JP2004172264A - Water-cooled chamber and vapour phase growth deposition apparatus using the same, and method for manufacturing the water-cooling chamber - Google Patents

Water-cooled chamber and vapour phase growth deposition apparatus using the same, and method for manufacturing the water-cooling chamber Download PDF

Info

Publication number
JP2004172264A
JP2004172264A JP2002334802A JP2002334802A JP2004172264A JP 2004172264 A JP2004172264 A JP 2004172264A JP 2002334802 A JP2002334802 A JP 2002334802A JP 2002334802 A JP2002334802 A JP 2002334802A JP 2004172264 A JP2004172264 A JP 2004172264A
Authority
JP
Japan
Prior art keywords
water
band
container body
water channel
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002334802A
Other languages
Japanese (ja)
Other versions
JP4043026B2 (en
Inventor
Hiroyuki Honma
浩幸 本間
Masakazu Kobayashi
政和 小林
Kazuo Iguchi
和夫 井口
Riichi Suzuki
理一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZUKI GIKEN KOGYO KK
Coorstek KK
Original Assignee
SUZUKI GIKEN KOGYO KK
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZUKI GIKEN KOGYO KK, Toshiba Ceramics Co Ltd filed Critical SUZUKI GIKEN KOGYO KK
Priority to JP2002334802A priority Critical patent/JP4043026B2/en
Publication of JP2004172264A publication Critical patent/JP2004172264A/en
Application granted granted Critical
Publication of JP4043026B2 publication Critical patent/JP4043026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0077Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements
    • F28D2021/0078Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for tempering, e.g. with cooling or heating circuits for temperature control of elements in the form of cooling walls

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water cooled chamber capable of maintaining an effective cooling efficiency without increasing a width of a water path partition to whose top part a strip-shaped pressure plate can be easily welded without an increase in weight. <P>SOLUTION: The water cooled chamber comprises a cylindrical container body 1, the water path partition 1A formed spirally on the outside face of the container body 1, and a strip-shaped pressure plate 2 for forming a water path 3 on the outside face of the container body with its welded to the water path partition 1A. The chamber has a concave part 1C which is not covered by the plate 2 on the top of the partition 1A. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハの製造工程等において用いられる水冷チャンバ及びこれを用いた気相成長成膜装置並びに該水冷チャンバの製造方法に関する。
【0002】
【従来の技術】
従来から半導体ウエハ等の被処理物に、例えば薄膜形成を行なう場合には、水冷チャンバを備える気相成長成膜装置が用いられている。
この気相成長成膜装置としては、例えば図8に示すようなものが知られている。図8に示すように、この気相成長成膜装置に用いられている水冷チャンバは、内側に溶接箇所が全くないステンレス製の円筒状の容器本体31からなり、この容器本体31の上部端,下部端には、環状のフランジ31a,31bが容器本体31と一体となって取り付けられている。
【0003】
前記容器本体31の外側側面には、該側面を例えばステンレス製インゴットより削り出して多数の段付き加工が施され、容器本体31とステンレス製の筒状の押え板32により螺旋状の冷却用の水路33が形成されている。なお、前記押え板32は水路33の外側で前記容器本体31と溶接部34で溶接されている。
【0004】
また、前記容器本体31の最下段,最上段に位置する水路33には、夫々水路入口管35、水路出口管36が連結されている。ここで、水路入口管35、水路出口管36は水路33の外側で、前記容器本体31と溶接部37で溶接されている。
即ち、半導体ウエハを処理する際は、水路入口管35から冷却水を導入して容器本体31の最下段側の水路33へ送り、該冷却水は容器本体31の外側側面の水路33に沿って回りながら徐々に上方向に送られ、水路出口管36から排出される。
【0005】
また、この他に気相成長成膜装置として機能させるために、前記容器本体31の側面には、容器本体31内のホルダー38上に半導体ウエハ39を出し入れするウエハ出入口40が設けられている。また、前記ホルダー38の内部にはヒータ41が配置され、ホルダー38の下部はホルダー38を回転させる駆動手段42が連結されている。
更に、前記フランジ31aには、容器本体31内に反応ガスを導入するガス導入口43が設けられ、前記フランジ31aにOリング44を介してステンレス製の上蓋45が設けられている。また、容器本体31のフランジ31bには、Oリング46を介して排気口47が形成されたステンレス製の下蓋48が設けられている。
【0006】
このような水冷チャンバが用いられた気相成長成膜装置によれば、内側に溶接箇所が全くないステンレス製の円筒状の容器本体31を用いているため、腐食性の高いガス例えばシラン,アルシン,塩素等が容器本体31内に存在しても、経時変化と共に容器本体31内が劣化することなく、該ガスが外部へ漏れることはない。
また、容器本体31の外側側面には、該側面を削り出すことにより多数の段付き加工が施され、容器本体31とステンレス製の押え板32により冷却用の水路33が形成されているため、水路33の容器本体31に対する接触面積を十分に取ることができ、十分な冷却効果を有する。
更に、気相成長を行なった場合には、容器本体31が十分に冷却されるため、従来のようにパーティクルが導入ガスに起因して容器本体31の内壁に在留することなく、これが半導体ウエハに悪影響を及ぼすことを回避でき、半導体ウエハに均一な膜堆積を行なうことができる。
【0007】
なお、押え板32は筒状である場合に限らず、図9に示すような多数のリング状の押え板48を容器本体31の外側側面の段差加工部を塞ぐように溶接しても良いことも知られている。
【0008】
【特許文献1】
特開平10−216500号公報(第2頁第2欄第39行〜第3頁第4欄第4行、図3、図4、図5)
【0009】
【発明が解決しようとする課題】
ところで、前記した従来例において、筒状押え板32を用いて水路33を形成する場合、該押え板32は段差加工による多数の水路隔壁部31Aの頂部と溶接することができない。
そのため、図8に示した溶接部34のように、上下端のフランジ部31a,31bとのみ溶接されていた。
したがって、水路33を流れる冷却水の水圧に十分に耐え得るように、該押え板32の肉厚を厚くしたり、あるいは他の補強部材を設置する必要があった。
その結果、水冷チャンバ、またこれを用いた気相成長成膜装置の重量が増加し、更には部品点数が多くなる等、複雑化を招き、製造上、利用上、多くの問題があった。
また、前記水路隔壁部31Aの頂部と押え板32の間には、少なからず隙間が存在するため、冷却水が前記隙間を通過し、少なからず冷却効率が下がる傾向があった。
【0010】
また、前記した従来例において、図9に示した多数のリング状の押え板48を用いて水路33を形成した場合、段差加工部による螺旋状の水路隔壁部31Aの頂部とリング状の押え板48を隙間なく溶接することは、工業上、極めて困難であった。
【0011】
本発明者らは、前記リング状の押え板48に換え、長い帯状の押え板にて溶接を試みたが、この溶接を確実に行うためには水路隔壁部31Aの厚さを厚くする必要があった。
即ち、リング状押え板48を水路隔壁部31Aの頂部に溶接する場合、一つの水路隔壁部31Aの頂部に溶接される、隣合う押え板48,48を一度の溶接で、固定することができる。しかし、長い帯状の押え板を溶接する場合、前記したように一度に溶接することはできず、帯状の押え板の一側を溶接した後、他の側を溶接することになる。
【0012】
具体的に説明すると、仮に水路が螺旋状でなく、リング状押え板での溶接が可能な構造であるとすると、図10(a)に示すようにリング状押え板48の側部を2mm程度、同時に溶接する場合には、一度の溶接で行なうことができるため、5mm程度の水路隔壁部31Aの幅があれば、十分である。
一方、水路が螺旋状であって、長い帯状の押え板を溶接する場合には、図10(b)に示すように帯状押え板2の一側を2mm程度、水路隔壁部31Aに溶接し、その後他側を2mm程度、水路隔壁部31Aに溶接する場合には、別々に(2度)溶接が行われるため、8mm程度の水路隔壁部31Aの幅を必要とする。
【0013】
このように、帯状押え板2を用いて水路33を形成する場合、リング状の押え板48を用いて水路を形成する場合に比べて、約2倍の水路隔壁部31Aの幅を必要とするため、前記水路33の容積が小さくなり、十分な冷却効果が得られ難いという問題があった。
また、水路隔壁部31Aの幅が大きくなることにより、前記した場合と同様、重量が増加するという問題も生じた。
【0014】
また、前記水路隔壁部31Aが螺旋状に形成されているために、水路隔壁部31Aの頂部に対して帯状押え板2を順次溶接していくことは、人手によって行うには極めて高度な技術を必要とし、またこれを自動化するためには相当の制御技術を必要とするという問題があった。
【0015】
本発明は上記事情を考慮してなされたもので、水路隔壁部の幅を大きくすることなく、水路隔壁部の頂部に対して帯状の押え板を容易に溶接でき、しかも、重量の増大を伴うことなく、良好な冷却効率を維持できる水冷チャンバを提供することを目的とする。
また、本発明は、前記した水冷チャンバを用いることにより、パーティクルの悪影響もなく、良好な環境中で被処理物を処理し得る気相成長成膜装置を提供することを目的とする。
更に、本発明は、水路隔壁部頂部に対して帯状押え板を容易に溶接でき、水路を容易に形成することができる水冷チャンバの製造方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであり、本発明にかかる水冷チャンバは、筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板とを備える水冷チャンバであって、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部を有することを特徴としている。
【0017】
このように、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部を有しているため、水路隔壁部に沿って帯状押え板を連続的に溶接できる。したがって、機械的強度が増加し水圧に耐えうるため、水路隔壁部の幅を大きくすることもなく、補強用の部材も必要ない。その結果、軽量にでき、部品点数も少なくできる。
また、前記凹部によって溶接に伴う応力を緩和でき、溶接部欠陥の発生を抑制できる。その結果、冷却水が外部に漏れ出すこともなく、また隣接する水路内に流入することもないため、冷却効率を向上させることができる。
【0018】
また、前記凹部が前記水路隔壁部の頂部表面に露出して形成されていることが望ましい。
このように、前記凹部が前記水路隔壁部の頂部表面に露出して形成されているため、容器本体内の熱をより効率的に放熱でき、十分な冷却効率を得ることができる。
【0019】
また、前記水路隔壁部の上方に前記帯状押え板を載置する水平部を有することが望ましい。
このように、前記水路隔壁部の上方に前記帯状押え板を載置する水平部を有するため、前記帯状押え板を載置した状態で、帯状押え板を前記水路隔壁部の頂部に対して、容易かつ堅固に溶接できる。
また、前記水平部を有することで、水路隔壁部の厚さを極力低減することで、水路容積を十分確保し、冷却効率をより高めることができる。
更に、帯状押え板を載置した状態で溶接することができるため、高精度に溶接でき、しかも自動化ラインにより、より容易に溶接できる。
また、帯状押え板は、容器本体の水路隔壁部のすべてに比較的狭い幅で溶接されているため、押え板の肉厚を大きくする必要がなく、重量増、多部品化を抑制することができる。
【0020】
また、本発明は上記課題を解決するためになされたものであり、本発明にかかる気相成長成膜装置は、前記した水冷チャンバを備えているため、容器本体を十分に冷却できるため、パーティクルが導入ガスに起因して容器本体の内壁に在留することなく、これが半導体ウエハに悪影響を及ぼすことをより高い信頼性で回避することができ、半導体ウエハに均一な膜堆積を行なうことができる。更に、装置の軽量化、簡素化を図ることができる。
【0021】
また、本発明は上記課題を解決するためになされたものであり、本発明にかかる水冷チャンバの製造方法は、筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板を備える水冷チャンバの製造方法であって、筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板を備える水冷チャンバの製造方法であって、前記筒状の容器本体の外側側面に、螺旋状に水路隔壁部を形成する工程と、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部、及び前記帯状押え板を載置する水平部を形成する工程と、前記凹部に溶接手段のガイドピンを当接させながら、溶接手段によって前記水路隔壁部に帯状押え板を溶接する工程とを備えることを特徴としている。
【0022】
このように、水路隔壁部の頂部表面に前記帯状押え板で覆われない凹部及び前記帯状押え板を載置する水平部を形成し、前記凹部に溶接手段のガイドピンを当接させながら、溶接手段によって前記水路隔壁部に対して帯状押え板を溶接するため、水路壁頂部に対して帯状の押え板を容易かつ正確に溶接でき、水路を容易に形成することができる
【0023】
ここで、前記隔壁部は、筒状の容器本体側面を研削加工することにより形成されることが望ましく、また前記凹部及び帯状押え板を載置する水平部は、隔壁部を研削加工することにより形成されることが望ましい。このようにすることによって、軽量構造でありながらも、より強固な水冷チャンバを提供することができる。
【0024】
【発明の実施の形態】
以下、本発明の一実施形態に係る水冷チャンバを用いた気相成長装置について図1乃至図6に基づいて説明する。
図中の符号1は、水冷チャンバを構成する、内側に溶接箇所が全くないステンレス製の円筒状の容器本体である。
この容器本体1の上部端,下部端には、環状のフランジ1a,1bが容器本体1と一体となって取り付けられている。前記容器本体1の外側側面には多数の段付き加工が施され、水路隔壁部1Aが形成されている。
そして、この水路隔壁部1Aの頂部にステンレス製の帯状の押え板2を溶接により固着することによって、冷却用の水路3が形成される。
【0025】
なお、容器本体1の外側面に水路隔壁部1Aが螺旋状に形成されているため、前記水路隔壁部1Aによって区画された水路3は螺旋状に形成される。また、水路隔壁部1Aは、ステンレス製インゴットより削り出して多数の段付き加工を施すことにより、形成される。
【0026】
また、前記水路隔壁部1Aの頂部には、図3に示すように、前記帯状押え板2で覆われない凹部1Cが形成されている。
これによって、水路隔壁部1Aに沿って帯状押え板2を連続的に溶接できる。したがって、機械的強度が増加し水圧に耐えうるため、水路隔壁部1Aの幅を大きくすることもなく、補強用の部材も必要ない。その結果、軽量にでき、部品点数も少なくできる。
また、前記凹部1Cによって溶接に伴う応力を緩和でき、溶接部欠陥の発生を抑制できる。その結果、冷却水が外部に漏れ出すこともなく、また隣接する水路内に流入することもないため、冷却効率を向上させることができる。
【0027】
更に、前記水路隔壁部1Aの上方に、前記帯状押え板2を載置する水平部1Bが形成され、前記帯状押え板2を載置した状態で、帯状押え板2を前記水路隔壁部1Aの頂部に対して容易かつ堅固に溶接できるように構成されている。
【0028】
また、前記水平部1Bを有することで、水路隔壁部1Aの厚さを極力低減でき、水路3の容積を十分確保し、冷却効率をより高めることができる。
更に、帯状押え板2を載置した状態で溶接することができるため、高精度に溶接でき、しかも自動化ラインにより、より容易に溶接できる。
また、帯状押え板2は、容器本体1の水路隔壁部1Aに沿って、該水路隔壁部1Aのすべてに溶接されている。そのため、水圧に耐えうる機械的強度を有するようになる。その結果、押え板2の肉厚をあえて大きくする必要はなく、重量増、多部品化を抑制することができる。
【0029】
また、図1、図2に示すように、前記容器本体1の最下段,最上段に位置する前記水路3には、夫々水路入口管5、水路出口管6が連結されている。ここで、水路入口管5、水路出口管6は水路3の外側で帯状押え板2と溶接されている。
即ち、水路入口管5から冷却水を導入して容器本体1の最下段側の水路3へ送り、容器本体1の外側側面の水路3に沿って回りながら徐々に上方向に送り、水路出口管6から排出するように構成されている。
【0030】
また、従来の場合と同様に、ホルダー8の内部にはヒータ7が配置され、ホルダー8の下部はホルダー8を回転させる駆動手段9が連結されている。
前記容器本体1の上部には、容器本体1内に反応ガスを導入するガス導入口(図示せず)が設けられ、前記フランジ1aにOリング(図示せず)を介してステンレス製の上蓋10が設けられている。
また、容器本体1のフランジ1bには、Oリング11を介して排気口12が形成されたステンレス製の下蓋13が設けられている。この下蓋13は、図示しない駆動手段により上下動可能に構成されている。
したがって、前記下蓋13を下降させた状態でホルダー8上に半導体ウエハWが出し入れされ、一方前記下蓋13を上昇させ、容器本体1の内部を密閉した状態で、半導体ウエハWに対して、所定の処理がなされる。
【0031】
次に、前記した前記水路隔壁部1Aの頂部に形成された凹部1Cの機能について、図4,図5に基づいて詳述する。
図4(a)に示すように、前記水路隔壁部1Aの頂部に、前記帯状押え板2を載置する水平部1Bを形成し、前記帯状押え板2を載置した状態で、帯状押え板2を水路隔壁部1Aの頂部に対して順次溶接した場合には、図4(b)に示すように、溶接側へ引張り応力(矢印方向の力)が生じる。なお、図中、1Dは溶接部を示す。
更に、他側に位置する帯状押え板2を水路隔壁部1Aの頂部に対して溶接すると、図4(c)に示すように、該溶接側へ引張り応力(矢印方向の力)が生じる。その結果、最初に溶接された溶接部1Dに歪みが生じ、十分な溶接強度が得られず、溶接部欠陥を発生させる虞がある。
【0032】
一方、図5に示すように、本発明の如く、水路隔壁部1Aの頂部に凹部1Cが形成されている場合には、溶接により引張り力(矢印方向の力)が作用しても、前記凹部1Cが存在するために他の溶接部1Dに該引張り力が作用しない。
このように、前記水路隔壁部1Aの頂部に前記帯状押え板2で覆われない凹部1Cを有しているため、溶接に伴う応力による溶接部欠陥の発生を抑制できる。その結果、冷却水が外部に漏れ出すこともなく、また隣接する水路内に冷却水が流入することもないため、冷却効率を向上させることができる。
【0033】
また、前記水路隔壁部1Aの頂部に前記帯状押え板2で覆われない部分(凹部)を有しているため、水路隔壁部1Aに沿って帯状押え板2を直接、連続的に溶接できる。
したがって、機械的強度が増加し水圧に耐えうるため、水路隔壁部の幅を大きくすることもなく、補強用の部材も必要ない。その結果、軽量化でき、部品点数も少なくできる機能を有している。
【0034】
次に、本発明にかかる水冷チャンバの製造方法について説明する。
この製造方法は、前記筒状の容器本体1の外側側面に、螺旋状に水路隔壁部1Aを形成する工程と、前記水路隔壁部1Aの頂部表面に前記帯状押え板2で覆われない凹部1C、及び前記帯状押え板2を載置する水平部1Bを形成する工程と、前記凹部1Cに溶接手段のガイドピン14を当接させながら、溶接手段15によって前記水路隔壁部1Aに対して帯状押え板2を溶接する工程とを備えている。
【0035】
具体的に説明すると、例えば、高さ600mm、内径600mm、外径632mmの引き抜き法で作られたステンレス製筒状体の外表面を削り出すことで、内径600mm、外径609mmの容器本体1の外側側面に水路幅40mmとなるように螺旋状に水路隔壁部1Aを形成する。
【0036】
次に、前記水路隔壁部1Aの頂部表面に前記帯状押え板2で覆われない凹部1C、及び前記帯状押え板2を載置する水平部1Bを形成する。一例を示せば、図3において、a=6.5mm,b=5mm,c=2mm,d=0.7mm,e=2mm,f=9.5mm,g=1.5mm,h=4.5mm,i=4mm,j=3mmである。
そして、隣り合う水路隔壁部1Aを幅43mmの帯状押え板2によって、筒状の容器本体1の一側の一端側から他端側に順次溶接する。このとき、図6に示すように前記凹部1C内にガイドピン14を当接させながら、溶接手段15を移動させ、溶接を行う。
このようにガイドピンで案内しながら、溶接が行われるため、容易かつ正確に溶接を行うことができる。また、螺旋状溶接部を人手に頼ることなく、製造ラインの自動化を図ることが極めて容易となる。
【0037】
この溶接手段15は、電極をステンレスとし、これを中心軸に配置したノズルの外周からアルゴンガス等の不活性ガスをシールドガスとして噴出させ(図示せず)、該電極を陽極側、被溶接側(水路隔壁部側)を陰極側となるように直流、高電流密度の電流を流し、アーク溶接するものである。
これによると溶接部において酸化性の外気から完全にシールされるため、溶融金属の汚染、変質(酸化)が防止され、高強度で信頼性の高い溶接が可能となる。
その後、容器本体1の最下段、最上段に位置する水路に連結される貫通口を形成した後、ここに水路入口管5及び水路出口管6を溶接する。
そして、最後に、溶接本体1の上下端に各フランジ1a,1bを溶接する。なお、各フランジ1a,1bは、前述のステンレス製筒状体の外表面の削り出しにおいて、容器本体と一体に形成しても良い。
【0038】
また、図3に示す前記水路隔壁部1Aの頂部表面に前記帯状押え板2で覆われない凹部1Cが形成された水冷チャンバ(実施例)と、前記水路隔壁部1Aの形状、寸法を実施例と同一にし、該凹部1Cが形成さていない点のみ実施例と異なる水冷チャンバ(比較例)とを比較したところ、実施例では溶接欠陥が存在しないのに対して、比較例では多数の箇所に溶接欠陥が確認された。
【0039】
なお、上記実施形態にあっては、図5に示すように凹部1C内に溶接部1Dが形成されないように溶接されているが、図7(a)に示すように凹部1C内に溶接部1Dが形成されるように、溶接しても良い。
しかしながら、前記凹部1C内に溶接部1Dが形成されることなく、前記凹部1Cが表面に露出していることがより好ましい。
このような構成によれば、容器本体1と一体に形成された水路隔壁部1Aの頂部が螺旋状に露出し、しかもこれが表面積が大きくなるようにU字状の凹部1Cに形成されているため、容器本体1の内の熱をより効率的に放熱することができ、十分な冷却効率を得ることができる。
【0040】
また、凹部1Cは、上記実施形態において示したような断面形状がU字状に限定されるものではなく、V字状(図7(b))、矩形状(図7(c))の凹部であってもよいが、U字状に形成されたものがより好ましい。
U字状に形成された凹部1Cには、鋭角部が存在しないため、上述のような溶接に伴う応力が当該鋭角部に集中することはない。そのため、応力集中による水路隔壁部1A破損等を極力回避することができる。
したがって、図7(b)に示すV字状凹部1Cであっても、V字鋭角部が湾曲状になっていれば同等の効果を奏する。
【0041】
更に、本発明の水路隔壁部1Aの上方の構造は、図7(d)に示されるような水平部を設けず、凹部1cが形成された水路隔壁部1Aの側壁に直接溶接したもの、あるいは図7(e)に示されるような水平部1Eの幅で、水路隔壁部1A全体が形成されたものであっても良い。
【0042】
また、上記実施形態にあっては、水路隔壁部を容器本体1の側面を研削することによって形成したが、水路隔壁部3を別体として形成し、溶接等で容器本体1の外側側面に設けても良い。
【0043】
以上のように、上記実施形態に係る水冷チャンバによれば、内側に溶接箇所が全くないステンレス製の円筒状の容器本体1を用いているため、腐食性の高いガス例えばシラン,アルシン,塩素等が容器本体1内に存在しても、経時変化と共に容器本体1内が劣化することなく、外部へ漏れること心配がない。
また、容器本体1の水路隔壁部1Aと帯状の押え板2により水路3が構成されているため、水路3の容器本体1に接触する面積が大きく、十分な冷却効果を有する。
【0044】
更に、前記水冷チャンバを用いた気相成長成膜装置によれば、容器本体1を十分に冷却できるため、従来のようにパーティクルが導入ガスに起因して容器本体1の内壁に在留することなく、これが半導体ウエハに悪影響を及ぼすことを回避できる。その結果、半導体ウエハに均一な膜堆積を行なうことができる。
【0045】
【発明の効果】
以上詳述した如く本発明にかかる水冷チャンバによれば、水路隔壁幅を大きくすることなく、水路隔壁頂部に対して帯状の押え板を容易に溶接でき、しかも、重量の増大を伴うことなく、良好な冷却効率を得ることができる。
また、本発明にかかる気相成長成膜装置によれば、パーティクルの悪影響もなく良好な環境中で被処理物を処理することができる。
更に、本発明にかかる水冷チャンバの製造方法によれば、水路隔壁頂部に対して帯状の押え板を容易に溶接でき、水路を容易に形成することができる。
【図面の簡単な説明】
【図1】本発明にかかる気相成長成膜装置(水冷チャンバ)の一実施形態を示す断面図である。
【図2】図1に示した気相成長成膜装置(水冷チャンバ)の側面図である。
【図3】図1に示した図1に示した気相成長成膜装置(水冷チャンバ)の水路隔壁部の断面図である。
【図4】水路隔壁部と帯状押え板の溶接の際生じる、溶接欠陥を説明するための断面図である。
【図5】図3に示した水路隔壁部においては溶接欠陥が生じないことを説明するための断面図である。
【図6】図3に示した水路隔壁部と帯状押え板との溶接を説明するための断面図である。
【図7】図3に示した水路隔壁部の頂部に設けられた凹部の変形例を説明するための概略図である。
【図8】図7は、従来の気相成長成膜装置(水冷チャンバ)を示す断面図である。
【図9】図9は、従来のリング状押え板を示す斜視図である。
【図10】図10は、水路隔壁部に押え板を溶接する状態を示す断面図である。
【符号の説明】
1 容器本体
1A 水路隔壁部
1B 水平部
1C 凹部
1D 溶接部
1a フランジ
1b フランジ
2 押え板
3 水路
5 水路入口管
6 水路出口管
7 ヒータ
8 ホルダー
9 駆動手段
10 上蓋
12 排気口
14 ガイドピン
15 溶接手段
W 半導体ウエハ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a water cooling chamber used in a semiconductor wafer manufacturing process and the like, a vapor phase growth film forming apparatus using the same, and a method of manufacturing the water cooling chamber.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, when a thin film is formed on an object to be processed such as a semiconductor wafer, for example, a vapor deposition apparatus having a water cooling chamber has been used.
As this vapor phase growth film forming apparatus, for example, the one shown in FIG. 8 is known. As shown in FIG. 8, a water-cooling chamber used in this vapor-phase growth film-forming apparatus comprises a stainless steel cylindrical main body 31 having no welding portion inside. Annular flanges 31 a and 31 b are attached to the lower end integrally with the container body 31.
[0003]
On the outer side surface of the container body 31, the side surface is cut out from, for example, a stainless steel ingot and subjected to a number of steps, and the container body 31 and the stainless steel pressing plate 32 are used for spiral cooling for cooling. A water channel 33 is formed. The holding plate 32 is welded to the container body 31 at a welding portion 34 outside the water channel 33.
[0004]
Further, a water channel inlet pipe 35 and a water channel outlet pipe 36 are connected to the water channels 33 located at the lowermost stage and the uppermost stage of the container main body 31, respectively. Here, the water channel inlet pipe 35 and the water channel outlet pipe 36 are welded to the container main body 31 at a welding portion 37 outside the water channel 33.
That is, when processing a semiconductor wafer, cooling water is introduced from the water channel inlet pipe 35 and sent to the lowermost water channel 33 of the container main body 31, and the cooling water flows along the water channel 33 on the outer side surface of the container main body 31. The water is gradually fed upward while rotating, and is discharged from the water channel outlet pipe 36.
[0005]
In addition, in order to function as a vapor phase epitaxy film forming apparatus, a wafer port 40 through which a semiconductor wafer 39 is inserted into and removed from a holder 38 in the container body 31 is provided on a side surface of the container body 31. A heater 41 is disposed inside the holder 38, and a driving unit 42 for rotating the holder 38 is connected to a lower portion of the holder 38.
Further, the flange 31a is provided with a gas inlet 43 for introducing a reaction gas into the container body 31, and a stainless steel upper lid 45 is provided on the flange 31a via an O-ring 44. Further, a stainless steel lower lid 48 having an exhaust port 47 formed through an O-ring 46 is provided on the flange 31 b of the container body 31.
[0006]
According to the vapor-phase growth film forming apparatus using such a water-cooled chamber, since the stainless steel cylindrical main body 31 having no welding portion inside is used, a highly corrosive gas such as silane or arsine is used. Even if chlorine, chlorine, or the like exists in the container body 31, the gas does not leak to the outside without deterioration of the inside of the container body 31 over time.
Further, the outer side surface of the container body 31 is subjected to a number of steps by shaving the side surface, and a cooling water channel 33 is formed by the container body 31 and the stainless steel pressing plate 32. A sufficient contact area of the water passage 33 with the container body 31 can be obtained, and a sufficient cooling effect can be obtained.
Further, when the vapor phase growth is performed, the container body 31 is sufficiently cooled, so that the particles do not stay on the inner wall of the container body 31 due to the introduced gas as in the related art, and the particles remain on the semiconductor wafer. Adverse effects can be avoided, and uniform film deposition can be performed on the semiconductor wafer.
[0007]
The pressing plate 32 is not limited to a cylindrical shape, and a number of ring-shaped pressing plates 48 as shown in FIG. 9 may be welded so as to cover the stepped portion on the outer side surface of the container body 31. Is also known.
[0008]
[Patent Document 1]
JP-A-10-216500 (page 2, column 2, line 39 to page 3, column 4, line 4, FIGS. 3, 4 and 5)
[0009]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional example, when the water channel 33 is formed by using the cylindrical pressing plate 32, the pressing plate 32 cannot be welded to the tops of a large number of water channel partition portions 31A by step processing.
Therefore, like the welded portion 34 shown in FIG. 8, only the upper and lower flange portions 31a and 31b are welded.
Therefore, it is necessary to increase the thickness of the holding plate 32 or to provide another reinforcing member so as to sufficiently withstand the pressure of the cooling water flowing through the water channel 33.
As a result, the weight of the water-cooled chamber and the vapor-phase growth film-forming apparatus using the same increases, and the number of parts is increased, resulting in complication, and many problems in production and use.
In addition, since there is not a small gap between the top of the water channel partition 31A and the holding plate 32, the cooling water tends to pass through the gap, and the cooling efficiency is notably reduced.
[0010]
Further, in the above-described conventional example, when the water channel 33 is formed by using a large number of ring-shaped pressing plates 48 shown in FIG. 9, the top of the spiral water channel partition wall 31A formed by the stepped portion and the ring-shaped pressing plate. It was extremely difficult industrially to weld 48 without gaps.
[0011]
The present inventors have tried welding with a long band-shaped holding plate instead of the ring-shaped holding plate 48, but it is necessary to increase the thickness of the water channel partition 31A in order to perform this welding reliably. there were.
That is, when the ring-shaped holding plate 48 is welded to the top of the channel partition 31A, the adjacent holding plates 48, 48 that are welded to the top of one channel partition 31A can be fixed by a single welding. . However, when welding a long band-shaped holding plate, welding cannot be performed at once as described above, and after welding one side of the band-shaped holding plate, the other side is welded.
[0012]
More specifically, assuming that the channel is not spiral and has a structure capable of welding with a ring-shaped holding plate, the side portion of the ring-shaped holding plate 48 is about 2 mm as shown in FIG. Since simultaneous welding can be performed by one-time welding, it is sufficient if the width of the channel partition wall 31A is about 5 mm.
On the other hand, when the water channel is helical and a long band-shaped pressing plate is to be welded, one side of the band-shaped pressing plate 2 is welded to the water channel bulkhead 31A by about 2 mm as shown in FIG. Thereafter, when welding the other side to the waterway bulkhead 31A by about 2 mm, the welding is performed separately (twice), so that the width of the waterway bulkhead 31A is about 8 mm.
[0013]
As described above, when the channel 33 is formed using the band-shaped holding plate 2, the width of the channel partition portion 31 </ b> A is about twice as large as when the channel is formed using the ring-shaped holding plate 48. Therefore, there is a problem that the volume of the water channel 33 is reduced, and it is difficult to obtain a sufficient cooling effect.
In addition, as the width of the channel partition portion 31A increases, there is a problem that the weight increases as in the case described above.
[0014]
In addition, since the waterway partition wall 31A is formed in a spiral shape, the welding of the band-shaped holding plate 2 sequentially to the top of the waterway partition wall 31A requires an extremely advanced technique to be performed manually. There is a problem in that it requires it, and in order to automate it, considerable control technology is required.
[0015]
The present invention has been made in consideration of the above circumstances, and can easily weld a band-shaped holding plate to the top of a waterway bulkhead without increasing the width of the waterway bulkhead, and with an increase in weight. It is an object of the present invention to provide a water-cooling chamber that can maintain good cooling efficiency without causing any problem.
Another object of the present invention is to provide a vapor-phase growth film forming apparatus capable of processing an object to be processed in a favorable environment without adverse effects of particles by using the above-described water-cooled chamber.
Still another object of the present invention is to provide a method of manufacturing a water-cooled chamber that can easily weld a band-shaped holding plate to the top of a waterway partition wall and easily form a waterway.
[0016]
[Means for Solving the Problems]
The present invention has been made in order to solve the above problems, a water-cooling chamber according to the present invention, a cylindrical container body, a water channel partition wall spirally formed on the outer side surface of the container body, A band-shaped holding plate that forms a water channel on the outer side surface of the container body by being welded to the water-channel partition portion, wherein the water-cooling chamber has a recess at the top of the water-channel partition portion that is not covered by the band-shaped pressing plate. It is characterized by:
[0017]
As described above, since the concave portion that is not covered by the band-shaped press plate is provided at the top of the water-channel partition portion, the band-shaped press plate can be continuously welded along the water-channel partition portion. Therefore, since the mechanical strength is increased and can withstand the water pressure, the width of the channel partition is not increased, and no reinforcing member is required. As a result, the weight can be reduced and the number of parts can be reduced.
Moreover, the stress accompanying welding can be relieved by the concave portion, and generation of a weld defect can be suppressed. As a result, since the cooling water does not leak out and does not flow into the adjacent water channel, the cooling efficiency can be improved.
[0018]
In addition, it is preferable that the concave portion is formed so as to be exposed on the top surface of the channel partition portion.
As described above, since the concave portion is formed so as to be exposed on the top surface of the channel partition portion, heat in the container body can be more efficiently radiated, and sufficient cooling efficiency can be obtained.
[0019]
In addition, it is preferable that a horizontal portion on which the band-shaped holding plate is placed is provided above the waterway partition wall portion.
As described above, since the horizontal portion on which the band-shaped pressing plate is placed is provided above the channel partition portion, the band-shaped pressing plate is placed on the top of the channel partition portion while the band-shaped pressing plate is placed. Can be easily and firmly welded.
In addition, by having the horizontal portion, the thickness of the channel partition portion is reduced as much as possible, whereby the volume of the channel can be sufficiently secured and the cooling efficiency can be further improved.
Further, since the welding can be performed with the band-shaped holding plate placed, the welding can be performed with high accuracy, and the welding can be more easily performed by an automated line.
In addition, since the band-shaped holding plate is welded to all of the water channel partition portions of the container body with a relatively narrow width, it is not necessary to increase the thickness of the holding plate, and it is possible to suppress weight increase and increase in number of parts. it can.
[0020]
Further, the present invention has been made to solve the above-mentioned problems, and the vapor-phase growth film forming apparatus according to the present invention includes the above-mentioned water-cooling chamber, so that the container body can be sufficiently cooled. Does not stay on the inner wall of the container body due to the introduced gas, it is possible to more reliably prevent the adverse effect on the semiconductor wafer, and uniform film deposition can be performed on the semiconductor wafer. Further, the weight and simplification of the device can be achieved.
[0021]
In addition, the present invention has been made to solve the above-mentioned problems, and a method of manufacturing a water-cooling chamber according to the present invention includes a cylindrical container main body, and a water channel spirally formed on an outer side surface of the container main body. A method for manufacturing a water-cooling chamber including a partition wall portion and a band-shaped holding plate that forms a water channel on an outer side surface of the container main body by being welded to the water channel partition portion, comprising: a cylindrical container main body; A method of manufacturing a water-cooling chamber including a spirally formed waterway partition wall portion on an outer side surface and a band-shaped holding plate that forms a waterway on the outer side surface of the container body by being welded to the waterway partition portion. A step of spirally forming a water channel partition portion on the outer side surface of the cylindrical container body, a concave portion not covered by the band press plate on the top of the water channel partition portion, and a horizontal portion on which the band press plate is placed; Work to form If, while abutting the guide pin of the welding means in the recess, it is characterized by comprising the step of welding the belt-like retainer plate to the water channel partition wall portion by welding means.
[0022]
In this manner, the concave portion not covered by the band-shaped press plate and the horizontal portion on which the band-shaped press plate is placed are formed on the top surface of the water channel partition portion, and welding is performed while the guide pin of the welding means is brought into contact with the concave portion. Since the band-shaped holding plate is welded to the waterway partition wall by the means, the band-shaped holding plate can be easily and accurately welded to the top of the waterway wall, and the waterway can be easily formed.
Here, the partition is desirably formed by grinding a cylindrical container body side surface, and the horizontal portion on which the concave portion and the band-shaped pressing plate are placed is formed by grinding the partition. Preferably, it is formed. This makes it possible to provide a more robust water-cooling chamber while having a lightweight structure.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a vapor phase growth apparatus using a water cooling chamber according to an embodiment of the present invention will be described with reference to FIGS.
Reference numeral 1 in the drawing denotes a stainless-steel cylindrical main body that forms a water-cooling chamber and has no welding portion inside.
At the upper end and the lower end of the container body 1, annular flanges 1a and 1b are attached integrally with the container body 1. A large number of steps are formed on the outer side surface of the container body 1 to form a channel partition 1A.
Then, a stainless steel band-shaped holding plate 2 is fixed to the top of the water channel partition wall 1A by welding, thereby forming a cooling water channel 3.
[0025]
Since the water channel partition 1A is formed in a spiral shape on the outer surface of the container body 1, the water channel 3 partitioned by the water channel partition 1A is formed in a spiral shape. In addition, the water channel partition 1A is formed by cutting out from a stainless steel ingot and performing a number of steps.
[0026]
As shown in FIG. 3, a recess 1 </ b> C that is not covered with the band-shaped pressing plate 2 is formed at the top of the water channel partition 1 </ b> A.
Thereby, the strip | belt-shaped holding plate 2 can be continuously welded along the channel partition part 1A. Therefore, since the mechanical strength is increased and can withstand the water pressure, the width of the channel partition portion 1A is not increased, and no reinforcing member is required. As a result, the weight can be reduced and the number of parts can be reduced.
In addition, the stress caused by welding can be reduced by the concave portion 1C, and the occurrence of a weld defect can be suppressed. As a result, since the cooling water does not leak out and does not flow into the adjacent water channel, the cooling efficiency can be improved.
[0027]
Further, a horizontal portion 1B on which the band-shaped press plate 2 is placed is formed above the water-passage partition portion 1A, and the band-shaped press plate 2 is attached to the water-passage partition portion 1A with the band-shaped press plate 2 placed. It is configured so that it can be easily and firmly welded to the top.
[0028]
In addition, by having the horizontal portion 1B, the thickness of the channel partition portion 1A can be reduced as much as possible, the volume of the channel 3 can be sufficiently secured, and the cooling efficiency can be further improved.
Further, since the welding can be performed with the band-shaped holding plate 2 placed, the welding can be performed with high accuracy, and the welding can be more easily performed by an automated line.
In addition, the band-shaped holding plate 2 is welded to all of the waterway bulkheads 1A along the waterway bulkheads 1A of the container body 1. Therefore, it has mechanical strength that can withstand water pressure. As a result, it is not necessary to increase the thickness of the holding plate 2, and it is possible to suppress an increase in weight and increase in the number of parts.
[0029]
As shown in FIGS. 1 and 2, a water channel inlet pipe 5 and a water channel outlet pipe 6 are connected to the water channels 3 located at the lowermost stage and the uppermost stage of the container body 1, respectively. Here, the waterway inlet pipe 5 and the waterway outlet pipe 6 are welded to the band-shaped holding plate 2 outside the waterway 3.
That is, cooling water is introduced from the water channel inlet pipe 5 and sent to the lowermost water channel 3 of the container body 1, and gradually upward while rotating along the water channel 3 on the outer side surface of the container body 1. 6 to be discharged.
[0030]
As in the conventional case, a heater 7 is arranged inside the holder 8, and a lower part of the holder 8 is connected to a driving means 9 for rotating the holder 8.
A gas inlet (not shown) for introducing a reaction gas into the container body 1 is provided at an upper portion of the container body 1, and a stainless steel upper cover 10 is provided on the flange 1a via an O-ring (not shown). Is provided.
Further, a stainless steel lower lid 13 having an exhaust port 12 formed through an O-ring 11 is provided on the flange 1 b of the container body 1. The lower lid 13 is configured to be able to move up and down by driving means (not shown).
Accordingly, the semiconductor wafer W is taken in and out of the holder 8 with the lower lid 13 lowered, while the lower lid 13 is raised and the inside of the container body 1 is sealed, A predetermined process is performed.
[0031]
Next, the function of the concave portion 1C formed at the top of the above-mentioned water channel partition wall portion 1A will be described in detail with reference to FIGS.
As shown in FIG. 4 (a), a horizontal portion 1B on which the band-shaped press plate 2 is placed is formed on the top of the channel partition portion 1A, and the band press plate is placed in a state where the band press plate 2 is placed. 4 is sequentially welded to the top of the waterway partition wall 1A, as shown in FIG. 4B, a tensile stress (force in the direction of the arrow) is generated on the welding side. In addition, 1D shows a welding part in a figure.
Further, when the band-shaped holding plate 2 located on the other side is welded to the top of the water channel partition wall 1A, as shown in FIG. 4C, tensile stress (force in the direction of the arrow) is generated on the welding side. As a result, distortion is generated in the first welded portion 1D, sufficient welding strength is not obtained, and there is a possibility that a weld defect may occur.
[0032]
On the other hand, as shown in FIG. 5, when the concave portion 1C is formed at the top of the water channel partition portion 1A as in the present invention, even if a tensile force (force in the direction of the arrow) acts by welding, the concave portion 1C is formed. Due to the presence of 1C, the tensile force does not act on another weld 1D.
As described above, since the concave portion 1C which is not covered with the band-shaped pressing plate 2 is provided at the top of the waterway partition wall portion 1A, it is possible to suppress the occurrence of a weld defect due to stress caused by welding. As a result, since the cooling water does not leak to the outside and does not flow into the adjacent water channel, the cooling efficiency can be improved.
[0033]
In addition, since a portion (recess) that is not covered with the band-shaped press plate 2 is provided at the top of the channel partition portion 1A, the band-shaped press plate 2 can be directly and continuously welded along the channel partition portion 1A.
Therefore, since the mechanical strength is increased and can withstand the water pressure, the width of the channel partition is not increased, and no reinforcing member is required. As a result, it has the function of reducing the weight and the number of parts.
[0034]
Next, a method for manufacturing a water-cooled chamber according to the present invention will be described.
This manufacturing method includes a step of spirally forming a channel partition 1A on the outer side surface of the cylindrical container body 1, and a step of forming a recess 1C on the top surface of the channel partition 1A which is not covered by the band-shaped pressing plate 2. Forming a horizontal portion 1B on which the band-shaped presser plate 2 is to be placed; and, while the guide pin 14 of the welding device is in contact with the concave portion 1C, the band-shaped presser against the water channel partition portion 1A by the welding device 15. Welding the plate 2.
[0035]
More specifically, for example, the outer surface of a stainless steel cylindrical body made by a drawing method having a height of 600 mm, an inner diameter of 600 mm, and an outer diameter of 632 mm is cut out to form a container body 1 having an inner diameter of 600 mm and an outer diameter of 609 mm. A waterway partition wall portion 1A is spirally formed on the outer side surface so as to have a waterway width of 40 mm.
[0036]
Next, a concave portion 1C which is not covered with the band-shaped press plate 2 and a horizontal portion 1B on which the band-shaped press plate 2 is placed are formed on the top surface of the channel partition portion 1A. As an example, in FIG. 3, a = 6.5 mm, b = 5 mm, c = 2 mm, d = 0.7 mm, e = 2 mm, f = 9.5 mm, g = 1.5 mm, h = 4.5 mm in FIG. , I = 4 mm and j = 3 mm.
Then, the adjacent water channel bulkheads 1A are sequentially welded from one end to the other end of one side of the cylindrical container body 1 by the band-shaped pressing plate 2 having a width of 43 mm. At this time, as shown in FIG. 6, welding is performed by moving the welding means 15 while the guide pin 14 is in contact with the concave portion 1C.
In this manner, welding is performed while being guided by the guide pins, so that welding can be performed easily and accurately. Further, it is extremely easy to automate the production line without relying on the helical welds manually.
[0037]
The welding means 15 uses stainless steel as an electrode, and blows out an inert gas such as argon gas as a shielding gas (not shown) from the outer periphery of a nozzle having the electrode disposed on the central axis (not shown). A current having a high direct current and a high current density is applied so that the (water channel partition wall side) is on the cathode side, and arc welding is performed.
According to this, since the welding portion is completely sealed from oxidizing outside air, contamination and alteration (oxidation) of the molten metal are prevented, and high strength and highly reliable welding can be performed.
Then, after forming the through-holes connected to the lowermost and uppermost waterways of the container main body 1, the waterway inlet pipe 5 and the waterway outlet pipe 6 are welded thereto.
Finally, the flanges 1a and 1b are welded to the upper and lower ends of the welding main body 1, respectively. In addition, each of the flanges 1a and 1b may be formed integrally with the container main body when the outer surface of the above-described stainless steel cylindrical body is cut out.
[0038]
In addition, a water cooling chamber (Example) in which a concave portion 1C not covered with the band-shaped holding plate 2 is formed on the top surface of the water channel partition portion 1A shown in FIG. And a water cooling chamber (comparative example) which is different from the embodiment only in that the concave portion 1C is not formed. In the comparative example, there are no welding defects. Defects were identified.
[0039]
In the above embodiment, as shown in FIG. 5, the welding is performed so that the welding portion 1D is not formed in the recess 1C. However, as shown in FIG. 7A, the welding portion 1D is welded in the recess 1C. May be welded so that is formed.
However, it is more preferable that the concave portion 1C is exposed on the surface without forming the welded portion 1D in the concave portion 1C.
According to such a configuration, the top of the water channel partition 1A formed integrally with the container body 1 is spirally exposed, and is formed in the U-shaped recess 1C so as to increase the surface area. In addition, heat in the container body 1 can be more efficiently radiated, and sufficient cooling efficiency can be obtained.
[0040]
In addition, the concave portion 1C is not limited to the U-shaped cross section as shown in the above embodiment, but has a V-shaped (FIG. 7B) and a rectangular (FIG. 7C) concave portion. However, a U-shaped one is more preferable.
Since there is no acute angle portion in the U-shaped concave portion 1C, the stress caused by welding as described above does not concentrate on the acute angle portion. Therefore, breakage of the water channel partition wall section 1A due to stress concentration can be avoided as much as possible.
Therefore, even in the case of the V-shaped concave portion 1C shown in FIG. 7B, the same effect can be obtained if the V-shaped acute angle portion is curved.
[0041]
Furthermore, the structure above the water channel partition 1A of the present invention does not have a horizontal portion as shown in FIG. 7 (d), and is directly welded to the side wall of the water channel partition 1A in which the concave portion 1c is formed, or The entire water channel partition 1A may be formed with the width of the horizontal portion 1E as shown in FIG. 7 (e).
[0042]
Further, in the above-described embodiment, the water channel bulkhead is formed by grinding the side surface of the container main body 1. However, the water channel bulkhead 3 is formed as a separate body and provided on the outer side surface of the container main body 1 by welding or the like. May be.
[0043]
As described above, according to the water-cooling chamber according to the above-described embodiment, since the stainless steel cylindrical main body 1 having no welded portion inside is used, a highly corrosive gas such as silane, arsine, and chlorine is used. Is present in the container body 1, there is no concern that the inside of the container body 1 will deteriorate with time and leak to the outside.
Further, since the water channel 3 is constituted by the water channel partition wall portion 1A of the container main body 1 and the band-shaped pressing plate 2, the area of the water channel 3 in contact with the container main body 1 is large, and a sufficient cooling effect is obtained.
[0044]
Furthermore, according to the vapor phase growth film forming apparatus using the water cooling chamber, since the container body 1 can be sufficiently cooled, particles do not stay on the inner wall of the container body 1 due to the introduced gas as in the related art. This can avoid adversely affecting the semiconductor wafer. As a result, uniform film deposition can be performed on the semiconductor wafer.
[0045]
【The invention's effect】
As described in detail above, according to the water cooling chamber of the present invention, the band-shaped pressing plate can be easily welded to the top of the channel bulkhead without increasing the width of the channel bulkhead, and without increasing the weight. Good cooling efficiency can be obtained.
Further, according to the vapor deposition apparatus according to the present invention, an object to be processed can be processed in a favorable environment without adverse effects of particles.
Further, according to the method of manufacturing a water-cooling chamber according to the present invention, the band-shaped pressing plate can be easily welded to the top of the waterway partition wall, and the waterway can be easily formed.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a vapor phase growth film forming apparatus (water cooling chamber) according to the present invention.
FIG. 2 is a side view of the vapor deposition apparatus (water cooling chamber) shown in FIG.
3 is a cross-sectional view of a channel partition of the vapor-phase growth film forming apparatus (water cooling chamber) shown in FIG. 1 shown in FIG.
FIG. 4 is a cross-sectional view for explaining a welding defect generated when the water channel partition portion and the band-shaped holding plate are welded.
FIG. 5 is a cross-sectional view for explaining that a welding defect does not occur in the water channel partition shown in FIG. 3;
FIG. 6 is a cross-sectional view for explaining welding of the water channel partition shown in FIG. 3 and the band-shaped holding plate.
FIG. 7 is a schematic diagram for explaining a modified example of the concave portion provided at the top of the water channel partition shown in FIG. 3;
FIG. 8 is a cross-sectional view showing a conventional vapor-phase growth film-forming apparatus (water-cooled chamber).
FIG. 9 is a perspective view showing a conventional ring-shaped holding plate.
FIG. 10 is a cross-sectional view showing a state in which a holding plate is welded to a water channel bulkhead.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Container main body 1A Waterway partition part 1B Horizontal part 1C Depression 1D Weld part 1a Flange 1b Flange 2 Holding plate 3 Waterway 5 Waterway inlet pipe 6 Waterway outlet pipe 7 Heater 8 Holder 9 Drive means 10 Top lid 12 Exhaust port 14 Guide pin 15 Welding means W semiconductor wafer

Claims (7)

筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板とを備える水冷チャンバであって、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部を有することを特徴とする水冷チャンバ。A tubular container body, a waterway partition wall spirally formed on the outer side surface of the container body, and a band-shaped holding plate that forms a waterway on the outer side surface of the container body by being welded to the waterway partition portion. A water cooling chamber comprising: a concave portion at the top of the water channel partition portion, the concave portion not covered by the band-shaped pressing plate. 前記凹部が前記水路隔壁部の頂部表面に露出して形成されていることを特徴とする請求項1に記載された水冷チャンバ。The water cooling chamber according to claim 1, wherein the concave portion is formed so as to be exposed on a top surface of the channel partition portion. 前記水路隔壁部の上方に前記帯状押え板を載置する水平部を有することを特徴とする請求項1または請求項2に記載された水冷チャンバ。The water cooling chamber according to claim 1, further comprising a horizontal portion on which the band-shaped press plate is placed above the water channel partition portion. 前記請求項1乃至請求項3のいずれかに記載された水冷チャンバを少なくとも備えることを特徴とする気相成長成膜装置。A vapor-phase growth film-forming apparatus comprising at least the water-cooling chamber according to any one of claims 1 to 3. 筒状の容器本体と、この容器本体の外側側面に螺旋状に形成された水路隔壁部と、前記水路隔壁部に溶接されることによって前記容器本体の外側側面に水路を形成する帯状押え板を備える水冷チャンバの製造方法であって、前記筒状の容器本体の外側側面に、螺旋状に水路隔壁部を形成する工程と、前記水路隔壁部の頂部に前記帯状押え板で覆われない凹部、及び前記帯状押え板を載置する水平部を形成する工程と、前記凹部に溶接手段のガイドピンを当接させながら、溶接手段によって前記水路隔壁部に帯状押え板を溶接する工程とを備えることを特徴とする水冷チャンバの製造方法。A cylindrical container main body, a water channel partition portion spirally formed on the outer side surface of the container main body, and a band-shaped holding plate that forms a water channel on the outer side surface of the container main body by being welded to the water channel partition portion. A method for manufacturing a water-cooling chamber comprising: a step of spirally forming a channel partition portion on an outer side surface of the cylindrical container body; and a concave portion that is not covered with the band-shaped press plate at a top portion of the channel partition portion. A step of forming a horizontal portion on which the band-shaped press plate is placed, and a step of welding the band-shaped press plate to the waterway partition wall portion by welding means while abutting a guide pin of a welding means to the concave portion. A method for manufacturing a water-cooling chamber, comprising: 前記水路隔壁部は、筒状の容器本体の外側側面を研削加工することにより形成されることを特徴とする請求項5に記載された水冷チャンバの製造方法。The method for manufacturing a water-cooled chamber according to claim 5, wherein the channel partition portion is formed by grinding an outer side surface of a cylindrical container body. 前記凹部及び帯状押え板を載置する水平部は、水路隔壁部を研削加工することにより形成されることを特徴とする請求項5または請求項6に記載された水冷チャンバの製造方法。The method for manufacturing a water-cooled chamber according to claim 5, wherein the horizontal portion on which the concave portion and the band-shaped holding plate are placed is formed by grinding a water channel partition portion.
JP2002334802A 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber Expired - Lifetime JP4043026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002334802A JP4043026B2 (en) 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002334802A JP4043026B2 (en) 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber

Publications (2)

Publication Number Publication Date
JP2004172264A true JP2004172264A (en) 2004-06-17
JP4043026B2 JP4043026B2 (en) 2008-02-06

Family

ID=32699086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002334802A Expired - Lifetime JP4043026B2 (en) 2002-11-19 2002-11-19 Water-cooled chamber, vapor-phase growth film forming apparatus using the same, and method for manufacturing the water-cooled chamber

Country Status (1)

Country Link
JP (1) JP4043026B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153505A (en) * 2006-12-19 2008-07-03 Nhk Spring Co Ltd Cooling device for heat treatment equipment and manufacturing method therefor
CN109183139A (en) * 2018-10-16 2019-01-11 浙江晶鸿精密机械制造有限公司 A kind of main oven chamber structure applied to single crystal growing furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008153505A (en) * 2006-12-19 2008-07-03 Nhk Spring Co Ltd Cooling device for heat treatment equipment and manufacturing method therefor
CN109183139A (en) * 2018-10-16 2019-01-11 浙江晶鸿精密机械制造有限公司 A kind of main oven chamber structure applied to single crystal growing furnace
CN109183139B (en) * 2018-10-16 2023-08-15 浙江晶鸿精密机械制造有限公司 Main furnace chamber structure applied to single crystal furnace

Also Published As

Publication number Publication date
JP4043026B2 (en) 2008-02-06

Similar Documents

Publication Publication Date Title
EP1020236B1 (en) Use of cleaning gas
US20090084317A1 (en) Atomic layer deposition chamber and components
JP4592746B2 (en) Semiconductor manufacturing apparatus, semiconductor device manufacturing method, and exhaust trap apparatus
JPH11317397A (en) Processing device
KR940000600A (en) Multi-chamber chemical vapor deposition (CVD) apparatus and substrate processing method thereof
WO2006036931A2 (en) Welding tape and related taping method
CN109396642A (en) A kind of gas shield device and method for cabin girth welding
JP2004172264A (en) Water-cooled chamber and vapour phase growth deposition apparatus using the same, and method for manufacturing the water-cooling chamber
JP2009079667A (en) Gas feeding device and semiconductor manufacturing device
US9371581B2 (en) Apparatus for treating a gas stream
JPH116086A (en) Device for removing unnecessary stuff on surface using laser beam
JP5137304B2 (en) Corrosion resistant member and manufacturing method thereof
JP3002649B2 (en) Vacuum container and film forming apparatus using the same
JP2005109342A (en) Vacuum processing device
JPH09326367A (en) Treating system for substrate
JPH1055968A (en) Semiconductor treating device
WO2009060766A9 (en) Heating apparatus
JPH06142932A (en) Weld head and welding equipment
JPH06328256A (en) Welding head and welding equipment
JP3727147B2 (en) Epitaxial wafer manufacturing method and manufacturing apparatus thereof
JPH11168066A (en) Cleaning method for heat treatment equipment
JP2716072B2 (en) Welding method
JPH02308534A (en) Apparatus for forming thin film of semiconductor substrate
JPH11340142A (en) Method and device for single-wafer-processing epitaxial growth
JP2009076809A (en) Gas supply device, semiconductor manufacturing device, and component for gas supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050908

Free format text: JAPANESE INTERMEDIATE CODE: A621

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070507

A977 Report on retrieval

Effective date: 20070523

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A521 Written amendment

Effective date: 20070507

Free format text: JAPANESE INTERMEDIATE CODE: A821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070711

A131 Notification of reasons for refusal

Effective date: 20070830

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071023

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20101122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131122

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131122

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20131122

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350