JP4041226B2 - Optical semiconductor device - Google Patents

Optical semiconductor device Download PDF

Info

Publication number
JP4041226B2
JP4041226B2 JP27843798A JP27843798A JP4041226B2 JP 4041226 B2 JP4041226 B2 JP 4041226B2 JP 27843798 A JP27843798 A JP 27843798A JP 27843798 A JP27843798 A JP 27843798A JP 4041226 B2 JP4041226 B2 JP 4041226B2
Authority
JP
Japan
Prior art keywords
substrate
optical semiconductor
electrode
optical
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27843798A
Other languages
Japanese (ja)
Other versions
JP2000114641A (en
Inventor
裕司 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP27843798A priority Critical patent/JP4041226B2/en
Publication of JP2000114641A publication Critical patent/JP2000114641A/en
Application granted granted Critical
Publication of JP4041226B2 publication Critical patent/JP4041226B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば2.5GHz以上の広帯域の光ファイバー通信システムに用いられる光半導体装置に関する。
【0002】
【従来の技術】
近年、CATVや公衆通信の分野において、光ファイバー通信の実用化が始まっている。従来より、高速で高信頼性の光半導体モジュールが同軸型あるいはDual-inline 型と呼ばれるモジュール構造で実現されており、これらは主に幹線系と呼ばれる領域で既に実用化されている。
【0003】
これに対し最近では、Si(シリコン)サブ基板(パッケージ内に載置されるサブマウント、Siプラットホームともいう)上で、光素子とファイバとを機械的精度のみで高精度に位置決め実装する技術を用いた光モジュールが盛んに開発されている。これらは主に加入者系と呼ばれる領域での実用化が目標とされており、小型,低背化、低コスト化等が要求されている。またその一方で、広帯域化が重要な課題となっている。
【0004】
〔従来例1〕
従来の光半導体装置J1の構成は図5(a)〜(c)に示す通りである。図5(a)に示すように、半導体レーザ素子2の活性層がSiサブ基板1側に位置し、半導体レーザ素子2はその活性層側の入力電極41における所定位置にアライメントされ、例えばAuSn合金等の半田で接合されている。また、半導体レーザ素子2の活性層に対して反対側に位置する面の電極と終端電極42とはワイヤ6を介して電気的に接続される。また、不図示の光ファイバはV溝10上に実装されることにより、先に実装された半導体レーザ素子2との間で機械的に光学的なアライメントが行われる。
【0005】
また、図5(c)に示すように、Siサブ基板1は光モジュールJ2を構成する多層アルミナベース基板8の凹部8aに載置され、多層アルミナベース基板8上の入力電極81,終端電極82のそれぞれに、Siサブ基板1の入力電極41,終端電極42のそれぞれが接続される。なお、図中11は光ファイバのストッパ溝であり、83は接地電極である。
【0006】
〔従来例2〕
また、上記したようなSiサブ基板の下面に接地電極、上面にストリップ線路が形成されて成る、いわゆるマイクロスリトップ線路を構成し、このマイクロストリップ線路の一部に薄膜抵抗が用いられることにより、負荷とのインピーダンス整合が行われる方法が提案されている(例えば、米国特許番号4,937,660 号を参照)。
【0007】
この方法によれば、インピーダンス整合が負荷の直近のSiサブ基板上でなされており、従来例1に比べて、高周波での損失が小さく、装置が小型化できるという利点を有する。
【0008】
なお、一般に半導体レーザ素子等の光半導体素子のインピーダンスは典型的には5オーム前後と、信号源及び負荷までの伝送線で用いられる50オームあるいは25オームに比べて低い。そのため、信号源と負荷との間で、マイクロストリップラインやリアクタンス素子等の回路部品の適当な組み合わせにより、インピーダンス整合が行われるのは一般的な技術であって、上述の従来例の他にも例えば特開平10-75003号公報等にも記載がある。
【0009】
【発明が解決しようとする課題】
しかしながら、上記従来例1では、Siサブ基板上の配線に接地電極がないため、一般的に全く信号源側のインピーダンスに整合しない。そのため、高周波における反射波による信号波形の劣化が増大するという問題や、Siが有する大きな誘電正接のため、高周波で誘電体損失が増大するという問題がある。ここで、上記従来例1における電磁界の強い領域L2について図示すると、図5(b)に示すごとくとなり、入力電極の周囲の広い範囲に渡って電磁界の影響を大きく受けることになる。
【0010】
また、従来例2では従来例1と同様に、Siの大きな誘電正接のため、高周波で誘電体損失が増大するという問題がある。すなわち、Siサブ基板上面のストリップ線路とSiサブ基板下面の接地電極との間に、ほとんどの電磁界が閉じこめられてマイクロ波が伝搬するため、Siの誘電正接の影響を強く受けやすく、誘電体損失によりマイクロ波が光半導体素子に入射する前に減衰し、十分に光半導体素子に信号を伝えることができなくなる。
【0011】
また、Si基板の下面から上面にスルーホールを形成する必要があるが、スルーホールにより基板の機械的な強度が弱くなり、特に、Si基板の場合にはスルーホールを起点にクラックが入りやすく壊れやすくなる。また、上面及び下面の2面にパターン形成プロセスを行う必要があり、プロセスが複雑化するといった問題もある。
【0012】
そこで本発明は、上記従来の問題に鑑み提案されたものであり、2.5GHz以上の広帯域においても特性の良好な光半導体装置を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記目的を達成するために、本発明の光半導体素子配設用基板は、基板と前記基板上に設けられ、前記基板より誘電正接の小さな誘電体層、前記誘電体層上に設けられ、光半導体素子にマイクロ波信号を伝搬させる線状電極と、前記線状電極に対し、該線状電極の一方の側縁側に近接して前記基板に設けられる空隙部と、前記線状電極に対し、該線状電極の他方の側縁側に前記線状電極と間隔を空けて並設される接地電極と、を具備する。
また、本発明の光半導体素子配設用基板は、一端部が前記空隙部に連通するようにして前記基板に設けられ、前記線状電極に実装される光半導体素子と光学的に結合するように光導波体を収容するための溝部をさらに具備することが好ましい。
【0014】
また、基板の誘電正接は0.015 以下であることを特徴とする。本発明の光半導体装置は、記載の光半導体素子配設用基板と、前記線状電極上に実装された光半導体素子と、を具備する。また、本発明の光半導体装置は、前記溝部に実装され、前記光半導体素子と光学的に結合する光導波体をさらに具備することが好ましい。
【0015】
さらに、基板はこの基板として好適に使用されるシリコンよりも良熱伝導性の基体上に載置させると放熱性が良好となるので好適である。
【0016】
【発明の実施の形態】
以下、本発明の光半導体装置H1,H2及びそれを収容した光モジュールM1,M2の実施形態を図面に基づき詳細に説明する。
【0017】
図1(a)〜(c)において、1はSi等の異方性エッチングが可能で、後記する良熱伝導性の第1のサブ基板上に載置される第2のサブ基板、2は光ファイバや光導波路体のような光導波体に光を入射させる発光素子である半導体レーザ、10は例えば光ファイバ等の光導波体を載置するためのV溝、41,42はそれぞれマイクロ波信号を伝搬させる線状電極である入力電極,終端電極(なお、41,42の一方を入力電極とすると、他方が終端電極となる)、43は上記線状電極と同様な材質から成る接地電極、5は誘電体層、6はワイヤ(リード線)、7は金等の導電性リボン、8はベース基板である多層アルミナベース基板、81は入力側電極、82は出力側電極、83は接地電極、9は良熱伝導性で少なくとも表面が導電性である金めっきアルミナ精密加工基板等の第1のサブ基板、11は光導波体のストッパー用のダイシング溝である。
【0018】
半導体レーザ2はその活性層側電極を第2のサブ基板1側に配置し、入力電極41上の所定の位置にアライメントされ、AuSn等の半田で接合される。また、活性層の背面側の電極と終端電極42とはワイヤ6で電気的に接続される。また、光導波体はV溝10上に実装されることにより、先に、実装された半導体レーザ2との間で機械的に光学的なアライメントが高精度に行われる。
【0019】
入力電極41,終端電極42,接地電極43,及び誘電体層5は非対称コプレーナウェーブライン4を構成する。非対称コプレーナウェーブライン4は外部電気系インピーダンスの50オームに整合するように、電極41,42の幅,入力電極41,終端電極42と接地電極43との間隔、及び誘電体層5の厚みが制御される。
【0020】
また、非対称コプレーナウェーブライン4の一部には、負荷とのインピーダンス整合を行うために、小型のチップ抵抗等の回路部品が用いられる。この回路部品の配置等は簡単のため図から省略した。
【0021】
なお、第2のサブ基板1は窒化珪素等でもよく、第1のサブ基板9はステンレスやコバール等でもよく、またベース基板8は低誘電率の合成樹脂等でもよい。
【0022】
図1(b)に示すように、Siサブ基板1に誘電体層5を介して非対称コプレーナウェーブライン4を構成することにより、マイクロ波信号は入力電極41,終端電極42と接地電極43との間にほとんどの電磁界が閉じこめられ、誘電体層5及び空気中に分布させることができる。これにより、Si等の基板の高い誘電正接の影響を受けなくなり、従来構成よりも大幅に誘電損失を減らす効果がある。
【0023】
また、入力電極41,終端電極42をダイシング溝11に近接して配設することにより、誘電率がより低い空気層を伝搬する電磁界分布の面積が増加し、マイクロ波の等価的な誘電率を下げることができる。これにより、マイクロ波をより高速で伝搬させることができ、光半導体装置の広帯域化に寄与する。また、線状電極面すなわち信号電極面と接地電極面とが同一面で並設しているため、ベース基板の電極との接続の整合性が良好であるという効果もある。
【0024】
次に、各部の特徴的な形状、材質、寸法等の詳細について述べる。入力電極41,終端電極42の幅(光軸に直交する方向の長さ)は100〜400ミクロン前後が好適であり、材質はAu単体もしくはAu等を上部層とし、下部層としてCr,Ti,Pt等とするとよく、上部層の厚みを2〜3μm程度とし、下部層を200Å以上とする。上記幅はワイヤボンドに最低必要な電極面積と形成可能な誘電体層5の厚さ限界から決まる。
【0025】
誘電体層5には例えばシリカやポリイミド樹脂等を用いることができる。これらの材質が選択される理由としては、誘電正接が小さく、マイクロ波の誘電体損失を抑制できることによる。非対称コプレーナウェーブラインが下地のSi等の基板の誘電正接の影響を十分に受けなくするには、誘電正接の小さいSiを選択し、誘電体層5をなるべく厚くする必要がある。
【0026】
しかしながら、誘電体層5を厚くしすぎると、下地のSi等の基板と誘電体層の熱膨張係数差により、第2のサブ基板1及び誘電体層5に大きな応力がかかり、基板が変形したり誘電体層5にクラックが入る等の不具合が生じてしまう。そのため、Si材料の選択及び誘電体層厚みの設計を適切に行う必要がある。表1は30mm幅のSi基板にシリカを形成したときのSi基板の変形、すなわちそり量を測定した一例である。ここで、そり量とは台に水平に基板を置いたときに台の水平面から基板の凸部の頂上までの距離をそり量としている。
【0027】
【表1】

Figure 0004041226
【0028】
基板のそり量としては50μm以下が望まれ、誘電体層がシリカ膜の場合、膜厚60μm以下が望まれる。一例として誘電体層5の厚みを10μmにしたとき、非対称コプレーナラインの特性インピーダンスが50Ωに整合にする条件を図3に示す。また、誘電正接が異なる各種Si基板を使用し、非対称コプレーナラインに周波数10GHzのマイクロ波を伝送したときの伝送損失を図4に示す。
【0029】
図3,4から明らかなように、例えば、電極層41,42の幅がw=160μmのときには、入力電極41,終端電極42と接地電極43との間隔をsとすると、s/wが0.031〜0.125の範囲の場合、電極81と電極41の接続点、電極82と電極42の接続点でのマイクロ波の反射量を許容範囲に抑制できるため好適で、特に0.063のときがマイクロ波の反射量をほとんど無くすことができ最も良好である。また、Siの誘電正接が0.015以下(抵抗率で1000Ω・cm以上)のとき、マイクロ波の損失が1dB/cm以下となり好適である。
【0030】
また、接地電極43とベース基板8との接続部はインダクタンスやキャパシタンス等の回路定数成分を極力抑制する必要があるため、図1に示すように、表面に金めっきが施されたセラミック精密加工基板である第1のサブ基板9と金のリボン7を介して接続するか、または図2のごとく接地電極層43のエッジと接地電極83のエッジとの間に溝を形成し、半田12をその溝に溶かし込んで接続を行う方法をとる。
【0031】
また、第1のサブ基板9は、例えばCIM(セラミックインジェクションモールド)等の高精度な加工方法により、第2のサブ基板1の配設用の溝と光ファイバ3の気密封止用の貫通孔とが形成され、表面はメタライズされる。
【0032】
その後、第1のサブ基板9はベース基板8上に実装され、最後に第1のサブ基板9上に、第2のサブ基板1が実装される形態をとる。これにより、一般的に多層セラミック基板は高周波特性に優れる反面、孔加工等において機械的な精度が低いと言われる問題点を解決し、光接続及び高周波特性の両方に優れる光モジュールを構成できる。
【0033】
図1の例では第2のサブ基板1上の接地電極43はベース基板8上の接地電極83に確実に接地するために、第1のサブ基板9を介し、金のリボン7で電気的接続をとる。これにより、接地線の接続点において、不要なインダクタンスや容量成分が入るのを極力抑制することができ、確実な接地をとることができる。接地が不確実な場合、すなわち、接地線の途中に不要なインダクタンスや容量成分が入ると、それらによる共振周波数で、マイクロ波が半導体レーザに伝送されなくなる不具合が生じてしまう。
【0034】
また、図2に示すように第1のサブ基板9の両端の高さを第2のサブ基板1の上面よりも低くし、接地電極83と接地電極層43を近接させて接地する方法もある。これにより、接続点を減らし、高周波特性、接続の作業性ともに改善できる方法もある。この場合、接地電極層43と接地電極83とが近接する領域の第2のサブ基板1の辺において、接地電極43が形成される幅だけV溝形成による片側斜面を形成し、前記接地電極層43と接地電極83とが近接する領域に半田載置用の溝を形成し、該溝に例えばSnPb合金等から成る半田ボールを載せて溶かす方法により、簡便な方法で、より確実な接地がとれる。
【0035】
次に、さらに詳細な実施例について説明する。
【0036】
まず、Siサブ基板1には、厚さ0.525mm、抵抗率1000Ω・cmの基板を用いた。Siサブ基板1の外形は1.6×4.0mmにし、ファイバ3が実装されるV溝10の長さは3mmにした。非対称コプレーナライン4はSiサブ基板1上で半導体レーザ2の実装部から基板の外周に向かって0.65mm配線した。これはSiサブ基板1の外形に依存しており、Siサブ基板1のパッケージへの実装上、最低必要な長さである。非対称コプレーナライン4はSiサブ基板1上に厚さ10μmのシリカ誘電体層5と、さらにその上に厚さ4μm、幅160μmの下地層がCrで上部層がAuである、入力電極41,終端電極42,接地電極43とで構成した。入力電極41,終端電極42と接地電極43との間隔は30μmにした。
【0037】
これにより、非対称コプレーナウェーブライン4を伝搬するマイクロ波信号は誘電体層5及び空気層に電磁界が閉じこめられることから、Siの高い誘電正接の影響を受けなくなる効果があり、非対称コプレーナライン4の伝搬損失を例えば10GHzで0.1dB未満に抑制できた。
【0038】
従来の電極構成ではSi基板への電磁界のしみだしがあるため、Siによる大きな誘電体損失を受けることになる。Siの誘電正接はその抵抗率によって異なり、例えば本実施例で用いた1000Ω・cmでは誘電正接は約0.015であるが、これを10Ω・cm、誘電正接3.3の基板を用いると10GHzのマイクロ波信号では単位長あたりの損失は10dB/cm以上となり、配線長0.65mmの損失は6.5dB以上となる。
【0039】
次に、Siサブ基板1側面の接地電極43に沿って形成された深さ200μmのV溝の片側斜面とベース基板の接地電極形成面のエッジとの隙間に半田を溶かし込んだ。
【0040】
これにより、接地線の寄生インダクタンス及び寄生容量を極力抑えることができ、半導体レーザ2の帯域幅15GHz以内では共振によるディップが発生しなかった。
【0041】
【発明の効果】
本発明の光半導体装置及び光モジュールによれば、以下に示す顕著な効果を奏することができる。
【0042】
・基板上でマイクロ波を伝送する際、基板による誘電体損失を極力抑制することができ高周波での伝送損失を飛躍的に抑制でき、これにより基板上の配線長を長くとることができる。
【0043】
・複数の素子に配線を行う場合、配線間の容量を小さくでき、また、ベースへの接地も容易に行える。
【0044】
・線状電極、接地電極、及び誘電体層で構成される(非対称)コプレーナウェーブライン近傍に、例えば光導波体のストッパー用溝を形成することにより、コプレーナウェーブラインの等価的な誘電率を下げる効果があり、光半導体装置の広帯域化をはかることができる。
【0045】
・本発明の光半導体装置とこれを載置する良熱伝導性の基体とから少なくとも構成される光モジュールによれば、光半導体装置上の伝送線と基体の伝送線との電磁界フィールドの整合性が良好となる。
【0046】
・また、上記光モジュールによれば、基体を例えば精密加工を施した多層セラミック基板とすることにより、精密な光学的接続と多層セラミック基板による良好な電気的接続とを組み合わせたことにより、光接続及び高周波特性に優れた光モジュールを提供できる。
【0047】
・さらに、上記光モジュールによれば、光半導体装置の接地電極と基体上の接地電極とを簡便な方法で確実に接続できる。
【図面の簡単な説明】
【図1】本発明の実施形態に係る光半導体装置を説明する図であり、(a)は光半導体装置の斜視図、(b)は(a)のA−A線断面図、(c)は光モジュールの一部省略斜視図である。
【図2】本発明の他の実施形態に係る光半導体装置を説明する図であり、(a)は光モジュールの一部省略斜視図、(b)は(a)のC−C線断面図である。
【図3】本発明の実施形態に係る光半導体装置に用いられるSiサブ基板のインピーダンス特性を示す線図である。
【図4】本発明の実施形態に係る光半導体装置に用いられる誘電体層のマイクロ波の伝送損失を説明するグラフである。
【図5】従来例の光半導体装置を説明する図であり、(a)は光半導体装置の斜視図、(b)は(a)のB−B線断面図、(c)は光モジュールの一部省略斜視図である。
【符号の説明】
1:Siサブ基板(第2のサブ基板:基板)
2:半導体レーザ(光半導体素子)
3:光ファイバ(光導波体)
4:非対称コプレーナウェーブライン
5:誘電体層
6:ワイヤ
7:金リボン
8:多層セラミックベース基板(ベース基板)
9:精密セラミックサブ基板(第1のサブ基板)
10:V溝
11:ダイシング溝
41:入力電極(線状電極)
42:終端電極(線状電極)
43:接地電極
81:入力電極
82:出力電極
83:接地電極
H1,H2:光半導体装置
M1,M2:光モジュール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical semiconductor device used in, for example, a broadband optical fiber communication system of 2.5 GHz or more.
[0002]
[Prior art]
In recent years, practical use of optical fiber communication has begun in the fields of CATV and public communication. Hitherto, high-speed and high-reliability optical semiconductor modules have been realized with a module structure called a coaxial type or a dual-inline type, and these have already been put into practical use mainly in an area called a trunk line system.
[0003]
On the other hand, recently, a technology for positioning and mounting optical elements and fibers on a Si (silicon) sub-substrate (submount mounted in a package, also called Si platform) with high mechanical precision alone is provided. The optical modules used have been actively developed. These are mainly targeted for practical use in an area called a subscriber system, and are required to be compact, low profile, low cost, and the like. On the other hand, widening the bandwidth is an important issue.
[0004]
[Conventional example 1]
The configuration of the conventional optical semiconductor device J1 is as shown in FIGS. As shown in FIG. 5A, the active layer of the semiconductor laser element 2 is positioned on the Si sub-substrate 1 side, and the semiconductor laser element 2 is aligned at a predetermined position on the input electrode 41 on the active layer side, for example, an AuSn alloy It is joined with solder such as. In addition, the electrode on the surface opposite to the active layer of the semiconductor laser element 2 and the termination electrode 42 are electrically connected via the wire 6. In addition, an optical fiber (not shown) is mounted on the V-groove 10 so that mechanical optical alignment is performed with the semiconductor laser element 2 mounted in advance.
[0005]
As shown in FIG. 5C, the Si sub-substrate 1 is placed in the recess 8a of the multilayer alumina base substrate 8 constituting the optical module J2, and the input electrode 81 and the termination electrode 82 on the multilayer alumina base substrate 8 are placed. The input electrode 41 and the termination electrode 42 of the Si sub-substrate 1 are connected to each of these. In the figure, 11 is an optical fiber stopper groove, and 83 is a ground electrode.
[0006]
[Conventional example 2]
In addition, a ground electrode is formed on the lower surface of the Si sub-substrate as described above, and a strip line is formed on the upper surface, which constitutes a so-called micro-strip line, and a thin film resistor is used for a part of the micro strip line. Methods have been proposed in which impedance matching with the load is performed (see, for example, US Pat. No. 4,937,660).
[0007]
According to this method, impedance matching is performed on the Si sub-substrate close to the load, and there is an advantage that the loss at high frequency is small and the apparatus can be miniaturized as compared with Conventional Example 1.
[0008]
In general, the impedance of an optical semiconductor element such as a semiconductor laser element is typically around 5 ohms, which is lower than 50 ohms or 25 ohms used in transmission lines to signal sources and loads. Therefore, it is a general technique that impedance matching is performed between a signal source and a load by an appropriate combination of circuit components such as a microstrip line and a reactance element. For example, it is also described in Japanese Patent Application Laid-Open No. 10-75003.
[0009]
[Problems to be solved by the invention]
However, in the above conventional example 1, since there is no ground electrode in the wiring on the Si sub-substrate, it generally does not match the impedance on the signal source side at all. For this reason, there is a problem that signal waveform deterioration due to reflected waves at high frequencies increases, and because of the large dielectric loss tangent of Si, there is a problem that dielectric loss increases at high frequencies. Here, the region L2 having a strong electromagnetic field in Conventional Example 1 is illustrated as shown in FIG. 5B, and is greatly affected by the electromagnetic field over a wide range around the input electrode.
[0010]
Further, in the conventional example 2, like the conventional example 1, there is a problem that the dielectric loss increases at a high frequency due to the large dielectric tangent of Si. That is, most of the electromagnetic field is confined between the strip line on the upper surface of the Si sub-substrate and the ground electrode on the lower surface of the Si sub-substrate, so that the microwave propagates. Due to the loss, the microwave is attenuated before entering the optical semiconductor element, and the signal cannot be sufficiently transmitted to the optical semiconductor element.
[0011]
In addition, it is necessary to form a through hole from the lower surface to the upper surface of the Si substrate, but the mechanical strength of the substrate is weakened by the through hole. In particular, in the case of the Si substrate, cracks are easily generated from the through hole. It becomes easy. Further, it is necessary to perform a pattern forming process on the upper surface and the lower surface, which causes a problem that the process becomes complicated.
[0012]
Therefore, the present invention has been proposed in view of the above-described conventional problems, and an object thereof is to provide an optical semiconductor device having excellent characteristics even in a wide band of 2.5 GHz or more.
[0013]
[Means for Solving the Problems]
To achieve the above object, an optical semiconductor element array設用substrate of the present invention comprises a substrate, provided on the substrate, a lower dielectric layer of dielectric loss tangent than the substrate, is provided on the dielectric layer A linear electrode for propagating a microwave signal to the optical semiconductor element; a gap provided in the substrate adjacent to one side edge of the linear electrode; and the linear electrode On the other hand, the other side edge side of the linear electrode is provided with a ground electrode arranged in parallel with the linear electrode at a distance.
The optical semiconductor element disposition substrate of the present invention is provided on the substrate so that one end portion thereof communicates with the gap, and is optically coupled to the optical semiconductor element mounted on the linear electrode. It is preferable to further comprise a groove for accommodating the optical waveguide.
[0014]
Further, the dielectric loss tangent of the substrate is 0.015 or less. An optical semiconductor device of the present invention comprises the optical semiconductor element disposition substrate described above and an optical semiconductor element mounted on the linear electrode. The optical semiconductor device of the present invention preferably further includes an optical waveguide mounted in the groove and optically coupled to the optical semiconductor element.
[0015]
Further, it is preferable that the substrate is placed on a base having better heat conductivity than silicon that is preferably used as the substrate, because the heat dissipation becomes better.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the optical semiconductor devices H1 and H2 and the optical modules M1 and M2 housing them will be described in detail below with reference to the drawings.
[0017]
1A to 1C, reference numeral 1 denotes an anisotropic etching of Si or the like, and a second sub-substrate placed on a first sub-substrate having good thermal conductivity, which will be described later, A semiconductor laser, which is a light emitting element that makes light incident on an optical waveguide such as an optical fiber or an optical waveguide, 10 is a V-groove for mounting an optical waveguide such as an optical fiber, and 41 and 42 are microwaves, respectively. An input electrode that is a linear electrode for propagating a signal, a termination electrode (where 41 and 42 are input electrodes, the other is a termination electrode), and 43 is a ground electrode made of the same material as the linear electrode. 5 is a dielectric layer, 6 is a wire (lead wire), 7 is a conductive ribbon such as gold, 8 is a multi-layer alumina base substrate as a base substrate, 81 is an input side electrode, 82 is an output side electrode, and 83 is grounded Electrode 9 has good thermal conductivity and at least the surface is conductive The first sub-board such as gold-plated alumina precision processing substrate, 11 is a dicing groove for stopper light waveguide.
[0018]
The semiconductor laser 2 has its active layer side electrode disposed on the second sub-substrate 1 side, aligned at a predetermined position on the input electrode 41, and joined by solder such as AuSn. The electrode on the back side of the active layer and the termination electrode 42 are electrically connected by a wire 6. Further, by mounting the optical waveguide on the V-groove 10, mechanically optical alignment with the semiconductor laser 2 previously mounted is performed with high accuracy.
[0019]
The input electrode 41, the termination electrode 42, the ground electrode 43, and the dielectric layer 5 constitute an asymmetric coplanar wave line 4. The width of the electrodes 41, 42, the distance between the input electrode 41, the termination electrode 42 and the ground electrode 43, and the thickness of the dielectric layer 5 are controlled so that the asymmetric coplanar wave line 4 is matched to 50 ohms of the external electrical system impedance. Is done.
[0020]
In addition, a circuit component such as a small chip resistor is used for a part of the asymmetric coplanar wave line 4 in order to perform impedance matching with a load. The arrangement of the circuit components is omitted from the drawing for simplicity.
[0021]
Note that the second sub-substrate 1 may be silicon nitride or the like, the first sub-substrate 9 may be stainless steel, Kovar, or the like, and the base substrate 8 may be a low dielectric constant synthetic resin or the like.
[0022]
As shown in FIG. 1B, the asymmetrical coplanar wave line 4 is formed on the Si sub-substrate 1 via the dielectric layer 5 so that the microwave signal is transmitted between the input electrode 41, the termination electrode 42, and the ground electrode 43. Most of the electromagnetic field is confined between them and can be distributed in the dielectric layer 5 and in the air. This eliminates the influence of the high dielectric loss tangent of the substrate such as Si, and has the effect of greatly reducing the dielectric loss compared to the conventional configuration.
[0023]
Further, by disposing the input electrode 41 and the termination electrode 42 in the vicinity of the dicing groove 11, the area of the electromagnetic field distribution propagating through the air layer having a lower dielectric constant is increased, and the equivalent dielectric constant of microwaves is increased. Can be lowered. Thereby, the microwave can be propagated at a higher speed, which contributes to the broadening of the bandwidth of the optical semiconductor device. In addition, since the linear electrode surface, that is, the signal electrode surface and the ground electrode surface are arranged in parallel, there is an effect that the matching of the connection with the electrode of the base substrate is good.
[0024]
Next, details of the characteristic shape, material, dimensions, etc. of each part will be described. The width of the input electrode 41 and the termination electrode 42 (length in the direction perpendicular to the optical axis) is preferably about 100 to 400 microns, and the material is Au alone or Au or the like as an upper layer, and Cr, Ti, Pt or the like is preferable. The thickness of the upper layer is about 2 to 3 μm, and the lower layer is 200 mm or more. The width is determined by the minimum electrode area required for wire bonding and the thickness limit of the dielectric layer 5 that can be formed.
[0025]
For example, silica or polyimide resin can be used for the dielectric layer 5. The reason why these materials are selected is that the dielectric loss tangent is small and the dielectric loss of microwaves can be suppressed. In order for the asymmetric coplanar wave line to be sufficiently unaffected by the dielectric tangent of the underlying substrate such as Si, it is necessary to select Si having a small dielectric tangent and make the dielectric layer 5 as thick as possible.
[0026]
However, if the dielectric layer 5 is too thick, a large stress is applied to the second sub-substrate 1 and the dielectric layer 5 due to the difference in thermal expansion coefficient between the underlying Si substrate and the dielectric layer, and the substrate is deformed. Or a defect such as a crack in the dielectric layer 5 occurs. Therefore, it is necessary to appropriately select the Si material and design the dielectric layer thickness. Table 1 shows an example in which the deformation of the Si substrate when the silica was formed on the 30 mm width Si substrate, that is, the amount of warpage was measured. Here, the amount of warpage is the distance from the horizontal surface of the base to the top of the convex portion of the base when the substrate is placed horizontally on the base.
[0027]
[Table 1]
Figure 0004041226
[0028]
The amount of warpage of the substrate is preferably 50 μm or less, and when the dielectric layer is a silica film, the film thickness is preferably 60 μm or less. As an example, FIG. 3 shows conditions for matching the characteristic impedance of the asymmetric coplanar line to 50Ω when the thickness of the dielectric layer 5 is 10 μm. Further, FIG. 4 shows transmission loss when various Si substrates having different dielectric loss tangents are used and a microwave having a frequency of 10 GHz is transmitted to the asymmetric coplanar line.
[0029]
As is apparent from FIGS. 3 and 4, for example, when the width of the electrode layers 41 and 42 is w = 160 μm, s / w is 0 when the distance between the input electrode 41 and the termination electrode 42 and the ground electrode 43 is s. .031 to 0.125 is preferable because the amount of microwave reflection at the connection point between the electrode 81 and the electrode 41 and the connection point between the electrode 82 and the electrode 42 can be suppressed to an allowable range. Sometimes, the amount of reflected microwaves can be almost eliminated, which is the best. Further, when the dielectric loss tangent of Si is 0.015 or less (resistivity is 1000 Ω · cm or more), the loss of microwave is preferably 1 dB / cm or less.
[0030]
Further, since it is necessary to suppress circuit constant components such as inductance and capacitance as much as possible at the connection portion between the ground electrode 43 and the base substrate 8, as shown in FIG. 1, a ceramic precision machined substrate whose surface is plated with gold. Are connected to the first sub-substrate 9 via the gold ribbon 7, or a groove is formed between the edge of the ground electrode layer 43 and the edge of the ground electrode 83 as shown in FIG. A method of making a connection by melting in a groove is taken.
[0031]
Further, the first sub-substrate 9 is provided with a groove for arranging the second sub-substrate 1 and a through-hole for hermetic sealing of the optical fiber 3 by a high-precision processing method such as CIM (ceramic injection mold). And the surface is metallized.
[0032]
Thereafter, the first sub-board 9 is mounted on the base board 8 and finally the second sub-board 1 is mounted on the first sub-board 9. Thereby, while the multilayer ceramic substrate is generally excellent in high frequency characteristics, it solves the problem that mechanical accuracy is low in drilling and the like, and an optical module excellent in both optical connection and high frequency characteristics can be configured.
[0033]
In the example of FIG. 1, the ground electrode 43 on the second sub-substrate 1 is electrically connected to the ground electrode 83 on the base substrate 8 through the first sub-substrate 9 with the gold ribbon 7 in order to be surely grounded. Take. As a result, unnecessary inductance and capacitance components can be suppressed as much as possible at the connection point of the ground wire, and reliable grounding can be achieved. If grounding is uncertain, that is, if unnecessary inductance or capacitance components are inserted in the middle of the grounding wire, there is a problem that microwaves are not transmitted to the semiconductor laser at the resonance frequency.
[0034]
In addition, as shown in FIG. 2, there is a method in which the height of both ends of the first sub-substrate 9 is made lower than the upper surface of the second sub-substrate 1, and the ground electrode 83 and the ground electrode layer 43 are placed close to each other for grounding. . As a result, there is a method that can reduce the number of connection points and improve both the high frequency characteristics and the connection workability. In this case, on one side of the second sub-substrate 1 in a region where the ground electrode layer 43 and the ground electrode 83 are close to each other, a slope on one side is formed by forming a V-groove by a width where the ground electrode 43 is formed. By forming a solder mounting groove in a region where 43 and the ground electrode 83 are close to each other, and placing and melting a solder ball made of, for example, SnPb alloy or the like in the groove, a more reliable grounding can be obtained by a simple method. .
[0035]
Next, more detailed examples will be described.
[0036]
First, a substrate having a thickness of 0.525 mm and a resistivity of 1000 Ω · cm was used as the Si sub-substrate 1. The outer shape of the Si sub-substrate 1 was 1.6 × 4.0 mm, and the length of the V-groove 10 on which the fiber 3 was mounted was 3 mm. The asymmetric coplanar line 4 was wired on the Si sub-substrate 1 by 0.65 mm from the mounting portion of the semiconductor laser 2 toward the outer periphery of the substrate. This depends on the outer shape of the Si sub-substrate 1 and is the minimum length required for mounting the Si sub-substrate 1 on the package. The asymmetric coplanar line 4 has a 10 μm thick silica dielectric layer 5 on the Si sub-substrate 1, a 4 μm thick and 160 μm wide underlying layer of Cr and an upper layer of Au, an input electrode 41, a termination The electrode 42 and the ground electrode 43 are used. The intervals between the input electrode 41, the termination electrode 42, and the ground electrode 43 were 30 μm.
[0037]
As a result, the microwave signal propagating through the asymmetric coplanar waveline 4 is confined to the dielectric layer 5 and the air layer, so that the microwave signal is not affected by the high dielectric loss tangent of Si. Propagation loss could be suppressed to less than 0.1 dB at 10 GHz, for example.
[0038]
In the conventional electrode configuration, since there is a oozing of an electromagnetic field to the Si substrate, a large dielectric loss due to Si is received. The dielectric loss tangent of Si differs depending on the resistivity. For example, the dielectric loss tangent is about 0.015 at 1000 Ω · cm used in this embodiment, but this is 10 GHz when a substrate of 10 Ω · cm and dielectric loss tangent 3.3 is used. In the microwave signal, the loss per unit length is 10 dB / cm or more, and the loss when the wiring length is 0.65 mm is 6.5 dB or more.
[0039]
Next, solder was melted into the gap between the one side slope of the V groove having a depth of 200 μm formed along the ground electrode 43 on the side surface of the Si sub-substrate 1 and the edge of the ground electrode forming surface of the base substrate.
[0040]
As a result, parasitic inductance and parasitic capacitance of the ground line can be suppressed as much as possible, and no dip due to resonance occurs within the bandwidth of 15 GHz of the semiconductor laser 2.
[0041]
【The invention's effect】
According to the optical semiconductor device and the optical module of the present invention, the following remarkable effects can be obtained.
[0042]
When transmitting microwaves on a substrate, dielectric loss due to the substrate can be suppressed as much as possible, and transmission loss at high frequencies can be remarkably suppressed, thereby increasing the wiring length on the substrate.
[0043]
-When wiring to multiple elements, the capacitance between the wirings can be reduced, and grounding to the base can be performed easily.
[0044]
-Lower the equivalent dielectric constant of a coplanar wave line by, for example, forming a groove for a stopper of an optical waveguide near the (asymmetric) coplanar wave line composed of a linear electrode, a ground electrode, and a dielectric layer. There is an effect, and it is possible to increase the bandwidth of the optical semiconductor device.
[0045]
-According to the optical module comprising at least the optical semiconductor device of the present invention and a substrate with good heat conductivity on which the optical semiconductor device is mounted, matching of the electromagnetic field between the transmission line on the optical semiconductor device and the transmission line of the substrate Property is improved.
[0046]
In addition, according to the above optical module, the optical connection is achieved by combining a precise optical connection and a good electrical connection with the multilayer ceramic substrate by using, for example, a multilayer ceramic substrate with precision processing as the base. In addition, an optical module having excellent high frequency characteristics can be provided.
[0047]
Furthermore, according to the optical module, the ground electrode of the optical semiconductor device and the ground electrode on the substrate can be reliably connected by a simple method.
[Brief description of the drawings]
1A and 1B are diagrams illustrating an optical semiconductor device according to an embodiment of the present invention, in which FIG. 1A is a perspective view of the optical semiconductor device, FIG. 1B is a cross-sectional view taken along line AA in FIG. FIG. 3 is a partially omitted perspective view of the optical module.
2A and 2B are views for explaining an optical semiconductor device according to another embodiment of the present invention, in which FIG. 2A is a partially omitted perspective view of an optical module, and FIG. 2B is a cross-sectional view taken along line CC in FIG. It is.
FIG. 3 is a diagram showing impedance characteristics of a Si sub-substrate used in the optical semiconductor device according to the embodiment of the present invention.
FIG. 4 is a graph illustrating microwave transmission loss of a dielectric layer used in the optical semiconductor device according to the embodiment of the present invention.
5A and 5B are diagrams illustrating a conventional optical semiconductor device, where FIG. 5A is a perspective view of the optical semiconductor device, FIG. 5B is a cross-sectional view taken along line BB in FIG. 5A, and FIG. FIG.
[Explanation of symbols]
1: Si sub-substrate (second sub-substrate: substrate)
2: Semiconductor laser (optical semiconductor device)
3: Optical fiber (optical waveguide)
4: Asymmetric coplanar wave line 5: Dielectric layer 6: Wire 7: Gold ribbon 8: Multilayer ceramic base substrate (base substrate)
9: Precision ceramic sub-board (first sub-board)
10: V groove 11: Dicing groove 41: Input electrode (linear electrode)
42: Termination electrode (linear electrode)
43: ground electrode 81: input electrode 82: output electrode 83: ground electrodes H1, H2: optical semiconductor devices M1, M2: optical module

Claims (5)

基板と
前記基板上に設けられ、前記基板より誘電正接の小さな誘電体層
前記誘電体層上に設けられ、光半導体素子にマイクロ波信号を伝搬させる線状電極と、
前記線状電極に対し、該線状電極の一方の側縁側に近接して前記基板に設けられる空隙部と、
前記線状電極に対し、該線状電極の他方の側縁側に前記線状電極と間隔を空けて並設される接地電極と、
を具備する光半導体素子配設用基板
A substrate ,
Provided on the substrate, and a small dielectric layers of dielectric loss tangent than the substrate,
A linear electrode that is provided on the dielectric layer and propagates a microwave signal to the optical semiconductor element ;
For the linear electrode, a gap provided in the substrate in the vicinity of one side edge of the linear electrode; and
A grounding electrode arranged in parallel with the linear electrode on the other side edge side of the linear electrode with a spacing from the linear electrode,
An optical semiconductor element mounting substrate comprising:
一端部が前記空隙部に連通するようにして前記基板に設けられ、前記線状電極に実装される光半導体素子と光学的に結合するように光導波体を収容するための溝部をさらに具備する請求項1記載の光半導体素子配設用基板。One end portion is provided on the substrate so as to communicate with the gap portion, and further includes a groove portion for accommodating the optical waveguide so as to be optically coupled to the optical semiconductor element mounted on the linear electrode. The substrate for optical semiconductor element arrangement according to claim 1. 前記基板の誘電正接は0.015以下である請求項1または2記載の光半導体素子配設用基板The substrate for arranging an optical semiconductor element according to claim 1 or 2, wherein a dielectric loss tangent of the substrate is 0.015 or less. 請求項1乃至3のいずれか記載の光半導体素子配設用基板と、
前記線状電極上に実装された光半導体素子と、
を具備する光半導体装置
The substrate for optical semiconductor element disposition according to any one of claims 1 to 3,
An optical semiconductor element mounted on the linear electrode;
An optical semiconductor device comprising:
前記溝部に実装され、前記光半導体素子と光学的に結合する光導波体をさらに具備する請求項2に係る請求項4記載の光半導体装置 The optical semiconductor device according to claim 2, further comprising an optical waveguide mounted in the groove and optically coupled to the optical semiconductor element .
JP27843798A 1998-09-30 1998-09-30 Optical semiconductor device Expired - Fee Related JP4041226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27843798A JP4041226B2 (en) 1998-09-30 1998-09-30 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27843798A JP4041226B2 (en) 1998-09-30 1998-09-30 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JP2000114641A JP2000114641A (en) 2000-04-21
JP4041226B2 true JP4041226B2 (en) 2008-01-30

Family

ID=17597338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27843798A Expired - Fee Related JP4041226B2 (en) 1998-09-30 1998-09-30 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP4041226B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050821A (en) * 2000-07-31 2002-02-15 Kyocera Corp Optical board assembly and optical module using it
JP4197234B2 (en) 2001-12-28 2008-12-17 三菱電機株式会社 Optical communication device
JP4586337B2 (en) * 2002-08-26 2010-11-24 住友電気工業株式会社 Semiconductor laser module and semiconductor laser device
GB201611574D0 (en) 2016-07-01 2016-08-17 Oclaro Tech Ltd Ground structure in rf waveguide array
GB201611576D0 (en) 2016-07-01 2016-08-17 Oclaro Tech Ltd Ground structure in RF waveguide array

Also Published As

Publication number Publication date
JP2000114641A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
JP5580994B2 (en) Optical module
JP3803596B2 (en) Package type semiconductor device
JP5654288B2 (en) Optical module and high frequency module
KR20120054209A (en) Optical modules
US6862378B2 (en) Silicon-based high speed optical wiring board
JP4041226B2 (en) Optical semiconductor device
US7027674B2 (en) Optical module and optical transmission apparatus
US6796723B2 (en) Submount for opto-electronic module and packaging method using the same
JP3823102B2 (en) Optical transmission module
JPH09172221A (en) Mounting structure of optical semiconductor device
JPH04113648A (en) Semiconductor device, and evaluating and mounting method thereof
JP2004064459A (en) Transmission line substrate for high frequency and method for manufacturing same
JP2002535854A (en) Optical interface device
JP3769388B2 (en) Optical semiconductor device
WO2002082578A1 (en) Connection structure of connector pin and signal line and semiconductor package using it
JP4231166B2 (en) Optical semiconductor device
US20110226518A1 (en) Substrate of circuit module and manufacturing method therefor
JP7036646B2 (en) Packages for semiconductor devices and semiconductor devices
JP2004200279A (en) Photoelectric device
JP2000164970A (en) Optical element module
JP2002043460A (en) Package for high frequency
JP2002050821A (en) Optical board assembly and optical module using it
JP3048992B2 (en) MMIC module
CA3160512C (en) High-frequency line structure, subassembly, line card, and method for manufacturing high-frequency line structure
JP7255702B2 (en) High-frequency line connection structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees