JP4043026B2 - Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber - Google Patents

Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber Download PDF

Info

Publication number
JP4043026B2
JP4043026B2 JP2002334802A JP2002334802A JP4043026B2 JP 4043026 B2 JP4043026 B2 JP 4043026B2 JP 2002334802 A JP2002334802 A JP 2002334802A JP 2002334802 A JP2002334802 A JP 2002334802A JP 4043026 B2 JP4043026 B2 JP 4043026B2
Authority
JP
Japan
Prior art keywords
water channel
water
channel partition
belt
presser plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002334802A
Other languages
Japanese (ja)
Other versions
JP2004172264A (en
Inventor
浩幸 本間
政和 小林
和夫 井口
理一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2002334802A priority Critical patent/JP4043026B2/en
Publication of JP2004172264A publication Critical patent/JP2004172264A/en
Application granted granted Critical
Publication of JP4043026B2 publication Critical patent/JP4043026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハの製造工程等において用いられる水冷チャンバ及びこれを用いた気相成長成膜装置並びに該水冷チャンバの製造方法に関する。
【0002】
【従来の技術】
従来から半導体ウエハ等の被処理物に、例えば薄膜形成を行なう場合には、水冷チャンバを備える気相成長成膜装置が用いられている。
この気相成長成膜装置としては、例えば図8に示すようなものが知られている。図8に示すように、この気相成長成膜装置に用いられている水冷チャンバは、内側に溶接箇所が全くないステンレス製の円筒状の容器本体31からなり、この容器本体31の上部端,下部端には、環状のフランジ31a,31bが容器本体31と一体となって取り付けられている。
【0003】
前記容器本体31の外側側面には、該側面を例えばステンレス製インゴットより削り出して多数の段付き加工が施され、容器本体31とステンレス製の筒状の押え板32により螺旋状の冷却用の水路33が形成されている。なお、前記押え板32は水路33の外側で前記容器本体31と溶接部34で溶接されている。
【0004】
また、前記容器本体31の最下段,最上段に位置する水路33には、夫々水路入口管35、水路出口管36が連結されている。ここで、水路入口管35、水路出口管36は水路33の外側で、前記容器本体31と溶接部37で溶接されている。
即ち、半導体ウエハを処理する際は、水路入口管35から冷却水を導入して容器本体31の最下段側の水路33へ送り、該冷却水は容器本体31の外側側面の水路33に沿って回りながら徐々に上方向に送られ、水路出口管36から排出される。
【0005】
また、この他に気相成長成膜装置として機能させるために、前記容器本体31の側面には、容器本体31内のホルダー38上に半導体ウエハ39を出し入れするウエハ出入口40が設けられている。また、前記ホルダー38の内部にはヒータ41が配置され、ホルダー38の下部はホルダー38を回転させる駆動手段42が連結されている。
更に、前記フランジ31aには、容器本体31内に反応ガスを導入するガス導入口43が設けられ、前記フランジ31aにOリング44を介してステンレス製の上蓋45が設けられている。また、容器本体31のフランジ31bには、Oリング46を介して排気口47が形成されたステンレス製の下蓋48が設けられている。
【0006】
このような水冷チャンバが用いられた気相成長成膜装置によれば、内側に溶接箇所が全くないステンレス製の円筒状の容器本体31を用いているため、腐食性の高いガス例えばシラン,アルシン,塩素等が容器本体31内に存在しても、経時変化と共に容器本体31内が劣化することなく、該ガスが外部へ漏れることはない。
また、容器本体31の外側側面には、該側面を削り出すことにより多数の段付き加工が施され、容器本体31とステンレス製の押え板32により冷却用の水路33が形成されているため、水路33の容器本体31に対する接触面積を十分に取ることができ、十分な冷却効果を有する。
更に、気相成長を行なった場合には、容器本体31が十分に冷却されるため、従来のようにパーティクルが導入ガスに起因して容器本体31の内壁に在留することなく、これが半導体ウエハに悪影響を及ぼすことを回避でき、半導体ウエハに均一な膜堆積を行なうことができる。
【0007】
なお、押え板32は筒状である場合に限らず、図9に示すような多数のリング状の押え板48を容器本体31の外側側面の段差加工部を塞ぐように溶接しても良いことも知られている。
【0008】
【特許文献1】
特開平10−216500号公報(第2頁第2欄第39行〜第3頁第4欄第4行、図3、図4、図5)
【0009】
【発明が解決しようとする課題】
ところで、前記した従来例において、筒状押え板32を用いて水路33を形成する場合、該押え板32は段差加工による多数の水路隔壁部31Aの頂部と溶接することができない。
そのため、図8に示した溶接部34のように、上下端のフランジ部31a,31bとのみ溶接されていた。
したがって、水路33を流れる冷却水の水圧に十分に耐え得るように、該押え板32の肉厚を厚くしたり、あるいは他の補強部材を設置する必要があった。
その結果、水冷チャンバ、またこれを用いた気相成長成膜装置の重量が増加し、更には部品点数が多くなる等、複雑化を招き、製造上、利用上、多くの問題があった。
また、前記水路隔壁部31Aの頂部と押え板32の間には、少なからず隙間が存在するため、冷却水が前記隙間を通過し、少なからず冷却効率が下がる傾向があった。
【0010】
また、前記した従来例において、図9に示した多数のリング状の押え板48を用いて水路33を形成した場合、段差加工部による螺旋状の水路隔壁部31Aの頂部とリング状の押え板48を隙間なく溶接することは、工業上、極めて困難であった。
【0011】
本発明者らは、前記リング状の押え板48に換え、長い帯状の押え板にて溶接を試みたが、この溶接を確実に行うためには水路隔壁部31Aの厚さを厚くする必要があった。
即ち、リング状押え板48を水路隔壁部31Aの頂部に溶接する場合、一つの水路隔壁部31Aの頂部に溶接される、隣合う押え板48,48を一度の溶接で、固定することができる。しかし、長い帯状の押え板を溶接する場合、前記したように一度に溶接することはできず、帯状の押え板の一側を溶接した後、他の側を溶接することになる。
【0012】
具体的に説明すると、仮に水路が螺旋状でなく、リング状押え板での溶接が可能な構造であるとすると、図10(a)に示すようにリング状押え板48の側部を2mm程度、同時に溶接する場合には、一度の溶接で行なうことができるため、5mm程度の水路隔壁部31Aの幅があれば、十分である。
一方、水路が螺旋状であって、長い帯状の押え板を溶接する場合には、図10(b)に示すように帯状押え板2の一側を2mm程度、水路隔壁部31Aに溶接し、その後他側を2mm程度、水路隔壁部31Aに溶接する場合には、別々に(2度)溶接が行われるため、8mm程度の水路隔壁部31Aの幅を必要とする。
【0013】
このように、帯状押え板2を用いて水路33を形成する場合、リング状の押え板48を用いて水路を形成する場合に比べて、約2倍の水路隔壁部31Aの幅を必要とするため、前記水路33の容積が小さくなり、十分な冷却効果が得られ難いという問題があった。
また、水路隔壁部31Aの幅が大きくなることにより、前記した場合と同様、重量が増加するという問題も生じた。
【0014】
また、前記水路隔壁部31Aが螺旋状に形成されているために、水路隔壁部31Aの頂部に対して帯状押え板2を順次溶接していくことは、人手によって行うには極めて高度な技術を必要とし、またこれを自動化するためには相当の制御技術を必要とするという問題があった。
【0015】
本発明は上記事情を考慮してなされたもので、水路隔壁部の幅を大きくすることなく、水路隔壁部の頂部に対して帯状の押え板を容易に溶接でき、しかも、重量の増大を伴うことなく、良好な冷却効率を維持できる水冷チャンバを提供することを目的とする。
また、本発明は、前記した水冷チャンバを用いることにより、パーティクルの悪影響もなく、良好な環境中で被処理物を処理し得る気相成長成膜装置を提供することを目的とする。
更に、本発明は、水路隔壁部頂部に対して帯状押え板を容易に溶接でき、水路を容易に形成することができる水冷チャンバの製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、本発明にかかる水冷チャンバは、筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板とを備える水冷チャンバであって、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部を有し、前記凹部が形成された水路隔壁部の頂部側方に前記帯状押え板が溶接されていることを特徴としている。
【0017】
このように、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部を有しているため、水路隔壁部に沿って帯状押え板を連続的に溶接できる。したがって、機械的強度が増加し水圧に耐えうるため、水路隔壁部の幅を大きくすることもなく、補強用の部材も必要ない。その結果、軽量にでき、部品点数も少なくできる。
また、前記凹部によって溶接に伴う応力を緩和でき、溶接部欠陥の発生を抑制できる。その結果、冷却水が外部に漏れ出すこともなく、また隣接する水路内に流入することもないため、冷却効率を向上させることができる。
【0018】
また、前記凹部が前記水路隔壁部の頂部表面に露出して形成されていることが望ましい。
このように、前記凹部が前記水路隔壁部の頂部表面に露出して形成されているため、容器本体内の熱をより効率的に放熱でき、十分な冷却効率を得ることができる。
【0019】
また、前記水路隔壁部の上方に前記帯状押え板を載置する水平部を有することが望ましい。
このように、前記水路隔壁部の上方に前記帯状押え板を載置する水平部を有するため、前記帯状押え板を載置した状態で、帯状押え板を前記水路隔壁部の頂部に対して、容易かつ堅固に溶接できる。
また、前記水平部を有することで、水路隔壁部の厚さを極力低減することで、水路容積を十分確保し、冷却効率をより高めることができる。
更に、帯状押え板を載置した状態で溶接することができるため、高精度に溶接でき、しかも自動化ラインにより、より容易に溶接できる。
また、帯状押え板は、容器本体の水路隔壁部のすべてに比較的狭い幅で溶接されているため、押え板の肉厚を大きくする必要がなく、重量増、多部品化を抑制することができる。
【0020】
また、本発明は上記課題を解決するためになされたものであり、本発明にかかる気相成長成膜装置は、前記した水冷チャンバを備えているため、容器本体を十分に冷却できるため、パーティクルが導入ガスに起因して容器本体の内壁に在留することなく、これが半導体ウエハに悪影響を及ぼすことをより高い信頼性で回避することができ、半導体ウエハに均一な膜堆積を行なうことができる。更に、装置の軽量化、簡素化を図ることができる。
【0021】
また、本発明は上記課題を解決するためになされたものであり、本発明にかかる水冷チャンバの製造方法は、筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板を備える水冷チャンバの製造方法であって、筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板を備える水冷チャンバの製造方法であって、前記筒状の容器本体の外側側面に、螺旋状に水路隔壁部を形成する工程と、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部、及び前記帯状押え板を載置する水平部を形成する工程と、前記凹部に溶接手段のガイドピンを当接させながら、溶接手段によって前記水路隔壁部に帯状押え板を溶接する工程とを備えることを特徴としている。
【0022】
このように、水路隔壁部の頂部表面に前記帯状押え板で覆われない凹部及び前記帯状押え板を載置する水平部を形成し、前記凹部に溶接手段のガイドピンを当接させながら、溶接手段によって前記水路隔壁部に対して帯状押え板を溶接するため、水路壁頂部に対して帯状の押え板を容易かつ正確に溶接でき、水路を容易に形成することができる
【0023】
ここで、前記隔壁部は、筒状の容器本体側面を研削加工することにより形成されることが望ましく、また前記凹部及び帯状押え板を載置する水平部は、隔壁部を研削加工することにより形成されることが望ましい。このようにすることによって、軽量構造でありながらも、より強固な水冷チャンバを提供することができる。
【0024】
【発明の実施の形態】
以下、本発明の一実施形態に係る水冷チャンバを用いた気相成長装置について図1乃至図6に基づいて説明する。
図中の符号1は、水冷チャンバを構成する、内側に溶接箇所が全くないステンレス製の円筒状の容器本体である。
この容器本体1の上部端,下部端には、環状のフランジ1a,1bが容器本体1と一体となって取り付けられている。前記容器本体1の外側側面には多数の段付き加工が施され、水路隔壁部1Aが形成されている。
そして、この水路隔壁部1Aの頂部にステンレス製の帯状の押え板2を溶接により固着することによって、冷却用の水路3が形成される。
【0025】
なお、容器本体1の外側面に水路隔壁部1Aが螺旋状に形成されているため、前記水路隔壁部1Aによって区画された水路3は螺旋状に形成される。また、水路隔壁部1Aは、ステンレス製インゴットより削り出して多数の段付き加工を施すことにより、形成される。
【0026】
また、前記水路隔壁部1Aの頂部には、図3に示すように、前記帯状押え板2で覆われない凹部1Cが形成されている。
これによって、水路隔壁部1Aに沿って帯状押え板2を連続的に溶接できる。したがって、機械的強度が増加し水圧に耐えうるため、水路隔壁部1Aの幅を大きくすることもなく、補強用の部材も必要ない。その結果、軽量にでき、部品点数も少なくできる。
また、前記凹部1Cによって溶接に伴う応力を緩和でき、溶接部欠陥の発生を抑制できる。その結果、冷却水が外部に漏れ出すこともなく、また隣接する水路内に流入することもないため、冷却効率を向上させることができる。
【0027】
更に、前記水路隔壁部1Aの上方に、前記帯状押え板2を載置する水平部1Bが形成され、前記帯状押え板2を載置した状態で、帯状押え板2を前記水路隔壁部1Aの頂部側方に対して容易かつ堅固に溶接できるように構成されている。
【0028】
また、前記水平部1Bを有することで、水路隔壁部1Aの厚さを極力低減でき、水路3の容積を十分確保し、冷却効率をより高めることができる。
更に、帯状押え板2を載置した状態で溶接することができるため、高精度に溶接でき、しかも自動化ラインにより、より容易に溶接できる。
また、帯状押え板2は、容器本体1の水路隔壁部1Aに沿って、該水路隔壁部1Aのすべてに溶接されている。そのため、水圧に耐えうる機械的強度を有するようになる。その結果、押え板2の肉厚をあえて大きくする必要はなく、重量増、多部品化を抑制することができる。
【0029】
また、図1、図2に示すように、前記容器本体1の最下段,最上段に位置する前記水路3には、夫々水路入口管5、水路出口管6が連結されている。ここで、水路入口管5、水路出口管6は水路3の外側で帯状押え板2と溶接されている。即ち、水路入口管5から冷却水を導入して容器本体1の最下段側の水路3へ送り、容器本体1の外側側面の水路3に沿って回りながら徐々に上方向に送り、水路出口管6から排出するように構成されている。
【0030】
また、従来の場合と同様に、ホルダー8の内部にはヒータ7が配置され、ホルダー8の下部はホルダー8を回転させる駆動手段9が連結されている。
前記容器本体1の上部には、容器本体1内に反応ガスを導入するガス導入口(図示せず)が設けられ、前記フランジ1aにOリング(図示せず)を介してステンレス製の上蓋10が設けられている。
また、容器本体1のフランジ1bには、Oリング11を介して排気口12が形成されたステンレス製の下蓋13が設けられている。この下蓋13は、図示しない駆動手段により上下動可能に構成されている。
したがって、前記下蓋13を下降させた状態でホルダー8上に半導体ウエハWが出し入れされ、一方前記下蓋13を上昇させ、容器本体1の内部を密閉した状態で、半導体ウエハWに対して、所定の処理がなされる。
【0031】
次に、前記した前記水路隔壁部1Aの頂部に形成された凹部1Cの機能について、図4,図5に基づいて詳述する。
図4(a)に示すように、前記水路隔壁部1Aの頂部に、前記帯状押え板2を載置する水平部1Bを形成し、前記帯状押え板2を載置した状態で、帯状押え板2を水路隔壁部1Aの頂部に対して順次溶接した場合には、図4(b)に示すように、溶接側へ引張り応力(矢印方向の力)が生じる。なお、図中、1Dは溶接部を示す。
更に、他側に位置する帯状押え板2を水路隔壁部1Aの頂部に対して溶接すると、図4(c)に示すように、該溶接側へ引張り応力(矢印方向の力)が生じる。その結果、最初に溶接された溶接部1Dに歪みが生じ、十分な溶接強度が得られず、溶接部欠陥を発生させる虞がある。
【0032】
一方、図5に示すように、本発明の如く、水路隔壁部1Aの頂部に凹部1Cが形成されている場合には、溶接により引張り力(矢印方向の力)が作用しても、前記凹部1Cが存在するために他の溶接部1Dに該引張り力が作用しない。
このように、前記水路隔壁部1Aの頂部に前記帯状押え板2で覆われない凹部1Cを有しているため、溶接に伴う応力による溶接部欠陥の発生を抑制できる。その結果、冷却水が外部に漏れ出すこともなく、また隣接する水路内に冷却水が流入することもないため、冷却効率を向上させることができる。
【0033】
また、前記水路隔壁部1Aの頂部に前記帯状押え板2で覆われない部分(凹部)を有しているため、水路隔壁部1Aに沿って帯状押え板2を直接、連続的に溶接できる。
したがって、機械的強度が増加し水圧に耐えうるため、水路隔壁部の幅を大きくすることもなく、補強用の部材も必要ない。その結果、軽量化でき、部品点数も少なくできる機能を有している。
【0034】
次に、本発明にかかる水冷チャンバの製造方法について説明する。
この製造方法は、前記筒状の容器本体1の外側側面に、螺旋状に水路隔壁部1Aを形成する工程と、前記水路隔壁部1Aの頂部表面に前記帯状押え板2で覆われない凹部1C、及び前記帯状押え板2を載置する水平部1Bを形成する工程と、前記凹部1Cに溶接手段のガイドピン14を当接させながら、溶接手段15によって前記水路隔壁部1Aに対して帯状押え板2を溶接する工程とを備えている。
【0035】
具体的に説明すると、例えば、高さ600mm、内径600mm、外径632mmの引き抜き法で作られたステンレス製筒状体の外表面を削り出すことで、内径600mm、外径609mmの容器本体1の外側側面に水路幅40mmとなるように螺旋状に水路隔壁部1Aを形成する。
【0036】
次に、前記水路隔壁部1Aの頂部表面に前記帯状押え板2で覆われない凹部1C、及び前記帯状押え板2を載置する水平部1Bを形成する。一例を示せば、図3において、a=6.5mm,b=5mm,c=2mm,d=0.7mm,e=2mm,f=9.5mm,g=1.5mm,h=4.5mm,i=4mm,j=3mmである。
そして、隣り合う水路隔壁部1Aを幅43mmの帯状押え板2によって、筒状の容器本体1の一側の一端側から他端側に順次溶接する。このとき、図6に示すように前記凹部1C内にガイドピン14を当接させながら、溶接手段15を移動させ、溶接を行う。
このようにガイドピンで案内しながら、溶接が行われるため、容易かつ正確に溶接を行うことができる。また、螺旋状溶接部を人手に頼ることなく、製造ラインの自動化を図ることが極めて容易となる。
【0037】
この溶接手段15は、電極をステンレスとし、これを中心軸に配置したノズルの外周からアルゴンガス等の不活性ガスをシールドガスとして噴出させ(図示せず)、該電極を陽極側、被溶接側(水路隔壁部側)を陰極側となるように直流、高電流密度の電流を流し、アーク溶接するものである。
これによると溶接部において酸化性の外気から完全にシールされるため、溶融金属の汚染、変質(酸化)が防止され、高強度で信頼性の高い溶接が可能となる。
その後、容器本体1の最下段、最上段に位置する水路に連結される貫通口を形成した後、ここに水路入口管5及び水路出口管6を溶接する。
そして、最後に、溶接本体1の上下端に各フランジ1a,1bを溶接する。なお、各フランジ1a,1bは、前述のステンレス製筒状体の外表面の削り出しにおいて、容器本体と一体に形成しても良い。
【0038】
また、図3に示す前記水路隔壁部1Aの頂部表面に前記帯状押え板2で覆われない凹部1Cが形成された水冷チャンバ(実施例)と、前記水路隔壁部1Aの形状、寸法を実施例と同一にし、該凹部1Cが形成さていない点のみ実施例と異なる水冷チャンバ(比較例)とを比較したところ、実施例では溶接欠陥が存在しないのに対して、比較例では多数の箇所に溶接欠陥が確認された。
【0039】
なお、上記実施形態にあっては、図5に示すように凹部1C内に溶接部1Dが形成されないように溶接されているが、図7(a)に示すように凹部1C内に溶接部1Dが形成されるように、溶接しても良い。
しかしながら、前記凹部1C内に溶接部1Dが形成されることなく、前記凹部1Cが表面に露出していることがより好ましい。
このような構成によれば、容器本体1と一体に形成された水路隔壁部1Aの頂部が螺旋状に露出し、しかもこれが表面積が大きくなるようにU字状の凹部1Cに形成されているため、容器本体1の内の熱をより効率的に放熱することができ、十分な冷却効率を得ることができる。
【0040】
また、凹部1Cは、上記実施形態において示したような断面形状がU字状に限定されるものではなく、V字状(図7(b))、矩形状(図7(c))の凹部であってもよいが、U字状に形成されたものがより好ましい。
U字状に形成された凹部1Cには、鋭角部が存在しないため、上述のような溶接に伴う応力が当該鋭角部に集中することはない。そのため、応力集中による水路隔壁部1A破損等を極力回避することができる。
したがって、図7(b)に示すV字状凹部1Cであっても、V字鋭角部が湾曲状になっていれば同等の効果を奏する。
【0041】
更に、本発明の水路隔壁部1Aの上方の構造は、図7(d)に示されるような水平部を設けず、凹部1cが形成された水路隔壁部1Aの側壁に直接溶接したもの、あるいは図7(e)に示されるような水平部1Eの幅で、水路隔壁部1A全体が形成されたものであっても良い。
【0042】
また、上記実施形態にあっては、水路隔壁部を容器本体1の側面を研削することによって形成したが、水路隔壁部3を別体として形成し、溶接等で容器本体1の外側側面に設けても良い。
【0043】
以上のように、上記実施形態に係る水冷チャンバによれば、内側に溶接箇所が全くないステンレス製の円筒状の容器本体1を用いているため、腐食性の高いガス例えばシラン,アルシン,塩素等が容器本体1内に存在しても、経時変化と共に容器本体1内が劣化することなく、外部へ漏れること心配がない。
また、容器本体1の水路隔壁部1Aと帯状の押え板2により水路3が構成されているため、水路3の容器本体1に接触する面積が大きく、十分な冷却効果を有する。
【0044】
更に、前記水冷チャンバを用いた気相成長成膜装置によれば、容器本体1を十分に冷却できるため、従来のようにパーティクルが導入ガスに起因して容器本体1の内壁に在留することなく、これが半導体ウエハに悪影響を及ぼすことを回避できる。その結果、半導体ウエハに均一な膜堆積を行なうことができる。
【0045】
【発明の効果】
以上詳述した如く本発明にかかる水冷チャンバによれば、水路隔壁幅を大きくすることなく、水路隔壁頂部に対して帯状の押え板を容易に溶接でき、しかも、重量の増大を伴うことなく、良好な冷却効率を得ることができる。
また、本発明にかかる気相成長成膜装置によれば、パーティクルの悪影響もなく良好な環境中で被処理物を処理することができる。
更に、本発明にかかる水冷チャンバの製造方法によれば、水路隔壁頂部に対して帯状の押え板を容易に溶接でき、水路を容易に形成することができる。
【図面の簡単な説明】
【図1】本発明にかかる気相成長成膜装置(水冷チャンバ)の一実施形態を示す断面図である。
【図2】図1に示した気相成長成膜装置(水冷チャンバ)の側面図である。
【図3】図1に示した図1に示した気相成長成膜装置(水冷チャンバ)の水路隔壁部の断面図である。
【図4】水路隔壁部と帯状押え板の溶接の際生じる、溶接欠陥を説明するための断面図である。
【図5】図3に示した水路隔壁部においては溶接欠陥が生じないことを説明するための断面図である。
【図6】図3に示した水路隔壁部と帯状押え板との溶接を説明するための断面図である。
【図7】図3に示した水路隔壁部の頂部に設けられた凹部の変形例を説明するための概略図である。
【図8】図7は、従来の気相成長成膜装置(水冷チャンバ)を示す断面図である。
【図9】図9は、従来のリング状押え板を示す斜視図である。
【図10】図10は、水路隔壁部に押え板を溶接する状態を示す断面図である。
【符号の説明】
1 容器本体
1A 水路隔壁部
1B 水平部
1C 凹部
1D 溶接部
1a フランジ
1b フランジ
2 押え板
3 水路
5 水路入口管
6 水路出口管
7 ヒータ
8 ホルダー
9 駆動手段
10 上蓋
12 排気口
14 ガイドピン
15 溶接手段
W 半導体ウエハ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-cooled chamber used in a semiconductor wafer manufacturing process and the like, a vapor deposition apparatus using the same, and a method for manufacturing the water-cooled chamber.
[0002]
[Prior art]
Conventionally, when a thin film is formed on an object to be processed such as a semiconductor wafer, a vapor deposition apparatus having a water cooling chamber has been used.
As this vapor phase growth film forming apparatus, for example, the one shown in FIG. 8 is known. As shown in FIG. 8, the water-cooled chamber used in this vapor phase growth film-forming apparatus is composed of a stainless steel cylindrical container body 31 having no welded portion inside, and the upper end of the container body 31; At the lower end, annular flanges 31 a and 31 b are attached integrally with the container body 31.
[0003]
On the outer side surface of the container body 31, the side surface is cut out from, for example, a stainless steel ingot and subjected to a number of steps, and the container body 31 and the stainless steel cylindrical presser plate 32 are used for spiral cooling. A water channel 33 is formed. The presser plate 32 is welded to the container body 31 and the welded portion 34 outside the water channel 33.
[0004]
Further, a water channel inlet pipe 35 and a water channel outlet pipe 36 are connected to the water channel 33 located at the lowermost stage and the uppermost stage of the container body 31, respectively. Here, the water channel inlet pipe 35 and the water channel outlet pipe 36 are welded to the container main body 31 and the welding portion 37 outside the water channel 33.
That is, when a semiconductor wafer is processed, cooling water is introduced from the water channel inlet pipe 35 and sent to the water channel 33 on the lowermost side of the container body 31, and the cooling water flows along the water channel 33 on the outer side surface of the container body 31. While rotating, it is gradually sent upward and discharged from the water channel outlet pipe 36.
[0005]
In addition, in order to function as a vapor phase growth film forming apparatus, a wafer inlet / outlet port 40 for taking in and out the semiconductor wafer 39 on a holder 38 in the container body 31 is provided on the side surface of the container body 31. A heater 41 is disposed inside the holder 38, and a driving means 42 for rotating the holder 38 is connected to the lower portion of the holder 38.
Further, the flange 31 a is provided with a gas introduction port 43 for introducing a reaction gas into the container body 31, and a stainless steel upper lid 45 is provided on the flange 31 a via an O-ring 44. Further, the flange 31b of the container main body 31 is provided with a stainless steel lower lid 48 in which an exhaust port 47 is formed via an O-ring 46.
[0006]
According to the vapor phase growth film forming apparatus using such a water-cooled chamber, since the stainless steel cylindrical container body 31 having no welded portion inside is used, highly corrosive gases such as silane and arsine are used. Even if chlorine or the like is present in the container body 31, the inside of the container body 31 does not deteriorate with time, and the gas does not leak to the outside.
In addition, the outer side surface of the container body 31 is subjected to a number of steps by cutting out the side surface, and the cooling water channel 33 is formed by the container body 31 and the stainless retainer plate 32. A sufficient contact area of the water channel 33 with respect to the container body 31 can be taken, and a sufficient cooling effect is obtained.
Further, when vapor phase growth is performed, the container main body 31 is sufficiently cooled, so that particles do not stay on the inner wall of the container main body 31 due to the introduced gas as in the conventional case, and this does not occur on the semiconductor wafer. An adverse effect can be avoided, and uniform film deposition can be performed on a semiconductor wafer.
[0007]
The presser plate 32 is not limited to a cylindrical shape, and a large number of ring-shaped presser plates 48 as shown in FIG. 9 may be welded so as to block the stepped portion on the outer side surface of the container body 31. Is also known.
[0008]
[Patent Document 1]
JP-A-10-216500 (2nd page, 2nd column, 39th line to 3rd page, 4th column, 4th line, FIG. 3, FIG. 4, FIG. 5)
[0009]
[Problems to be solved by the invention]
By the way, in the above-described conventional example, when the water channel 33 is formed using the cylindrical presser plate 32, the presser plate 32 cannot be welded to the tops of the many water channel partition walls 31A by the step processing.
Therefore, only the flange portions 31a and 31b at the upper and lower ends were welded as in the welded portion 34 shown in FIG.
Therefore, it has been necessary to increase the thickness of the pressing plate 32 or install another reinforcing member so that the pressure of the cooling water flowing through the water channel 33 can be sufficiently withstand.
As a result, the weight of the water-cooled chamber and the vapor phase growth film forming apparatus using the same increases, and the number of parts increases, resulting in complications and many problems in manufacturing and utilization.
Further, since there is a gap between the top of the water channel partition wall 31A and the presser plate 32, there is a tendency that the cooling water passes through the gap and the cooling efficiency is reduced.
[0010]
Further, in the above-described conventional example, when the water channel 33 is formed using the many ring-shaped presser plates 48 shown in FIG. 9, the top of the spiral water channel partition wall 31A formed by the stepped portion and the ring-shaped presser plate. It was extremely difficult in industry to weld 48 without gaps.
[0011]
The present inventors have tried welding with a long band-shaped presser plate instead of the ring-shaped presser plate 48. In order to perform this welding reliably, it is necessary to increase the thickness of the water channel partition wall 31A. there were.
That is, when the ring-shaped presser plate 48 is welded to the top portion of the water channel partition wall portion 31A, the adjacent presser plates 48 and 48 welded to the top portion of one water channel partition wall portion 31A can be fixed by one welding. . However, when welding a long belt-like presser plate, it is not possible to weld at a time as described above, and after welding one side of the belt-like presser plate, the other side is welded.
[0012]
More specifically, assuming that the water channel is not spiral and can be welded with a ring-shaped presser plate, the side portion of the ring-shaped presser plate 48 is about 2 mm as shown in FIG. In the case of welding at the same time, since it can be performed by one welding, it is sufficient if the width of the water channel partition wall 31A is about 5 mm.
On the other hand, when the water channel is spiral and a long belt-shaped presser plate is to be welded, one side of the belt-like presser plate 2 is welded to the water channel partition wall 31A about 2 mm as shown in FIG. Thereafter, when the other side is welded to the water channel partition part 31A by about 2 mm, since welding is performed separately (twice), the width of the water channel partition part 31A of about 8 mm is required.
[0013]
As described above, when the water channel 33 is formed using the belt-shaped presser plate 2, the width of the water channel partition wall 31 </ b> A is approximately twice as large as that when the water channel is formed using the ring-shaped presser plate 48. For this reason, there is a problem that the volume of the water channel 33 is reduced and it is difficult to obtain a sufficient cooling effect.
Further, as the width of the water channel partition wall 31A is increased, there is a problem that the weight is increased as in the case described above.
[0014]
Further, since the water channel partition wall 31A is formed in a spiral shape, welding the belt-like presser plate 2 sequentially to the top of the water channel partition wall 31A is an extremely advanced technique for manual operation. In order to automate this, there is a problem that a considerable control technique is required.
[0015]
The present invention has been made in consideration of the above circumstances, and can easily weld a band-shaped presser plate to the top of the water channel partition without increasing the width of the water channel partition, and is accompanied by an increase in weight. An object of the present invention is to provide a water-cooled chamber that can maintain good cooling efficiency.
Another object of the present invention is to provide a vapor deposition film forming apparatus capable of processing an object to be processed in a favorable environment without adverse effects of particles by using the above-described water cooling chamber.
Furthermore, an object of the present invention is to provide a method for manufacturing a water-cooled chamber in which a band-shaped presser plate can be easily welded to the top of a water channel partition wall and a water channel can be easily formed.
[0016]
[Means for Solving the Problems]
The present invention has been made to solve the above problems, and a water cooling chamber according to the present invention includes a cylindrical container body, a water channel partition formed in a spiral shape on the outer side surface of the container body, A water-cooling chamber comprising a band-shaped presser plate that forms a water channel on the outer side surface of the container main body by being welded to the water-channel partition wall part, and has a concave portion that is not covered with the band-shaped presser plate at the top of the water channel partition wall part. And the said strip | belt-shaped presser plate is welded to the top side of the water channel partition part in which the said recessed part was formed, It is characterized by the above-mentioned.
[0017]
Thus, since it has the recessed part which is not covered with the said strip | belt-shaped presser plate at the top part of the said water-channel partition part, a strip | belt-shaped presser board can be continuously welded along a water-channel partition part. Therefore, since the mechanical strength increases and can withstand water pressure, the width of the water channel partition wall is not increased, and no reinforcing member is required. As a result, the weight can be reduced and the number of parts can be reduced.
Moreover, the stress accompanying welding can be relieved by the said recessed part, and generation | occurrence | production of a weld part defect can be suppressed. As a result, the cooling water does not leak to the outside and does not flow into the adjacent water channel, so that the cooling efficiency can be improved.
[0018]
Moreover, it is desirable that the concave portion is formed to be exposed on the top surface of the water channel partition wall portion.
Thus, since the said recessed part is exposed and formed in the top part surface of the said water channel partition part, the heat | fever in a container main body can be thermally radiated more efficiently and sufficient cooling efficiency can be obtained.
[0019]
Moreover, it is desirable to have the horizontal part which mounts the said strip | belt-shaped holding plate above the said water channel partition part.
Thus, since it has a horizontal part for placing the belt-like retainer plate above the water channel partition part, the belt-like retainer plate is placed on the top of the water channel partition part with the belt-like retainer plate placed. Can be easily and firmly welded.
Moreover, by having the said horizontal part, by reducing the thickness of a water channel partition part as much as possible, water channel volume can fully be ensured and cooling efficiency can be improved more.
Furthermore, since it can weld in the state which mounted | worn the strip | belt-shaped holding | maintenance board, it can weld with high precision and can also weld more easily by an automated line.
In addition, since the belt-like presser plate is welded to all the water channel bulkheads of the container body with a relatively narrow width, it is not necessary to increase the thickness of the presser plate, thereby suppressing an increase in weight and the increase in the number of parts. it can.
[0020]
In addition, the present invention has been made to solve the above problems, and since the vapor phase growth film forming apparatus according to the present invention includes the water cooling chamber described above, the container body can be sufficiently cooled. Therefore, it is possible to avoid the adverse effect on the semiconductor wafer due to the introduced gas without adversely affecting the inner wall of the container main body, and it is possible to perform uniform film deposition on the semiconductor wafer. Furthermore, the weight and simplification of the apparatus can be achieved.
[0021]
In addition, the present invention has been made to solve the above problems, and a method for manufacturing a water-cooled chamber according to the present invention includes a cylindrical container body and a water channel formed in a spiral shape on the outer side surface of the container body. A method for manufacturing a water cooling chamber comprising a partition wall and a band-shaped presser plate that forms a water channel on an outer side surface of the container body by being welded to the water channel partition wall, the tubular container body, and the container body A water cooling chamber manufacturing method comprising a water channel partition wall formed in a spiral shape on an outer side surface, and a band-shaped presser plate that is welded to the water channel partition wall to form a water channel on the outer side surface of the container body, A step of forming a water channel partition wall in a spiral shape on the outer side surface of the cylindrical container body, a recess not covered with the belt-shaped presser plate on the top of the water channel partition wall, and a horizontal part for mounting the belt-shaped presser plate Craft to form If, while abutting the guide pin of the welding means in the recess, it is characterized by comprising the step of welding the belt-like retainer plate to the water channel partition wall portion by welding means.
[0022]
In this way, a concave portion that is not covered with the belt-like retainer plate and a horizontal portion on which the belt-like retainer plate is placed are formed on the top surface of the water channel partition wall, and welding is performed while a guide pin of a welding means is brought into contact with the concave portion. Since the belt-like presser plate is welded to the water channel partition by means, the belt-like presser plate can be easily and accurately welded to the top of the water channel wall, and the water channel can be easily formed.
Here, the partition wall is preferably formed by grinding the side surface of the cylindrical container body, and the horizontal portion on which the concave portion and the belt-like presser plate are placed is obtained by grinding the partition wall. It is desirable to be formed. By doing so, it is possible to provide a stronger water cooling chamber while having a lightweight structure.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a vapor phase growth apparatus using a water cooling chamber according to an embodiment of the present invention will be described with reference to FIGS.
Reference numeral 1 in the drawing is a cylindrical container body made of stainless steel that constitutes a water-cooled chamber and has no welded portion inside.
At the upper end and the lower end of the container body 1, annular flanges 1 a and 1 b are attached integrally with the container body 1. A large number of steps are applied to the outer side surface of the container body 1 to form a water channel partition wall 1A.
And the water channel 3 for cooling is formed by adhering the stainless steel strip-shaped presser plate 2 to the top part of this water channel partition part 1A by welding.
[0025]
In addition, since the water channel partition part 1A is formed in a spiral shape on the outer surface of the container body 1, the water channel 3 partitioned by the water channel partition part 1A is formed in a spiral shape. Further, the water channel partition wall 1A is formed by cutting out from a stainless steel ingot and applying a number of steps.
[0026]
Further, as shown in FIG. 3, a concave portion 1 </ b> C that is not covered with the belt-like presser plate 2 is formed at the top of the water channel partition wall 1 </ b> A.
Thereby, the strip-shaped presser plate 2 can be continuously welded along the water channel partition wall 1A. Accordingly, since the mechanical strength increases and can withstand water pressure, the width of the water channel partition wall portion 1A is not increased, and a reinforcing member is not required. As a result, the weight can be reduced and the number of parts can be reduced.
In addition, the concave portion 1C can relieve the stress associated with welding and suppress the occurrence of welded portion defects. As a result, the cooling water does not leak to the outside and does not flow into the adjacent water channel, so that the cooling efficiency can be improved.
[0027]
Further, a horizontal portion 1B for placing the belt-like retainer plate 2 is formed above the water channel partition portion 1A. With the belt-like retainer plate 2 being placed, the belt-like retainer plate 2 is attached to the water channel partition portion 1A. for the top side and is configured to be easily and firmly welded.
[0028]
Moreover, by having the said horizontal part 1B, the thickness of the water channel partition part 1A can be reduced as much as possible, the volume of the water channel 3 can be ensured enough, and cooling efficiency can be improved more.
Furthermore, since the belt-like presser plate 2 can be welded in a state where it is placed, it can be welded with high accuracy and more easily by an automated line.
Further, the belt-like presser plate 2 is welded to all of the water channel partition wall portions 1A along the water channel partition wall portions 1A of the container main body 1. Therefore, it has mechanical strength that can withstand water pressure. As a result, there is no need to darely increase the thickness of the presser plate 2, and an increase in weight and the number of parts can be suppressed.
[0029]
As shown in FIGS. 1 and 2, a water channel inlet pipe 5 and a water channel outlet pipe 6 are connected to the water channel 3 located at the lowermost and uppermost stages of the container body 1, respectively. Here, the water channel inlet pipe 5 and the water channel outlet pipe 6 are welded to the belt-like presser plate 2 outside the water channel 3. That is, the cooling water is introduced from the water channel inlet pipe 5 and sent to the water channel 3 on the lowermost stage side of the container body 1, and gradually sent upward while rotating along the water channel 3 on the outer side surface of the container body 1. It is comprised so that it may discharge from 6.
[0030]
As in the conventional case, a heater 7 is arranged inside the holder 8, and a driving means 9 that rotates the holder 8 is connected to the lower part of the holder 8.
A gas inlet (not shown) for introducing a reaction gas into the container body 1 is provided at the upper part of the container body 1, and a stainless steel upper lid 10 is provided on the flange 1 a via an O-ring (not shown). Is provided.
The flange 1 b of the container body 1 is provided with a stainless steel lower lid 13 having an exhaust port 12 formed through an O-ring 11. The lower lid 13 is configured to be movable up and down by driving means (not shown).
Therefore, the semiconductor wafer W is put in and out of the holder 8 in a state where the lower lid 13 is lowered, while the lower lid 13 is raised and the inside of the container main body 1 is sealed with respect to the semiconductor wafer W. A predetermined process is performed.
[0031]
Next, the function of the recess 1C formed at the top of the water channel partition 1A will be described in detail with reference to FIGS.
As shown in FIG. 4 (a), a horizontal portion 1B for placing the belt-like retainer plate 2 is formed on the top of the water channel partition 1A, and the belt-like retainer plate 2 is placed in a state where the belt-like retainer plate 2 is placed. When 2 is sequentially welded to the top of the water channel partition wall 1A, tensile stress (force in the direction of the arrow) is generated on the welding side as shown in FIG. 4 (b). In addition, 1D shows a welding part in the figure.
Furthermore, when the belt-like presser plate 2 positioned on the other side is welded to the top of the water channel partition wall portion 1A, tensile stress (force in the direction of the arrow) is generated on the welding side as shown in FIG. 4 (c). As a result, the welded portion 1D welded first is distorted, a sufficient weld strength cannot be obtained, and a welded portion defect may occur.
[0032]
On the other hand, as shown in FIG. 5, when the concave portion 1C is formed at the top of the water channel partition portion 1A as in the present invention, even if a tensile force (force in the direction of the arrow) is applied by welding, the concave portion Since 1C exists, the tensile force does not act on the other weld 1D.
Thus, since it has the recessed part 1C which is not covered with the said strip | belt-shaped holding plate 2 in the top part of the said water channel partition part 1A, generation | occurrence | production of the weld part defect by the stress accompanying welding can be suppressed. As a result, the cooling water does not leak to the outside, and the cooling water does not flow into the adjacent water channel, so that the cooling efficiency can be improved.
[0033]
Moreover, since it has the part (concave part) which is not covered with the said strip | belt-shaped presser plate 2 in the top part of the said water-channel partition part 1A, the strip | belt-shaped presser plate 2 can be welded directly and continuously along the water channel partition part 1A.
Therefore, since the mechanical strength increases and can withstand water pressure, the width of the water channel partition wall is not increased, and no reinforcing member is required. As a result, it has the function of reducing the weight and reducing the number of parts.
[0034]
Next, the manufacturing method of the water cooling chamber concerning this invention is demonstrated.
The manufacturing method includes a step of spirally forming a water channel partition wall portion 1A on the outer side surface of the cylindrical container body 1, and a concave portion 1C that is not covered with the band-shaped presser plate 2 on the top surface of the water channel partition wall portion 1A. And a step of forming a horizontal portion 1B on which the belt-like presser plate 2 is placed, and a belt-like presser against the channel partition wall portion 1A by the welding means 15 while a guide pin 14 of the welding means is brought into contact with the concave portion 1C. A step of welding the plate 2.
[0035]
More specifically, for example, by cutting out the outer surface of a stainless steel cylindrical body made by a drawing method having a height of 600 mm, an inner diameter of 600 mm, and an outer diameter of 632 mm, the container body 1 having an inner diameter of 600 mm and an outer diameter of 609 mm is obtained. The water channel partition 1A is formed in a spiral shape on the outer side surface so as to have a water channel width of 40 mm.
[0036]
Next, a concave portion 1C that is not covered with the belt-like presser plate 2 and a horizontal part 1B on which the belt-like presser plate 2 is placed are formed on the top surface of the water channel partition wall 1A. For example, in FIG. 3, a = 6.5 mm, b = 5 mm, c = 2 mm, d = 0.7 mm, e = 2 mm, f = 9.5 mm, g = 1.5 mm, h = 4.5 mm. , I = 4 mm, j = 3 mm.
And the adjacent water channel partition part 1A is welded sequentially from the one end side of one side of the cylindrical container main body 1 to the other end side by the strip-shaped presser plate 2 having a width of 43 mm. At this time, as shown in FIG. 6, welding is performed by moving the welding means 15 while bringing the guide pin 14 into contact with the recess 1 </ b> C.
Since welding is performed while guiding with the guide pins in this way, welding can be performed easily and accurately. In addition, it is extremely easy to automate the production line without relying on the manual welding of the spiral weld.
[0037]
This welding means 15 is made of stainless steel, and an inert gas such as argon gas is ejected as a shielding gas from the outer periphery of a nozzle arranged on the central axis (not shown). A direct current and a high current density current are applied so that the (water channel partition wall side) is on the cathode side, and arc welding is performed.
According to this, since the welded portion is completely sealed from oxidizing outside air, contamination of the molten metal and alteration (oxidation) are prevented, and high-strength and highly reliable welding is possible.
Then, after forming the through-hole connected with the water channel located in the lowest stage of the container main body 1, and the uppermost stage, the water channel inlet pipe 5 and the water channel outlet pipe 6 are welded here.
Finally, the flanges 1 a and 1 b are welded to the upper and lower ends of the welding body 1. The flanges 1a and 1b may be formed integrally with the container main body when the outer surface of the stainless steel cylindrical body is cut out.
[0038]
Moreover, the water cooling chamber (Example) in which the recessed part 1C which is not covered with the said strip | belt-shaped presser plate 2 was formed in the top surface of the said water channel partition part 1A shown in FIG. 3, and the shape and dimension of the said water channel partition part 1A are Examples. In comparison with the water-cooled chamber (comparative example) different from the example only in that the concave portion 1C is not formed, there is no welding defect in the example. Defects were confirmed.
[0039]
In the above embodiment, the welded portion 1D is welded so as not to be formed in the recess 1C as shown in FIG. 5, but the welded portion 1D is placed in the recess 1C as shown in FIG. It may be welded so that is formed.
However, it is more preferable that the recessed portion 1C is exposed on the surface without forming the welded portion 1D in the recessed portion 1C.
According to such a configuration, the top of the water channel partition 1A formed integrally with the container body 1 is exposed in a spiral shape, and is formed in the U-shaped recess 1C so as to increase the surface area. The heat in the container body 1 can be radiated more efficiently, and sufficient cooling efficiency can be obtained.
[0040]
Further, the recess 1C is not limited to a U-shaped cross-section as shown in the above embodiment, but is a V-shaped (FIG. 7B) or rectangular (FIG. 7C) recess. However, a U-shaped one is more preferable.
Since the concave portion 1 </ b> C formed in the U shape does not have an acute angle portion, the stress accompanying the welding as described above does not concentrate on the acute angle portion. Therefore, damage to the water channel partition wall 1A due to stress concentration can be avoided as much as possible.
Therefore, even if it is V-shaped recessed part 1C shown in FIG.7 (b), if a V-shaped acute angle part is curving, there exists an equivalent effect.
[0041]
Furthermore, the structure above the water channel partition wall portion 1A of the present invention is not provided with a horizontal portion as shown in FIG. 7 (d), but is directly welded to the side wall of the water channel partition wall portion 1A in which the recess 1c is formed, or The entire water channel partition wall portion 1A may be formed with the width of the horizontal portion 1E as shown in FIG.
[0042]
Moreover, in the said embodiment, although the water channel partition part was formed by grinding the side surface of the container main body 1, the water channel partition part 3 was formed separately, and it provided in the outer side surface of the container main body 1 by welding etc. May be.
[0043]
As described above, according to the water-cooled chamber according to the above embodiment, since the stainless steel cylindrical container body 1 having no welded portion is used, highly corrosive gas such as silane, arsine, chlorine, etc. Even if it exists in the container main body 1, the inside of the container main body 1 does not deteriorate with the passage of time, and there is no fear of leaking outside.
Moreover, since the water channel 3 is comprised by the water channel partition part 1A and the strip | belt-shaped holding plate 2 of the container main body 1, the area which contacts the container main body 1 of the water channel 3 is large, and has a sufficient cooling effect.
[0044]
Furthermore, according to the vapor phase growth film forming apparatus using the water cooling chamber, the container main body 1 can be sufficiently cooled, so that particles do not stay on the inner wall of the container main body 1 due to the introduced gas as in the prior art. This can avoid adversely affecting the semiconductor wafer. As a result, uniform film deposition can be performed on the semiconductor wafer.
[0045]
【The invention's effect】
As described above in detail, according to the water cooling chamber according to the present invention, the band-shaped presser plate can be easily welded to the top of the water channel partition wall without increasing the water channel partition wall width, and without accompanying an increase in weight. Good cooling efficiency can be obtained.
Moreover, according to the vapor phase growth film-forming apparatus concerning this invention, a to-be-processed object can be processed in a favorable environment, without the bad influence of a particle.
Furthermore, according to the manufacturing method of the water cooling chamber concerning this invention, a strip | belt-shaped presser plate can be easily welded with respect to a water channel partition top part, and a water channel can be formed easily.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a vapor deposition film forming apparatus (water cooling chamber) according to the present invention.
FIG. 2 is a side view of the vapor phase growth film forming apparatus (water cooling chamber) shown in FIG.
3 is a cross-sectional view of a water channel partition portion of the vapor deposition apparatus (water cooling chamber) shown in FIG. 1 shown in FIG.
FIG. 4 is a cross-sectional view for explaining a welding defect that occurs during welding of a water channel partition wall portion and a strip-shaped presser plate.
5 is a cross-sectional view for explaining that no welding defect occurs in the water channel partition wall portion shown in FIG. 3;
6 is a cross-sectional view for explaining welding of the water channel partition wall portion and the belt-like presser plate shown in FIG. 3;
7 is a schematic view for explaining a modified example of a concave portion provided at the top of the water channel partition wall shown in FIG. 3;
FIG. 7 is a cross-sectional view showing a conventional vapor deposition film forming apparatus (water cooling chamber).
FIG. 9 is a perspective view showing a conventional ring-shaped presser plate.
FIG. 10 is a cross-sectional view showing a state in which a presser plate is welded to the water channel partition wall.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container main body 1A Water channel partition part 1B Horizontal part 1C Concave part 1D Weld part 1a Flange 1b Flange 2 Press plate 3 Water channel 5 Water channel inlet pipe 6 Water channel outlet pipe 7 Heater 8 Holder 9 Driving means 10 Upper cover 12 Exhaust port 14 Guide pin 15 Welding means W Semiconductor wafer

Claims (7)

筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板とを備える水冷チャンバであって、
前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部を有し、前記凹部が形成された水路隔壁部の頂部側方に前記帯状押え板が溶接されていることを特徴とする水冷チャンバ。
A tubular container main body, a water channel partition formed in a spiral shape on the outer side surface of the container main body, and a band-shaped presser plate that forms a water channel on the outer side surface of the container main body by being welded to the water channel partition unit. A water cooling chamber comprising:
A water-cooled chamber having a recess that is not covered with the band-shaped presser plate at the top of the water channel partition, and the band-shaped presser plate being welded to a side of the top of the water channel partition where the recess is formed. .
前記凹部が前記水路隔壁部の頂部表面に露出して形成されていることを特徴とする請求項1に記載された水冷チャンバ。  The water cooling chamber according to claim 1, wherein the concave portion is formed to be exposed on a top surface of the water channel partition wall portion. 前記水路隔壁部の上方に前記帯状押え板を載置する水平部を有することを特徴とする請求項1または請求項2に記載された水冷チャンバ。  3. The water cooling chamber according to claim 1, further comprising a horizontal portion on which the belt-like pressing plate is placed above the water channel partition. 前記請求項1乃至請求項3のいずれかに記載された水冷チャンバを少なくとも備えることを特徴とする気相成長成膜装置。  A vapor phase growth film forming apparatus comprising at least the water cooling chamber according to any one of claims 1 to 3. 筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板を備える水冷チャンバの製造方法であって、前記筒状の容器本体の外側側面に、螺旋状に水路隔壁部を形成する工程と、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部、及び前記帯状押え板を載置する水平部を形成する工程と、前記凹部に溶接手段のガイドピンを当接させながら、溶接手段によって前記水路隔壁部に帯状押え板を溶接する工程とを備えることを特徴とする水冷チャンバの製造方法。  A tubular container body, a water channel partition part formed in a spiral shape on the outer side surface of the container body, and a belt-like presser plate that forms a water channel on the outer side surface of the container body by being welded to the water channel partition part. A method of manufacturing a water-cooled chamber, the step of forming a water channel partition wall in a spiral manner on the outer side surface of the cylindrical container body, and a recess not covered with the belt-shaped presser plate at the top of the water channel partition wall, And a step of forming a horizontal portion on which the belt-like retainer plate is placed, and a step of welding the belt-like retainer plate to the water channel partition portion by welding means while bringing a guide pin of the welding means into contact with the concave portion. A method for manufacturing a water-cooled chamber. 前記水路隔壁部は、筒状の容器本体の外側側面を研削加工することにより形成されることを特徴とする請求項5に記載された水冷チャンバの製造方法。  6. The method for manufacturing a water-cooled chamber according to claim 5, wherein the water channel partition wall is formed by grinding an outer side surface of a cylindrical container body. 前記凹部及び帯状押え板を載置する水平部は、水路隔壁部を研削加工することにより形成されることを特徴とする請求項5または請求項6に記載された水冷チャンバの製造方法。  The method for manufacturing a water-cooled chamber according to claim 5 or 6, wherein the horizontal portion on which the concave portion and the belt-like presser plate are placed is formed by grinding a water channel partition wall portion.
JP2002334802A 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber Expired - Lifetime JP4043026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334802A JP4043026B2 (en) 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334802A JP4043026B2 (en) 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber

Publications (2)

Publication Number Publication Date
JP2004172264A JP2004172264A (en) 2004-06-17
JP4043026B2 true JP4043026B2 (en) 2008-02-06

Family

ID=32699086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334802A Expired - Lifetime JP4043026B2 (en) 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber

Country Status (1)

Country Link
JP (1) JP4043026B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4705905B2 (en) * 2006-12-19 2011-06-22 日本発條株式会社 Cooling apparatus for heat treatment apparatus and manufacturing method thereof
CN109183139B (en) * 2018-10-16 2023-08-15 浙江晶鸿精密机械制造有限公司 Main furnace chamber structure applied to single crystal furnace

Also Published As

Publication number Publication date
JP2004172264A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US6482753B1 (en) Substrate processing apparatus and method for manufacturing semiconductor device
JP2006150454A (en) Cooling plate, manufacturing method thereof, sputtering target and manufacturing method thereof
JP2008235830A (en) Vapor-phase growing apparatus
JP4043026B2 (en) Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber
EP1480261B1 (en) Cooling device and heat treating device using the same
JPH06208959A (en) Cvd device, multi-chamber type cvd device and its substrate processing method
US7824496B2 (en) Container, container producing method, substrate processing device, and semiconductor device producing method
US20100122657A1 (en) Electrode, Chemical Vapor Deposition Apparatus Including the Electrode and Method of Making
JP3002649B2 (en) Vacuum container and film forming apparatus using the same
JP2011029211A (en) Heating apparatus
WO1995033592A1 (en) Material to be butt welded, cutting method and welding method therefor, and wire
JPH06328256A (en) Welding head and welding equipment
JPH06142932A (en) Weld head and welding equipment
JP3727147B2 (en) Epitaxial wafer manufacturing method and manufacturing apparatus thereof
JP2005235936A (en) Throat structure of heat treatment apparatus
JP2714576B2 (en) Heat treatment equipment
JPH11340142A (en) Method and device for single-wafer-processing epitaxial growth
US20200290150A1 (en) Joined component and method of manufacturing same
JPH10223620A (en) Semiconductor manufacturing device
JP2009076809A (en) Gas supply device, semiconductor manufacturing device, and component for gas supply device
JP2001118837A (en) Semiconductor manufacturing device
JPH07147248A (en) Gas discharge nozzle of cvd device
JP4268477B2 (en) Parallel plate type plasma CVD equipment
JP2009259907A (en) Vapor-phase growth device, and manufacturing method of semiconductor substrate
CN117004928A (en) Chemical vapor deposition wafer protection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070507

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350