JP4039153B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP4039153B2
JP4039153B2 JP2002205883A JP2002205883A JP4039153B2 JP 4039153 B2 JP4039153 B2 JP 4039153B2 JP 2002205883 A JP2002205883 A JP 2002205883A JP 2002205883 A JP2002205883 A JP 2002205883A JP 4039153 B2 JP4039153 B2 JP 4039153B2
Authority
JP
Japan
Prior art keywords
insulating film
trench
region
trench groove
semiconductor region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002205883A
Other languages
Japanese (ja)
Other versions
JP2004047896A (en
Inventor
岳志 堤
勇一 小野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Device Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Device Technology Co Ltd filed Critical Fuji Electric Device Technology Co Ltd
Priority to JP2002205883A priority Critical patent/JP4039153B2/en
Publication of JP2004047896A publication Critical patent/JP2004047896A/en
Application granted granted Critical
Publication of JP4039153B2 publication Critical patent/JP4039153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、トレンチ内に形成した絶縁膜とゲート電極を有するMOSFET、IGBTなどの絶縁ゲート型の半導体装置に関する。
【0002】
【従来の技術】
図18から図23は、トレンチ構造を有する従来の半導体装置の製造方法で、工程順に示した要部工程断面図である。ここでは、半導体装置はMOSFETを例として挙げた。
n半導体基板200の第1主面の表面層にpベース領域52(pチャネル領域ともいう)を形成し、このpベース領域52の表面からpベース領域52を貫通してn半導体基板200に達するトレンチ溝53を形成する(図18)。
【0003】
つぎに、トレンチ溝53内とpベース領域52上に酸化膜などの絶縁膜54を形成し、トレンチ溝53を充填するための多結晶シリコン55をこの絶縁膜54上に形成する(図19)。
つぎに、トレンチ溝53内に充填したゲート電極層56となる多結晶シリコンを残し、平坦化技術を用いて、多結晶シリコン55を絶縁膜54が露出するまで除去する。このとき、絶縁膜54上の多結晶シリコン55の残渣が生じないように、多結晶シリコン55をオーバー目にエッチングするため、トレンチ溝53内の多結晶シリコン(ゲート電極層56)の表面の高さはpベース領域52の表面の高さより低くなる。(図20)。
【0004】
つぎに、トレンチ溝53に形成されたゲート絶縁膜57となる絶縁膜を残して、表面に露出した絶縁膜54をHF溶液(フッ化水素酸溶液)などを用いた等方性エッチングで除去し、pベース領域52の表面を露出させる。つぎに薄い酸化膜58をpベース領域52上とゲート電極層56上とゲート絶縁膜57の露出面に形成し、この薄い酸化膜58を介して、レジスト59をマスクにn形の不純物61のイオン注入60を行う(図21)。
【0005】
つぎに、熱処理して、トレンチ溝53と接するnソース領域62を形成する(図22)。
つぎに、n半導体基板200の第2主面の表面層にnドレイン領域63を形成し、ゲート電極層56上に層間絶縁膜64を形成する。nソース領域62上とnドレイン領域63上にソース電極65とドレイン電極66を形成する(図23)。尚、nソース領域62とnドレイン領域63に挟まれたn半導体基板200がnドリフト領域51となる。
【0006】
図24と図25は、図21、図22のC部拡大図である。トレンチ溝53の側壁のゲート絶縁膜57は、等方性エッチングにより、ゲート電極層56の表面より高い箇所は除去され、また、ゲート電極層56とpベース領域52に挟まれたゲート絶縁膜57の上部もエッチングで除去されるため、ゲート絶縁膜57の上端部の表面は凹部が形成される。そのため、nソース領域62を形成するためのイオン注入60の際、ゲート絶縁膜57が無い凹部とトレンチ溝53の側壁からpベース領域52に不純物61が多く打ち込まれ、熱処理すると、この凹部と側壁から打ち込まれた不純物61がpベース領域52内で深い位置まで拡散して、nソース領域62が図25に示すように2段形状となる。
【0007】
nソース領域62の拡散深さがトレンチ溝53と接する箇所で深くなると、この深い箇所でのnソース領域62と接するpベース領域52の不純物濃度が低くなる。このpベース領域52の不純物濃度が低くなると、nチャネルを形成するゲート電圧、つまり、ゲートしきい値電圧も低下する。
図26は、ゲート電極層の表面とnソース領域の表面の高低差H2とゲートしきい値電圧との関係を示した図である。
【0008】
高低差H2が大きくなると、ゲートしきい値電圧は低下する。これは、ゲート電極層56の表面より高いトレンチ溝53の側壁面からも不純物61がイオン注入されるために、高低差H2が大きくなると側壁面からのイオン注入量が増えるため、nソース領域62の拡散深さが深くなり、ゲートしきい値電圧が小さくなるためである。また、ゲート絶縁膜57の上端部の凹部からも不純物61がイオン注入されるために、トレンチ溝53と接するnソース領域62の拡散深さはさらに深くなり、ゲートしきい値電圧を低下させる。aは凹部がない場合、bは凹部がある場合、cは凹部が大きい場合であり、凹部の大きさによって(凹部の底面の深さ)、ゲートしきい値電圧が変化することが判る。
【0009】
図27から図32は、トレンチ構造を有する従来の半導体装置の別の製造方法で、工程順に示した要部工程断面図である。
n半導体基板200の第1主面の表面層にpベース領域52を形成し、このpベース領域52の表面からpベース領域52を貫通してn半導体基板200に達するトレンチ溝53を形成する(図27)。
【0010】
つぎに、トレンチ溝53内とpベース領域52上に酸化膜などの絶縁膜54を形成し、トレンチ溝53を充填する多結晶シリコン55をこの絶縁膜54上に形成する(図28)。
つぎに、トレンチ溝53内に充填したゲート電極層56となる多結晶シリコンを残し、平坦化技術を用いて、多結晶シリコン55を絶縁膜54が露出するまで除去する。このとき、絶縁膜54の表面の高さとトレンチ溝53内の多結晶シリコン(ゲート電極層56)の表面の高さをほぼ同じにする。この点が図20と異なる点である(図29)。
【0011】
つぎに、トレンチ溝53に形成されたゲート絶縁膜57となる絶縁膜を残して、表面に露出した絶縁膜54をHF溶液を用いた等方性エッチングで除去し、pベース領域52の表面を露出させる。つぎに薄い絶縁膜58をpベース領域52とゲート電極層56上に形成し、この薄い絶縁膜58を介して、レジスト59をマスクにしてn形の不純物61のイオン注入60を行う(図30)。
【0012】
つぎに、熱処理して、トレンチ溝53と接するnソース領域62を形成する(図31)。
つぎに、n半導体基板200の第2主面の表面層にnドレイン領域63を形成し、ゲート電極層53上に層間絶縁膜64を形成する。nソース領域62上とnドレイン領域63上にソース電極65とドレイン電極66をそれぞれ形成する(図32))。
【0013】
図33と図34は、図30と図31のD部拡大図である。トレンチ溝53の側壁のゲート酸化膜57は、等方性エッチングにより、pベース領域52の表面より低くエッチングされ、ゲート絶縁膜57の上端部にはやはり凹部が形成される。そのため、拡散深さが浅いnソース領域62を形成するとき、ゲート絶縁膜57が無いトレンチ溝53の上部側壁からpベース領域52に不純物61が打ち込まれ、熱処理すると、この側壁から打ち込まれた不純物61がpベース領域52内で拡散して、nソース領域62が図34に示すように2段の形状となる。
【0014】
前記したように、このnソース領域62の拡散深さが深くなると、トレンチ溝53の側壁面と接するpベース領域52の表面層に形成されるnチャネル層が低いゲート電圧で形成されるようになり、ゲートしきい値電圧が低下する。
【0015】
【発明が解決しようとする課題】
つまり、前記した図23の半導体装置の場合では、高低差H2とゲート絶縁膜の上端部が凹状となっていることで、この箇所から不純物がイオン注入されて、トレンチ溝と接するnソース領域の深さが深くなり、ゲートしきい値電圧が設計値より小さくなる。また、この凹部の深さは制御できないため、凹部の深さにばらつきが生じて、ゲートしきい値電圧にばらつきが生じる。
【0016】
また、前記した図32の半導体装置の場合では、ゲート絶縁膜の上端部が凹状となっていることで、この箇所から不純物がイオン注入されて、トレンチ溝と接するnソース領域の深さが深くなり、ゲートしきい値電圧が設計値より小さくなる。また、この凹部の深さは制御できないため、凹部の深さにばらつきが生じて、ゲートしきい値電圧にばらつきが生じる。
【0017】
また、ゲート電極層より下方までエッチングされたゲート絶縁膜の後退面は、その後のゲート電極層を覆う層間絶縁膜にて埋まることとなるが、ゲート電極層に電圧が印加された場合にはこの層間絶縁膜にもゲート電圧が掛かることは避けられず、この層間絶縁膜の信頼性が、ゲート絶縁膜と比べて劣るため信頼性の低下を招く。
【0018】
この発明の目的は、前記の課題を解決して、ゲート電極層とpウエル領域の表面の高低差H2の影響を排除し、ゲート絶縁膜の上端部が凹部となることを防止し、ゲートしきい値電圧を所定値に設計でき、またゲートしきい値電圧のばらつきを小さくできて、ゲート耐圧特性の信頼性を高くできる半導体装置およびその製造方法を提供することにある。
【0019】
【課題を解決するための手段】
前記の目的を達成するために、(1)第1導電形の半導体基板の第1主面の表面層に形成される第2導電形の第1半導体領域と、前記第1主面の表面から前記第1半導体領域を貫通し、前記半導体基板に達して形成されるトレンチ溝と、該トレンチ溝の側壁面と底面とを被覆して形成されるゲート絶縁膜と、該ゲート絶縁膜を介して前記トレンチ溝に形成されるゲート電極層と、前記トレンチ溝と接し、前記第1半導体領域の表面層に選択的に形成される第1導電形の第2半導体領域と、該第2半導体領域上と前記第1半導体領域上とに形成される第1主電極と、前記半導体基板の第2主面側に形成される第2主電極とを具備する半導体装置において、前記ゲート電極層の表面の高さが、前記第2半導体領域の表面の高さと同一か、もしくは高く、前記ゲート絶縁膜の上端部の高さが、前記第2半導体領域の表面の高さと同一であるとよい。
(2)第1導電形の半導体基板の第1主面の表面層に第2導電形の第1半導体領域を形成する工程と、第1主面の表面から第1半導体領域を貫通し、前記半導体基板に達するトレンチ溝を形成する工程と、該トレンチ溝内と前記第1半導体領域上に第1絶縁膜を形成する工程と、該第1絶縁膜上に多結晶シリコンを形成し、前記トレンチ溝を充填する工程と、前記トレンチ溝内のゲート電極層となる多結晶シリコンを残して、前記多結晶シリコンを除去する工程と、前記トレンチ溝内のゲート絶縁膜となる第1絶縁膜を残して、前記第1半導体領域上の前記第1絶縁膜を除去する工程と、前記トレンチ溝の側壁面と接し、前記第1半導体領域の表面層に選択的に第1導電形の第2半導体領域を形成する工程とを有する半導体装置の製造方法において、前記多結晶シリコンを除去する工程で、前記ゲート電極層の表面の高さを、前記第2半導体領域の表面の高さより低くし、前記第1半導体領域上の前記第1絶縁膜を除去する工程で、前記第1絶縁膜を異方性エッチングを用いて除去することで、前記トレンチ溝の側壁面に形成され、前記トレンチ溝と接する箇所の前記ゲート絶縁膜の上端部の高さを、前記ゲート絶縁膜と接する箇所の前記ゲート電極層の上端部の高さより高くする製造方法とする。
(3)第1導電形の半導体基板の第1主面の表面層に第2導電形の第1半導体領域を形成する工程と、第1主面の表面から第1半導体領域を貫通し、前記半導体基板に達するトレンチ溝を形成する工程と、該トレンチ溝内と前記第1半導体領域上に第1絶縁膜を形成する工程と、該第1絶縁膜上に多結晶シリコンを形成し、前記トレンチ溝を充填する工程と、前記トレンチ溝内のゲート電極層となる多結晶シリコンを残して、前記多結晶シリコンを除去する工程と、前記トレンチ溝内のゲート絶縁膜となる第1絶縁膜を残して、前記第1半導体領域上の前記第1絶縁膜を除去する工程と、前記トレンチ溝の側壁面と接し、前記第1半導体領域の表面層に選択的に第1導電形の第2半導体領域を形成する工程とを有する半導体装置の製造方法において、前記多結晶シリコンを除去する工程で、前記ゲート電極層の表面の高さを、前記第2半導体領域の表面の高さと同一もしくは高くし、前記第1半導体領域上の前記第1絶縁膜を除去する工程で、前記第1絶縁膜を異方性エッチングを用いて除去することで、前記ゲート絶縁膜の上端部の高さを、前記第2半導体領域の表面の高さと同一にする製造方法とする。
【0020】
【発明の実施の形態】
以下の説明では、nチャネル型の半導体装置で説明しているがpチャネル型の半導体装置であっても構わない。
図1から図6は、この発明の第1実施例の半導体装置の製造方法で、工程順に示した要部工程断面図である。ここでは、半導体装置はMOSFETを例として挙げたが、IGBTなど他の絶縁ゲート型半導体装置にも当然適用できる。
【0021】
n半導体基板100の第1主面の表面層にpベース領域2を形成し、このpベース領域2の表面からpベース領域2を貫通してn半導体基板100(無拡散領域1a)に達するトレンチ溝3を形成する(図1)。
つぎに、トレンチ溝3内とpベース領域2上に絶縁膜4(酸化膜や窒化膜およびこれらの積層膜など)を形成し、トレンチ溝3を充填する多結晶シリコン5をこの絶縁膜4上に形成する(図2)。
【0022】
つぎに、トレンチ溝3内に充填したゲート電極層6となる多結晶シリコンを残し、平坦化技術を用いて、絶縁膜4が露出するまで多結晶シリコン5を除去する。このとき、絶縁膜4上の多結晶シリコン5の残渣が生じないように、多結晶シリコン5を除去するため、トレンチ溝3内に形成された多結晶シリコンのゲート電極層6の表面の高さは、pベース領域2の表面の高さより低くなる。(図3)。
【0023】
つぎに、トレンチ溝3に形成されたゲート絶縁膜7となる絶縁膜を残して、露出した絶縁膜4をRIE(Reactive Ion Etching)などを用いた異方性エッチングで除去し、pベース領域2の表面を露出させる。薄い絶縁膜8をpベース領域2とゲート電極層6上とゲート絶縁膜7の露出面に形成し、この薄い絶縁膜8(スクリーン酸化膜といわれる膜)を介して、レジスト9をマスクにしてn形の不純物11(砒素:Asなど)のイオン注入10を行う(図4)。
【0024】
つぎに、熱処理して、トレンチ溝3と接するnソース領域12を形成する(図5)。
つぎに、n半導体基板100の第2主面の表面層にnドレイン領域13を形成し、ゲート電極層6上に層間絶縁膜14を形成する。nソース領域12上とnドレイン領域13上にソース電極15とドレイン電極16をそれぞれ形成する(図6)。尚、nソース領域12とnドレイン領域13に挟まれたn半導体基板100の無拡散領域がnドリフト領域1となる。また、図6が、第1実施例の製造方法で形成した半導体装置の要部断面図となる。
【0025】
図7と図8は、図4と図5のA部拡大図である。異方性エッチングにより、トレンチ溝3の側壁面に形成されるゲート絶縁膜7は、殆どエッチングされず残留する。そのため、等方性エッチングのようなゲート絶縁膜57の上端部に凹部が形成されず、図に示すように、ゲート電極層6と接する箇所のゲート絶縁膜7の上端部(イ)からトレンチ溝3と接する箇所のゲート絶縁膜7の上端部(ロ)までゲート絶縁膜7の表面(ハ)の高さ(H)は単調に増加する。
【0026】
つまり、ゲート絶縁膜7の上端部の表面には図24に示すような凹部になる箇所は形成されない。また、ゲート絶縁膜7はトレンチ溝3の側壁全面を被覆している。そのため、不純物11がトレンチ溝3の側壁から注入されることはない。そのため、nソース領域12の拡散深さは所定の値に設定できるために、ゲートしきい値電圧も所定の値に設定できる。
【0027】
また、図8の点線で示すように、トレンチ溝3の開口部近傍のゲート絶縁膜7が部分的(nソース領域12の拡散深さの1/10程度)に除去されても、ゲートしきい値への影響は小さく問題ない。また、RIEによる異方性エッチングでは、エッチング量のばらつきは小さいために、部分的に除去された場合もnソース領域の拡散深さのばらつきは小さい。そのため、ゲートしきい値電圧のばらつきも小さくすることができる。
【0028】
図9は、ゲート電極層の表面とnソース領域の表面の高低差H1とゲートしきい値電圧との関係を示した図である。
高低差H1が大きくなっても、トレンチ溝の側壁面にはゲート酸化膜が形成されているため、nソース領域の拡散深さは変化しない。そのため、ゲートしきい値電圧も変化せず、所定の値とすることができる。
【0029】
また、ゲート絶縁膜7がトレンチ溝3の側壁全面を被覆しているため、ゲート電極層6上に形成する薄い絶縁膜8や層間絶縁膜14の膜質に影響されずに、ゲート絶縁膜7でゲート電圧特性の信頼性を確保できる。
図10から図16は、この発明の第2実施例の半導体装置の製造方法で、工程順に示した要部工程断面図である。
【0030】
n半導体基板100の第1主面の表面層にpベース領域2を形成し、このpベース領域2の表面からpベース領域2を貫通してn半導体基板100に達するトレンチ溝3を形成する(図10)。
つぎに、トレンチ溝3内とpベース領域2上に絶縁膜4を形成し、トレンチ溝3を充填する多結晶シリコン5をこの絶縁膜4上に形成する(図11)。
【0031】
つぎに、トレンチ溝3内に充填したゲート電極層6となる多結晶シリコンを残して、平坦化技術を用いて、絶縁膜4が露出するまで多結晶シリコン5を除去する。このとき、絶縁膜4の表面の高さと、トレンチ溝3内に形成された多結晶シリコンのゲート電極層6の表面の高さをほぼ同じにする。厳密には、絶縁膜4上の残留した多結晶シリコンを除去するため、多少ゲート電極層6の表面の高さは低くなるが、pベース領域2の表面の高さよりは高くする(L1)。この点が第1実施例の図3と異なる点である。ゲート電極層6の表面の高さをpベース領域2の表面の高さよりは確実に高くする(L1)ために、ゲート電極層6となる多結晶シリコン上に図示しないレジストを被覆して、このレジシトをマスクとして、それ以外の多結晶シリコンを除去してもよい。また、絶縁膜4上に図示しない厚い絶縁膜をトレンチ溝3の開口部以外の箇所に形成し、多結晶シリコンでトレンチ溝3を充填した後、平坦化技術を用いて、図示しない絶縁膜が露出するまで多結晶シリコンを除去しても構わない(図12)。
【0032】
つぎに、トレンチ溝3に形成されたゲート絶縁膜7となる絶縁膜を残して、露出した絶縁膜4をRIEなどの異方性エッチングで除去し、pベース領域2の表面を露出させる。薄い絶縁膜8をpベース領域2上とゲート電極層6上とゲート絶縁膜7の露出面に形成し、この薄い絶縁膜8を介して、レジスト9をマスクにして、n形の不純物11(砒素:Asなど)のイオン注入10を行う(図13)。
【0033】
つぎに、熱処理して、トレンチ溝3と接するnソース領域12を形成する(図14)。
つぎに、n半導体基板100の第2主面の表面層にnドレイン領域13を形成し、ゲート電極層6上に層間絶縁膜14を形成する。nソース領域12上とnドレイン領域13上にソース電極15とドレイン電極16を形成する(図15)。尚、nソース領域12とnドレイン領域13に挟まれたn半導体基板100がnドリフト領域1となる。また、図15が、第2実施例の製造方法で形成した半導体装置の要部断面図となる。
【0034】
図16と図17は、図13と図14のB部拡大図である。ゲート絶縁膜7は異方性エッチングにより、ゲート絶縁膜7の露出面(上端部の表面)が、pベース領域2の表面と同一の高さとなる。従って、nソース領域12を形成するための不純物11のイオン注入10はpベース領域の表面から行われるために、拡散深さ(1μm程度)の浅いnソース領域12を形成する場合でも、拡散形状が2段形状となることなく、所定の拡散深さとすることができる。その結果、ゲートしきい値電圧を所定の値に設定できる。また、ゲートしきい値電圧のばらつきも小さくできる。
【0035】
【発明の効果】
この発明によれば、トレンチ溝内の絶縁膜を残し、pベース領域上の絶縁膜を除去する工程に、異方性エッチングを採用することで、ゲート電極層の上に位置するトレンチ溝側壁にゲート絶縁膜を残留させることができて、nソース領域の拡散深さを所定の深さとすることができる。
【0036】
また、nソース領域の拡散深さのばらつきも小さくできる。また、トレンチ溝の側壁をゲート絶縁膜で被覆することで、ゲート電圧特性の信頼性を高めることができる。
【図面の簡単な説明】
【図1】この発明の第1実施例の半導体装置の要部工程断面図
【図2】図1に続く、この発明の第1実施例の半導体装置の要部工程断面図
【図3】図2に続く、この発明の第1実施例の半導体装置の要部工程断面図
【図4】図3に続く、この発明の第1実施例の半導体装置の要部工程断面図
【図5】図4に続く、この発明の第1実施例の半導体装置の要部工程断面図
【図6】図5に続く、この発明の第1実施例の半導体装置の要部工程断面図
【図7】図4のA部拡大図
【図8】図5のA部拡大図
【図9】ゲート電極層の表面とnソース領域の表面の高低差H1とゲートしきい値電圧との関係を示した図
【図10】この発明の第2実施例の半導体装置の要部工程断面図
【図11】図10に続く、この発明の第2実施例の半導体装置の要部工程断面図
【図12】図11に続く、この発明の第2実施例の半導体装置の要部工程断面図
【図13】図12に続く、この発明の第2実施例の半導体装置の要部工程断面図
【図14】図13に続く、この発明の第2実施例の半導体装置の要部工程断面図
【図15】図14に続く、この発明の第2実施例の半導体装置の要部工程断面図
【図16】図13のB部拡大図
【図17】図14のB部拡大図
【図18】トレンチ構造を有する従来の半導体装置の要部工程断面図
【図19】図18に続く、従来の半導体装置の要部工程断面図
【図20】図19に続く、従来の半導体装置の要部工程断面図
【図21】図20に続く、従来の半導体装置の要部工程断面図
【図22】図21に続く、従来の半導体装置の要部工程断面図
【図23】図22に続く、従来の半導体装置の要部工程断面図
【図24】図21のC部拡大図
【図25】図22のC部拡大図
【図26】ゲート電極層の表面とnソース領域の表面の高低差H2とゲートしきい値電圧との関係を示した図
【図27】トレンチ構造を有する別の従来の半導体装置の要部工程断面図
【図28】図27に続く、別の従来の半導体装置の要部工程断面図
【図29】図28に続く、別の従来の半導体装置の要部工程断面図
【図30】図29に続く、別の従来の半導体装置の要部工程断面図
【図31】図30に続く、別の従来の半導体装置の要部工程断面図
【図32】図31に続く、別の従来の半導体装置の要部工程断面図
【図33】図30のD部拡大図
【図34】図31のD部拡大図
【符号の説明】
1 nドリフト領域
1a 無拡散領域
2 pベース領域
3 トレンチ溝
4 絶縁膜
5 多結晶シリコン
6 ゲート電極層
7 ゲート絶縁膜
8 薄い絶縁膜
9 レジスト
10 イオン注入
11 不純物
12 nソース領域
13 nドレイン領域
14 層間絶縁膜
15 ソース電極
16 ドレイン電極
100 n半導体基板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an insulated gate semiconductor device such as a MOSFET or IGBT having an insulating film and a gate electrode formed in a trench.
[0002]
[Prior art]
FIGS. 18 to 23 are cross-sectional views of main processes shown in the order of steps in the conventional method for manufacturing a semiconductor device having a trench structure. Here, the semiconductor device is exemplified as a MOSFET.
A p base region 52 (also referred to as a p channel region) is formed in the surface layer of the first main surface of n semiconductor substrate 200, and reaches n semiconductor substrate 200 from the surface of p base region 52 through p base region 52. A trench groove 53 is formed (FIG. 18).
[0003]
Next, an insulating film 54 such as an oxide film is formed in the trench groove 53 and on the p base region 52, and a polycrystalline silicon 55 for filling the trench groove 53 is formed on the insulating film 54 (FIG. 19). .
Next, the polycrystalline silicon to be the gate electrode layer 56 filled in the trench groove 53 is left, and the polycrystalline silicon 55 is removed using a planarization technique until the insulating film 54 is exposed. At this time, since the polycrystalline silicon 55 is etched at over-over so that the residue of the polycrystalline silicon 55 on the insulating film 54 is not generated, the surface of the polycrystalline silicon (gate electrode layer 56) in the trench groove 53 is high. The height is lower than the height of the surface of the p base region 52. (FIG. 20).
[0004]
Next, the insulating film 54 exposed on the surface is removed by isotropic etching using an HF solution (hydrofluoric acid solution) while leaving the insulating film to be the gate insulating film 57 formed in the trench 53. The surface of the p base region 52 is exposed. Next, a thin oxide film 58 is formed on the p base region 52, the gate electrode layer 56, and the exposed surface of the gate insulating film 57, and the n-type impurities 61 are masked through the thin oxide film 58 using the resist 59 as a mask. Ion implantation 60 is performed (FIG. 21).
[0005]
Next, heat treatment is performed to form an n source region 62 in contact with the trench groove 53 (FIG. 22).
Next, an n drain region 63 is formed on the surface layer of the second main surface of the n semiconductor substrate 200, and an interlayer insulating film 64 is formed on the gate electrode layer 56. A source electrode 65 and a drain electrode 66 are formed on the n source region 62 and the n drain region 63 (FIG. 23). The n semiconductor substrate 200 sandwiched between the n source region 62 and the n drain region 63 becomes the n drift region 51.
[0006]
24 and 25 are enlarged views of part C in FIGS. 21 and 22. A portion of the gate insulating film 57 on the side wall of the trench groove 53 that is higher than the surface of the gate electrode layer 56 is removed by isotropic etching, and the gate insulating film 57 sandwiched between the gate electrode layer 56 and the p base region 52 is removed. Since the upper portion of the gate insulating film 57 is also removed by etching, a recess is formed on the surface of the upper end portion of the gate insulating film 57. Therefore, during the ion implantation 60 for forming the n source region 62, a large amount of the impurity 61 is implanted into the p base region 52 from the recess without the gate insulating film 57 and the sidewall of the trench groove 53, and the recess and the sidewall are subjected to heat treatment. Impurity 61 implanted from above diffuses to a deep position in the p base region 52, and the n source region 62 has a two-stage shape as shown in FIG.
[0007]
When the diffusion depth of the n source region 62 becomes deeper at a location in contact with the trench groove 53, the impurity concentration of the p base region 52 in contact with the n source region 62 at this deep location becomes lower. When the impurity concentration of the p base region 52 is lowered, the gate voltage for forming the n channel, that is, the gate threshold voltage is also lowered.
FIG. 26 is a diagram showing the relationship between the height difference H2 between the surface of the gate electrode layer and the surface of the n source region and the gate threshold voltage.
[0008]
As the height difference H2 increases, the gate threshold voltage decreases. This is because the impurity 61 is also ion-implanted from the side wall surface of the trench groove 53 higher than the surface of the gate electrode layer 56. Therefore, when the height difference H2 increases, the amount of ion implantation from the side wall surface increases. This is because the diffusion depth of n becomes deep and the gate threshold voltage becomes small. Further, since the impurity 61 is also ion-implanted from the recess at the upper end of the gate insulating film 57, the diffusion depth of the n source region 62 in contact with the trench groove 53 is further increased, and the gate threshold voltage is lowered. It can be seen that a is when there is no recess, b is when there is a recess, and c is when the recess is large, and the gate threshold voltage changes depending on the size of the recess (the depth of the bottom of the recess).
[0009]
FIGS. 27 to 32 are cross-sectional views of main steps shown in the order of steps in another method for manufacturing a conventional semiconductor device having a trench structure.
A p base region 52 is formed in the surface layer of the first main surface of the n semiconductor substrate 200, and a trench groove 53 penetrating the p base region 52 from the surface of the p base region 52 and reaching the n semiconductor substrate 200 is formed ( FIG. 27).
[0010]
Next, an insulating film 54 such as an oxide film is formed in the trench groove 53 and on the p base region 52, and a polycrystalline silicon 55 filling the trench groove 53 is formed on the insulating film 54 (FIG. 28).
Next, the polycrystalline silicon to be the gate electrode layer 56 filled in the trench groove 53 is left, and the polycrystalline silicon 55 is removed using a planarization technique until the insulating film 54 is exposed. At this time, the height of the surface of the insulating film 54 and the height of the surface of the polycrystalline silicon (gate electrode layer 56) in the trench groove 53 are made substantially the same. This point is different from FIG. 20 (FIG. 29).
[0011]
Next, the insulating film 54 formed on the trench groove 53 to be the gate insulating film 57 is left, and the insulating film 54 exposed on the surface is removed by isotropic etching using an HF solution, so that the surface of the p base region 52 is removed. Expose. Next, a thin insulating film 58 is formed on the p base region 52 and the gate electrode layer 56, and ion implantation 60 of n-type impurities 61 is performed through the thin insulating film 58 using the resist 59 as a mask (FIG. 30). ).
[0012]
Next, heat treatment is performed to form an n source region 62 in contact with the trench groove 53 (FIG. 31).
Next, an n drain region 63 is formed on the surface layer of the second main surface of the n semiconductor substrate 200, and an interlayer insulating film 64 is formed on the gate electrode layer 53. A source electrode 65 and a drain electrode 66 are formed on the n source region 62 and the n drain region 63, respectively (FIG. 32).
[0013]
33 and 34 are enlarged views of the D part in FIGS. 30 and 31. FIG. The gate oxide film 57 on the sidewall of the trench groove 53 is etched lower than the surface of the p base region 52 by isotropic etching, and a recess is also formed at the upper end of the gate insulating film 57. Therefore, when the n source region 62 having a shallow diffusion depth is formed, the impurity 61 is implanted into the p base region 52 from the upper side wall of the trench groove 53 where the gate insulating film 57 is not present. 61 diffuses in the p base region 52, and the n source region 62 has a two-stage shape as shown in FIG.
[0014]
As described above, when the diffusion depth of n source region 62 is increased, the n channel layer formed in the surface layer of p base region 52 in contact with the side wall surface of trench groove 53 is formed with a low gate voltage. As a result, the gate threshold voltage decreases.
[0015]
[Problems to be solved by the invention]
That is, in the case of the semiconductor device of FIG. 23 described above, the height difference H2 and the upper end portion of the gate insulating film are concave, so that impurities are ion-implanted from this location and the n source region in contact with the trench groove is formed. The depth becomes deeper and the gate threshold voltage becomes smaller than the design value. Further, since the depth of the concave portion cannot be controlled, the depth of the concave portion varies, and the gate threshold voltage varies.
[0016]
In the case of the semiconductor device shown in FIG. 32, since the upper end portion of the gate insulating film is concave, impurities are ion-implanted from this location, and the depth of the n source region in contact with the trench groove is deep. Thus, the gate threshold voltage becomes smaller than the design value. Further, since the depth of the concave portion cannot be controlled, the depth of the concave portion varies, and the gate threshold voltage varies.
[0017]
In addition, the receding surface of the gate insulating film etched down from the gate electrode layer is filled with an interlayer insulating film that covers the subsequent gate electrode layer. However, when a voltage is applied to the gate electrode layer, It is inevitable that a gate voltage is also applied to the interlayer insulating film, and the reliability of the interlayer insulating film is inferior to that of the gate insulating film, leading to a decrease in reliability.
[0018]
The object of the present invention is to solve the above-mentioned problems, eliminate the influence of the height difference H2 between the surface of the gate electrode layer and the p-well region, prevent the upper end portion of the gate insulating film from becoming a recess, An object of the present invention is to provide a semiconductor device that can design a threshold voltage to a predetermined value, reduce variations in gate threshold voltage, and increase the reliability of gate breakdown voltage characteristics, and a method of manufacturing the same.
[0019]
[Means for Solving the Problems]
To achieve the above object, (1) a first semiconductor region of a second conductivity type formed in a surface layer of a first main surface of a semiconductor substrate of a first conductivity type, and a surface of the first main surface. A trench groove formed so as to penetrate the first semiconductor region and reach the semiconductor substrate, a gate insulating film formed so as to cover a side wall surface and a bottom surface of the trench groove, and via the gate insulating film A gate electrode layer formed in the trench groove; a second semiconductor region of a first conductivity type in contact with the trench groove and selectively formed in a surface layer of the first semiconductor region; and on the second semiconductor region And a first main electrode formed on the first semiconductor region, and a second main electrode formed on the second main surface side of the semiconductor substrate, wherein the surface of the gate electrode layer is The height is equal to the height of the surface of the second semiconductor region, or Ku, the height of the upper portion of the gate insulating film, may be identical to the height of the surface of the second semiconductor region.
(2) forming a first semiconductor region of the second conductivity type in a surface layer of the first main surface of the first conductivity type semiconductor substrate, penetrating the first semiconductor region from the surface of the first main surface, Forming a trench groove reaching the semiconductor substrate; forming a first insulating film in the trench groove and on the first semiconductor region; forming polycrystalline silicon on the first insulating film; A step of filling the trench, a step of removing the polycrystalline silicon leaving the polycrystalline silicon to be a gate electrode layer in the trench trench, and a first insulating film being a gate insulating film in the trench trench. Removing the first insulating film on the first semiconductor region; and a second semiconductor region of a first conductivity type in contact with a sidewall surface of the trench groove and selectively on a surface layer of the first semiconductor region And a method of manufacturing a semiconductor device having a step of forming In the step of removing the polycrystalline silicon, the height of the surface of the gate electrode layer is made lower than the height of the surface of the second semiconductor region, and the first insulating film on the first semiconductor region is removed. In this step, the first insulating film is removed by anisotropic etching, so that the height of the upper end portion of the gate insulating film formed on the sidewall surface of the trench groove and in contact with the trench groove is increased. In the manufacturing method, the height of the upper end portion of the gate electrode layer at a position in contact with the gate insulating film is set higher.
(3) forming a first semiconductor region of the second conductivity type on the surface layer of the first main surface of the semiconductor substrate of the first conductivity type, penetrating the first semiconductor region from the surface of the first main surface, Forming a trench groove reaching the semiconductor substrate; forming a first insulating film in the trench groove and on the first semiconductor region; forming polycrystalline silicon on the first insulating film; A step of filling the trench, a step of removing the polycrystalline silicon leaving the polycrystalline silicon to be a gate electrode layer in the trench trench, and a first insulating film being a gate insulating film in the trench trench. Removing the first insulating film on the first semiconductor region; and a second semiconductor region of a first conductivity type in contact with a sidewall surface of the trench groove and selectively on a surface layer of the first semiconductor region And a method of manufacturing a semiconductor device having a step of forming In the step of removing the polycrystalline silicon, the height of the surface of the gate electrode layer is the same as or higher than the height of the surface of the second semiconductor region, and the first insulating film on the first semiconductor region is formed. In the manufacturing process, the first insulating film is removed using anisotropic etching so that the height of the upper end portion of the gate insulating film is the same as the height of the surface of the second semiconductor region. The method.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
In the following description, an n-channel semiconductor device is described, but a p-channel semiconductor device may be used.
FIGS. 1 to 6 are cross-sectional views of essential steps shown in the order of steps in the method of manufacturing a semiconductor device according to the first embodiment of the present invention. Here, the semiconductor device has been described by taking MOSFET as an example, but it is naturally applicable to other insulated gate semiconductor devices such as IGBT.
[0021]
A p base region 2 is formed in the surface layer of the first main surface of n semiconductor substrate 100, and a trench that penetrates p base region 2 from the surface of p base region 2 and reaches n semiconductor substrate 100 (non-diffusion region 1 a). A groove 3 is formed (FIG. 1).
Next, an insulating film 4 (oxide film, nitride film and laminated film thereof) is formed in the trench groove 3 and on the p base region 2, and the polycrystalline silicon 5 filling the trench groove 3 is formed on the insulating film 4. (FIG. 2).
[0022]
Next, the polycrystalline silicon to be the gate electrode layer 6 filled in the trench groove 3 is left, and the polycrystalline silicon 5 is removed using a planarization technique until the insulating film 4 is exposed. At this time, in order to remove the polycrystalline silicon 5 so that the residue of the polycrystalline silicon 5 on the insulating film 4 does not occur, the height of the surface of the gate electrode layer 6 of polycrystalline silicon formed in the trench 3 is removed. Is lower than the height of the surface of the p base region 2. (Figure 3).
[0023]
Next, leaving the insulating film to be the gate insulating film 7 formed in the trench 3, the exposed insulating film 4 is removed by anisotropic etching using RIE (Reactive Ion Etching) or the like to form the p base region 2. To expose the surface. A thin insulating film 8 is formed on the p base region 2, the gate electrode layer 6 and the exposed surface of the gate insulating film 7, and the resist 9 is used as a mask through the thin insulating film 8 (a film called a screen oxide film). Ion implantation 10 of n-type impurity 11 (arsenic: As or the like) is performed (FIG. 4).
[0024]
Next, heat treatment is performed to form the n source region 12 in contact with the trench 3 (FIG. 5).
Next, the n drain region 13 is formed on the surface layer of the second main surface of the n semiconductor substrate 100, and the interlayer insulating film 14 is formed on the gate electrode layer 6. A source electrode 15 and a drain electrode 16 are formed on the n source region 12 and the n drain region 13, respectively (FIG. 6). A non-diffusion region of the n semiconductor substrate 100 sandwiched between the n source region 12 and the n drain region 13 becomes the n drift region 1. FIG. 6 is a cross-sectional view of the main part of the semiconductor device formed by the manufacturing method of the first embodiment.
[0025]
7 and 8 are enlarged views of a part A in FIGS. 4 and 5. Due to the anisotropic etching, the gate insulating film 7 formed on the side wall surface of the trench groove 3 remains almost unetched. Therefore, no recess is formed in the upper end portion of the gate insulating film 57 as in isotropic etching, and as shown in the figure, the trench groove extends from the upper end portion (a) of the gate insulating film 7 at a location in contact with the gate electrode layer 6. The height (H) of the surface (c) of the gate insulating film 7 increases monotonously up to the upper end (b) of the gate insulating film 7 at a location in contact with 3.
[0026]
In other words, the concave portion as shown in FIG. 24 is not formed on the surface of the upper end portion of the gate insulating film 7. The gate insulating film 7 covers the entire side wall of the trench 3. Therefore, the impurity 11 is not implanted from the side wall of the trench groove 3. Therefore, since the diffusion depth of the n source region 12 can be set to a predetermined value, the gate threshold voltage can also be set to a predetermined value.
[0027]
Further, as shown by a dotted line in FIG. 8, even if the gate insulating film 7 in the vicinity of the opening of the trench groove 3 is partially removed (about 1/10 of the diffusion depth of the n source region 12), The effect on the value is small and there is no problem. Also, in anisotropic etching by RIE, the variation in the etching amount is small, so that the variation in the diffusion depth of the n source region is small even when it is partially removed. Therefore, variation in gate threshold voltage can be reduced.
[0028]
FIG. 9 is a diagram showing the relationship between the height difference H1 between the surface of the gate electrode layer and the surface of the n source region and the gate threshold voltage.
Even if the height difference H1 is increased, the gate oxide film is formed on the side wall surface of the trench groove, so that the diffusion depth of the n source region does not change. Therefore, the gate threshold voltage does not change and can be set to a predetermined value.
[0029]
Further, since the gate insulating film 7 covers the entire side wall of the trench groove 3, the gate insulating film 7 is not affected by the film quality of the thin insulating film 8 or the interlayer insulating film 14 formed on the gate electrode layer 6. The reliability of the gate voltage characteristics can be secured.
FIGS. 10 to 16 are cross-sectional views showing main steps of the semiconductor device manufacturing method according to the second embodiment of the present invention shown in the order of steps.
[0030]
A p base region 2 is formed in the surface layer of the first main surface of the n semiconductor substrate 100, and a trench 3 is formed from the surface of the p base region 2 to the n semiconductor substrate 100 through the p base region 2. FIG. 10).
Next, an insulating film 4 is formed in the trench groove 3 and on the p base region 2, and a polycrystalline silicon 5 filling the trench groove 3 is formed on the insulating film 4 (FIG. 11).
[0031]
Next, using the planarization technique, the polycrystalline silicon 5 is removed until the insulating film 4 is exposed, leaving the polycrystalline silicon to be the gate electrode layer 6 filled in the trench 3. At this time, the height of the surface of the insulating film 4 and the height of the surface of the gate electrode layer 6 of polycrystalline silicon formed in the trench 3 are made substantially the same. Strictly speaking, in order to remove the remaining polycrystalline silicon on the insulating film 4, the height of the surface of the gate electrode layer 6 is slightly lowered, but is made higher than the height of the surface of the p base region 2 (L1). This point is different from FIG. 3 of the first embodiment. In order to ensure that the height of the surface of the gate electrode layer 6 is higher than the height of the surface of the p base region 2 (L1), a resist (not shown) is coated on the polycrystalline silicon to be the gate electrode layer 6, and this Other polysilicon may be removed using the resist as a mask. Further, a thick insulating film (not shown) is formed on the insulating film 4 at a portion other than the opening of the trench groove 3, and after filling the trench groove 3 with polycrystalline silicon, an insulating film (not shown) is formed using a planarization technique. The polycrystalline silicon may be removed until it is exposed (FIG. 12).
[0032]
Next, leaving the insulating film to be the gate insulating film 7 formed in the trench 3, the exposed insulating film 4 is removed by anisotropic etching such as RIE to expose the surface of the p base region 2. A thin insulating film 8 is formed on the p base region 2, the gate electrode layer 6, and the exposed surface of the gate insulating film 7, and the n-type impurity 11 ( An ion implantation 10 of arsenic: As or the like is performed (FIG. 13).
[0033]
Next, heat treatment is performed to form the n source region 12 in contact with the trench 3 (FIG. 14).
Next, the n drain region 13 is formed on the surface layer of the second main surface of the n semiconductor substrate 100, and the interlayer insulating film 14 is formed on the gate electrode layer 6. A source electrode 15 and a drain electrode 16 are formed on the n source region 12 and the n drain region 13 (FIG. 15). The n semiconductor substrate 100 sandwiched between the n source region 12 and the n drain region 13 becomes the n drift region 1. FIG. 15 is a fragmentary cross-sectional view of a semiconductor device formed by the manufacturing method of the second embodiment.
[0034]
16 and 17 are enlarged views of a portion B in FIGS. 13 and 14. The gate insulating film 7 is anisotropically etched so that the exposed surface (the surface of the upper end portion) of the gate insulating film 7 has the same height as the surface of the p base region 2. Accordingly, since the ion implantation 10 of the impurity 11 for forming the n source region 12 is performed from the surface of the p base region, even when the n source region 12 having a shallow diffusion depth (about 1 μm) is formed, the diffusion shape is formed. Can have a predetermined diffusion depth without forming a two-stage shape. As a result, the gate threshold voltage can be set to a predetermined value. In addition, variations in gate threshold voltage can be reduced.
[0035]
【The invention's effect】
According to the present invention, by adopting anisotropic etching in the step of leaving the insulating film in the trench groove and removing the insulating film on the p base region, the trench groove side wall located on the gate electrode layer is formed. The gate insulating film can be left, and the diffusion depth of the n source region can be set to a predetermined depth.
[0036]
Further, variation in the diffusion depth of the n source region can be reduced. Further, the reliability of the gate voltage characteristic can be improved by covering the sidewall of the trench groove with the gate insulating film.
[Brief description of the drawings]
1 is a cross-sectional view of main steps of a semiconductor device according to a first embodiment of the present invention. FIG. 2 is a cross-sectional view of main steps of a semiconductor device according to a first embodiment of the present invention following FIG. 2 is a fragmentary process cross-sectional view of the semiconductor device of the first embodiment of the present invention following FIG. 4. FIG. 4 is a fragmentary process cross-sectional view of the semiconductor device of the first embodiment of the present invention following FIG. 4 is a fragmentary process cross-sectional view of the semiconductor device of the first embodiment of the present invention continued from FIG. 4. FIG. 6 is a fragmentary process cross-sectional view of the semiconductor device of the first embodiment of the present invention continued from FIG. FIG. 8 is an enlarged view of part A of FIG. 4. FIG. 9 is an enlarged view of part A of FIG. 5. FIG. 10 is a cross-sectional view of main steps of a semiconductor device according to a second embodiment of the present invention. FIG. 11 is a cross-sectional view of main steps of a semiconductor device according to the second embodiment of the present invention following FIG. FIG. 12 is a cross-sectional view of the principal part of the semiconductor device according to the second embodiment of the present invention continued from FIG. 11. FIG. 13 is a cross-sectional view of the principal part of the semiconductor device according to the second embodiment of the present invention continued from FIG. FIG. 14 is a cross-sectional view of main steps of a semiconductor device according to a second embodiment of the present invention continued from FIG. 13. FIG. 15 is a cross-sectional view of main steps of a semiconductor device according to a second embodiment of the present invention continued from FIG. FIG. 16 is an enlarged view of part B in FIG. 13. FIG. 17 is an enlarged view of part B in FIG. 14. FIG. 18 is a cross-sectional view of essential steps of a conventional semiconductor device having a trench structure. FIG. 20 is a fragmentary process cross-sectional view of a conventional semiconductor device continued from FIG. 19. FIG. 21 is a fragmentary process cross-sectional view of a conventional semiconductor device continued from FIG. 22 is a cross-sectional view of main steps of a conventional semiconductor device continued from FIG. 21. FIG. FIG. 24 is an enlarged view of part C in FIG. 21. FIG. 25 is an enlarged view of part C in FIG. 22. FIG. 26 is a difference in height H2 between the surface of the gate electrode layer and the surface of the n source region. FIG. 27 is a cross-sectional view of main steps of another conventional semiconductor device having a trench structure. FIG. 28 is a main portion of another conventional semiconductor device continued from FIG. FIG. 29 is a cross-sectional view of a main part of another conventional semiconductor device continued from FIG. 28. FIG. 30 is a cross-sectional view of a main part of another conventional semiconductor device continued from FIG. FIG. 32 is a fragmentary process sectional view of another conventional semiconductor device continued from FIG. 30. FIG. 32 is a fragmentary process sectional view of another conventional semiconductor device continued from FIG. 34] Enlarged view of part D in FIG.
1 n drift region 1a non-diffusion region 2 p base region 3 trench groove 4 insulating film 5 polycrystalline silicon 6 gate electrode layer 7 gate insulating film 8 thin insulating film 9 resist 10 ion implantation 11 impurity 12 n source region 13 n drain region 14 Interlayer insulating film 15 Source electrode 16 Drain electrode 100 n Semiconductor substrate

Claims (2)

第1導電形の半導体基板の第1主面の表面層に第2導電形の第1半導体領域を形成する工程と、
第1主面の表面から前記第1半導体領域を貫通し、前記半導体基板に達するトレンチ溝を形成する工程と、
該トレンチ溝内と前記第1半導体領域上に第1絶縁膜を形成する工程と、
該第1絶縁膜上に多結晶シリコンを形成し、前記トレンチ溝を充填する工程と、
前記第1絶縁膜上の多結晶シリコンを、前記トレンチ溝内の表面の高さが前記第1半導体領域の表面の高さより低くなるように多結晶シリコンを残してゲート電極とするとともに、前記半導体領域上の前記第1絶縁膜が露出するまで除去する工程と、
引き続き、前記トレンチ溝の側壁面に形成された前記第1絶縁膜の上端部の高さが、前記ゲート電極層の上端部の高さより高く、かつ前記トレンチ溝の側壁全面を被覆するように前記トレンチ溝内の前記第1絶縁膜を残すとともに、前記第1半導体領域の表面が露出するように前記第1絶縁膜を異方性エッチングによって除去する工程と、
前記トレンチ溝の側壁面と接し、前記第1半導体領域の表面層に前記第1絶縁膜をマスクとして選択的に第1導電形の不純物をイオン注入して第2半導体領域を形成する工程とを有し、
前記の各工程を順に行うことを特徴とする半導体装置の製造方法。
Forming a first semiconductor region of the second conductivity type on the surface layer of the first main surface of the semiconductor substrate of the first conductivity type;
Forming a trench groove that penetrates the first semiconductor region from the surface of the first main surface and reaches the semiconductor substrate;
Forming a first insulating film in the trench and on the first semiconductor region;
Forming polycrystalline silicon on the first insulating film and filling the trench groove;
The polycrystalline silicon on the first insulating film is left as a gate electrode so that the height of the surface in the trench groove is lower than the height of the surface of the first semiconductor region. Removing until the first insulating film on the region is exposed ;
Subsequently, the height of the upper end portion of the first insulating film formed on the side wall surface of the trench is higher than the height of the upper portion of the gate electrode layer, and said to cover the sidewalls entire surface of the trench Leaving the first insulating film in the trench groove and removing the first insulating film by anisotropic etching so that the surface of the first semiconductor region is exposed;
Forming a second semiconductor region by selectively implanting ions of a first conductivity type into the surface layer of the first semiconductor region using the first insulating film as a mask in contact with the sidewall surface of the trench groove; Have
A method of manufacturing a semiconductor device, wherein the steps are performed in order.
第1導電形の半導体基板の第1主面の表面層に第2導電形の第1半導体領域を形成する工程と、
第1主面の表面から前記第1半導体領域を貫通し、前記半導体基板に達するトレンチ溝を形成する工程と、
該トレンチ溝内と前記第1半導体領域上に第1絶縁膜を形成する工程と、
該第1絶縁膜上に多結晶シリコンを形成し、前記トレンチ溝を充填する工程と、
前記第1絶縁膜上の多結晶シリコンを、前記トレンチ溝内の表面の高さが前記第1半導体領域の表面の高さより高くなるように多結晶シリコンを残してゲート電極とするとともに、前記半導体領域上の前記第1絶縁膜が露出するまで除去する工程と、
引き続き、前記トレンチ溝の側壁面に形成された前記第1絶縁膜の上端部の高さが、前記第1半導体領域の表面の高さと同一で前記トレンチ溝の側壁全面を被覆するように前記トレンチ溝内の前記第1絶縁膜を残すとともに、前記第1半導体領域の表面が露出するように前記第1絶縁膜を異方性エッチングによって除去する工程と、
前記トレンチ溝の側壁面と接し、前記第1半導体領域の表面層に前記第1絶縁膜をマスクとして選択的に第1導電形の不純物をイオン注入して第2半導体領域を形成する工程とを有し、
前記の各工程を順に行うことを特徴とする半導体装置の製造方法。
Forming a first semiconductor region of the second conductivity type on the surface layer of the first main surface of the semiconductor substrate of the first conductivity type;
Forming a trench groove that penetrates the first semiconductor region from the surface of the first main surface and reaches the semiconductor substrate;
Forming a first insulating film in the trench and on the first semiconductor region;
Forming polycrystalline silicon on the first insulating film and filling the trench groove;
The polycrystalline silicon on the first insulating film is left as a gate electrode so that the height of the surface in the trench groove is higher than the height of the surface of the first semiconductor region, and the semiconductor Removing until the first insulating film on the region is exposed;
Subsequently, the trench is formed such that the height of the upper end portion of the first insulating film formed on the sidewall surface of the trench groove is equal to the height of the surface of the first semiconductor region and covers the entire sidewall of the trench groove. Leaving the first insulating film in the trench and removing the first insulating film by anisotropic etching so that the surface of the first semiconductor region is exposed;
Forming a second semiconductor region by selectively implanting ions of a first conductivity type into the surface layer of the first semiconductor region using the first insulating film as a mask in contact with the sidewall surface of the trench groove; Have
A method of manufacturing a semiconductor device, wherein the steps are performed in order.
JP2002205883A 2002-07-15 2002-07-15 Manufacturing method of semiconductor device Expired - Lifetime JP4039153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205883A JP4039153B2 (en) 2002-07-15 2002-07-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205883A JP4039153B2 (en) 2002-07-15 2002-07-15 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JP2004047896A JP2004047896A (en) 2004-02-12
JP4039153B2 true JP4039153B2 (en) 2008-01-30

Family

ID=31711065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205883A Expired - Lifetime JP4039153B2 (en) 2002-07-15 2002-07-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP4039153B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129025A (en) * 2005-11-02 2007-05-24 Denso Corp Semiconductor device and method of manufacturing same
JP5228308B2 (en) * 2006-10-19 2013-07-03 富士電機株式会社 Manufacturing method of semiconductor device
JP7335781B2 (en) * 2019-11-05 2023-08-30 株式会社デンソー Trench gate type switching element and trench gate type switching element manufacturing method

Also Published As

Publication number Publication date
JP2004047896A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP3383377B2 (en) Vertical normally-on type power MOSFET having a trench structure and method of manufacturing the same
JP2005026664A (en) Semiconductor device and manufacturing method therefor
JPH11340461A (en) Semiconductor device and fabrication thereof
US7407851B2 (en) DMOS device with sealed channel processing
JP4440188B2 (en) Manufacturing method of semiconductor device
US6495406B1 (en) Method of forming lightly doped drain MOS transistor including forming spacers on gate electrode pattern before exposing gate insulator
JP4567969B2 (en) Semiconductor device transistor manufacturing method
JP2006019508A (en) Semiconductor device and its manufacturing method
JPH10326891A (en) Semiconductor device and manufacture thereof
JP2002016080A (en) Manufacturing method of trench-gate type mosfet
US6693018B2 (en) Method for fabricating DRAM cell transistor having trench isolation structure
JP2005019892A (en) Semiconductor device and manufacturing method therefor
JP2001196576A (en) Semiconductor device and manufacturing method therefor
US6744113B2 (en) Semiconductor device with element isolation using impurity-doped insulator and oxynitride film
JP4039153B2 (en) Manufacturing method of semiconductor device
WO2019109823A1 (en) Mosfet structure, and manufacturing method thereof
US6974996B2 (en) Semiconductor device and method of manufacturing the same
KR100730466B1 (en) Trench transistor and method for manufacturing the same
KR100701690B1 (en) Method for adjusting threshold voltage of transistor
US8513077B2 (en) Semiconductor device and method of manufacturing the same
KR100343469B1 (en) Fabricating method of transistor
JP3937894B2 (en) Semiconductor device
JP2001024186A (en) Manufacture of semiconductor device
JP2956635B2 (en) Semiconductor device and manufacturing method thereof
JP4572541B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4039153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term