JP4048270B2 - MgB2 superconducting film and method for producing the same - Google Patents

MgB2 superconducting film and method for producing the same Download PDF

Info

Publication number
JP4048270B2
JP4048270B2 JP2002048331A JP2002048331A JP4048270B2 JP 4048270 B2 JP4048270 B2 JP 4048270B2 JP 2002048331 A JP2002048331 A JP 2002048331A JP 2002048331 A JP2002048331 A JP 2002048331A JP 4048270 B2 JP4048270 B2 JP 4048270B2
Authority
JP
Japan
Prior art keywords
mgb
metal substrate
buffer layer
film
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002048331A
Other languages
Japanese (ja)
Other versions
JP2003249696A (en
Inventor
勝夫 福富
和範 小森
京子 川岸
一正 戸叶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2002048331A priority Critical patent/JP4048270B2/en
Publication of JP2003249696A publication Critical patent/JP2003249696A/en
Application granted granted Critical
Publication of JP4048270B2 publication Critical patent/JP4048270B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、リニアモーターカー、加速器、医療機器用高磁界マグネット、加速器用マグネット、電力貯蔵(SMES)および各種の電力システム等の幅広い分野への応用に有用なMgB2超伝導体に関するものであり、さらに詳しくは、高磁界においても臨界電流が低下しない磁界特性を有するMgB2の微結晶からなる膜状超伝導体に関するものである。
【0002】
【従来の技術と発明の課題】
超伝導体に関するこれまでの技術は、大きく分けて銅の酸化物からなる銅酸化物超伝導体と銅酸化物以外からなる非銅酸化物超伝導体に大別できる。銅酸化物超伝導体は銅と酸素からなる二次元面の構造を有しており超伝導転移温度(Tc)は非銅酸化物超伝導体に比べて高いが、この銅酸化物超伝導体はいわゆるセラミックスであるため、導線に加工することはもちろん、簡単な成形・加工も難しく、これまで銅酸化物からなる超伝導体を製品化することはできなかった。
【0003】
一方、非銅酸化物超伝導体としては複数の金属元素だけからなる金属間化合物と銅を含まない金属の酸化物からなる2種類がある。非銅酸化物超伝導体の中でも金属間化合物からなる超伝導体は,それ自体が金属であるため合成・成形・加工が容易である。このように、銅酸化物超伝導体および非銅酸化物超伝導体はそれぞれが一長一短を有しているが、製品化の観点から考えた場合、合成・成形・加工が容易である金属系超伝導体の方が好ましいと考えられており、近年種々の金属を組み合わせて金属系超伝導体を製造する試みがなされてきた。
【0004】
その結果、Mg(マグネシウム)で形成される六角形の面とB(硼素)で形成される六角形の面が積層された構造を持つMgB2(二硼化マグネシウム)が金属系超伝導体としては高い超伝導転移温度を有するものであることがわかってきた。最近開発されたこのMgB2(2硼化マグネシウム)は金属系超伝導体としては最高の超伝導転移温度(Tc=39K)を持っているだけでなく、原料が安価で、かつ合成や成形・加工が比較的容易である等、産業応用上多くの長所を具備している。そのため、現在各国で本格的な実用化を視野に入れた開発競争が始められている。これまでに明らかにされているMgB2を原料とする超伝導体の製造方法としては、(イ)MgB2,Mg,B粉末を調合したものを、そのまま線状にするか、あるいは、MgB2,Mg,B粉末を調合したものをステンレス管等に充填後線引き、圧延加工する、いわゆるPIT(Powder In Tube)法と称される方法で線体に成形したものを熱処理する方法と(ロ)ボロン繊維もしくはボロン膜を基体上に作成した後それをMg蒸気中高温でMgとボロンを拡散反応させMgB2膜に変換する2種類の方法があった。しかしながら,これらの製造方法で得られた超伝導体は、何れも高い超伝導転移温度(Tc)は得られるものの、結晶粒同士の結合が不充分だったり、粒が粗大化し易くなるため高磁界での臨界電流(Jc)が劣るという問題があった。例えば、前記(イ)のPIT(Powder In Tube)法で製造した場合は無磁場では10万A/cm2台の値が予測されているが、温度が5K(絶対温度)で印加磁場を5T(テラ)にすると1000A/cm2に低下する。また上記(ロ)の場合も温度が5K(絶対温度)で印加磁場を5T(テラ)にすると1000A/cm2となり磁界電流(Jc)特性は印加磁場の上昇とともに著しく劣化していた。
【0005】
MgB2を原料とした単結晶や線材の上部臨界磁界(Hc2)や高磁界での臨界電流(Jc)特性を測定した文献が最近次々に発表されているが、フレキシブルな導体状のもので従来の超伝導体の高磁界特性を上回る物性を示すものは現在現れていない。
【0006】
そこで、この出願の発明は、以上のとおりの問題を解消し、超伝導転移温度が高いだけでなく、高磁界での臨界電流が優れた特性を有するMgB2超伝導体とその製造方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するためのものとして、第1には金属基材表面に、Mg−Bと金属基材表面との化学反応を抑制するためにバッファー層を設け、そのバッファー層の表面にMg過剰のMg−Bの非晶質前駆体膜を形成した後に、該前駆体膜を不活性気体の大気圧中で、80〜150℃/minの昇温速度での加熱、10〜30分間の加熱保持、50〜150℃/minの冷却速度での冷却を経てMg−B非晶質前駆体からMgB超伝導膜状体を形成させることを特徴とするMgB超伝導膜状体の製造方法を提供する。そして、第2には、上記方法において、金属基材表面にMg過剰のMg-Bの非結晶質前駆体膜を形成するに先立って、ZrO 、Y 、YSZの群から選ばれる少なくとも1種からなるバッファー層を設ける製造方法を提供するものであり、また、第3には、上記方法において、金属基材Ni基合金であることを特徴とする製造方法を提供し、第4には、金属基材表面に、ZrO 、Y 、YSZの群から選ばれる少なくとも1種からなるバッファー層が設けられ、そのバッファー層の表面にMgB の超伝導膜状体が形成されていることを特徴とするMgB 超伝導膜状体を提供し、第5には、上記のMaB 超伝導膜状体において、金属基材が、Ni基合金であることを特徴とするMaB 超伝導膜状体を提供するものである。
【0008】
【発明の実施の形態】
この出願の発明の特徴は上記のとおり金属基体上にMgB2を膜状化することで高磁界特性を飛躍的に向上させるものであるが、この出願の発明を以下に詳細に説明する。この出願の発明の概要はNi基合金の金属基体上に、Mgを過剰に含有するMg-Bの非晶質前駆体をレーザー蒸着等で形成し、この前駆体を被覆した金属基体を酸素フリーでアルゴン等の不活性気体の大気圧中で80〜150℃/minの昇温速度で350〜650℃まで加熱する。そして、加熱状態を10〜30分程度保持した後にたとえば50〜150℃/min程度で急速冷却をすることによって金属基体上にMgB2のナノサイズ微結晶を晶出させるものである。この加熱によって余剰のMgが揮発すると同時にMgB2の分解揮発も進行する。その競合状態でMgB2が生成するため350〜650℃の温度範囲にすることが必要である。なお、本願発明のMgB2ナノサイズ微結晶の製造方法においては、雰囲気中からも、また、原料中からも完全に酸素を除去することは不可能であり、この出願の発明における酸素フリーの状態とは酸素が完全に除去された状態を意味するのではなく、MgB2ナノサイズ微結晶に酸素がMgやBと結合して生じた微細な析出物が細かく分散した超伝導体が生成される状態が含まれたものであることを意味する。
【0009】
また、この出願の発明は金属基体上にMgを過剰に含有するMg-Bの非晶質前駆体をレーザー蒸着等で形成する前に予めバッファー層を形成させる。このバッファ−層を配設する理由としては、金属基体上にMg-Bの非晶質前駆体を形成後の熱処理を行うに際し熱処理条件の適正な幅を広げるためである。このバッファー層を設ける第2の発明の態様は、Ni基合金の金属基体上に、Mg-Bと反応しないZrO2,Y23,YSZのバッファー層を設けた後にMgを過剰に含有するMg-Bの非晶質前駆体をレーザー蒸着等で形成するものである。そして、該前駆体膜を被覆した金属基体は第1の発明と同じく、酸素フリーのアルゴン等の不活性気体の大気圧中で、昇温速度を80〜150℃/minで350〜650℃の比較的低温に加熱して、10〜30程度加熱保持した後に急速冷却をすることによって大気圧で急速加熱、短時間加熱保持、急速冷却を経て金属基体上にMgB2のナノサイズ微結晶を晶出させるものである。
【0010】
【実施例】
以下,実施例によってこの出願の発明を詳細に説明する。なお、下記の実施例1に記載されるものは、この発明の好ましい態様を示すものであるが、下記の実施例に限定されないことは言うまでもない。
<実施例1>ハステロイテープ(Ni基耐熱合金)の30mm×4.0mm×0.3mm上にスパッタリングでYSZを約1μmバッファー層として被覆した。その上にMg過剰のMgB2ターゲットを使ったレーザー蒸着法(PLD)を用い室温かつ減圧Arガス雰囲気中でMg過剰Mg-B非晶質前駆体膜を形成した。その後、不純物としてO2、H2Oを含まないArガス1気圧下で熱処理を行った。熱処理は約100℃/minで昇温して580℃に20分保持後急冷した。その結果、黒色ないし青黒色をした約0.5μmの光沢のあるMgB2超伝導導体が得られた。膜は24K(絶対温度)で零抵抗に転移した。得られた導体(1)の高磁界下での輸送法による高磁界での臨界電流(Jc)特性の結果をNb-Ti実用線材(2)、ステンレステープ(3)、キュプロニッケルコア線(4)、硼素ファイバー法で成形したものを5Kで測定したもの(5)、キュプロニッケルテープ(6)比較したのが図1である。図1から明らかなように、他の方法で成形したものは印加磁場が高まるに従って臨界電流が低下しているのに対して、この発明の方法で得られた超伝導体(1)は、10T(テラ)の高磁界でも105A/cm2台の臨界電流(Jc)が流れている。これは従来のMgB2線材に比較して顕著な高磁界での臨界電流(Jc)特性を示しているだけでなく、現在最も多く使用されているNb-Ti線材(2)が8T(テラ)から臨界電流が急激に低下しているのに比較しても高磁界特性に優れたものであることがわかる
【0011】
【発明の効果】
以上詳しく説明したとおり、この出願の発明のMgB2超伝導膜状体の場合には、高磁界特性がよく、MgB2を構成するMg(マグネシウム)およびB(硼素)が資源豊富で廉価なため、従来の超伝導体の材料に比較して、製造コストが大幅に低減できる。また、冷凍機冷却のできる20Kで使用できる可能性があり冷却コストの面でも低減が期待できる。
【図面の簡単な説明】
【図1】MgB2線材の臨界電流密度の磁場特性比較図である。
【符号の説明】
1 この発明によって製造された超伝導膜体
2 Nb-Ti実用線材
3 ステンレステープ
4 キュプロニッケル(白銅)コア線
5 ホウ素ファイバー法(5K)
6 キュプロニッケル(白銅)テープ
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a MgB 2 superconductor useful for a wide range of applications such as linear motor cars, accelerators, high-field magnets for medical devices, accelerator magnets, power storage (SMES), and various power systems. More specifically, the present invention relates to a film superconductor made of MgB 2 microcrystals having magnetic field characteristics in which the critical current does not decrease even in a high magnetic field.
[0002]
[Prior art and problems of the invention]
The conventional technologies related to superconductors can be broadly divided into copper oxide superconductors made of copper oxide and non-copper oxide superconductors made of other than copper oxide. The copper oxide superconductor has a two-dimensional structure composed of copper and oxygen, and the superconducting transition temperature (Tc) is higher than that of the non-copper oxide superconductor. Since is a so-called ceramic, it is difficult to process it into a conducting wire, as well as to easily form and process it, and so far it has not been possible to produce a superconductor made of copper oxide.
[0003]
On the other hand, there are two types of non-copper oxide superconductors: an intermetallic compound consisting of only a plurality of metal elements and a metal oxide not containing copper. Among non-copper oxide superconductors, superconductors made of intermetallic compounds are easy to synthesize, mold and process because they are themselves metals. As described above, each of the copper oxide superconductor and the non-copper oxide superconductor has advantages and disadvantages, but from the viewpoint of commercialization, it is easy to synthesize, form and process a metal-based superconductor. Conductors are considered to be preferable, and attempts have been made in recent years to produce metallic superconductors by combining various metals.
[0004]
As a result, MgB 2 (magnesium diboride) having a structure in which a hexagonal surface formed of Mg (magnesium) and a hexagonal surface formed of B (boron) are laminated is used as a metallic superconductor. Has been found to have a high superconducting transition temperature. This recently developed MgB 2 (magnesium diboride) not only has the highest superconducting transition temperature (Tc = 39K) as a metal-based superconductor, but also is inexpensive and can be synthesized, molded, It has many advantages in industrial applications, such as being relatively easy to process. As a result, development competition has started in various countries with a view to full-scale practical application. As a method for producing a superconductor using MgB 2 as a raw material that has been clarified so far, (i) a mixture of MgB 2 , Mg, and B powder is made linear as it is, or MgB 2 , Mg, B powder blended into a stainless steel tube, etc., drawn, rolled, and so-called PIT (Powder In Tube) method formed into a wire body and heat treated (b) There are two methods in which boron fiber or boron film is formed on a substrate and then converted into an MgB 2 film by diffusion reaction of Mg and boron at a high temperature in Mg vapor. However, although all the superconductors obtained by these manufacturing methods can obtain a high superconducting transition temperature (Tc), the bonding between crystal grains is insufficient or the grains are likely to be coarsened. There was a problem that the critical current (Jc) was inferior. For example, when manufactured by the PIT (Powder In Tube) method (b), a value of 100,000 A / cm 2 is predicted without a magnetic field, but the temperature is 5 K (absolute temperature) and the applied magnetic field is 5 T. drops to 1000A / cm 2 when the Tela. Also in the case of (b) above, when the temperature was 5K (absolute temperature) and the applied magnetic field was 5T (tera), the magnetic field current (Jc) characteristics deteriorated significantly as the applied magnetic field increased, resulting in 1000 A / cm 2 .
[0005]
Literatures measuring the upper critical magnetic field (Hc2) and critical current (Jc) characteristics at high magnetic fields of single crystals and wires made of MgB 2 have been published one after another. Currently, no material that exhibits physical properties that exceed the high magnetic field properties of superconductors.
[0006]
Accordingly, the invention of this application provides an MgB 2 superconductor that solves the above-described problems and has not only a high superconducting transition temperature but also an excellent critical current in a high magnetic field and a method for producing the same. It is something to try.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the invention of this application is provided with a buffer layer in order to suppress the chemical reaction between Mg-B and the metal substrate surface on the metal substrate surface. After forming an Mg-B amorphous precursor film with excess Mg on the surface of the buffer layer, the precursor film is heated at a temperature increase rate of 80 to 150 ° C./min in the atmospheric pressure of an inert gas . , MgB 2, characterized in that to form a superconducting film-like body of MgB 2 heating retention of 10 to 30 minutes, after cooling at a cooling rate of 50 to 150 ° C. / min from MgB amorphous precursor A method for producing a superconducting film is provided. And secondly, in the above method, prior to forming the Mg-excess Mg-B amorphous precursor film on the surface of the metal substrate, it is selected from the group of ZrO 2 , Y 2 O 3 and YSZ. is intended to provide a method of providing a buffer layer composed of at least one, and in the third, in the above method, to provide a manufacturing method, wherein the metal substrate is a Ni-based alloy metal, Fourth, a buffer layer made of at least one selected from the group consisting of ZrO 2 , Y 2 O 3 , and YSZ is provided on the surface of the metal substrate, and a superconducting film of MgB 2 is formed on the surface of the buffer layer. wherein the but provides MgB 2 superconductor film like body, characterized in that it is formed, the fifth, the MAB 2 superconductor film-like body of the metal substrate is a Ni-based alloy Kyosu Hisage the MAB 2 superconducting film-like material to It is intended.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the feature of the invention of this application is to dramatically improve the high magnetic field characteristics by forming MgB 2 on the metal substrate as described above. The invention of this application will be described in detail below. Summary of the Invention This application is on the metal substrate of the N i-based alloy gold, to form an amorphous precursor of Mg-B which is contained excessively Mg in laser deposition or the like, the precursor coated metal substrate It is heated to 350 to 650 ° C. at a temperature rising rate of 80 to 150 ° C./min in an atmospheric pressure of an inert gas such as argon without using oxygen. Then, after maintaining the heating state for about 10 to 30 minutes, for example, rapid cooling at about 50 to 150 ° C./min causes crystallization of MgB 2 nano-sized microcrystals on the metal substrate. With this heating, excess Mg volatilizes, and at the same time, decomposition and volatilization of MgB 2 proceed. In order to produce MgB 2 in the competitive state, it is necessary to set the temperature range to 350 to 650 ° C. In addition, in the method for producing MgB 2 nanosize microcrystals of the present invention, it is impossible to completely remove oxygen from the atmosphere and from the raw materials, and the oxygen-free state in the invention of this application Does not mean a state in which oxygen is completely removed, but a superconductor is produced in which fine precipitates formed by combining oxygen with Mg and B are finely dispersed in MgB 2 nano-sized microcrystals. It means that the state is included.
[0009]
The invention of this application is Ru to form a pre-buffer layer before forming the amorphous precursor of Mg-B which is contained excessively Mg on a metal substrate by laser deposition or the like. The reason for disposing this buffer layer is to widen an appropriate range of heat treatment conditions when performing heat treatment after forming the Mg-B amorphous precursor on the metal substrate. Embodiment of the second invention providing the buffer layer, on a metal substrate of N i-based alloy gold, excess Mg after providing a buffer layer of ZrO 2, Y 2 O 3, YS Z which do not react with Mg-B An amorphous precursor of Mg-B contained in the material is formed by laser vapor deposition or the like. The metal substrate coated with the precursor film is 350 to 650 ° C. at a temperature rising rate of 80 to 150 ° C./min in the atmospheric pressure of an inert gas such as oxygen-free argon as in the first invention. Heating to a relatively low temperature, heating and holding for about 10 to 30 and then rapidly cooling to rapidly heat at atmospheric pressure, hold for a short time, and rapidly cool to form MgB 2 nano-sized microcrystals on the metal substrate. It is something to be issued.
[0010]
【Example】
Hereinafter, the invention of this application will be described in detail by way of examples. In addition, although what is described in the following Example 1 shows the preferable aspect of this invention, it cannot be overemphasized that it is not limited to the following Example.
Example 1 YSZ was coated as a buffer layer of about 1 μm by sputtering on 30 mm × 4.0 mm × 0.3 mm of Hastelloy tape (Ni-base heat-resistant alloy). A Mg-excess Mg—B amorphous precursor film was formed thereon at room temperature in a reduced pressure Ar gas atmosphere using a laser deposition method (PLD) using an Mg-excess MgB 2 target. Thereafter, heat treatment was performed under 1 atm of Ar gas not containing O 2 and H 2 O as impurities. In the heat treatment, the temperature was raised at about 100 ° C./min, held at 580 ° C. for 20 minutes, and then rapidly cooled. As a result, a glossy MgB 2 superconducting conductor of about 0.5 μm in black or blue-black color was obtained. The film transitioned to zero resistance at 24K (absolute temperature). The result of the critical current (Jc) characteristic in the high magnetic field by the transport method in the high magnetic field of the obtained conductor (1) is shown as Nb-Ti practical wire (2), stainless steel tape (3), cupronickel core wire (4 ), A product formed by the boron fiber method measured at 5K (5) and a cupronickel tape (6) are compared in FIG. As is apparent from FIG. 1, the superconductor (1) obtained by the method of the present invention is 10T, while the critical current decreases as the applied magnetic field increases in those molded by other methods. Even in a high magnetic field of (Tera), a critical current (Jc) of 10 5 A / cm 2 is flowing. This not only shows the critical current (Jc) characteristic in a high magnetic field as compared with the conventional MgB 2 wire, but also the most frequently used Nb—Ti wire (2) is 8T (tera). From this, it can be seen that the high magnetic field characteristics are excellent even when the critical current rapidly decreases .
[0011]
【The invention's effect】
As explained in detail above, the MgB 2 superconducting film of the invention of this application has good high magnetic field characteristics, and Mg (magnesium) and B (boron) constituting MgB 2 are rich in resources and inexpensive. Compared with conventional superconductor materials, the manufacturing cost can be greatly reduced. In addition, there is a possibility that it can be used at 20K where the refrigerator can be cooled, and a reduction in cooling cost can be expected.
[Brief description of the drawings]
FIG. 1 is a magnetic field characteristic comparison diagram of critical current density of MgB 2 wire.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Superconducting membrane body manufactured by this invention 2 Nb-Ti practical wire 3 Stainless steel tape 4 Cupronickel (white copper) core wire 5 Boron fiber method (5K)
6 Cupronickel (white copper) tape

Claims (5)

金属基材表面に、Mg−Bと金属基材表面との化学反応を抑制するためにバッファー層を設け、そのバッファー層の表面にMg過剰のMg−Bの非晶質前駆体膜を形成した後に、該前駆体膜を不活性気体の大気圧中で、80〜150℃/minの昇温速度での加熱、10〜30分間の加熱保持、50〜150℃/minの冷却速度での冷却を経てMg−B非晶質前駆体からMgB超伝導膜状体を形成させることを特徴とするMgB超伝導膜状体の製造方法。The metal substrate surface, the buffer layer is provided in order to suppress the chemical reaction between the Mg-B and the metal substrate surface, an amorphous precursor film of Mg excess Mg-B on the surface of the buffer layer Later, the precursor film is heated in an inert gas at atmospheric pressure at a heating rate of 80 to 150 ° C./min , heated and held for 10 to 30 minutes, and cooled at a cooling rate of 50 to 150 ° C./min. method of manufacturing a MgB 2 superconductor film like body, characterized in that to form a superconducting film-like body of MgB 2 from MgB amorphous precursor through. バッファー層が、ZrO 、Y 、YSZの群から選ばれる少なくとも1種からなることを特徴とする請求項1に記載の製造方法。The production method according to claim 1, wherein the buffer layer is made of at least one selected from the group consisting of ZrO 2 , Y 2 O 3 , and YSZ . 金属基材が、Ni基合金であることを特徴とする請求項1または2に記載の製造方法。The method according to claim 1 or 2, wherein the metal substrate is a Ni-based alloy . 金属基材表面に、ZrOZrO on the metal substrate surface 2 、Y, Y 2 O 3 、YSZの群から選ばれる少なくとも1種からなるバッファー層が設けられ、そのバッファー層の表面にMgB, A buffer layer made of at least one selected from the group of YSZ is provided, and MgB is formed on the surface of the buffer layer. 2 の超伝導膜状体が形成されていることを特徴とするMgBMgB characterized in that a superconducting film is formed 2 超伝導膜状体。Superconducting membrane. 金属基材が、Ni基合金であることを特徴とする請求項4に記載のMgBThe MgB according to claim 4, wherein the metal substrate is a Ni-based alloy. 2 超伝導膜状体。Superconducting membrane.
JP2002048331A 2002-02-25 2002-02-25 MgB2 superconducting film and method for producing the same Expired - Lifetime JP4048270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002048331A JP4048270B2 (en) 2002-02-25 2002-02-25 MgB2 superconducting film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002048331A JP4048270B2 (en) 2002-02-25 2002-02-25 MgB2 superconducting film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003249696A JP2003249696A (en) 2003-09-05
JP4048270B2 true JP4048270B2 (en) 2008-02-20

Family

ID=28661155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002048331A Expired - Lifetime JP4048270B2 (en) 2002-02-25 2002-02-25 MgB2 superconducting film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4048270B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056824A1 (en) * 2008-11-11 2010-05-20 H.C. Starck Gmbh Inorganic compounds
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
CN110176330A (en) * 2019-05-28 2019-08-27 北京工业大学 It is a kind of to prepare closely knit MgB2The synthetic method of superconduction block material

Also Published As

Publication number Publication date
JP2003249696A (en) 2003-09-05

Similar Documents

Publication Publication Date Title
JP3575004B2 (en) Intermetallic compound superconductor composed of magnesium and boron, alloy superconductor containing the intermetallic compound, and methods of producing these
JP3587956B2 (en) Oxide superconducting wire and its manufacturing method
JP4800740B2 (en) Rare earth tape-shaped oxide superconductor and method for producing the same
Kumakura et al. Superconducting Properties of Diffusion-Processed Multifilamentary ${\rm MgB} _ {2} $ Wires
JP2007095367A (en) Manufacturing method of magnesium diboroide superconductive wire rod
JPH0419918A (en) Nb3al-type superconductor wire manufacturing method and its apparatus
Kumakura Development and prospects for the future of superconducting wires
JP4048270B2 (en) MgB2 superconducting film and method for producing the same
US7445808B2 (en) Method of forming a superconducting article
JP2008066168A (en) Mgb2 superconducting wire rod and its manufacturing method
JP3588628B2 (en) Method for producing Nb3Al ultrafine multicore superconducting wire
JP5624839B2 (en) Base material for oxide superconducting conductor and method for producing the same, oxide superconducting conductor and method for producing the same
US6845254B2 (en) Nb3Ga multifilamentary superconducting wire and process for preparing the same
JP4016103B2 (en) Method for producing MgB2 superconductor
Sharma Practical Magnesium Diboride (MgB2) Superconductor
JPH01275434A (en) Production of high temperature superconducting oxide film
Iijima et al. Direct formation of A15 phase through RHQ treatment in RIT processed Nb/Al-Cu precursor wire
JP3536920B2 (en) Alloy superconductor and method of manufacturing the same
JP4267358B2 (en) Silver tape and superconducting wire
JP3049314B1 (en) Manufacturing method of oxide superconducting composite wire
Iijima et al. Cu-added Nb/sub 3/Al multifilamentary superconductors having high J/sub c/in high fields
Deng et al. Fabrication of Bi-2223 superconducting thick films via a non-vacuum method on silver foil substrates
Iijima et al. New Nb3Al-based A15 multifilamentary wires with high Jc in high fields
JPH04179004A (en) Oxide superconductive tape conductor
Glowacki Development of Nb-based conductors

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

R150 Certificate of patent or registration of utility model

Ref document number: 4048270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term