JP4045917B2 - Liquid component concentration measuring device - Google Patents

Liquid component concentration measuring device Download PDF

Info

Publication number
JP4045917B2
JP4045917B2 JP2002302735A JP2002302735A JP4045917B2 JP 4045917 B2 JP4045917 B2 JP 4045917B2 JP 2002302735 A JP2002302735 A JP 2002302735A JP 2002302735 A JP2002302735 A JP 2002302735A JP 4045917 B2 JP4045917 B2 JP 4045917B2
Authority
JP
Japan
Prior art keywords
solution
measurement
liquid
sound speed
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002302735A
Other languages
Japanese (ja)
Other versions
JP2004138473A (en
Inventor
和夫 松永
長久 松平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2002302735A priority Critical patent/JP4045917B2/en
Publication of JP2004138473A publication Critical patent/JP2004138473A/en
Application granted granted Critical
Publication of JP4045917B2 publication Critical patent/JP4045917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02809Concentration of a compound, e.g. measured by a surface mass change

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、クロムめっき液等の溶液の成分濃度管理に有用な成分濃度の測定装置に関し、特にインライン測定に適した音速による簡便な測定法による液中成分濃度測定装置に関する。
【0002】
【従来の技術】
クロムめっきは、光沢を利用した装飾用、あるいは耐腐食性や耐摩耗性等の物理特性を利用した工業用めっきとして広く利用されている。めっき液の管理としては、比重測定による方法が一般的であり、滴定による成分定量法も必要に応じて行われている。
【0003】
特に工業用めっきにおいては、めっき皮膜の品質維持のために、めっき浴の組成を一定範囲に保つことが不可欠であり、そのために、めっき浴(めっき液)中の成分濃度を精度良く測定することが重要であるが、従来の液中成分濃度の測定方法においては、いずれも工業的に、いくつかの欠点があった。
【0004】
例えば比重測定による液中成分濃度の測定方法は、ボーメ計と呼ばれる浮き秤を使用して、液の比重を計る方法であり、基本的には、無水クロム酸溶液等のめっき液の密度(比重)が成分濃度により変化することを利用したものである。この方法は、液中に秤を浮かべるという簡易な測定方法であり、広く用いられているが、精度からみて、無水クロム酸以外の成分の影響を評価することは困難であり、さらに、その測定結果を電気的にフィードバックして制御することも難しかった。
【0005】
また、滴定による液中成分濃度の測定方法は、例えば無水クロム酸溶液中の無水クロム酸濃度及び3価クロム濃度と硫酸濃度の各成分を滴定により測定する方法であり、それぞれの成分を定量評価できるという利点があるが、測定に当たっては、めっき液から試料を採取(サンプリング)してオフラインで測定を行うことと、滴定作業に人と時間が必要なことから常時監視することが困難であった。
【0006】
そこで、これらの問題を解決して、インラインによる測定制御に利用できる方法として、従来から液体中の音速と液体の密度の関係を利用して、音速の測定により濃度を求める方法が、いくつかの分野で実用化されている。
【0007】
しかしながら、クロムめっき液に適用した場合には、液中の音速の温度依存性の複雑さから非常に複雑なアルゴリズムと、多くの相関データが必要なことが予想され、また副成分の影響の評価のために、他の分析法との併用が必要になることもあって実用化が難しかった。
【0008】
ここで、クロムめっき液の組成として、一般的に硬質クロムめっきに用いられるめっき液を例に採って説明すれば、そのめっき液の組成は、具体的には、無水クロム酸が250±100g/リットル、硫酸が2〜10ミリリットル/リットルの範囲である。
【0009】
本発明者等は、クロムめっきに用いる液中の成分のうちで、主成分の無水クロム酸について、その水溶液の濃度と液中の音速の相関について詳細に検討した結果、無水クロム酸濃度を音速により測定することが可能であることを見出したものである。
【0010】
しかしながら、これをインライン計測に応用する場合には、プロセス中で発生する気泡の影響で、測定値にノイズが重畳し、正確な音速の測定が困難であることが判った。
【0011】
この問題を解決するために、いくつかの対策が提案されていて、大別すると、音速の測定のアルゴリズムの改良による気泡の影響の除去と、測定対象溶液中に発生する気泡本体の除去がある。
【0012】
音速測定のアルゴリズムの改良による気泡の影響の除去は、基本的には超音波信号のうちで気泡による減衰を受けた反射波信号を無視できるようにデータ処理を行うことであり、気泡による減衰を受けない正常信号と、減衰を受けた異常信号との識別の論理によっていくつかに区分される。
【0013】
一般には、正常信号は短時間においては繰り返しの変化が少なく、異常信号は変化が大きいと考えられることから、一定時間内の音速値の分散によって識別することができるが、この方法は、正常信号が一定時間内に適当数存在する場合のみ適用可能である。また、減衰による強度比により、正常信号と異常信号とを区分することも可能であるが、この方法は、数次反射波との識別が困難であるという問題点を抱えていて、この方法については、現状では微小気泡が多数存在する系に対しては安定した計測が可能な水準には到達していない。
【0014】
測定対象溶液中の気泡除去の方法については従来から加圧による方法が提案されておりこれを補助する手段も併用される場合がある。この方法は流路をクローズドにして圧をかけることから構造的に複雑になり特にクロム酸のような強酸化性の危険な液体を取り扱う工程に於いては安全対策を含めて簡単には使用が困難である。
【0015】
大気中で静置することによって気泡の除去は可能であるが、このためには脱泡時間がかかるため連続でのインライン測定が出来ず断続的な測定となり、さらに高温の液を測定する場合には液温の低下が大きく音速の温度依存性の直線範囲を超えてしまう場合がしばしば起こり正確な測定も困難であった。
【0016】
【発明が解決しようとする課題】
本発明者等は、この問題を解決するために、開放系連続流路での脱泡の程度を実験的に評価した結果、低流量ポンプと長流路との組み合わせによって、音速測定に影響を与えないような気泡除去が可能であることを見出した。すなわち、液中の気泡を除去する機構として、常圧での折り返し流路を備えた除去槽を有するクロムめっき液の液中成分濃度測定装置である。
【0017】
この方法は、インラインでの音速測定というメンテナンスフリーの方法で、音速のみの1つの物理量から成分濃度を測定するという方法であり、複雑な加圧機構を必要とすることなく連続測定と監視が可能であるという点で優れている。
【0018】
しかしながら、バイパス機構を必要とし、液送ポンプを用いるという測定装置の複雑さと、脱泡時間による測定タイミングの遅延と、複数の槽で使用する場合に、それぞれに高価なセンサーが必要になるという3つの問題点があった。
【0019】
本発明の課題は、液中成分濃度測定装置であって、その測定装置を簡素化し、脱泡時間による測定タイミングの遅延を解消し、複数槽の測定の場合に個別の高価なセンサーを不要とすることにある。
【0020】
【課題を解決するための手段】
本発明の請求項1に係る発明は、測定槽1内の溶液2中に配置した音速測定手段4にて測定される溶液2中の音速から、その溶液2中の成分濃度を求める方式の液中成分濃度測定装置において、音速測定手段4の音速センサー部5(垂直又は水平方向に対向配置した超音波発振部5aと超音波受振部5b)を、測定槽1内の溶液2の液面Lから一定の深度Dに配置制御する深度制御手段3を備えてなり、かつ音速センサー部が、深度制御手段の下部の一定の深度の位置に固定配置されてなることを特徴とする液中成分濃度測定装置である。
【0021】
本発明の請求項2に係る発明は、上記請求項1に係る液中成分濃度測定装置において、前記深度制御手段3が測定槽1内の溶液2の液面Lに浮かべたフロート6(浮体)であって、前記音速測定手段4がフロート6に固定された構造であることを特徴とする液中成分濃度測定装置である。
【0022】
本発明の請求項3に係る発明は、上記請求項1又は請求項2に係る液中成分濃度測定装置において、前記溶液2が無水クロム酸溶液であって、該液中の成分濃度の測定対象がクロム酸であることを特徴とする液中成分濃度測定装置である。
【0023】
【作用】
上記問題を解決するために、本発明者等は、測定の対象となる溶液2を貯留する測定槽1(溶液貯留槽、処理槽)内において、液面Lの液面位が変動する溶液2中の気泡2aの分布と、その溶液2の音速測定に与える影響とを実験的に評価した結果、音速測定手段4の音速センサー部5(対向配置した超音波発振部5aと超音波受振部5b)を、溶液2の液面Lから一定の深度Dに配置することによって、液面Lから一定の深度D未満の液中に発生する多数の気泡2aの存在による音速測定への影響を、必要程度まで軽減することができる。
【0024】
本発明の液中成分濃度測定装置は、測定槽1内に貯留する溶液2の液面Lの液面位の変動に対応して、音速測定手段4(音速センサー部5、対向配置した超音波発振部5aと超音波受振部5b)を、溶液2の液面Lから、常に一定の深度Dに配置制御するフロート等の深度制御手段3を備えたので、音速測定手段4の音速センサー部5は液面Lから常に一定の深度Dに保持でき、液面Lから一定の深度D未満の溶液2中に発生する多数の気泡2aの存在による音速測定への影響を必要程度まで軽減することができる。
【0025】
本発明装置は、気泡2aを含有する開放系の溶液2のうち、音速により成分濃度測定が可能な全ての溶液の成分濃度測定に用いることが可能であり、特に、液面Lが上下に変動するような、めっき溶液(めっき浴)を貯留する貯留槽などの測定槽1において、そのめっき溶液としての無水クロム酸溶液中のクロム酸濃度を測定対象とした場合には、液面Lから一定の深度D未満のめっき溶液2中に発生する多数の気泡2aの存在による音速測定への影響を必要程度まで軽減することができる。
【0026】
【発明の実施の形態】
本発明の液中成分濃度測定装置の実施の形態を、図1に基づいて以下に詳細に説明すれば、本発明装置は、測定槽(処理槽)として、無水クロム酸溶液などめっき溶液(めっき浴)を貯留する貯留槽1を備え、該貯留槽1内に貯留されためっき溶液(めっき浴)などの所定の溶液2の液面Lには、深度制御手段3としてフロート6(浮体)を浮かべてある。
【0027】
図1に示すように、音速測定手段4は、深度制御手段3である前記フロート6に固定して取り付けられ、該音速測定手段4の音速センサー部5は、前記フロート6外側の下部に、溶液2の液面Lより一定の深度D(深さ)の位置に固定配置されていて、該音速センサー部5は、液面Lの変位に関係なく、液面Lより一定の深度Dにおける液中の音速を計測することができるようになっている。
【0028】
音速測定手段4の音速センサー部5にて計測された音速データ信号は、音速測定手段4より出力されて、該音速測定手段4に接続する計測信号伝送用の配線部W(信号ケーブル、必要に応じて音速センサー部5への計測用基準電圧も供給可能な配線系統を備える)を通して濃度測定動作制御手段7に入力される。
【0029】
濃度測定動作制御手段7は、中央制御処理部8(CPU)と、音速データ信号処理部9と、メモリ部10と、計測濃度表示部11(計測データ出力用のCRT表示用モニター、液晶表示用モニター、プリンターなど)を備える。
【0030】
音速測定手段4からの計測された溶液2の液面Lより一定の深度Dにおける液中の音速データ信号は、音速データ信号処理部9に入力されて、中央制御処理部8による演算処理制御により、該音速データ信号処理部9にて、予めメモリ部10に格納された音速−濃度変換テーブルを読み出して、音速測定手段4にて計測された前記音速データを、液体2の前記深度Dにおける溶液密度データ[溶質量(1種の溶質成分の溶質量)/溶媒量](溶液濃度データ)に変換処理することにより溶液中の溶質成分濃度を算出する。
【0031】
【実施例】
以下に、本発明の液中成分濃度測定装置の具体的実施例について説明する。
【0032】
<実施例1>
図1に示すように、深さ50cmのめっき浴槽1内に、溶液として無水クロム酸を主成分とする温度60℃のクロムめっき液2を貯留した。
【0033】
また、めっき浴槽1内に装備しためっき液循環送流手段(図示せず)により、めっき浴槽1内のめっき液2を循環送流させた。めっき液2の液面Lから深度10cm未満のめっき液2中には、多数の気泡2aの発生が見られた。
【0034】
そのめっき液2の液面Lに、音速測定手段4として、2MHzの超音波発振部5a(発振子)と超音波受振部5bとを、めっき液2を挟んで離間対向するように配置して構成される音速センサー部5(音速計)に、該音速センサー部5が溶液2の液面Lから深度Dが20cmとなるようにフロート6(深度制御手段3)を取り付けて浮かべ、液面Lの液面位を上下に変動させた状態で深度20cmに於けるめっき溶液2中の音速を測定した。
【0035】
測定された音速データ信号は、音速測定手段4から接続ケーブルWを通って、本発明装置における中央制御処理部8(CPU)と、音速データ信号処理部9と、メモリ部10と、計測濃度表示部11(計測データ出力用のCRT表示用モニター、液晶表示用モニター、プリンターなど)を備える濃度測定動作制御手段7の音速データ信号処理部9に入力した。
【0036】
続いて、音速データ信号処理部9にて、入力した上記めっき溶液2中の実測の音速データと、予め作成した音速と濃度の関係を表す温度補正済みの音速―濃度変換テーブル(前記メモリ部10に格納した音速―濃度変換メモリテーブル)のうち、無水クロム酸を主成分とする温度60℃のクロムめっき溶液に関する音速―濃度変換用の変換テーブルに基づいて、無水クロム酸の濃度を算出した。このときの経時音速データを図2に示す。
【0037】
<比較例1>
なお、比較例1として、上記実施例1と同様の深さを備えためっき浴槽の液面位の変動に無関係な一定位置に、上記実施例1と同様の音速センサー5を固定して測定した以外は、上記実施例1と同様にして、無水クロム酸を主成分とする温度60℃のクロムめっき液2中の音速を測定し、換算テーブルとに基づいて無水クロム酸の濃度を算出した。このときの経時音速データを図3に示す。
【0038】
<測定結果>
液面Lが高い(すなわち液面Lからの音速センサー5の位置が深い)当初は、比較例1の音速データは安定しているが、液面Lが低くなる(すなわち音速センサー5が気泡2aが多い液中位置にある時)と、気泡2aの影響で安定した測定データが得られなかった。
【0039】
実施例1では、データ変動がほとんどなく、安定した測定データが得られた。実施例1で測定した無水クロム酸濃度は、濃度既知の溶液で検定した結果±0.3%であり、管理上に必要な精度と再現性を有していた。
【0040】
【発明の効果】
本発明の液中成分濃度測定装置は、特に腐食性の溶液の測定における複雑な溶液バイパス機構を必要とせず、従来のバイパス機構を伴う測定方式に比べて装置を簡略化でき、腐食性の溶液の測定においても装置構造が簡単になる。
【0041】
また、本発明の液中成分濃度測定装置は、測定槽(溶液貯留槽、めっき浴槽など)の形式が異なる複数の槽における測定においても、一つの音速測定手段(音速センサー部)を簡単に移動させることにより測定が可能なので、高価なセンサーを複数個揃えることが不要になり、測定原価が低減できる。
【0042】
また、バイパス機構を伴う測定方式のように、バイパス流路の通過に必要な測定時間が省略でき、測定槽の状態をリアルタイムに把握できるので、めっき浴処理など溶液取扱工程における槽中の溶液変化(溶液濃度、液中成分濃度の変化、液面位の変動等)に対する適正な対応が迅速にできる。
【0043】
また、従来の液中成分濃度測定装置ようなオフラインでの測定方式に比べて、溶液の測定用サンプリング操作や、人による測定操作に掛かる時間が省略でき、測定物理量が自動的に採取できると同時に、電気的に音速測定手段(音速センサー部)から直接、濃度測定動作制御手段にデータ信号が送信されるので、測定物理量に基づく、溶液の濃度調整、成分濃度調整等のフィードバック制御にも利用可能になる。
【図面の簡単な説明】
【図1】本発明の液中成分濃度測定装置の概要側面図。
【図2】本発明の液中成分濃度測定装置により測定された音速と測定経過時間との関係を示すグラフ。
【図3】従来の液中成分濃度測定装置により測定された音速と測定経過時間との関係を示すグラフ。
【符号の説明】
1…測定槽(溶液槽) 2…溶液 2a…気泡 3…深度制御手段
4…音速測定手段 5…音速センサー 5a…超音波発振部
5b…超音波受振部 6…フロート 7…濃度測定動作制御手段
8…中央制御処理部(CPU) 9…音速データ信号処理部 10…メモリ部
11…計測濃度表示部(ディスプレイ)
L…液面 D…深度 W…信号ケーブル
[0001]
[Industrial application fields]
The present invention relates to a component concentration measuring apparatus useful for managing the component concentration of a solution such as a chromium plating solution, and more particularly to a component concentration measuring apparatus in a liquid by a simple measuring method using sound speed suitable for in-line measurement.
[0002]
[Prior art]
Chromium plating is widely used as a decorative plating using luster or industrial plating using physical properties such as corrosion resistance and wear resistance. For the management of the plating solution, a method by specific gravity measurement is generally used, and a component determination method by titration is also performed as necessary.
[0003]
Especially in industrial plating, it is indispensable to maintain the plating bath composition within a certain range in order to maintain the quality of the plating film. For this purpose, the concentration of components in the plating bath (plating solution) must be accurately measured. However, all the conventional methods for measuring component concentrations in liquids have some disadvantages industrially.
[0004]
For example, the method for measuring the concentration of components in the liquid by measuring the specific gravity is a method for measuring the specific gravity of the liquid using a float balance called a Baume meter. Basically, the density of the plating solution such as chromic anhydride solution (specific gravity) ) Is changed by the component concentration. This method is a simple measurement method in which a scale is floated in the liquid and is widely used. However, from the viewpoint of accuracy, it is difficult to evaluate the influence of components other than chromic anhydride, and the measurement It was also difficult to control the result by electrically feeding back the result.
[0005]
Moreover, the measuring method of the component concentration in the liquid by titration is a method of measuring each component of chromic anhydride concentration, trivalent chromium concentration and sulfuric acid concentration in chromic anhydride solution by titration, and quantitative evaluation of each component. Although there is an advantage that it can be performed, it was difficult to measure constantly because it took a sample from the plating solution (sampling) and performed measurement offline, and because it required humans and time for the titration work .
[0006]
Therefore, as a method that can solve these problems and can be used for in-line measurement control, there are several methods for obtaining the concentration by measuring the speed of sound using the relationship between the speed of sound in the liquid and the density of the liquid. It has been put to practical use in the field.
[0007]
However, when applied to a chrome plating solution, it is expected that a very complicated algorithm and a lot of correlation data will be required due to the temperature dependence of the sound velocity in the solution, and evaluation of the influence of subcomponents. For this reason, it was difficult to put it to practical use because it was necessary to use it together with other analytical methods.
[0008]
Here, as a composition of the chromium plating solution, a plating solution generally used for hard chromium plating will be described as an example. Specifically, the composition of the plating solution is, specifically, chromic anhydride of 250 ± 100 g / Liters and sulfuric acid in the range of 2 to 10 milliliters / liter.
[0009]
As a result of detailed investigations on the correlation between the concentration of the aqueous solution and the speed of sound in the liquid of the main component chromic anhydride among the components in the liquid used for chromium plating, the present inventors have determined the chromic anhydride concentration as the speed of sound. It has been found that it is possible to measure by.
[0010]
However, it has been found that when this is applied to in-line measurement, noise is superimposed on the measurement value due to the influence of bubbles generated in the process, and accurate sound speed measurement is difficult.
[0011]
In order to solve this problem, several countermeasures have been proposed. Broadly speaking, there are removal of the influence of bubbles by improving the algorithm for measuring the speed of sound and removal of the bubble main body generated in the solution to be measured. .
[0012]
The removal of the influence of bubbles by improving the sound velocity measurement algorithm is basically to perform data processing so that the reflected wave signal that is attenuated by bubbles in the ultrasonic signal can be ignored. It is divided into several categories according to the logic of discrimination between normal signals that are not received and abnormal signals that are attenuated.
[0013]
In general, normal signals are considered to have little repeated change in a short time and abnormal signals are considered to have large changes, so that they can be identified by the dispersion of sound velocity values within a certain time. This is applicable only when an appropriate number exists in a certain time. It is also possible to distinguish normal signals and abnormal signals based on the intensity ratio due to attenuation, but this method has a problem that it is difficult to distinguish it from several-order reflected waves. However, at present, it has not reached a level where stable measurement is possible for a system in which many microbubbles exist.
[0014]
As a method for removing bubbles in the solution to be measured, a method by pressurization has been conventionally proposed, and means for assisting this may be used in combination. This method is structurally complicated because the pressure is applied with the flow path closed, and it is easy to use, including safety measures, in the process of handling highly oxidative dangerous liquids such as chromic acid. Have difficulty.
[0015]
Bubbles can be removed by standing in the atmosphere, but this takes time to defoam, so continuous in-line measurement is not possible, and intermittent measurement is required. In many cases, the temperature of the liquid greatly decreases and exceeds the temperature-dependent linear range of the sound velocity, and accurate measurement is difficult.
[0016]
[Problems to be solved by the invention]
In order to solve this problem, the present inventors have experimentally evaluated the degree of defoaming in the open continuous flow path. As a result, the combination of the low flow pump and the long flow path has an effect on the sound velocity measurement. It was found that there was no air bubble removal. That is, as a mechanism for removing bubbles in the liquid, it is a liquid component concentration measuring device for a chromium plating solution having a removal tank provided with a return channel at normal pressure.
[0017]
This method is a maintenance-free method of measuring the speed of sound in-line, and is a method of measuring the concentration of a component from a single physical quantity of only the speed of sound, allowing continuous measurement and monitoring without the need for a complex pressurization mechanism. It is excellent in that it is.
[0018]
However, it requires a bypass mechanism and the complexity of the measurement device using a liquid feed pump, the delay of measurement timing due to the defoaming time, and an expensive sensor is required for each of the three tanks. There were two problems.
[0019]
An object of the present invention is a device for measuring the concentration of components in a liquid, which simplifies the measurement device, eliminates the delay in measurement timing due to the defoaming time, and eliminates the need for separate expensive sensors in the case of measuring multiple tanks. There is to do.
[0020]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is a liquid having a method of obtaining the component concentration in the solution 2 from the sound velocity in the solution 2 measured by the sound velocity measuring means 4 disposed in the solution 2 in the measuring tank 1. In the medium component concentration measuring apparatus, the sound velocity sensor unit 5 of the sound velocity measuring means 4 (the ultrasonic oscillation unit 5a and the ultrasonic wave receiving unit 5b arranged to face each other in the vertical or horizontal direction) is used as the liquid level L of the solution 2 in the measurement tank 1. And a depth control means 3 for controlling the arrangement to a certain depth D , and the sound velocity sensor portion is fixedly arranged at a position at a certain depth below the depth control means. It is a measuring device.
[0021]
The invention according to claim 2 of the present invention is the float 6 (floating body) in which the depth control means 3 floats on the liquid surface L of the solution 2 in the measuring tank 1 in the liquid component concentration measuring device according to claim 1. In the liquid component concentration measuring apparatus, the sound speed measuring means 4 is fixed to a float 6.
[0022]
The invention according to claim 3 of the present invention is the liquid component concentration measuring apparatus according to claim 1 or 2, wherein the solution 2 is a chromic anhydride solution, and the component concentration is measured in the liquid. Is a chromic acid concentration measuring device.
[0023]
[Action]
In order to solve the above problems, the present inventors have developed a solution 2 in which the liquid level of the liquid level L varies in a measurement tank 1 (solution storage tank, treatment tank) that stores the solution 2 to be measured. As a result of experimental evaluation of the distribution of the bubbles 2a in the inside and the influence of the solution 2 on the sound speed measurement, the sound speed sensor unit 5 of the sound speed measuring means 4 (the ultrasonic oscillator 5a and the ultrasonic receiver 5b disposed opposite to each other). ) At a certain depth D from the liquid level L of the solution 2, it is necessary to influence the sound velocity measurement due to the presence of many bubbles 2 a generated in the liquid below the certain depth D from the liquid level L. Can be reduced to a certain extent.
[0024]
The liquid component concentration measuring apparatus of the present invention corresponds to the sound velocity measuring means 4 (the sound velocity sensor unit 5 and the ultrasonic waves disposed opposite to each other) corresponding to the fluctuation of the liquid surface level of the liquid surface L of the solution 2 stored in the measuring tank 1. Since the oscillating unit 5a and the ultrasonic vibration receiving unit 5b) are provided with the depth control means 3 such as a float for controlling the arrangement of the oscillating unit 5a and the ultrasonic vibration receiving unit 5b from the liquid level L of the solution 2 at a constant depth D, the sonic velocity sensor unit 5 of the sonic velocity measuring unit 4 is provided. Can always be maintained at a certain depth D from the liquid level L, and the influence on the sound velocity measurement due to the presence of a large number of bubbles 2a generated in the solution 2 below the certain depth D from the liquid level L can be reduced to a necessary level. it can.
[0025]
The device of the present invention can be used for the component concentration measurement of all solutions in which the component concentration can be measured by the speed of sound among the open system solutions 2 containing the bubbles 2a. In a measurement tank 1 such as a storage tank for storing a plating solution (plating bath), when the concentration of chromic acid in the chromic anhydride solution as the plating solution is a measurement target, the liquid level L is constant. The influence on the sound speed measurement due to the presence of a large number of bubbles 2a generated in the plating solution 2 having a depth of less than D can be reduced to a necessary level.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the liquid component concentration measuring apparatus of the present invention will be described in detail below with reference to FIG. 1. The apparatus of the present invention is used as a measuring tank (treatment tank) such as a plating solution (plating) such as a chromic anhydride solution. A float 6 (floating body) is provided as a depth control means 3 on the liquid level L of a predetermined solution 2 such as a plating solution (plating bath) stored in the storage tank 1. It ’s floating.
[0027]
As shown in FIG. 1, the sound speed measuring means 4 is fixedly attached to the float 6 which is the depth control means 3, and the sound speed sensor unit 5 of the sound speed measuring means 4 is attached to the lower part outside the float 6. 2 is fixedly arranged at a position of a certain depth D (depth) from the liquid level L, and the sonic sensor unit 5 is in the liquid at a constant depth D from the liquid level L regardless of the displacement of the liquid level L. The speed of sound can be measured.
[0028]
The sound speed data signal measured by the sound speed sensor unit 5 of the sound speed measuring unit 4 is output from the sound speed measuring unit 4 and connected to the sound speed measuring unit 4 for transmitting the measurement signal transmission W (signal cable, necessary). Accordingly, the measurement reference voltage to the sound velocity sensor unit 5 is also provided to the concentration measurement operation control means 7 through a wiring system that can supply the measurement reference voltage.
[0029]
The concentration measurement operation control means 7 includes a central control processing unit 8 (CPU), a sound speed data signal processing unit 9, a memory unit 10, and a measured concentration display unit 11 (a CRT display monitor for outputting measurement data and a liquid crystal display). Monitor, printer, etc.).
[0030]
The sound speed data signal in the liquid at a certain depth D from the measured liquid level L of the solution 2 from the sound speed measuring means 4 is input to the sound speed data signal processing unit 9 and is controlled by arithmetic processing control by the central control processing unit 8. The sound speed data signal processing unit 9 reads out the sound speed-concentration conversion table stored in the memory unit 10 in advance, and the sound speed data measured by the sound speed measuring means 4 is used as the solution at the depth D of the liquid 2. The solute component concentration in the solution is calculated by conversion into density data [solute mass (solute mass of one kind of solute component) / solvent amount] (solution concentration data).
[0031]
【Example】
Specific examples of the liquid component concentration measuring apparatus of the present invention will be described below.
[0032]
<Example 1>
As shown in FIG. 1, a chromium plating solution 2 having a temperature of 60 ° C. containing chromic anhydride as a main component was stored as a solution in a plating bath 1 having a depth of 50 cm.
[0033]
Moreover, the plating solution 2 in the plating bath 1 was circulated and sent by a plating solution circulation / feeding means (not shown) equipped in the plating bath 1. In the plating solution 2 having a depth of less than 10 cm from the liquid level L of the plating solution 2, a large number of bubbles 2a were observed.
[0034]
On the liquid surface L of the plating solution 2, a 2 MHz ultrasonic wave oscillating unit 5 a (oscillator) and an ultrasonic vibration receiving unit 5 b are arranged as the sound velocity measuring means 4 so as to face each other with the plating solution 2 interposed therebetween. A float 6 (depth control means 3) is attached to the sonic sensor unit 5 (sound speed meter) configured so that the depth D is 20 cm from the liquid level L of the solution 2 and floats. The speed of sound in the plating solution 2 at a depth of 20 cm was measured in a state where the liquid level was changed up and down.
[0035]
The measured sound speed data signal passes from the sound speed measuring means 4 through the connection cable W, the central control processing section 8 (CPU), the sound speed data signal processing section 9, the memory section 10, and the measured concentration display in the apparatus of the present invention. This is input to the sound velocity data signal processing unit 9 of the concentration measurement operation control means 7 having the unit 11 (CRT display monitor for measurement data output, liquid crystal display monitor, printer, etc.).
[0036]
Subsequently, the sound speed data signal processing unit 9 inputs the actually measured sound speed data in the plating solution 2 and a temperature-corrected sound speed-concentration conversion table (the memory unit 10) that represents the relationship between the sound speed and the concentration created in advance. The chromic anhydride concentration was calculated based on a sonic-concentration conversion table for a chromium plating solution having a temperature of 60 ° C. containing chromic anhydride as a main component. The sound speed data over time at this time is shown in FIG.
[0037]
<Comparative Example 1>
As Comparative Example 1, measurement was performed by fixing the sonic sensor 5 similar to that of Example 1 at a fixed position regardless of the fluctuation of the liquid level of the plating bath having the same depth as that of Example 1. Except for the above, the speed of sound in the chromium plating solution 2 having a temperature of 60 ° C. containing chromic anhydride as a main component was measured in the same manner as in Example 1 above, and the concentration of chromic anhydride was calculated based on the conversion table. The temporal sound velocity data at this time is shown in FIG.
[0038]
<Measurement results>
When the liquid level L is high (that is, the position of the sound speed sensor 5 from the liquid level L is deep), the sound speed data of Comparative Example 1 is stable, but the liquid level L is low (that is, the sound speed sensor 5 is a bubble 2a). Stable measurement data could not be obtained due to the influence of the bubbles 2a.
[0039]
In Example 1, there was almost no data fluctuation, and stable measurement data was obtained. The chromic anhydride concentration measured in Example 1 was ± 0.3% as a result of testing with a solution having a known concentration, and had accuracy and reproducibility necessary for management.
[0040]
【The invention's effect】
The apparatus for measuring the concentration of components in the liquid of the present invention does not require a complicated solution bypass mechanism particularly in the measurement of a corrosive solution, and can simplify the apparatus as compared with a conventional measurement method with a bypass mechanism, and a corrosive solution. In this measurement, the device structure is simplified.
[0041]
In addition, the liquid component concentration measuring device of the present invention can easily move one sonic velocity measuring means (sonic velocity sensor unit) even in measurement in a plurality of basins with different types of measurement tubs (solution storage tanks, plating baths, etc.). Since measurement is possible, it becomes unnecessary to prepare a plurality of expensive sensors, and the measurement cost can be reduced.
[0042]
In addition, the measurement time required to pass through the bypass channel can be omitted and the state of the measurement tank can be grasped in real time, as in the measurement method with a bypass mechanism, so that the solution change in the tank during the solution handling process such as plating bath treatment Appropriate response to (solution concentration, change in component concentration in liquid, change in liquid level, etc.) can be quickly made.
[0043]
Compared to the off-line measurement method used in conventional liquid component concentration measurement devices, the time required for sampling operations for solution and measurement operations by humans can be omitted, and physical quantities can be automatically collected at the same time. Since the data signal is electrically transmitted directly from the sound speed measurement means (sound speed sensor unit) to the concentration measurement operation control means, it can also be used for feedback control such as solution concentration adjustment and component concentration adjustment based on the measured physical quantity. become.
[Brief description of the drawings]
FIG. 1 is a schematic side view of a liquid component concentration measuring apparatus according to the present invention.
FIG. 2 is a graph showing the relationship between the sound speed measured by the liquid component concentration measuring apparatus of the present invention and the measurement elapsed time.
FIG. 3 is a graph showing the relationship between the sound speed measured by a conventional liquid component concentration measuring device and the measurement elapsed time.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Measurement tank (solution tank) 2 ... Solution 2a ... Bubble 3 ... Depth control means 4 ... Sound speed measurement means 5 ... Sound speed sensor 5a ... Ultrasonic oscillation part 5b ... Ultrasonic wave receiving part 6 ... Float 7 ... Concentration measurement operation control means 8 ... Central control processing unit (CPU) 9 ... Sound speed data signal processing unit 10 ... Memory unit 11 ... Measurement concentration display unit (display)
L ... Liquid level D ... Depth W ... Signal cable

Claims (3)

測定槽内の溶液中に配置した音速測定手段にて測定される溶液中の音速から、その溶液中の成分濃度を求める方式の液中成分濃度測定装置において、音速測定手段の音速センサー部を、測定槽内の溶液の液面から一定の深度に配置制御する深度制御手段を備えてなり、かつ音速センサー部が、深度制御手段の下部の一定の深度の位置に固定配置されてなることを特徴とする液中成分濃度測定装置。In the in-liquid component concentration measuring device that calculates the component concentration in the solution from the sound speed in the solution measured by the sound speed measuring means arranged in the solution in the measurement tank, the sound speed sensor unit of the sound speed measuring means is It is provided with a depth control means for controlling the placement at a constant depth from the liquid level of the solution in the measurement tank , and the sound velocity sensor unit is fixedly arranged at a position at a constant depth below the depth control means. In-liquid component concentration measuring device. 請求項1記載の液中成分濃度測定装置において、前記深度制御手段が測定槽内の溶液の液面に浮かべたフロート(浮体)であって、前記音速測定手段がフロートに固定された構造であることを特徴とする液中成分濃度測定装置。2. The liquid component concentration measuring apparatus according to claim 1, wherein the depth control means is a float floating on the liquid surface of the solution in the measurement tank, and the sound speed measuring means is fixed to the float. An apparatus for measuring the concentration of a component in liquid. 請求項1又は請求項2記載の液中成分濃度測定装置において、前記溶液が無水クロム酸溶液であって、該液中の成分濃度の測定対象がクロム酸であることを特徴とする液中成分濃度測定装置。The liquid component concentration measuring apparatus according to claim 1 or 2, wherein the solution is a chromic anhydride solution, and the measurement target of the component concentration in the liquid is chromic acid. Concentration measuring device.
JP2002302735A 2002-10-17 2002-10-17 Liquid component concentration measuring device Expired - Fee Related JP4045917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002302735A JP4045917B2 (en) 2002-10-17 2002-10-17 Liquid component concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002302735A JP4045917B2 (en) 2002-10-17 2002-10-17 Liquid component concentration measuring device

Publications (2)

Publication Number Publication Date
JP2004138473A JP2004138473A (en) 2004-05-13
JP4045917B2 true JP4045917B2 (en) 2008-02-13

Family

ID=32450718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002302735A Expired - Fee Related JP4045917B2 (en) 2002-10-17 2002-10-17 Liquid component concentration measuring device

Country Status (1)

Country Link
JP (1) JP4045917B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006078334A (en) * 2004-09-09 2006-03-23 Mitsubishi Electric Plant Engineering Corp Method and apparatus for measuring quantity of dissolved gas in liquid
KR100904032B1 (en) * 2008-11-06 2009-06-22 정종덕 Apparatus and method for measuring suspended solids in aeration tank
DE102009051097A1 (en) * 2009-10-28 2011-05-05 Ge Sensing & Inspection Technologies Gmbh Improved coupling medium supply of an ultrasonic testing device

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2585467B1 (en) * 1985-07-23 1987-09-25 Commissariat Energie Atomique APPARATUS FOR AUTOMATICALLY MEASURING THE APPARENT WEIGHT OF A LIQUID-LOADING SLUDGE, SYSTEM FOR AUTOMATICALLY MEASURING THE PONSAR INDEX OF SUCH A SLUDGE, USING THE APPARATUS, AND METHOD FOR MEASURING THE INDEX
JPH07102354B2 (en) * 1987-02-13 1995-11-08 株式会社鶴見製作所 Automatic time control device for intermittent aeration
JPH02116745A (en) * 1988-10-26 1990-05-01 Omron Tateisi Electron Co Ultrasonic solution density measuring apparatus
JPH0325345A (en) * 1989-06-23 1991-02-04 Asahi Eng Co Ltd Liquid specific gravity measuring instrument
JPH07109332B2 (en) * 1990-02-20 1995-11-22 日立ビル施設エンジニアリング株式会社 Absorption refrigerator solution concentration detector and monitoring method
JPH0753699Y2 (en) * 1991-06-27 1995-12-13 日機装株式会社 High concentration ammonia automatic dissolver
JPH0618950U (en) * 1992-08-11 1994-03-11 財団法人シップ・アンド・オーシャン財団 Liquid physical property measuring device
JPH06201562A (en) * 1992-12-30 1994-07-19 Jiro Sasaoka Method and apparatus for processing particle system
US5424766A (en) * 1993-11-08 1995-06-13 Videojet Systems International, Inc. Ink jet printer control system responsive to acoustical properties of ink
JP3316657B2 (en) * 1994-02-25 2002-08-19 株式会社リコー Nonionic surfactant concentration measurement method
DE19607681B4 (en) * 1996-02-29 2009-07-09 Fogra Forschungsgesellschaft Druck E.V. Method and device for continuous measurement and control of the composition of a dampening solution for offset printing
JPH10221312A (en) * 1997-02-03 1998-08-21 Nippon Treks Kk Instrument for discriminating kind of oil stored in tank and for measuring capacity of tank
JPH10267726A (en) * 1997-03-25 1998-10-09 Kett Electric Lab Volume-weight measurement device for sample such as grain
JPH11118774A (en) * 1997-10-14 1999-04-30 Toyota Motor Corp Oil deterioration sensor
JP2000129498A (en) * 1998-10-27 2000-05-09 Hitachi Ltd Plating device equipped with ultrasonic monitor and formation of film
JP2000171376A (en) * 1998-12-03 2000-06-23 Toto Denki Kogyo Kk Method and device for measuring liquid density
JP3528687B2 (en) * 1999-06-24 2004-05-17 凸版印刷株式会社 Chromium plating solution concentration measurement method
JP2001242148A (en) * 2000-02-28 2001-09-07 Toppan Printing Co Ltd Concentration measuring apparatus for chromium plating solution

Also Published As

Publication number Publication date
JP2004138473A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US7774150B2 (en) Meter electronics and methods for determining one or more of a stiffness coefficient or a mass coefficient
JP3160474B2 (en) Microwave densitometer
WO1988008516A1 (en) Ultrasonic fluid flowmeter
US4726221A (en) Ultrasonic measurement of dispersed phase volumetric holdup in liquid/liquid dispersions
US6192737B1 (en) Method for measuring the concentration of a dissolved gas in a fluid
JP4045917B2 (en) Liquid component concentration measuring device
JP2017028090A (en) Component concentration measurement device of developing solution, component concentration measurement method, and developing solution management method
US6324911B1 (en) Apparatus and method for detecting an interface
JP2005514620A (en) Ultrasonic detection of methanol aqueous solution concentration
US6820462B2 (en) Acoustic gas monitor
JP2002340644A (en) Ultrasonic flow and flow velocity-measuring instrument and ultrasonic flow and flow velocity-measuring method
US6598457B2 (en) Method and apparatus for measuring the amount of entrained gases in a liquid sample
US4852396A (en) Self-calibrating ultrasonic measurement of dispersed phase volumetric holdup in liquid/liquid dispersions
JP2977646B2 (en) Method for measuring the concentration of main components in neutral salt electrolytic bath for descaling stainless steel strip
CN207623217U (en) A kind of water quality automatic checkout equipment
GB2094033A (en) Method and apparatus for measuring selected characteristics of fluids
JP7172373B2 (en) measuring system
CA3092018C (en) Dissolution monitoring method and apparatus
US20180036686A1 (en) Water quality monitoring device, water treatment device, water treatment system, water quality monitoring method, and program
JP6763608B2 (en) Carbon dioxide concentration display device for developer and developer management device
RU2675573C2 (en) Device and method for controlling deposit formation
JPH10151481A (en) Method for evaluating toxicity of activated sludge
RU2210764C1 (en) Procedure determining density of liquids and device for its implementation
RU93007362A (en) METHOD FOR DETERMINING THE CAPACITY AND CAPTURING OF TANKS AND DEVICE FOR ITS IMPLEMENTATION
JPH0735589A (en) Flowrate and flow concentration measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees