高くすることができない。従って、これらの繊維、特に天然繊維の長さは、繊維直径の好ましくは100倍以上、より好ましくは1000倍以上である。これらの繊維の直径は、特に制限はないが、通常の直径、例えば0.01〜0.2mm程度である。
【0014】
本発明においては、天然繊維を加水分解防止剤で被覆しておくことを特徴とする。加水分解防止剤としては、カルボジイミド化合物が好ましく、例えば2,2,6,6-テトライソプロピルジフェニルカルボジイミド、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジオクチルカルボジイミド、ジイソブチルカルボジイミド等が挙げられる。
【0015】
天然繊維に加水分解防止剤を被覆する方法としては、加水分解防止剤を含む溶液を天然繊維表面にスプレーする方法、加水分解防止剤を含む溶液に天然繊維を浸漬する方法、等が例示される。
【0016】
加水分解防止剤の被覆量は、生分解性樹脂の種類、加水分解防止剤の種類、最終複合材の用途及び特性等に応じて適宜決定することができるが、通常は、天然繊維に対して0.1〜5wt%の量を被覆させる。
【0017】
本発明の複合材は、上記生分解性樹脂繊維と、加水分解防止剤を被覆した天然繊維を混合し、加熱し、プレス成形することにより得られる。生分解性樹脂繊維と天然繊維の配合比は、質量比で9:1〜1:9とすることができる。成形時の温度は180〜230℃、圧力は0.5〜50MPaであることが好ましい。こうして得られる複合材の量(目付)は200〜4000g/m2であることが好ましい。
【0018】
【実施例】
実施例1
ケナフ繊維にカルボジイミドを含む溶液をスプレーし、乾燥させることによりケナフ繊維表面にカルボジイミドを被覆させた(被覆量2wt%)。このケナフ繊維をポリ乳酸繊維と質量比1:1で混合し、混合繊維マットを得た。この混合繊維マットを、210℃に加熱した2枚の熱板の間に挟み、プレス型内で7MPaにおいてプレスし、冷却することによって目付1500g/m2の複合材を得た。
【0019】
比較例1
ケナフ繊維にカルボジイミドを被覆しないことを除き、実施例1と同様にして複合材を製造した。
【0020】
比較例2
カルボジイミドを2wt%添加したポリ乳酸から繊維を製造し、これとカルボジイミドを被覆していないケナフ繊維を用いて、実施例1と同様にして複合材を製造した。
【0021】
上記3種の複合材について、70℃、90%RH環境下に放置し、一定時間経過後にJIS K 7171に準じて曲げ特性を測定した。この結果を図1に示す。図1の結果から明らかなように、本発明の複合材において物性低下が最も小さかった。
【0022】
【発明の効果】
本発明の複合材において、加水分解防止剤が存在することにより、生分解性樹脂の加水分解により生ずる分子末端のカルボン酸が加水分解防止剤により封止され、分解を促進する酸の発生が抑制されるため、生分解性樹脂の分子量低下が抑制される。また、強化材である天然繊維の表面に加水分解防止剤が存在しているため、天然繊維と生分解性樹脂繊維の接着点に多量の加水分解防止剤が分布することになり、天然繊維に接着した部分の生分解性樹脂繊維の耐加水分解性が特に向上する。その結果、接着面の剥がれ、接着部の破壊による生分解性樹脂繊維の強度低下を防止することができる。さらに、生分解性樹脂中に添加する場合よりも表面に被覆することにより加水分解防止剤の使用量を少なくすることができるため、低コスト化が可能になる。
【図面の簡単な説明】
【図1】本発明の実施例及び比較例において製造した複合材の湿熱老化後の曲げ特性の測定結果を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fiber composite material having high strength, excellent hydrolysis resistance, and biodegradability.
[0002]
[Prior art]
In general, plastics are chemically very stable compounds, have high durability, and are used in many fields. Although this plastic is stable, there is no problem as long as it is originally used, but there are many problems associated with disposal when it is no longer needed. In other words, waste plastics are generally disposed of by landfill or incineration, but in the case of landfill disposal, they do not decompose over a long period of time, and if incinerated, they cause high temperatures and damage the incinerator. It also becomes a source of harmful substances such as dioxins, which is a big social problem.
[0003]
Therefore, in order to solve these problems, biodegradable resins that decompose into water and carbon dioxide by microorganisms or the like in soil or water have been proposed. This biodegradable resin is easily hydrolyzed in the presence of water, so when used as a general-purpose resin, the biodegradable resin is environmentally friendly and decomposes without polluting the environment after disposal. When placed in a living body, it is an excellent material that is friendly to the living body because it has no or little impact on the living body after achieving its purpose and is decomposed and absorbed in the living body. Has attracted attention as a thing.
[0004]
However, the biodegradable resin has a problem that the mechanical strength is generally lower than that of a general-purpose resin. Therefore, it has been proposed to use reinforcing materials composed of various natural fibers in order to compensate for the shortcoming of the strength of the biodegradable resin. That is, the mechanical strength is increased by combining a biodegradable resin fiber and a natural fiber into a composite material (see, for example, Patent Document 1).
[0005]
In addition, the biodegradable resin has a problem of low hydrolysis resistance particularly in a high temperature and high humidity environment. In order to improve the hydrolysis resistance, it has been proposed to add a hydrolysis inhibitor to the biodegradable resin (see, for example, Patent Document 2).
[0006]
[Patent Document 1]
JP 2001-181975 A (page 2)
[Patent Document 2]
JP 2000-290515 A (page 2)
[0007]
[Problems to be solved by the invention]
However, simply adding a hydrolysis inhibitor to the biodegradable resin in order to increase the hydrolysis resistance of the biodegradable resin requires a large amount of hydrolysis inhibitor and is not effective. In particular, in a composite material of biodegradable resin fiber and natural fiber, it is possible to effectively prevent destruction by hydrolysis of the composite material by preventing hydrolysis at the interface between the biodegradable resin fiber and natural fiber. it can.
[0008]
An object of this invention is to provide the composite material of the biodegradable resin fiber and natural fiber which improved the hydrolysis resistance effectively.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, according to the present invention, there is provided a fiber composite material obtained by mixing a binder fiber made of a biodegradable resin and a natural fiber having a surface coated with a hydrolysis inhibitor.
[0010]
In a composite material composed of biodegradable resin fibers and natural fibers, the anti-hydrolysis agent exists at the interface between the biodegradable resin fibers and the natural fibers by covering the natural fibers with the anti-hydrolysis agent. By preventing hydrolysis of the biodegradable resin at the interface, the composite material can be effectively prevented from collapsing.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The biodegradable resin used in the present invention is not particularly limited as long as it has biodegradability. The biodegradable resins include polylactic acid, polyhydroxybutyrate, polycaprolactone, polybutylene succinate, poly (butylene succinate / adipate), poly (butylene succinate / carbonate), polyethylene succinate, polyvinyl alcohol, acetic acid Cellulose, starch-modified resin, cellulose-modified resin and the like can be used. This biodegradable resin is used in the form of fibers, such as multifilaments, monofilaments, staple fibers, flat yarns, and spunbonds.
[0012]
Examples of natural fibers that can be used include hemp (flax, ramie, manila hemp, sisal hemp, kenaf, jute), cotton, and pulp. As the form of the natural fiber, for example, the single fiber can be taken out and used, the single fiber can be used in a bundle shape, or the single fiber and / or the bundle fiber can be used in a woven state.
[0013]
The length of the biodegradable resin fiber and the natural fiber is not particularly limited, but if the fiber length is short, it does not function as a reinforcing material, so that the strength of the resulting composite material cannot be increased. Accordingly, the length of these fibers, particularly natural fibers, is preferably 100 times or more, more preferably 1000 times or more of the fiber diameter. The diameter of these fibers is not particularly limited, but is a normal diameter, for example, about 0.01 to 0.2 mm.
[0014]
In the present invention, natural fibers are coated with a hydrolysis inhibitor. The hydrolysis inhibitor is preferably a carbodiimide compound, and examples thereof include 2,2,6,6-tetraisopropyldiphenylcarbodiimide, dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, dioctylcarbodiimide, diisobutylcarbodiimide and the like.
[0015]
Examples of the method of coating the natural fiber with the hydrolysis inhibitor include a method of spraying a solution containing the hydrolysis inhibitor on the surface of the natural fiber, a method of immersing the natural fiber in the solution containing the hydrolysis inhibitor, and the like. .
[0016]
The coating amount of the hydrolysis inhibitor can be appropriately determined according to the type of biodegradable resin, the type of hydrolysis inhibitor, the use and characteristics of the final composite material, etc. An amount of 0.1-5 wt% is coated.
[0017]
The composite material of the present invention can be obtained by mixing the biodegradable resin fiber and natural fiber coated with a hydrolysis inhibitor, heating, and press molding. The blending ratio of the biodegradable resin fiber and the natural fiber can be 9: 1 to 1: 9 by mass ratio. The molding temperature is preferably 180 to 230 ° C. and the pressure is preferably 0.5 to 50 MPa. The amount (weight per unit area) of the composite material thus obtained is preferably 200 to 4000 g / m 2 .
[0018]
【Example】
Example 1
The kenaf fiber was sprayed with a solution containing carbodiimide and dried to coat the surface of the kenaf fiber (covering amount 2 wt%). This kenaf fiber was mixed with polylactic acid fiber at a mass ratio of 1: 1 to obtain a mixed fiber mat. The mixed fiber mat was sandwiched between two hot plates heated to 210 ° C., pressed in a press mold at 7 MPa, and cooled to obtain a composite material having a basis weight of 1500 g / m 2 .
[0019]
Comparative Example 1
A composite material was produced in the same manner as in Example 1 except that kenaf fiber was not coated with carbodiimide.
[0020]
Comparative Example 2
A fiber was produced from polylactic acid added with 2% by weight of carbodiimide, and a composite material was produced in the same manner as in Example 1 using this and kenaf fiber not coated with carbodiimide.
[0021]
The above three types of composite materials were left in an environment of 70 ° C. and 90% RH, and the bending characteristics were measured according to JIS K 7171 after a certain period of time. The result is shown in FIG. As is clear from the results in FIG. 1, the physical property degradation was the smallest in the composite material of the present invention.
[0022]
【The invention's effect】
In the composite material of the present invention, the presence of a hydrolysis inhibitor seals the carboxylic acid at the molecular end generated by hydrolysis of the biodegradable resin with the hydrolysis inhibitor, and suppresses the generation of acid that promotes decomposition. Therefore, the molecular weight reduction of the biodegradable resin is suppressed. In addition, since a hydrolysis inhibitor is present on the surface of the natural fiber, which is a reinforcing material, a large amount of the hydrolysis inhibitor is distributed at the bonding point between the natural fiber and the biodegradable resin fiber. The hydrolysis resistance of the biodegradable resin fiber in the bonded part is particularly improved. As a result, it is possible to prevent the strength of the biodegradable resin fiber from being reduced due to peeling of the adhesive surface and destruction of the adhesive portion. Furthermore, since the amount of the hydrolysis inhibitor used can be reduced by covering the surface as compared with the case where it is added to the biodegradable resin, the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing measurement results of bending properties after wet heat aging of composite materials manufactured in examples and comparative examples of the present invention.

Claims (2)

生分解性樹脂からなるバインダー繊維と、表面上に加水分解防止剤を被覆した天然繊維とを混合してなる繊維複合材。A fiber composite material formed by mixing a binder fiber made of a biodegradable resin and a natural fiber having a surface coated with a hydrolysis inhibitor. 前記加水分解防止剤がカルボジイミド化合物である、請求項1記載の繊維複合材。The fiber composite material according to claim 1, wherein the hydrolysis inhibitor is a carbodiimide compound.
JP2003024230A 2003-01-31 2003-01-31 Fiber composite material made of biodegradable resin Expired - Fee Related JP4048965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003024230A JP4048965B2 (en) 2003-01-31 2003-01-31 Fiber composite material made of biodegradable resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003024230A JP4048965B2 (en) 2003-01-31 2003-01-31 Fiber composite material made of biodegradable resin

Publications (2)

Publication Number Publication Date
JP2004232153A JP2004232153A (en) 2004-08-19
JP4048965B2 true JP4048965B2 (en) 2008-02-20

Family

ID=32952811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003024230A Expired - Fee Related JP4048965B2 (en) 2003-01-31 2003-01-31 Fiber composite material made of biodegradable resin

Country Status (1)

Country Link
JP (1) JP4048965B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098930B2 (en) * 2007-09-26 2012-12-12 東レ株式会社 Polyester fiber, method for producing the same, and fiber structure using the same
JP2009249450A (en) * 2008-04-03 2009-10-29 Teijin Ltd Polylactic acid molded article and manufacturing method
JP5476759B2 (en) * 2009-03-25 2014-04-23 東レ株式会社 Method for producing polyester fiber structure
CN101691045B (en) * 2009-10-14 2012-08-22 奇瑞汽车股份有限公司 Plate and manufacture method thereof
CN101812773B (en) * 2010-03-30 2011-12-14 奇瑞汽车股份有限公司 Composite material for automobile interior part and production method thereof
JP5735442B2 (en) * 2012-03-02 2015-06-17 コリア インスティチュート オブ エナジー リサーチ Nanobiocomposite comprising natural fiber reinforcement coated with carbon nanomaterial and polymer
JP7149959B2 (en) * 2017-06-15 2022-10-07 ジーピーシーピー アイピー ホールディングス エルエルシー Washable plant-based material thermally bonded to bio-based fibers

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06145598A (en) * 1992-11-13 1994-05-24 Dainippon Ink & Chem Inc Aqueous coating composition
JPH09272760A (en) * 1996-04-04 1997-10-21 Toyobo Co Ltd Biodegradable molded item
JPH09310293A (en) * 1996-05-23 1997-12-02 Unitika Ltd Biodegradable wet nonwoven fabric and its production
JP3776578B2 (en) * 1997-07-09 2006-05-17 日清紡績株式会社 Biodegradable plastic composition and method for adjusting biodegradation rate of biodegradable plastic
JPH11300901A (en) * 1998-04-24 1999-11-02 Kuraray Co Ltd Sheet for drain bag
JP4016229B2 (en) * 1998-06-19 2007-12-05 平岡織染株式会社 Flame retardant olefin resin laminate
JP2001207363A (en) * 2000-01-28 2001-08-03 Unitica Fibers Ltd Nonwoven fabric for drainer bag and drainer bag
JP4404427B2 (en) * 2000-01-31 2010-01-27 旭化成せんい株式会社 Airbag base fabric and airbag
JP4655342B2 (en) * 2000-07-14 2011-03-23 東レ株式会社 Polylactic acid resin composition and molded article
JP3992673B2 (en) * 2002-09-18 2007-10-17 トヨタ紡織株式会社 Fiber board

Also Published As

Publication number Publication date
JP2004232153A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
Sawpan et al. Flexural properties of hemp fibre reinforced polylactide and unsaturated polyester composites
Nam et al. Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites
Martínez-Hernández et al. Dynamical–mechanical and thermal analysis of polymeric composites reinforced with keratin biofibers from chicken feathers
US7202289B2 (en) Biodegradable resin composition, filler therefor and molded article thereof
JP4048965B2 (en) Fiber composite material made of biodegradable resin
Seo et al. Cellulose-based nanocrystals: Sources and applications via agricultural byproducts
DE60224530D1 (en) FIBERS FROM STRENGTH AND BIOABCABLE POLYMERS
Lu et al. Environmental degradability of self-reinforced composites made from sisal
KR200470687Y1 (en) Flooring material having biodegradable surface layer
Ismail et al. Kenaf core reinforced high-density polyethylene/soya powder composites: The effects of filler loading and compatibilizer
JP2019166703A (en) Poly(3-hydroxybutyrate)-based resin sheet
JP2002146219A (en) Biodegradable composite material and manufacturing method therefor
ATE78535T1 (en) COMPOSITE MATERIAL OF CELLULOSE FIBERS AND CHITOSAN AND PROCESS FOR ITS PRODUCTION.
JP2009138022A (en) Thermoplastic composite material composition
KR102553049B1 (en) Biodegradable material, biodegradable fiber member, biodegradable fabric member and manufacturing methods thereof
Muthu Green Composites: Sustainable Raw Materials
Dash et al. Mechanical properties of hemp reinforced poly (butylene succinate) biocomposites
Julkapli et al. Bio-nanocomposites from natural fibre derivatives: manufacturing and properties
JP4196119B2 (en) Plate-shaped molded product using acrylic resin molding material
KR20210039139A (en) resin composite excellent in soundproof and mechanical properties
Mtibe et al. in Textile-Reinforced Composites and Biocomposites
WO2023223615A1 (en) Composite resin molded body and method for producing same
CN211195210U (en) High-toughness fully-degradable composite sheet
CN118749015A (en) Composite resin molded article and method for producing same
BOZTOPRAK et al. AN OVERVIEW OF PALM FIBER REINFORCED COMPOSITES

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees