JP3823102B2 - Optical transmission module - Google Patents

Optical transmission module Download PDF

Info

Publication number
JP3823102B2
JP3823102B2 JP2003198911A JP2003198911A JP3823102B2 JP 3823102 B2 JP3823102 B2 JP 3823102B2 JP 2003198911 A JP2003198911 A JP 2003198911A JP 2003198911 A JP2003198911 A JP 2003198911A JP 3823102 B2 JP3823102 B2 JP 3823102B2
Authority
JP
Japan
Prior art keywords
optical
line
signal
transmission line
coplanar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003198911A
Other languages
Japanese (ja)
Other versions
JP2005038984A (en
Inventor
善昭 丹羽
英之 ▲桑▼野
直樹 松嶋
哲哉 加藤
将大 平井
Original Assignee
日本オプネクスト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本オプネクスト株式会社 filed Critical 日本オプネクスト株式会社
Priority to JP2003198911A priority Critical patent/JP3823102B2/en
Publication of JP2005038984A publication Critical patent/JP2005038984A/en
Application granted granted Critical
Publication of JP3823102B2 publication Critical patent/JP3823102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバ通信に用いられ、電気信号を光信号に変換する発光素子もしくは変調素子もしくは変調器付発光素子において、特に良好な高周波特性が要求される光通信に用いて好適な光伝送モジュールに関する。
【0002】
【従来の技術】
図7は、特開2001−308130号公報に開示された従来の光伝送モジュールの上面図で、図8は、図7の従来例のリターンロスS11を示す。
【0003】
図7においては、導電性ベース基板上11に、変調器付発光素子20が実装されたヒートシンク13と、伝送線路17を形成した誘電体基板12と、インピーダンス整合用の終端抵抗であるマッチング抵抗14が配設した構成となっている。
【0004】
誘電体基板12上の伝送線路17は高周波電気信号を伝送するコプレーナ型の線路で信号線路18の両側にグランド線路19が配設されている。
【0005】
変調器付発光素子20は裏面電極により発光素子22および外部変調素子21がヒートシンク13と電気的に接続され、ヒートシンク13を介し接地され、一方、グランド線路19、マッチング抵抗14の一端はビアホール23を介してベース基板11に接地され、それぞれ同一電位にされている。
【0006】
各部品間の配線は、信号線路18から外部変調器21上面の電極パットを介してマッチング抵抗14へ、変調器付発光素子20の光源である発光素子22にはワイヤボンディング15、16によって各々接続されている。また、発光素子22は、ぺデスタル(浮きパット)にワイヤボンデング24によって接続される。
【0007】
上記従来技術においては、信号線路18に外部より高周波信号が入力され、信号に基づく光変調を行い、光結合系(図示せず)を介して光ファイバ(図示せず)へ入射する。なお、高周波信号は2〜10GHzである。
【0008】
【特許文献1】
特開2001−308130号公報
【0009】
【発明が解決しようとする課題】
上記のように電気信号にて発光素子若しくは変調素子若しくは変調器付発光素子を変調する場合、信号源から見たこれら回路のインピーダンスと、回路から見た信号源のインピーダンスとが一致しないときは、信号源からの入力信号のすべてが素子へ到達せず、反射成分として信号源へ戻る。一般にこの反射成分はリターンロスS11と呼ばれ、この値が大きい場合電気信号の波形に乱れが生じる。光伝送モジュールにおいて、特に光信号を高い周波数・長い距離で受信側まで誤りなく伝送したときに良好な光波形を得るためにはリターンロスS11を小さくすることが求められる。このため、伝送路・抵抗等はこれを考慮して特性インピーダンスの整合をとった設計がなされている。
【0010】
しかし、実際には伝送路・抵抗は有限のサイズを有しており、このサイズに起因した反射が発生してしまう。抵抗自身も特性上無視できないサイズを有しており、抵抗値を信号源や伝送路と同じ値に設定してもその部分で必ず反射は発生してしまう。
【0011】
また従来例の場合、外部変調器と抵抗を接続するワイヤボンディング用電極パットと、ベース基板とで容量成分を持つため、より特性に悪影響を及ぼす。
【0012】
上記従来技術においてのリターンロスS11解析結果を図8に示す。このとき、10GHzにおいて良好な光波形を得るのにリターンロスS11の余裕があるとは言い難く、例えば伝送線路形成時の誤差など、各構成部品の寸法や搭載位置、特性の誤差を考慮すると、特に長距離・大容量伝送を実施する場合において製造上歩留まりが低下するという課題があった。
【0013】
本発明の目的は、上記課題を鑑みて、駆動回路を通し発光素子もしくは外部変調素子に流れ込む電気信号が、終端部の抵抗サイズに起因する反射を少なくし、広帯域な光変調特性の光伝送モジュールを実現することにある。
【0014】
【課題を解決するための手段】
上記目的を達成するために、本発明は、伝送線路の終端を目的とした抵抗素子及び該抵抗素子の側方近傍にグランド線路が配設されたコプレーナ型若しくはコプレーナスプリット型の線路を前記伝送線路が形成された基板に備えたことを特徴とする光伝送モジュールである。
【0015】
また、本発明は、前記終端抵抗素子における特性インピーダンスが前記伝送線路における特性インピーダンスと±5%の範囲内で整合がとられていることを特徴とする。即ち、前記終端抵抗素子及び電極パットの幅と、前記終端抵抗素子及び電極パットとグランド線路との間隔とを、前記伝送線路の特性インピーダンスと同等の値(±5%範囲内)になる構成とする。
【0016】
また、本発明は、前記終端抵抗素子を、前記伝送線路の信号線路又は該信号線路に接続された電極パットから信号伝搬方向に対して交差する方向(ほぼ垂直方向も含む)に伸ばして前記グランド線路に接続するように形成したことを特徴とする。
【0017】
また、本発明は、前記終端抵抗素子を、前記伝送線路の信号線路又は該信号線路に接続された電極パットから分岐して前記グランド線路に接続するように形成したことを特徴とする。
【0018】
また、本発明は、前記伝送線路の信号線路の端部と前記光素子の電極との間をワイヤ若しくはリボンで接続し、前記光素子の電極と前記抵抗素子の所定の箇所に設けられた電極パットとの間をワイヤ若しくはリボンで接続して構成したことを特徴とする。
【0019】
また、本発明は、前記基板の材質がセラミック若しくはシリコンであるのことを特徴とする。前記終端抵抗素子及び電極パットの幅と、前記終端抵抗素子及び電極パットとグランド線路との間隔とを、信号源及び伝送線路の特性インピーダンスと同等の値(±5%範囲内)になる構成とする。
【0020】
以上説明した構成によれば、終端抵抗素子及び電極パットが特性インピーダンスの整合がとれたコプレーナ型若しくはコプレーナスプリット型の線路の一部としてほぼ集中定数と見なすことができるので、駆動回路を通し発光素子若しくは変調素子若しくは変調器付発光素子に流れ込む電気信号の反射を少なくすることができ、その結果、広帯域な光変調特性の光伝送モジュールを実現することが可能となる。
【0021】
【発明の実施の形態】
本発明の光伝送モジュールの実施の形態について図面を用いて説明する。
【0022】
図1(a)(b)は各々本発明に係る光伝送モジュールの基板の2つの基本構成を示す図である。図2(a)〜(d)は各々本発明に係る伝送線路の信号線路から信号伝搬方向に対して交差する複数方向に分岐する終端抵抗素子の実施例を示す図である。図3(a)(b)は各々終端抵抗素子の異なるトリミング形状を示す図である。図4は図1(a)(b)及び図2(a)〜(d)に示す各種終端抵抗形状における解析された結果である周波数[GHz]に対するリターンロスS11[dB]を示す図である。
【0023】
まず、本発明に係る光伝送モジュールの第1の基本構成について図1(a)を用いて説明する。即ち、第1の基本構成は、図1(a)に示す様に、電気信号を伝える高周波伝送線路L1と終端を目的とした抵抗素子R1とが形成されたベースとなる基板1に、発光素子もしくは変調素子もしくは変調器付発光素子の光素子2が搭載されている。
【0024】
基板1はセラミックもしくはシリコンなどの材質が適しており、伝送線路L1、光素子搭載用はんだパターン3、薄膜の終端抵抗素子R1をウエハプロセスにより一括に形成している。これにより大量生産・低価格化には好適である。また、これら両材質のうち、セラミックは信号の損失が少なく比較的長い信号路の形成が可能であり、一方シリコンはレンズ等の光学素子を位置決めするためのV溝を容易に形成できるため、発光素子を精度よく搭載するためのインデックス(図示せず)や、上記レンズ等の光学素子を搭載する超高精度位置決め用溝を具備することが可能であり、組立精度の向上・工程の短縮や、部品点数の削減・低背化ができ、価格低減によい。
【0025】
伝送線路L1は、信号線路L11の両側をグランド線路L21に挟まれたコプレーナ型の伝送線路としており、その特性インピーダンスは外部の信号源(図示せず)と同じく、例えば50Ωに設計し、作製時±5%以内になる様に設定している。なお、伝送線路L1としては、グランド線路がスプリットされたコプレーナスプリット型の伝送線路であってもよい。そして、伝送線路L1の信号線路L11の端部と光素子2の電極との間はワイヤ若しくはリボンW1によってボンディング接続されている。
【0026】
また、信号線路L11には光伝送モジュールの仕様に応じてインピーダンス調整を行うための抵抗素子Rdを具備してもよく、必要に応じてワイヤ若しくはリボンボンディングなどでオープン/ショートすることで調整する。ショートとは、抵抗素子Rdの両端をワイヤボンディング接続する場合であり、オープンとは接続しない場合である。
【0027】
はんだパターン3にはAn/Sn等のはんだが用いられ、発光素子もしくは変調素子もしくは変調器付発光素子の光素子2が搭載されて電気的に接地が行なわれる。即ち、光素子2は、はんだパターン3を介して接地されることになる。
【0028】
終端を目的とする抵抗素子R1は、材質にTaNなどを用い、図示の通り伝送線路L1の先端から信号の伝搬方向に向かって伸びて、両側をグランド線路L21に挟まれたコプレーナ型の線路で形成すべく形成されている。勿論、伸びた終端抵抗素子R1の側方近傍にグランド線路L21が配設されたコプレーナスプリット型の線路で形成してもよい。そして、上記終端抵抗素子R1の抵抗値は伝送線路L1と同じく例えば50Ωに調整され、終端抵抗素子R1の一端はワイヤ若しくはリボンボンディング用電極パットP1に接続され、他端はグランド線路L21に接続されて接地されている。更に、光素子2の電極パターンと電極パットP1との間はワイヤW2によりボンディング接続される。これにより、抵抗素子R1は、他端をグランド線路L21に接続された終端を目的とすることが可能となり、しかも、側方にグランド線路L21が配設されたコプレーナ型若しくはコプレーナスプリット型の線路を形成して伝送線路L1と同じく例えば50Ωに調整された特性インピーダンスを得ることが可能となる。
【0029】
この場合、終端抵抗素子R1及び電極パットP1は、両側に形成されたグランド線路L21とで例えば50Ωの特性インピーダンスとなる様に、終端抵抗素子R1及び電極パットP1の幅と、終端抵抗素子R1及び電極パットP1とグランド線路L21との間隔とを設計することにより、図4に細い実線で示す通り、太い実線で示す従来例と比較してリターンロスS11を抑制することが可能となる。例えば、周波数10GHzにおいてリターンロスS11が約5dBが改善されていることが分かる。
【0030】
次に、本発明に係る光伝送モジュールの第2の基本構成について図1(b)を用いて説明する。第2の基本構成において、第1の基本構成との相違点は伸びた終端抵抗素子R2を少なくとも1本または複数本に分岐させたことにある。図1(b)の場合は、両側にグランド線路L22が配設された電極パットP1の他端とグランド線路L22とを接続する終端抵抗素子R2の形状は、図示の通り信号線路L12からグランド線路L22へ信号伝搬方向に対し垂直な電界方向にほぼ平行な複数本に分岐して配設してコプレーナ型の線路を形成している。これは、信号線路L12とグランド線路L22との間に常に生じている信号伝搬方向と垂直方向の電界方向にほぼ向けて終端抵抗素子R2を配設することにより、つまり電界方向に対してほぼ平行に1本または複数本に分岐した例えばT字形状の終端抵抗素子R2を配設することにより、終端抵抗素子R2に流れる電流をスムーズに、つまり反射を少なく電流を流し、終端させる効果を狙ったものである。終端抵抗素子R2が1本の場合には、電極パットP1の他端と片側のグランド線路L22との間に接続されることになる。また、終端抵抗素子R2は、上記信号伝搬方向に対して垂直方向を含めて傾き(交差する方向)を有して配設してもよい。
【0031】
これによりリターンロスS11は図4に示す通り、大幅に改善することが可能となる。図1(b)に示す形状の場合、例えば、周波数10GHzにおいては約20dB改善されていることになる。なお、第2の基本構成においても、終端抵抗素子R2及び電極パットP1は側方近傍にグランド線路L22が配設されたコプレーナ型もしくはコプレーナスプリット型の線路を形成し、伝送線路L2と同じく例えば50Ωに調整された特性インピーダンスを得るように、終端抵抗素子R2及び電極パットP1の幅と、終端抵抗素子R2及び電極パットP1とグランド線路L22との間隔とが設計される。
【0032】
第2の基本構成における様々な変形例を図2(a)、(b)、(c)、(d)に示す。
【0033】
図2(a)は、伝送線路L2の信号線路L12の端部に直接終端抵抗素子R2を接続してコプレーナ型若しくはコプレーナスプリット型の線路を形成している。そして、信号線路L12の端部と光素子2の電極との間でワイヤ若しくはリボンW1をボンディング接続して構成する。その結果、リターンロスS11は図4に長い鎖線で示す通り、大幅に改善されていることが分かる。
【0034】
また、図2(b)は、図1(b)の構成とほぼ同様に、光素子2の電極との間でワイヤ若しくはリボンW2でボンディング接続された電極パットP1の他端に上記電界方向に対してほぼ平行に一本の終端抵抗素子R2の中間部を繋げて構成した。その結果、リターンロスS11は図4に2点鎖線で示す通り、大幅に改善されていることが分かる。
【0035】
また、図2(c)は、光素子2の電極との間でワイヤ若しくはリボンW2でボンディング接続された電極パットP1の他端にT字状の終端抵抗素子R2を繋げて構成した。その結果、リターンロスS11は図4に短い鎖線で示す通り、より大幅に改善されていることが分かる。特に、周波数10GHzにおいては、リターンロスS11として約50dBより大幅に改善されていることが分かる。
【0036】
また、電流は電界方向に力を受けるのと他に、当然信号伝搬方向にも受けているので、図2(d)に示すように終端抵抗素子R2を電界方向だけではなく、信号伝搬方向成分を持つように配設したり、信号伝搬方向に対してある傾斜角度を持たせるように配設することにより、更にリターンロスS11を図4に細い1点鎖線で示すように、リターンロスS11は、図1(b)及び図2(a)に示す形状よりも改善していることが分かる。
【0037】
また、図2(b)〜(d)に示すように例えば発光素子の電極から終端抵抗素子R2の端部である電極パットP1へ、インダクタンスの効果があるワイヤ若しくはリボンW2でボンディング接続して配線することにより、発光素子上の電極と裏面グランド線路L22との間、即ち発光素子上下面で生ずる容量成分Cを打ち消すことができるため、よりリターンロスS11が少なく、広帯域な特性を得ることが可能となる。
【0038】
薄膜プロセスにより抵抗を作製する場合は抵抗値のばらつきを抑制するためレーザトリミングなどの手法による抵抗値の調整が用いられるが、このときトリミング10の形状は図3(a)の様な方法が最も良く、次に図3(b)の様に実施するとリターンロスS11はよい。
【0039】
なお、図1(a)、(b)双方について、信号線路や光信号源である発光素子の配線にはワイヤボンディングもしくはリボンボンディングによって図示の通りに接続される。
【0040】
【実施例】
以下、本発明に係る光伝送モジュールの実施例について説明する。
【0041】
図5には光伝送モジュールの基板の実施例を示す。図6には本実施例でのリターンロスS11のグラフを表す。
【0042】
本実施例では、基板1にはシリコンを選択し、基板上には伝送路L3と、はんだパターン5、薄膜抵抗素子R3とレンズ搭載用のV溝6と光素子搭載用インデックス7を一括に作製した。
【0043】
伝送線路L3は、基板1との絶縁を目的としたSiO等の酸化膜(絶縁膜)を堆積させた上に、図5の様な信号線路L13の両側にグランド線路L23を配設した例えば50Ωのコプレーナ型の伝送線路とした。なお、線路メタライズ膜構成はTiPtAuとし、表皮効果を考慮してAu厚を2μm以上とした。そして、信号線路L13の端部と光素子である変調器付発光素子8の電極との間を、ワイヤ若しくはリボンW1でボンディング接続した。
【0044】
終端を目的とした抵抗素子R3は、リターンロスS11と基板サイズ小型化の観点から、図示の通り、変調器付発光素子8の電極との間でワイヤ若しくはリボンW2でボンディング接続された電極パットP1を含めてT字形状を選択し、終端抵抗素子R3の幅と、終端抵抗素子R3とグランド線路L23との間の間隔とを最適化し、インピーダンス整合をとっている。また、抵抗値はレーザトリミングにより調整を行い、2つの抵抗の合成値が伝送線路L3と同様に50Ωに設定し、誤差は±5%以内とするようにした。なお、抵抗材質にはTaNを使用した。
【0045】
光素子には変調器付発光素子8を用い、変調器付発光素子8の表面の電極パターン9とインデックス7とを画像認識し、変調器付発光素子8を精密搭載機により、基板はんだパターン5に高精度に搭載した。
【0046】
また、変調器付発光素子8への配線はφ25μm程度のAuワイヤを使用し、特にワイヤボンディングW2は素子容量Cを鑑みて、上記素子容量Cを打ち消すリアクタンスLから長さを0.7mmとした。
【0047】
これにより、得られたリターンロスS11が図6の通りである。これによると、リターンロスS11は10GHzで−36dBに改善された。
【0048】
【発明の効果】
本発明によれば、光伝送モジュールにおいて低周波領域から高周波領域までの広い周波数範囲でリターンロスを低減することが可能な光伝送モジュールを提供することが出来る。
【図面の簡単な説明】
【図1】本発明の実施の形態による、光伝送モジュールに使用する基板の基本構成を模式的に示す上面図である。
【図2】本発明の実施の形態による、光伝送モジュールに使用する基板に形成される終端抵抗素子の様々な形状を模式的に示す上面図である。
【図3】本発明に係る終端抵抗素子のトリミング形状を模式的に示す上面図である。
【図4】本発明の実施の形態による、各終端抵抗素子の形状におけるリターンロスS11の解析結果を示す図である。
【図5】本発明の実施例による、光伝送モジュールの基板を模式的に示す上面図である。
【図6】本発明の実施例による、リターンロスS11の解析結果を示す図である。
【図7】従来例の、光伝送モジュールに使用する基板を模式的に示す上面図である。
【図8】従来例の、リターンロスS11を示す図である。
【符号の説明】
1…基板、2…光素子(発光素子若しくは変調素子若しくは変調器付発光素子)、3…はんだパターン、5…はんだパターン、6…V溝、7…インデックス、8…変調器付発光素子、9…電極パターン(電極)、10…トリミング、L1、L2、L3…伝送線路、L11、L12、L13…信号線路、L21、L22、L23…グランド線路、R1、R2、R3…終端抵抗素子、Rd…抵抗素子、S11…リターンロス、P1…電極パット、W1、W2、W3…ワイヤ若しくはリボンボンディング。
[0001]
BACKGROUND OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is used in optical fiber communication, and is suitable for optical communication that requires particularly good high-frequency characteristics in a light-emitting element, a modulation element, or a light-emitting element with a modulator that converts an electrical signal into an optical signal. Regarding modules.
[0002]
[Prior art]
FIG. 7 is a top view of a conventional optical transmission module disclosed in Japanese Patent Laid-Open No. 2001-308130, and FIG. 8 shows a return loss S11 of the conventional example of FIG.
[0003]
In FIG. 7, a heat sink 13 on which a light emitting element 20 with a modulator is mounted on a conductive base substrate 11, a dielectric substrate 12 on which a transmission line 17 is formed, and a matching resistor 14 that is a termination resistor for impedance matching. Is arranged.
[0004]
The transmission line 17 on the dielectric substrate 12 is a coplanar type line for transmitting a high-frequency electric signal, and ground lines 19 are disposed on both sides of the signal line 18.
[0005]
In the light emitting element 20 with a modulator, the light emitting element 22 and the external modulation element 21 are electrically connected to the heat sink 13 by the back electrode, and are grounded through the heat sink 13, while one end of the ground line 19 and the matching resistor 14 has a via hole 23. And grounded to the base substrate 11 through the same potential.
[0006]
The wiring between the components is connected from the signal line 18 to the matching resistor 14 via the electrode pad on the upper surface of the external modulator 21, and to the light emitting element 22 that is the light source of the light emitting element 20 with the modulator by wire bonding 15 and 16. Has been. The light emitting element 22 is connected to a pedestal (floating pad) by wire bonding 24.
[0007]
In the above prior art, a high-frequency signal is input to the signal line 18 from the outside, performs optical modulation based on the signal, and enters the optical fiber (not shown) through an optical coupling system (not shown). The high frequency signal is 2 to 10 GHz.
[0008]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-308130
[Problems to be solved by the invention]
When modulating a light emitting element or a modulation element or a light emitting element with a modulator with an electrical signal as described above, when the impedance of these circuits viewed from the signal source does not match the impedance of the signal source viewed from the circuit, All of the input signal from the signal source does not reach the element and returns to the signal source as a reflection component. Generally, this reflection component is called a return loss S11, and when this value is large, the electric signal waveform is disturbed. In the optical transmission module, it is required to reduce the return loss S11 in order to obtain a good optical waveform particularly when an optical signal is transmitted to the receiving side without error at a high frequency and a long distance. For this reason, transmission lines, resistors, and the like are designed in consideration of the characteristic impedance matching.
[0010]
However, in reality, the transmission path / resistance has a finite size, and reflection due to this size occurs. The resistor itself has a size that cannot be ignored due to its characteristics, and even if the resistance value is set to the same value as that of the signal source or the transmission line, reflection always occurs at that portion.
[0011]
In the case of the conventional example, the wire bonding electrode pad for connecting the external modulator and the resistor and the base substrate have a capacitance component, so that the characteristics are further adversely affected.
[0012]
FIG. 8 shows the return loss S11 analysis result in the above prior art. At this time, it is difficult to say that there is a margin of return loss S11 to obtain a good optical waveform at 10 GHz. For example, when taking into account errors in the dimensions, mounting positions, and characteristics of each component, such as errors during transmission line formation, In particular, when carrying out long-distance and large-capacity transmission, there is a problem that the manufacturing yield decreases.
[0013]
In view of the above problems, an object of the present invention is to provide an optical transmission module having a wide-band light modulation characteristic, in which an electric signal flowing into a light emitting element or an external modulation element through a drive circuit reduces reflection due to the resistance size of the terminal portion. Is to realize.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a resistance element for terminating a transmission line and a coplanar type or coplanar split type line in which a ground line is disposed near the side of the resistance element. The optical transmission module is provided on a substrate on which is formed.
[0015]
The present invention is characterized in that the characteristic impedance of the termination resistor is matched with the characteristic impedance of the transmission line within a range of ± 5%. That is, the width of the termination resistance element and the electrode pad and the interval between the termination resistance element and the electrode pad and the ground line have values equivalent to the characteristic impedance of the transmission line (within ± 5% range). To do.
[0016]
In the present invention, the termination resistance element is extended from a signal line of the transmission line or an electrode pad connected to the signal line in a direction crossing a signal propagation direction (including a substantially vertical direction) and the ground. It is formed so as to be connected to a track.
[0017]
Further, the present invention is characterized in that the termination resistor element is formed so as to be branched from a signal line of the transmission line or an electrode pad connected to the signal line and connected to the ground line.
[0018]
In the present invention, the signal line end of the transmission line and the electrode of the optical element are connected by a wire or a ribbon, and the electrode provided at a predetermined position of the electrode of the optical element and the resistance element It is characterized in that the pad is connected with a wire or ribbon.
[0019]
In the present invention, the material of the substrate is ceramic or silicon. A configuration in which the width of the termination resistance element and the electrode pad and the interval between the termination resistance element and the electrode pad and the ground line are equal to the characteristic impedance of the signal source and the transmission line (within ± 5% range); To do.
[0020]
According to the configuration described above, the termination resistor element and the electrode pad can be regarded as a lumped constant as a part of the coplanar type or coplanar split type line in which the characteristic impedance is matched. Alternatively, it is possible to reduce the reflection of the electric signal flowing into the modulation element or the light emitting element with a modulator, and as a result, it is possible to realize an optical transmission module having a broadband optical modulation characteristic.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of an optical transmission module of the present invention will be described with reference to the drawings.
[0022]
FIGS. 1A and 1B are diagrams showing two basic configurations of a substrate of an optical transmission module according to the present invention. FIGS. 2A to 2D are diagrams showing examples of termination resistance elements that branch from a signal line of a transmission line according to the present invention in a plurality of directions intersecting the signal propagation direction. FIGS. 3A and 3B are diagrams showing different trimming shapes of the terminating resistance elements. FIG. 4 is a diagram showing the return loss S11 [dB] with respect to the frequency [GHz], which is the result of analysis in the various termination resistor shapes shown in FIGS. 1 (a) and 1 (b) and FIGS. 2 (a) to (d). .
[0023]
First, the first basic configuration of the optical transmission module according to the present invention will be described with reference to FIG. That is, as shown in FIG. 1A, the first basic configuration is such that a light-emitting element is formed on a base substrate 1 on which a high-frequency transmission line L1 for transmitting an electric signal and a resistance element R1 for termination are formed. Or the optical element 2 of a light emitting element with a modulation element or a modulator is mounted.
[0024]
The substrate 1 is suitably made of a material such as ceramic or silicon, and the transmission line L1, the optical element mounting solder pattern 3, and the thin-film termination resistor element R1 are collectively formed by a wafer process. This is suitable for mass production and price reduction. Of these two materials, ceramics can form a relatively long signal path with little signal loss, while silicon can easily form a V-groove for positioning an optical element such as a lens. It is possible to provide an index (not shown) for mounting the element with high accuracy and a groove for positioning with an ultra-high accuracy for mounting an optical element such as the above lens, improving assembly accuracy, shortening the process, The number of parts can be reduced and the height can be reduced, which is good for price reduction.
[0025]
The transmission line L1 is a coplanar transmission line in which both sides of the signal line L11 are sandwiched by the ground line L21, and its characteristic impedance is designed to be, for example, 50Ω as in the case of an external signal source (not shown). It is set to be within ± 5%. The transmission line L1 may be a coplanar split transmission line in which the ground line is split. The end of the signal line L11 of the transmission line L1 and the electrode of the optical element 2 are bonded by a wire or ribbon W1.
[0026]
Further, the signal line L11 may be provided with a resistance element Rd for performing impedance adjustment according to the specification of the optical transmission module, and is adjusted by opening / shorting with a wire or ribbon bonding as necessary. A short circuit is a case where both ends of the resistance element Rd are connected by wire bonding, and an open state is a case where no connection is made.
[0027]
Solder such as An / Sn is used for the solder pattern 3, and the light emitting element, the modulation element, or the optical element 2 of the light emitting element with a modulator is mounted and electrically grounded. That is, the optical element 2 is grounded via the solder pattern 3.
[0028]
The resistive element R1 for termination is made of Ta 2 N or the like, and extends from the front end of the transmission line L1 toward the signal propagation direction as shown in the figure, and is a coplanar type having both sides sandwiched by the ground line L21. It is formed to be formed with a track. Of course, it may be formed of a coplanar split type line in which the ground line L21 is disposed in the vicinity of the side of the extended terminal resistance element R1. The resistance value of the termination resistance element R1 is adjusted to, for example, 50Ω, like the transmission line L1, one end of the termination resistance element R1 is connected to the wire or ribbon bonding electrode pad P1, and the other end is connected to the ground line L21. Is grounded. Further, the electrode pattern of the optical element 2 and the electrode pad P1 are bonded by a wire W2. Accordingly, the resistance element R1 can be used as a termination having the other end connected to the ground line L21, and a coplanar type or coplanar split type line in which the ground line L21 is disposed on the side is provided. It is possible to obtain the characteristic impedance adjusted to, for example, 50Ω as in the case of the transmission line L1.
[0029]
In this case, the termination resistance element R1 and the electrode pad P1 have a width of the termination resistance element R1 and the electrode pad P1, the termination resistance element R1, and the grounding line L21 formed on both sides, for example. By designing the distance between the electrode pad P1 and the ground line L21, the return loss S11 can be suppressed as compared with the conventional example shown by the thick solid line as shown by the thin solid line in FIG. For example, it can be seen that the return loss S11 is improved by about 5 dB at a frequency of 10 GHz.
[0030]
Next, a second basic configuration of the optical transmission module according to the present invention will be described with reference to FIG. The second basic configuration is different from the first basic configuration in that the extended termination resistance element R2 is branched into at least one or a plurality. In the case of FIG. 1B, the shape of the terminating resistor element R2 connecting the other end of the electrode pad P1 having the ground line L22 disposed on both sides and the ground line L22 is as shown in the figure from the signal line L12 to the ground line. A coplanar type line is formed by branching to a plurality of lines substantially parallel to the electric field direction perpendicular to the signal propagation direction to L22. This is because the terminating resistor element R2 is disposed substantially in the direction of the electric field perpendicular to the signal propagation direction always occurring between the signal line L12 and the ground line L22, that is, substantially parallel to the electric field direction. By arranging, for example, a T-shaped termination resistor element R2 branched into one or a plurality of elements, the current flowing through the termination resistor element R2 is smoothly smoothed, that is, the current is reduced and less current is applied to terminate the resistor. Is. When there is one termination resistance element R2, it is connected between the other end of the electrode pad P1 and the ground line L22 on one side. Further, the terminating resistor element R2 may be disposed with an inclination (direction intersecting) including the direction perpendicular to the signal propagation direction.
[0031]
As a result, the return loss S11 can be greatly improved as shown in FIG. In the case of the shape shown in FIG. 1B, for example, the frequency is improved by about 20 dB at a frequency of 10 GHz. Also in the second basic configuration, the terminating resistor element R2 and the electrode pad P1 form a coplanar type or coplanar split type line in which the ground line L22 is disposed in the vicinity of the side, and, for example, 50Ω as in the transmission line L2. The width of the termination resistor R2 and the electrode pad P1 and the distance between the termination resistor R2 and the electrode pad P1 and the ground line L22 are designed so as to obtain the characteristic impedance adjusted to the above.
[0032]
Various modifications of the second basic configuration are shown in FIGS. 2 (a), (b), (c), and (d).
[0033]
In FIG. 2A, a termination resistor element R2 is directly connected to the end of the signal line L12 of the transmission line L2 to form a coplanar type or coplanar split type line. A wire or ribbon W1 is bonded and connected between the end of the signal line L12 and the electrode of the optical element 2. As a result, it is understood that the return loss S11 is greatly improved as shown by a long chain line in FIG.
[0034]
2 (b) is similar to the configuration of FIG. 1 (b) in the direction of the electric field at the other end of the electrode pad P1 bonded to the electrode of the optical element 2 by a wire or ribbon W2. On the other hand, the intermediate part of one termination resistance element R2 is connected substantially in parallel. As a result, it can be seen that the return loss S11 is greatly improved as shown by a two-dot chain line in FIG.
[0035]
In FIG. 2C, a T-shaped termination resistor element R2 is connected to the other end of the electrode pad P1 bonded to the electrode of the optical element 2 with a wire or ribbon W2. As a result, it can be seen that the return loss S11 is significantly improved as shown by a short chain line in FIG. In particular, at a frequency of 10 GHz, it can be seen that the return loss S11 is significantly improved from about 50 dB.
[0036]
In addition to receiving the force in the electric field direction, the current is naturally also received in the signal propagation direction. Therefore, as shown in FIG. 2D, the terminal resistor R2 is not only in the electric field direction but also in the signal propagation direction component. The return loss S11 is further arranged so as to have a certain inclination angle with respect to the signal propagation direction, as shown by a thin one-dot chain line in FIG. As can be seen from FIG. 1B and FIG. 2A, the shape is improved.
[0037]
Further, as shown in FIGS. 2B to 2D, for example, a wire having an inductance effect or a ribbon W2 is bonded and connected from the electrode of the light emitting element to the electrode pad P1 which is the end of the termination resistance element R2. By doing so, it is possible to cancel the capacitance component C generated between the electrode on the light emitting element and the back surface ground line L22, that is, the upper and lower surfaces of the light emitting element, so that it is possible to obtain a wide band characteristic with less return loss S11. It becomes.
[0038]
When a resistor is manufactured by a thin film process, adjustment of the resistance value by a technique such as laser trimming is used in order to suppress variation in resistance value. At this time, the shape of the trimming 10 is the method as shown in FIG. Next, if it is implemented as shown in FIG. 3B, the return loss S11 is good.
[0039]
1A and 1B, the signal line and the wiring of the light emitting element as the optical signal source are connected as shown in the figure by wire bonding or ribbon bonding.
[0040]
【Example】
Hereinafter, examples of the optical transmission module according to the present invention will be described.
[0041]
FIG. 5 shows an embodiment of the substrate of the optical transmission module. FIG. 6 shows a graph of return loss S11 in the present embodiment.
[0042]
In this embodiment, silicon is selected for the substrate 1, and a transmission line L3, a solder pattern 5, a thin film resistor R3, a lens mounting V-groove 6 and an optical device mounting index 7 are collectively produced on the substrate. did.
[0043]
The transmission line L3 is formed by depositing an oxide film (insulating film) such as SiO 2 for the purpose of insulation from the substrate 1 and arranging ground lines L23 on both sides of the signal line L13 as shown in FIG. A 50Ω coplanar transmission line was used. The line metallized film configuration was TiPtAu, and the Au thickness was 2 μm or more in consideration of the skin effect. Then, the end of the signal line L13 and the electrode of the light emitting element with modulator 8 which is an optical element were connected by bonding with a wire or a ribbon W1.
[0044]
The resistive element R3 for the purpose of termination is an electrode pad P1 bonded and connected with a wire or a ribbon W2 between the electrode of the light emitting element 8 with a modulator as shown in the figure from the viewpoint of the return loss S11 and the reduction in substrate size. T-shape is selected, and the impedance matching is achieved by optimizing the width of the termination resistance element R3 and the interval between the termination resistance element R3 and the ground line L23. Also, the resistance value was adjusted by laser trimming, and the combined value of the two resistances was set to 50Ω as in the transmission line L3, and the error was set within ± 5%. Note that Ta 2 N was used as the resistance material.
[0045]
The light-emitting element 8 with a modulator is used as the optical element, and the electrode pattern 9 and the index 7 on the surface of the light-emitting element 8 with the modulator are image-recognized. Equipped with high precision.
[0046]
The wiring to the light emitting element 8 with a modulator uses Au wire of about φ25 μm, and the wire bonding W2 is 0.7 mm in length from the reactance L that cancels the element capacity C in view of the element capacity C. .
[0047]
Thereby, the obtained return loss S11 is as shown in FIG. According to this, the return loss S11 was improved to -36 dB at 10 GHz.
[0048]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the optical transmission module which can reduce a return loss in the wide frequency range from a low frequency area | region to a high frequency area | region in an optical transmission module can be provided.
[Brief description of the drawings]
FIG. 1 is a top view schematically showing a basic configuration of a substrate used in an optical transmission module according to an embodiment of the present invention.
FIG. 2 is a top view schematically showing various shapes of a termination resistance element formed on a substrate used in an optical transmission module according to an embodiment of the present invention.
FIG. 3 is a top view schematically showing a trimming shape of a termination resistance element according to the present invention.
FIG. 4 is a diagram showing an analysis result of return loss S11 in the shape of each termination resistance element according to the embodiment of the present invention.
FIG. 5 is a top view schematically showing a substrate of an optical transmission module according to an embodiment of the present invention.
FIG. 6 is a diagram showing an analysis result of a return loss S11 according to the embodiment of the present invention.
FIG. 7 is a top view schematically showing a substrate used in an optical transmission module according to a conventional example.
FIG. 8 is a diagram showing a return loss S11 of a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Optical element (light emitting element or modulation element, or light emitting element with a modulator), 3 ... Solder pattern, 5 ... Solder pattern, 6 ... V groove, 7 ... Index, 8 ... Light emitting element with a modulator, 9 ... Electrode pattern (electrode), 10 ... Trimming, L1, L2, L3 ... Transmission line, L11, L12, L13 ... Signal line, L21, L22, L23 ... Ground line, R1, R2, R3 ... Termination resistor element, Rd ... Resistance element, S11: Return loss, P1: Electrode pad, W1, W2, W3: Wire or ribbon bonding.

Claims (6)

電気信号を受けて光信号の変調を行う発光素子若しくは変調素子若しくは変調器付発光素子からなる光素子と、該光素子に電気信号を伝えるようにコプレーナ型若しくはコプレーナスプリット型の線路で形成された伝送線路とを具備した基板を有し、さらに、前記光素子と光ファイバとを光結合する光学系を有する光伝送モジュールであって、
前記伝送線路の終端を目的とした抵抗素子及び該抵抗素子の側方近傍にグランド線路が配設されたコプレーナ型若しくはコプレーナスプリット型の線路を前記基板に備え
前記伝送線路の信号線路の端部と前記光素子の電極との間をワイヤ若しくはリボンで接続し、前記光素子の電極と前記抵抗素子の所定の箇所に設けられた電極パットとの間をワイヤ若しくはリボンで接続し、
さらに、前記抵抗素子を、前記伝送線路における信号伝搬方向に対して交差する方向に前記電極パッドから伸ばして前記グランド線路に接続するように形成したことを特徴とする光伝送モジュール。
A light emitting element that modulates an optical signal in response to an electric signal, or an optical element composed of a modulation element or a light emitting element with a modulator, and a coplanar type or coplanar split type line to transmit the electric signal to the optical element An optical transmission module having a substrate having a transmission line, and further comprising an optical system for optically coupling the optical element and the optical fiber,
A resistance element for terminating the transmission line and a coplanar type or coplanar split type line in which a ground line is disposed near the side of the resistance element are provided on the substrate .
The end of the signal line of the transmission line and the electrode of the optical element are connected by a wire or ribbon, and the wire between the electrode of the optical element and an electrode pad provided at a predetermined location of the resistance element Or connect with a ribbon,
Further, the optical transmission module is characterized in that the resistance element is formed to extend from the electrode pad in a direction intersecting a signal propagation direction in the transmission line and to be connected to the ground line .
電気信号を受けて光信号の変調を行う発光素子若しくは変調素子若しくは変調器付発光素子からなる光素子と、該光素子に電気信号を伝えるようにコプレーナ型若しくはコプレーナスプリット型の線路で形成された伝送線路とを具備した基板を有し、さらに、前記光素子と光ファイバとを光結合する光学系を有する光伝送モジュールであって、
前記伝送線路の終端を目的とした抵抗素子及び該抵抗素子の側方近傍にグランド線路が配設されたコプレーナ型若しくはコプレーナスプリット型の線路を前記基板に備え、
前記伝送線路の信号線路の端部と前記光素子の電極との間をワイヤ若しくはリボンで接続し、前記光素子の電極と前記抵抗素子の所定の箇所に設けられた電極パットとの間をワイヤ若しくはリボンで接続し、
前記抵抗素子を、前記伝送線路における信号伝搬方向に対して交差する方向に前記電極パッドから分岐して前記グランド線路に接続するように形成したことを特徴とする光伝送モジュール。
A light-emitting element that modulates an optical signal in response to an electric signal, or an optical element composed of a modulation element or a light-emitting element with a modulator, and a coplanar type or coplanar split type line to transmit the electric signal to the optical element An optical transmission module having a substrate including a transmission line, and further including an optical system for optically coupling the optical element and the optical fiber,
A resistance element for terminating the transmission line and a coplanar type or coplanar split type line in which a ground line is disposed near the side of the resistance element are provided on the substrate.
The end of the signal line of the transmission line and the electrode of the optical element are connected by a wire or ribbon, and the wire between the electrode of the optical element and an electrode pad provided at a predetermined location of the resistance element Or connect with a ribbon,
The optical transmission module , wherein the resistive element is formed so as to be branched from the electrode pad in a direction intersecting a signal propagation direction in the transmission line and connected to the ground line .
電気信号を受けて光信号の変調を行う発光素子若しくは変調素子若しくは変調器付発光素子からなる光素子と、該光素子に電気信号を伝えるようにコプレーナ型若しくはコプレーナスプリット型の線路で形成された伝送線路とを具備した基板を有し、さらに、前記光素子と光ファイバとを光結合する光学系を有する光伝送モジュールであって、
前記伝送線路の終端を目的とした抵抗素子及び該抵抗素子の側方近傍にグランド線路が配設されたコプレーナ型若しくはコプレーナスプリット型の線路を前記基板に備え、
前記伝送線路の信号線路の端部と前記光素子の電極との間をワイヤ若しくはリボンで接続し、
さらに、前記抵抗素子を、前記伝送線路における信号伝搬方向に対して交差する方向に前記伝送線路の信号線路の端部から伸ばして前記グランド線路に接続するように形成したことを特徴とする光伝送モジュール。
A light emitting element that modulates an optical signal in response to an electric signal, or an optical element composed of a modulation element or a light emitting element with a modulator, and a coplanar type or coplanar split type line to transmit the electric signal to the optical element An optical transmission module having a substrate having a transmission line, and further comprising an optical system for optically coupling the optical element and the optical fiber,
A resistance element for terminating the transmission line and a coplanar type or coplanar split type line in which a ground line is disposed near the side of the resistance element are provided on the substrate.
A wire or ribbon is connected between the end of the signal line of the transmission line and the electrode of the optical element,
Further, the resistive element is formed so as to extend from the end of the signal line of the transmission line in a direction intersecting the signal propagation direction in the transmission line and to be connected to the ground line. module.
電気信号を受けて光信号の変調を行う発光素子若しくは変調素子若しくは変調器付発光素子からなる光素子と、該光素子に電気信号を伝えるようにコプレーナ型若しくはコプレーナスプリット型の線路で形成された伝送線路とを具備した基板を有し、さらに、前記光素子と光ファイバとを光結合する光学系を有する光伝送モジュールであって、
前記伝送線路の終端を目的とした抵抗素子及び該抵抗素子の側方近傍にグランド線路が配設されたコプレーナ型若しくはコプレーナスプリット型の線路を前記基板に備え、
前記伝送線路の信号線路の端部と前記光素子の電極との間をワイヤ若しくはリボンで接続し、
前記抵抗素子を、前記伝送線路における信号伝搬方向に対して交差する方向に前記伝送線路の信号線路の端部から分岐して前記グランド線路に接続するように形成したことを特 徴とする光伝送モジュール。
A light-emitting element that modulates an optical signal in response to an electric signal, or an optical element composed of a modulation element or a light-emitting element with a modulator, and a coplanar type or coplanar split type line to transmit the electric signal to the optical element An optical transmission module having a substrate including a transmission line, and further including an optical system for optically coupling the optical element and the optical fiber,
A resistance element for terminating the transmission line and a coplanar type or coplanar split type line in which a ground line is disposed near the side of the resistance element are provided on the substrate.
A wire or ribbon is connected between the end of the signal line of the transmission line and the electrode of the optical element,
The optical transmission of the feature that the resistive element and branching from an end of the transmission line of the signal line in a direction intersecting the direction of signal propagation in the transmission line formed to be connected to the ground line module.
前記抵抗素子における特性インピーダンスが前記伝送線路における特性インピーダンスと±5%の範囲内で整合がとられていることを特徴とする請求項1乃至4の何れか一つに記載の光伝送モジュール。5. The optical transmission module according to claim 1, wherein the characteristic impedance of the resistance element is matched with the characteristic impedance of the transmission line within a range of ± 5%. 6. 前記基板の材質がセラミック若しくはシリコンであるのことを特徴とする請求項1乃至4の何れか一つに記載の光伝送モジュール。The optical transmission module according to any one of claims 1 to 4, wherein the substrate is made of ceramic or silicon.
JP2003198911A 2003-07-18 2003-07-18 Optical transmission module Expired - Lifetime JP3823102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003198911A JP3823102B2 (en) 2003-07-18 2003-07-18 Optical transmission module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003198911A JP3823102B2 (en) 2003-07-18 2003-07-18 Optical transmission module

Publications (2)

Publication Number Publication Date
JP2005038984A JP2005038984A (en) 2005-02-10
JP3823102B2 true JP3823102B2 (en) 2006-09-20

Family

ID=34208517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003198911A Expired - Lifetime JP3823102B2 (en) 2003-07-18 2003-07-18 Optical transmission module

Country Status (1)

Country Link
JP (1) JP3823102B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003464B2 (en) * 2007-12-21 2012-08-15 三菱電機株式会社 Optical transmission module
WO2009096568A1 (en) * 2008-01-30 2009-08-06 Kyocera Corporation Wiring board for high frequency, package for containing electronic component, electronic device and communication apparatus
JP2013015670A (en) * 2011-07-04 2013-01-24 Sumitomo Electric Device Innovations Inc Optical modulation device
JP2013054134A (en) * 2011-09-01 2013-03-21 Anritsu Corp Optical modulator module
JP6201831B2 (en) * 2014-03-12 2017-09-27 三菱電機株式会社 Optical semiconductor device
JP6228561B2 (en) * 2015-03-23 2017-11-08 日本電信電話株式会社 High frequency transmission line and optical circuit
JP6228559B2 (en) * 2015-03-23 2017-11-08 日本電信電話株式会社 Optical circuit
JP6228560B2 (en) * 2015-03-23 2017-11-08 日本電信電話株式会社 High frequency transmission line and optical circuit

Also Published As

Publication number Publication date
JP2005038984A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
JP6438569B2 (en) High frequency transmission line and optical circuit
EP1617279B1 (en) Optical module
US6437899B1 (en) Opto-electric conversion semiconductor device
US7149024B2 (en) Optical modulator module
US11736197B2 (en) Optical module
JP2000012948A (en) High-frequency laser module, photoelectrocnic element, and manufacture of the high-frequency laser module
JP3823102B2 (en) Optical transmission module
US11503715B2 (en) Optical module
JP3975786B2 (en) Optical modulator excitation circuit
US5926308A (en) High-speed optical modulator module
CN113013262A (en) Optical module
JP2004093606A (en) Optical module and optical transmitter
JPH09172221A (en) Mounting structure of optical semiconductor device
JP3438443B2 (en) Optical device
JP6228560B2 (en) High frequency transmission line and optical circuit
JP4041226B2 (en) Optical semiconductor device
JP3805736B2 (en) Transmission line and optical module using the same
JP3769388B2 (en) Optical semiconductor device
JP2000164970A (en) Optical element module
JP4231166B2 (en) Optical semiconductor device
US11398866B2 (en) Optical semiconductor device, optical transmission module, and optical transceiver
JP2002237644A (en) Optical transmitter
JP2002111110A (en) Optical communication module
JP2004200331A (en) Optical communication device
JP6228559B2 (en) Optical circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Ref document number: 3823102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term