JPH06201562A - Method and apparatus for processing particle system - Google Patents

Method and apparatus for processing particle system

Info

Publication number
JPH06201562A
JPH06201562A JP4362128A JP36212892A JPH06201562A JP H06201562 A JPH06201562 A JP H06201562A JP 4362128 A JP4362128 A JP 4362128A JP 36212892 A JP36212892 A JP 36212892A JP H06201562 A JPH06201562 A JP H06201562A
Authority
JP
Japan
Prior art keywords
valve
tank
muddy water
float
mud
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4362128A
Other languages
Japanese (ja)
Inventor
Jiro Sasaoka
治郎 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KEISAN KOGYO KK
Original Assignee
KEISAN KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KEISAN KOGYO KK filed Critical KEISAN KOGYO KK
Priority to JP4362128A priority Critical patent/JPH06201562A/en
Publication of JPH06201562A publication Critical patent/JPH06201562A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cyclones (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To obtain the processing or measuring method and apparatus suitable for recycling of circulating muddy water for construction and stabilized muddy water, sedimentaion, dehydration, cleaning of general muddy water and muddy water, dehydration processing and water processing. CONSTITUTION:A vibrating piece 6 is arranged in the inside of a tank or a measuring apparatus in the stereoscopic pattern. The improvement of flow, the prevention of gelling flow-stop phenomenon and the removal of clogged material are performed. The measurement of specific gravity and the interface of sediment and valve control can be smoothed by this way. The valve having a bypass flow path prevents the deposition and clogging of mud, stabilizes the flow rate at a constant opening degree and improves the controllability. Dewatering and discharging of the separated sediment become easy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は土砂、残土、泥、汚泥、
掘削土、土壌、上下水、汚染土壌、河川、池、水槽、湖
沼等の浚渫土あるいは排水の処理における分級、脱水、
洗浄、浄化、廃棄物処理または測定等に適した方法、機
器に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to soil, residual soil, mud, sludge,
Classification, dehydration in the treatment of excavated soil, soil, water and sewage, contaminated soil, dredged soil such as rivers, ponds, water tanks, lakes and marshes, and drainage,
The present invention relates to a method and a device suitable for cleaning, purification, waste treatment or measurement.

【0002】[0002]

【従来の技術】従来掘削工事、浚渫作業から排出される
大量の土砂を脱水処理しあるいはリサイクルする低コス
ト、簡易な処理法が無かった。掘削工事における現場で
の泥水からの土砂分離は沈降槽が主体で、時に単段のサ
イクロンを利用するに過ぎず掘削条件規格を外れた泥水
あるいは安定化泥水は系から排出して廃棄し、新たに調
製されていた。従って大量の汚泥、廃棄土砂発生の原因
になっていた。この処理のためには、従来の瀘過脱水や
排水処理、環境浄化では単なる分離だけでなく、分離し
た排水、排気処理を必要とする。 従来の脱水設備は高
価で処理費が高くつくので、水を含む大量の土砂、汚泥
等は裸の地盤の上に堆積して浸透脱水したり、焼却、セ
メント固化等によって処理するのが普通であった。前者
は地下水汚染の原因となるので継続大量処理には適しな
い。後2者は燃料を大量に消費したり、埋立地活用の障
害になる難点がある。また夾雑物の分離も難しい。近年
棄場埋立地がなくなってきたのでその対策として汚泥を
脱水、乾燥の後、溶融固化して工事用骨材として使用す
ることが検討されているが、乾燥と高温処理はエネルギ
ー消費が多く、経済性に欠ける難点がある。これらの問
題を解決するために従来利用されている装置、工程の多
くは化学工業に使用されてきた瀘過、脱水機器の型、操
作条件をそのまま利用することが多く、高価で、しかも
処理しても被処理物の処分費用が安くならず、設備費、
動力費、運転費等がかかるのが難点であった。輸送まで
含むシステムとしての総合コストを下げる試みも少なか
った。掘削用泥水、安定化泥水の処理において、砂分が
多い地盤の掘削で砂混入が多い場合にはサイクロン付の
脱水篩を使用する方法があるが、装置が高価で、しかも
効果が安定せず、使用が難しいものであった。また多様
な性質を持つ高濃度の弱いゲル性あるいはチキソトロピ
ー性の泥の比重や界面を測定、制御する簡易な現場型装
置はなかった。
2. Description of the Related Art Conventionally, there has been no low-cost and simple treatment method for dehydrating or recycling a large amount of earth and sand discharged from excavation work and dredging work. Sedimentation from mud on-site during excavation work is mainly done by a sedimentation tank, and sometimes only a single-stage cyclone is used, and mud or stabilized mud that does not meet the drilling condition standards is discharged from the system and discarded. Had been prepared. Therefore, it caused a large amount of sludge and waste soil. For this treatment, conventional filtration and dehydration, wastewater treatment, and environmental purification require not only simple separation but also separate wastewater and exhaust treatment. Conventional dewatering equipment is expensive and expensive to process, so it is common to deposit large amounts of water-containing soil, sludge, etc. on bare soil for permeation and dehydration, or by incineration or cement hardening. there were. The former causes groundwater pollution and is not suitable for continuous mass treatment. The latter two have problems that they consume a lot of fuel and hinder the utilization of landfills. Also, it is difficult to separate impurities. As abandoned landfills have disappeared in recent years, sludge is dehydrated, dried, and then melted and solidified to be used as construction aggregates as a countermeasure, but drying and high temperature treatment consume a lot of energy, There is a drawback in that it is not economical. Many of the devices and processes conventionally used to solve these problems often use the filtration and dehydration equipment types and operating conditions used in the chemical industry as they are, are expensive, and require treatment. Even if the disposal cost of the processed material is not cheap, the equipment cost,
The difficulty was that power costs and operating costs were required. There were few attempts to reduce the total cost of the system including transportation. There is a method of using a dehydration sieve with a cyclone when excavating a ground with a large amount of sand in the treatment of drilling mud and stabilized mud, but the equipment is expensive and the effect is not stable. , Was difficult to use. In addition, there was no simple field device for measuring and controlling the specific gravity and interface of highly concentrated weak gel or thixotropic mud having various properties.

【0003】[0003]

【発明が解決しようとする課題】泥土、泥水を処理する
場合、脱水工程がコスト的に障害になっている例が多
い。ゲル化した建設汚泥のリサイクルが行われた例はな
く、従ってその方法を確立する必要があった。研究の結
果、これらを分離し脱水処理すると埋め戻し用に使用で
きる土砂が多いことがわかつたたが、従来は遠心分離、
圧瀘機のように高価な装置を使用するか、野積みして地
面に水分を浸透脱水する等の方法がとられるにすぎなか
った。後者は汚水の地下浸透を防止する場合には使用で
きない。いずれにしても環境問題としての新たな解決法
が必要であった。従来の装置は処理困難なものを、一括
して処理するものでコスト高になるのが普通であった。
高価な装置、操作を使用することなく簡単な分別処理で
能率を上げ、簡易に脱水することが必要であった。これ
が可能になると浄化作業を同時に行うこともでき、また
は在来法と組合せて、高能率、低動力消費で土砂の脱水
処理やリサイクルをするだけでなく、物理化学的、生化
学的処理を含む土砂、汚泥の総合的処理に適する条件を
得ることができる。液体サイクロンは土砂を水あるいは
有用な泥水と分離して濃縮できるが、その程度によって
取り出し口が閉塞しやすくなり、沈降槽では沈降物の流
動性が悪くなり泥水と沈降物の比重、界面測定が難し
く、従ってこれを基準とする沈降物層の取り出し、分離
条件の制御は簡単ではなかった。障害を防止しようとす
ると大幅な余裕が必要になり、分離または脱水性能の発
揮が難しいものであった。これが従来、あまり使用され
ていない理由であった。液体サイクロンは従来使用条件
の変更はこのように閉塞の問題を伴うので難しいもので
あった。使用条件の容易な変更を可能にすること、据付
け位置と使用工程変更が容易な沈降系、サイクロン系が
効率の改善、ポンプ動力節約のために必要であった。ま
た簡易な装置操作による埋立てゴミの雑物分離、土砂洗
浄、簡易な脱水処理は埋立て地利用、汚染地回復のため
必要であった。泥状物は多くの場合、ゲル化、干渉沈降
現象のため、自然沈降による脱水はむずかしい。瀘布に
よる瀘過脱水は閉塞障害があり、しかも分離粒子径が瀘
布により決まり、処理能力が小で操作中に条件変更でき
ない難点があった。これらの難点を除くこと、効率の良
い装置、部品、測定法、脱水技術が必要であった。
When treating mud and muddy water, there are many cases in which the dehydration process is an obstacle in terms of cost. There was no case where the gelled construction sludge was recycled, so it was necessary to establish the method. As a result of research, it was found that there is much earth and sand that can be used for backfilling if these are separated and dehydrated, but in the past, centrifugation,
It was only possible to use expensive equipment such as a pressure filter, or to pile them up in the open field to permeate and dehydrate water on the ground. The latter cannot be used to prevent underground infiltration of sewage. In any case, a new solution as an environmental problem was needed. In the conventional device, it is common to process the difficult ones at once, and the cost is usually high.
It was necessary to improve the efficiency by a simple separation treatment without using expensive equipment and operation, and to easily dehydrate. If this becomes possible, purification work can be carried out at the same time, or in combination with conventional methods, it not only dehydrates and recycles the sediment with high efficiency and low power consumption, but also includes physicochemical and biochemical treatments. Conditions suitable for comprehensive treatment of soil and sludge can be obtained. A liquid cyclone can separate sediment from water or useful muddy water and concentrate it, but depending on the degree, the outlet easily clogs, the fluidity of the sediment in the sedimentation tank becomes poor, and the specific gravity of the mud and sediment and interface measurement It was difficult, therefore, it was not easy to take out the sediment layer and control the separation conditions based on this. A large margin is required to prevent the obstacle, and it is difficult to achieve separation or dehydration performance. This is the reason why it has not been used so much in the past. Conventionally, it has been difficult for the hydrocyclone to change the conditions of use because of the problem of blockage. A settling system and a cyclone system, which allow easy change of operating conditions, easy to change the installation position and use process, were necessary for improving efficiency and saving pump power. In addition, it was necessary to use the simple equipment to separate landfill waste, wash soil, and perform simple dehydration for landfill use and recovery of contaminated land. Dehydration by natural sedimentation is difficult due to gelation and interference sedimentation phenomenon in many cases. Filtration and dewatering by filtration have a blockage problem, and the separation particle size is determined by the filtration, so the processing capacity is small and the conditions cannot be changed during operation. In order to eliminate these difficulties, efficient equipment, parts, measuring methods and dehydration technology were needed.

【0004】[0004]

【問題を解決するための手段】処理条件、装置、粒子流
動条件の改善、比重測定、制御の研究を行った結果、微
粒子と粗粒子分離をする工程制御を容易にする技術的立
場をとることによって問題が解決できることがわかっ
た。従来泥の処理が困難であった理由の一つは掘削に使
用する泥水、安定化泥水中の砂、シルトの分離の場合、
屡々不規則な濃度変動が起きていることであった。一方
通常型液体サイクロンは低濃度では土砂分離しても、入
り口高濃度では精製泥水側の残留土砂、シルトが多く、
リサイクルまたは脱水の障害になる微粒子除去にも支障
を来していることもわかった。分離性能の低下は粗粒子
への微粒子混入率上昇を招き結果的に土砂の脱水速度を
低下させることもわかった。本発明は従って、入り口高
濃度では2段以上に沈降槽またはサイクロンを通過し、
操作は出口比重またはスラリーあるいは沈降物蓄積レベ
ルにより自動または手動で制御する。この際スラリーの
条件によっては分離操作の前後に拘らず、高濃度スラリ
ーであっても最低必要な範囲の泥あるいはスラリーに常
時連続または随時振動力を加えてチキソトロピー流動確
保する。振動子は泥水あるいはスラリー層内部に立体的
に配置し流動性を確保することができ、また必要であ
る。分離操作の1段は単数または複数のサイクロン、沈
降槽の組合せであってよい。粘土、シルト含量を制御し
て、比重を所定値に保持するために、比較的小径のサイ
クロンを併用するのがエネルギー節約の見地から有利で
あり、主流と別にボンプ、小径サイクロンを設けて常時
または必要時使用するか、小型小径のサイクロンの多数
を使用するのが有利であるが、従来困難であった比重、
界面等の測定を行うことによって設備費を合理的範囲に
納め、動力費を比較的安くできる。
[Means for solving the problem] As a result of research on improvement of processing conditions, equipment, particle flow conditions, measurement of specific gravity and control, take a technical standpoint to facilitate process control for separating fine particles from coarse particles. I found that could solve the problem. One of the reasons why it was difficult to treat mud in the past is separation of mud used for excavation, sand in stabilized mud, and silt,
It was often due to irregular concentration fluctuations. On the other hand, the normal liquid cyclone has a large amount of residual sediment and silt on the refined mud side, even if sediment is separated at low concentration, but at high concentration at the entrance.
It was also found that it hinders the removal of fine particles that hinders recycling or dehydration. It was also found that the decrease in separation performance leads to an increase in the ratio of fine particles mixed in with coarse particles, resulting in a decrease in the rate of dehydration of earth and sand. The present invention therefore passes through a settling tank or cyclone in two or more stages at high inlet concentrations,
Operation is controlled automatically or manually by outlet specific gravity or slurry or sediment accumulation level. At this time, depending on the conditions of the slurry, irrespective of before and after the separation operation, even if it is a high-concentration slurry, the thixotropic flow is secured by continuously or occasionally applying a vibration force to the minimum required range of mud or slurry. The oscillator can be arranged three-dimensionally in the muddy water or slurry layer to ensure fluidity, and is necessary. One stage of the separation operation may be a combination of one or more cyclones and a settling tank. It is advantageous from the viewpoint of energy saving to use a cyclone with a relatively small diameter in order to control the clay and silt contents and maintain the specific gravity at a predetermined value. It is advantageous to use when necessary or to use a large number of small and small-sized cyclones, but the specific gravity, which was previously difficult,
By measuring the interface etc., the equipment cost can be kept within a reasonable range, and the power cost can be relatively low.

【0005】[0005]

【実施例1】図1は本発明による横型沈降槽装置であ
る。分離泥水、沈降スラリーともサイクロンによる再分
離、再濃縮できる。アースドリル工法における安定化泥
水はベントナイト微粒子、粘性成分であるCMC等を含
むが必要にり炭酸ガス吹き込みを併用することによって
他の泥水、汚泥同様容易に測定と処理をすることができ
る。図1におぃて、泥水または水で流動性を保持してい
る土砂は振動篩ストレーナー2上に供給され、小石や雑
物を分離され槽1に入る。槽内は上層泥水層7と沈降物
スラリーに分離し、両者の界面9は指示計15を付属す
る浮子12により検出、指示される。浮子12は連結棒
11により任意の弁あるいはダンパー13に連動し界面
レベルを調節する。所定の沈降滞在時間を経た比較的稀
薄泥は溢流堰3から槽5に入り、ポンプ21により液体
サイクロン27に吹き込まれ、微粒子、あるいはベント
ナイト泥水は28から別の貯槽にはいる。砂、シルトに
富む泥水あるいはスラリーは29から土砂分離区画か槽
5にはいる。振動機20は流動を促進し、凝固性物の流
動性を増すために槽内部に立体的に配置されている振動
子6、比重、界面測定浮子32を包囲しまたはその近傍
に配置された振動子16を駆動する。浮子12あるいは
弁13に振動要素を仕込んでもよい。図2は図1の側面
視断面である。弁13は円筒、球体、角体、曲面体、板
等任意に選ぶことができるが、発明者の特願SEP−7
(平4・12・18出願)の閉塞防止用バイパス流路付
弁装置等が適当である。
EXAMPLE 1 FIG. 1 shows a horizontal settling tank apparatus according to the present invention. Both the separated muddy water and the settled slurry can be re-separated and re-concentrated by cyclone. The stabilized mud in the earth drill method contains bentonite fine particles, CMC which is a viscous component, etc., but can be easily measured and treated like other mud and sludge by using carbon dioxide gas blowing together if necessary. In FIG. 1, muddy water or earth and sand that retains fluidity with water is supplied onto a vibrating screen strainer 2, and pebbles and foreign matters are separated into a tank 1. The inside of the tank is separated into an upper mud layer 7 and a sediment slurry, and an interface 9 between them is detected and indicated by a float 12 attached with an indicator 15. The float 12 is linked with an arbitrary valve or damper 13 by the connecting rod 11 to adjust the interface level. The relatively thin mud that has passed a predetermined settling time enters the tank 5 from the overflow weir 3 and is blown into the liquid cyclone 27 by the pump 21, and the fine particles or bentonite mud enters from 28 to another storage tank. Muddy water or slurry rich in sand, silt enters from 29 into the sediment separation compartment or tank 5. The vibrator 20 accelerates the flow and vibrates surrounding the vibrator 6, the specific gravity, and the interface measuring float 32, which are three-dimensionally arranged inside the tank in order to increase the fluidity of the coagulable substance, or a vibration arranged near the vibrator. The child 16 is driven. A vibrating element may be provided in the float 12 or the valve 13. FIG. 2 is a side view cross section of FIG. The valve 13 can be arbitrarily selected from a cylinder, a sphere, a prism, a curved body, a plate, etc., but the inventor's Japanese Patent Application SEP-7
A valve device with a bypass flow passage for blocking prevention, etc. (filed in Japanese Patent Application No. 4/12/18) is suitable.

【0006】[0006]

【実施例2】図3は泥水や流動性がよくないスラリーの
測定、処理、発信器に適した比重測定器あるいはこれを
大型にしてできる竪型の沈降装置に適した装置である。
沈降物を弁4から取り出しつつ、溢流を併用して浮子秤
比重計とする。全体を重量秤で測定してもよいし、両者
を併用して計量あるいは制御用信号を出してもよい。
[Embodiment 2] FIG. 3 shows a specific gravity measuring device suitable for measuring, treating, and transmitting muddy water or slurry having poor fluidity, or an apparatus suitable for a vertical type sedimentation device capable of increasing the size.
While taking out the sediment from the valve 4, an overflow is also used to form a float balance specific gravity meter. The whole may be measured by a weight scale, or both may be used together to output a measurement or control signal.

【0007】[0007]

【実施例3】図4は比重を調整した浮子32を包囲する
立体的振動子16と浮子を吊るす可撓性線、鎖、バネ等
34、その末端35と締め付け金具36、 リミットス
イッチ37、錘37、バネ39、差動トランス等の位置
検出、発信器、支点41からなる比重、界面測定機構で
ある。浮子が浮上するとバネ39が利いて作動トランス
で変位を検出し、界面位置または比重を別の指示計で指
示させることができる。このような機構、構造は実施例
1、2にも適用できる。
[Third Embodiment] FIG. 4 shows a three-dimensional vibrator 16 that surrounds a float 32 whose specific gravity is adjusted, a flexible wire, a chain, a spring, etc. 34 that suspends the float, its end 35 and a tightening fitting 36, a limit switch 37, and a weight. 37 is a specific gravity and interface measuring mechanism including a position detector 37 such as a spring 39, a differential transformer, a transmitter, and a fulcrum 41. When the float floats, the spring 39 works to detect the displacement by the operating transformer, and the interface position or the specific gravity can be indicated by another indicator. Such a mechanism and structure can be applied to the first and second embodiments.

【0008】[0008]

【実施例4】図5は実施例1の機構を秤量型にしたもの
で弁13を作動する。弁は錐型、球型その他任意に選択
できる。通常弁としては図7、8のような短絡流路付バ
タフライ弁を使用するのが閉塞防止の点から適当であ
る。
[Fourth Embodiment] FIG. 5 shows a mechanism of the first embodiment, which is of a weighing type, and operates a valve 13. The valve can be a cone type, a spherical type or any other type. As a normal valve, it is suitable to use a butterfly valve with a short-circuit passage as shown in FIGS.

【0009】[0009]

【実施例5】図6はスラリー比重測定に適した装置であ
る。撹拌機構によって粗粒子沈降分離を防止し測定時に
は振動または撹拌を停上することができる。連続測定に
使用する時には必要により振動篩2を通過して装置上部
または下部から泥水またはスラリーを供給し溢流管3か
ら溢流させる。
Fifth Embodiment FIG. 6 shows an apparatus suitable for measuring the specific gravity of a slurry. The stirring mechanism prevents coarse particles from settling and separating, and vibration or stirring can be stopped during measurement. When used for continuous measurement, if necessary, muddy water or slurry is supplied from the upper or lower part of the device by passing through the vibrating screen 2 and overflowed from the overflow pipe 3.

【00010】[00010]

【実施例6】図7、8は短絡流路51、52付バタフラ
イ弁の弁体である。在来弁のように完全閉止はしないこ
とにより構造は簡単になり土砂、粘土質等の堆積、閉塞
を防止でき、しかも制御が安定する点に特微がある。振
動子を弁付近に設けることによって閉塞防止効果が強化
され、しかも閉塞を除くことができる。従って閉止弁、
ダンパー等をを直列に設けることもできる利点がある。
短絡流路の配置、大きさは対象流体と弁の大きさによっ
て異なるが試験によって各流路が閉塞しないこと、死角
を作らないことを条件として一般化できる。
Sixth Embodiment FIGS. 7 and 8 show a valve body of a butterfly valve with short-circuit passages 51 and 52. The feature is that the structure is simplified by not completely closing it like a conventional valve, the accumulation and blocking of soil and clay, etc. can be prevented, and the control is stable. By providing the oscillator near the valve, the effect of preventing blockage is enhanced, and blockage can be eliminated. Therefore the shut-off valve,
There is an advantage that a damper and the like can be provided in series.
The arrangement and size of the short-circuit flow passages differ depending on the target fluid and the size of the valve, but they can be generalized on the condition that each flow passage is not blocked by the test and no blind spot is created.

【00011】[00011]

【発明の効果】本発明は泥水、汚水、汚泥、土壌、土
砂、その他の液の分離または浄化に適した処理法、測定
法と装置、機器に関するもので、分離能力を調節し、槽
中または堆積した土砂、泥、汚泥、雑物から沈降槽、サ
イクロン、静置槽等によって閉塞を防止しつつ水、懸濁
水、汚水、汚泥の懸濁物土砂等を分離できる。従来困難
であったスラリー測定と制御を可能にした。組合せ、他
方法との併用も容易であり、環境問題の解決、産業への
利用等に便利である。
INDUSTRIAL APPLICABILITY The present invention relates to a treatment method, a measuring method, an apparatus and a device suitable for separating or purifying muddy water, sewage, sludge, soil, earth and sand, and other liquids. It is possible to separate water, suspended water, sewage, suspended sediment of sludge and the like from the accumulated sediment, mud, sludge, and foreign matters while preventing clogging by a sedimentation tank, a cyclone, a stationary tank or the like. Slurry measurement and control, which were difficult in the past, were made possible. It is easy to combine and use with other methods, which is convenient for solving environmental problems and for industrial use.

【図面の簡単な説明】[Brief description of drawings]

【図1】土砂または泥水、安定化泥水の選別浄化装置の
断面説明図。
FIG. 1 is an explanatory cross-sectional view of a device for selecting and purifying sediment or muddy water or stabilized muddy water.

【図2】図1の側面断面説明図。2 is a side cross-sectional explanatory view of FIG.

【図3】比重測定装置または沈降装置断面説明図。FIG. 3 is a cross-sectional explanatory view of a specific gravity measuring device or a sedimentation device.

【図4】立体振動子と浮子、検出機構説明図。FIG. 4 is an explanatory diagram of a three-dimensional oscillator, a float, and a detection mechanism.

【図5】弁制御機構側面断面説明図。FIG. 5 is a side cross-sectional explanatory view of a valve control mechanism.

【図6】比重測定装置または沈降装置断面説明図。FIG. 6 is a sectional explanatory view of a specific gravity measuring device or a sedimentation device.

【図7】バタフライ弁体とフランジへの挾み込み取付け
用枠の平面図。
FIG. 7 is a plan view of a butterfly valve body and a frame for mounting by inserting into a flange.

【図8】比重測定装置または沈降装置底弁の断面説明
図。
FIG. 8 is an explanatory cross-sectional view of a specific gravity measuring device or a bottom valve of a sedimentation device.

【符号の説明】[Explanation of symbols]

1 沈降槽 2 振動篩ストレーナー 3 溢流堰 4 泥水またはスラリー流出口 6 立体振動子 12 界面検出用浮子 13、33 弁、 18 支持バネ 20、22 振動機構 27 サイクロン 32 浮子 37 重錘 40 差動トランス等の変位検出器 41 固定支点 51、52 バイパス通路 1 settling tank 2 vibrating screen strainer 3 overflow weir 4 mud or slurry outlet 6 three-dimensional oscillator 12 interface detection float 13, 33 valve, 18 support spring 20, 22 vibration mechanism 27 cyclone 32 float 37 weight 40 differential transformer Displacement detectors such as 41 Fixed fulcrums 51, 52 Bypass passages

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C02F 11/12 ZAB Z 7824−4D Continuation of front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location // C02F 11/12 ZAB Z 7824-4D

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】泥水または泥粒子−液系を収容する槽内部
に立体的に振動子を配置し、振動を加えて分離または測
定する粒子−液系の処理法。
1. A method of treating a particle-liquid system in which a vibrator is three-dimensionally arranged inside a tank containing a mud water or a mud particle-liquid system, and vibration is applied to separate or measure.
【請求項2】泥水または泥粒子−液系の槽または容器内
部の浮子付近に立体的に振動子を配置し、振動子を連続
的または断続的に振動し比重または界面測定する粒子−
液系の測定法。
2. A muddy water or mud particle-a particle in which a vibrator is three-dimensionally arranged in the vicinity of a float inside a liquid system tank or container, and the specific gravity or interface is measured by vibrating the vibrator continuously or intermittently-
Liquid measurement method.
【請求項3】槽または容器と内部に配置された振動子と
浮子または秤機構と底部の弁とからなる請求項2記載の
測定装置。
3. The measuring device according to claim 2, comprising a tank or a container, a vibrator arranged inside, a float or a weighing mechanism, and a valve at the bottom.
【請求項4】槽または容器と内部に配置された振動子と
浮子または秤機構と撹拌機構と底部の弁とからなる請求
項3記載の測定装置。
4. The measuring device according to claim 3, comprising a tank or a container, a vibrator disposed inside, a float or a weighing mechanism, a stirring mechanism, and a valve at the bottom.
【請求項5】槽または測定容器内部の粒子−液系の界面
を測定する場合に棒または可撓性線状物またはバネで吊
られた浮子と,浮子にかかる力を検出する機構と振動機
構とからなる粒子−液系の測定法。
5. A float suspended from a rod or a flexible linear object or a spring when measuring an interface between a particle and a liquid in a tank or a measuring container, a mechanism for detecting a force applied to the float and a vibration mechanism. And a particle-liquid system measuring method.
【請求項6】泥水、スラリーまたは粉粒用の弁におい
て、弁体所要場所に配置された複数の流路または切欠を
設けたバタフライ弁。
6. A butterfly valve for muddy water, slurry or powder, comprising a plurality of flow passages or notches arranged at required valve bodies.
【請求項7】泥水またはスラリー沈降槽またはサイクロ
ンまたは測定器制御弁において、弁体または流出口所要
場所に配置された複数の流路孔、スリットまたは切欠を
設けた弁装置。
7. A muddy water or slurry settling tank, a cyclone, or a measuring device control valve, which is provided with a plurality of flow passage holes, slits or notches arranged at required positions of a valve body or an outlet.
JP4362128A 1992-12-30 1992-12-30 Method and apparatus for processing particle system Pending JPH06201562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4362128A JPH06201562A (en) 1992-12-30 1992-12-30 Method and apparatus for processing particle system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4362128A JPH06201562A (en) 1992-12-30 1992-12-30 Method and apparatus for processing particle system

Publications (1)

Publication Number Publication Date
JPH06201562A true JPH06201562A (en) 1994-07-19

Family

ID=18475997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4362128A Pending JPH06201562A (en) 1992-12-30 1992-12-30 Method and apparatus for processing particle system

Country Status (1)

Country Link
JP (1) JPH06201562A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138473A (en) * 2002-10-17 2004-05-13 Toppan Printing Co Ltd Liquid component concentration measuring instrument
GB2587707A (en) * 2019-10-01 2021-04-07 Johnson Matthey Plc An apparatus for determining a vertical level or density of a material column
CN113582386A (en) * 2021-07-30 2021-11-02 盐城师范学院 A effluent treatment plant for pigment production

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004138473A (en) * 2002-10-17 2004-05-13 Toppan Printing Co Ltd Liquid component concentration measuring instrument
GB2587707A (en) * 2019-10-01 2021-04-07 Johnson Matthey Plc An apparatus for determining a vertical level or density of a material column
WO2021064343A1 (en) * 2019-10-01 2021-04-08 Johnson Matthey Public Limited Company An apparatus for determining a vertical level or density of a material column
CN114450562A (en) * 2019-10-01 2022-05-06 庄信万丰股份有限公司 Apparatus for determining the vertical level or density of a column of material
CN114450562B (en) * 2019-10-01 2023-11-21 庄信万丰股份有限公司 Device for determining the vertical level or density of a column of material
US11892336B2 (en) 2019-10-01 2024-02-06 Johnson Matthey Public Limited Apparatus for determining a vertical level or density of a material column
GB2587707B (en) * 2019-10-01 2024-03-13 Johnson Matthey Plc An apparatus for determining a vertical level or density of a material column
CN113582386A (en) * 2021-07-30 2021-11-02 盐城师范学院 A effluent treatment plant for pigment production

Similar Documents

Publication Publication Date Title
US4427551A (en) Solids separation and liquid clarification system
KR100903593B1 (en) Ultrasonic soil washing method and apparatus for purifying polluted soil
US3674687A (en) Storm sewage treatment
CN104747107A (en) Integrated treatment method on waste drilling mud
KR101067699B1 (en) Non-point pollution decrease facilities by using a turbulent flow and filtration function
CN107352748A (en) A kind of Novel sewage collection system and sewage disposal system
CN208120937U (en) A kind of papermaking wastewater treatment system
US5240608A (en) Apparatus for waste free dredging of waterways and the fabrication of building materials
CN104712273A (en) Drilling waste slurry integrated treatment system
JPH06201562A (en) Method and apparatus for processing particle system
CN111574013A (en) Double-mixing and dynamic-mixing sludge high-dryness dehydration process
CN204511343U (en) Well drilling waste mud integrated processing system
KR101186507B1 (en) Hydrocyclone for controling length of vortex finder, apparatus and method for separating aggregate of dredge deposit soil using thereof
CN106630249A (en) Automatic tunnel wastewater treatment system
JP3493209B2 (en) Drilling mud treatment method
CN210480952U (en) High turbidity construction sewage treatment plant
US5714077A (en) Liquid filtration system
JP2854543B2 (en) Dredging wastewater treatment method and device
JP3493203B2 (en) Apparatus for separating sediment from muddy water or fluid-bearing sediment
CN209053196U (en) Bridge floor initial rainwater collection processing system implementing
CA2112037A1 (en) Method of sludge removal
KR20080015907A (en) Sludge handling method utilyzing a dredging vessel
CN109098255A (en) Bridge floor initial rainwater collection processing method and system
KR102441986B1 (en) A non-point source pollution treatment facility with swirling and filetring device
KR20030005769A (en) System for segregating the dredged sediments, and a method therefor