JP4039091B2 - Multilayer capacitor - Google Patents

Multilayer capacitor Download PDF

Info

Publication number
JP4039091B2
JP4039091B2 JP2002074425A JP2002074425A JP4039091B2 JP 4039091 B2 JP4039091 B2 JP 4039091B2 JP 2002074425 A JP2002074425 A JP 2002074425A JP 2002074425 A JP2002074425 A JP 2002074425A JP 4039091 B2 JP4039091 B2 JP 4039091B2
Authority
JP
Japan
Prior art keywords
internal electrode
electrode group
dividing line
internal
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002074425A
Other languages
Japanese (ja)
Other versions
JP2003272946A (en
Inventor
豊 島原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2002074425A priority Critical patent/JP4039091B2/en
Publication of JP2003272946A publication Critical patent/JP2003272946A/en
Application granted granted Critical
Publication of JP4039091B2 publication Critical patent/JP4039091B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、積層コンデンサに関し、特に、たとえば主に高耐圧が要求される中高圧タイプの積層コンデンサに関する。
【0002】
【従来の技術】
近年、電子機器の小型化、面実装化によって、積層コンデンサの小型、高容量化が進んでいる。このような流れは中高圧コンデンサ市場にも波及しており、たとえば液晶ディスプレーのバックライト用、スイッチング電源用などの高耐電圧を必要とするコンデンサの分野において、より小型で低コストな積層コンデンサが求められている。
【0003】
積層コンデンサ1を小型化、高耐圧化するには、内部の高耐圧化、表面リークの防止、圧電歪破壊の防止という3つの問題を解決する必要がある。内部の高耐圧化のために、たとえば図6(A)(B)(C)に示すように、誘電体で形成された積層体2の両端の外部電極3間を結ぶ方向に垂直な分割線を境界にして、対向する外部電極3に接続される内部電極4を複数に分割し、その分割部分の両側と重なるようにして隣接する内部電極5を形成した構造とすることが考えられる。ここで、内部電極5は外部電極3には接続されず、内部電極4の分割部分と異なる部分において、内部電極4の分割部分と平行となるように分割される。このような構造とすることにより、図6(B)に示すように、内部電極4と内部電極5との対向部分に、静電容量が形成される。したがって、対向する外部電極3間において複数の静電容量が形成され、これらの静電容量が直列に接続された構成となる。そのため、個々の静電容量に印加される電圧は低くなり、内部の高耐圧化を図ることができる。
【0004】
ところで、積層コンデンサを構成する誘電体層として強誘電体材料が使用される場合は、ある程度圧電性も有するものである。そのため、積層コンデンサ1に高電圧を印加すると、誘電体層に圧電歪が発生し、積層コンデンサ1内に機械的応力が働いて破壊される。このような破壊は、電界に起因する電気的な破壊よりも早く起こる場合がある。
【0005】
そこで、圧電歪破壊対策として、たとえば特開平9−180956号公報に開示され、図7に示されているように、内部電極により容量を得ている部分を積層方向に分割し、その分割部分に圧電歪による応力を緩和する中間層6を形成する方法が考えられている。この中間層6は、誘電体層と同じ材料で形成され、誘電体層よりも層の厚みを大きくすることにより、機械的応力が緩和され、圧電歪破壊を低減することができるものである。
【0006】
【発明が解決しようとする課題】
しかしながら、上記中間層を設ける方法では、次のような問題があった。
すなわち、圧電歪による応力は積層数が増えるにしたがって大きくなるが、この応力を緩和するためには、中間層の厚みを大きくする、または、内部電極により容量を得ている部分の分割数を増やし中間層の数を増やすこととなる。
ところが、中間層は容量に寄与しない余分な層であり、中間層の厚みを大きくする場合および中間層の数を増やす場合のいずれの場合においても、積層体における余分な層の割合を増やすこととなるため、圧電歪による応力を十分に低減するとともに必要な容量を得ようとすると、積層体の厚みが大きくなりすぎてしまう。逆に、決められた寸法内で必要な容量を得ようとすると、必然的に中間層の数が少なくなる、または厚みが小さくなるため、それに伴って圧電歪による応力を低減する効果が小さくなる。
また、中間層の厚みを大きくする場合、積層数が少ない場合は、中間層において応力緩和が十分に行うことができるが、積層数が多くなってくると、中間層近傍では応力緩和ができても、中間層から離れるにしたがって応力緩和の効果が薄れるため、圧電歪による応力を低減する効果が小さい。
【0007】
それゆえに、この発明の主たる目的は、高耐圧性を有し、かつ圧電歪による破壊を抑えることができる積層コンデンサを提供することである。
【0008】
【課題を解決するための手段】
この発明は、対向する外部電極間を結ぶ方向と交差する分割線を境界として、同一平面上で少なくとも2分割されて、一方の外部電極と接続される第1の接続内部電極、他方の外部電極と接続される第2の接続内部電極とが形成されてなる第1の内部電極群と、第1の内部電極群の少なくとも2つとチタン酸バリウムを主成分とする誘電体層を介して重なるようにして配設され、対向する外部電極間を結ぶ分割線を境界として、同一平面上で少なくとも2分割されて、外部電極に接続されない複数の浮遊内部電極が形成されてなる第2の内部電極群とを有する積層体とを含み、第1の内部電極群を形成するための分割線と第2の内部電極群を形成するための分割線が重なることにより、積層体の積層方向に第1および第2の内部電極群が存在しない無電極領域が形成された、積層コンデンサである。
このような積層コンデンサにおいて、第1の内部電極群は、外部電極を結ぶ分割線を境界として同一平面上で少なくとも2分割されて形成されてもよい。
また、この発明は、対向する外部電極間を結ぶ方向と交差する分割線を境界として、同一平面上で少なくとも3分割されて、一方の外部電極と接続される第1の接続内部電極、他方の外部電極と接続される第2の接続内部電極、および第1の接続内部電極と第2の接続内部電極との間に位置する浮遊内部電極とが形成されてなる第1の内部電極群と、第1の内部電極群の少なくとも2つとチタン酸バリウムを主成分とする誘電体層を介して重なるようにして配設され、対向する外部電極間を結ぶ方向と交差する分割線を境界として、同一平面上で少なくとも2分割されて、外部電極に接続されない複数の浮遊内部電極が形成されてなる第2の内部電極群とを有する積層体を含み、第1の内部電極群または第2の内部電極群の少なくともどちらかが、対向する外部電極間を結ぶ分割線を境界として分割され、第1の内部電極群を形成するための分割線と第2の内部電極群を形成するための分割線が重なることにより、積層体の積層方向に第1および第2の内部電極群が存在しない無電極領域が形成された、積層コンデンサである。
このような積層コンデンサにおいて、第1の内部電極郡および第2の内部電極郡の両方が、対向する外部電極間を結ぶ分割線を境界として分割されて形成されてもよい。
また、第1の内部電極群の外部電極間を結ぶ分割線と外部電極を結ぶ方向と交差する分割線が同一平面上で交差する部分を囲む4つの第1の内部電極が、第2の内部電極群のうち1つの浮遊内部電極と共通に重なるように配置されてもよい。
さらに、第2の内部電極群の外部電極間を結ぶ分割線と外部電極を結ぶ方向と交差する分割線が同一平面上で交差する部分を囲む4つの第2の内部電極が、第1の内部電極群のうち1つの浮遊内部電極と共通に重なるように配置されてもよい。
これらの積層コンデンサにおいて、複数の第1の内部電極群と複数の第2の内部電極群とが、誘電体層を挟んで交互に積層されてもよい。
【0009】
第1の内部電極群を形成するための分割線と、第2の内部電極群を形成するための分割線が重なることにより、積層体の積層方向にみて内部電極が存在しない無電極領域が形成される。そのため、この無電極領域には電界が印加されず、この部分に圧電歪が発生しない。それにより、内部電極間にある誘電体層に圧電歪が発生しても、内部電極の存在しない部分において機械的応力が緩和される。
また、第1の内部電極群の分割線と第2の内部電極群の分割線とが交差することにより、外部電極間において、複数の静電容量が直列および並列に接続された構造となる。そのため、外部電極間に高電圧が印加されても、個々の静電容量に印加される電圧は低くなり、全体として高い耐電圧性を得ることができる。
さらに、内部電極群の分割数を増やすことにより、複数の場所において、隣接する内部電極群の分割線が交差する。そのため、積層体の積層方向にみて、内部電極の存在しない無電極領域が多数形成される。したがって、積層体に発生する機械的応力を緩和する部分の数が多くなり、圧電歪によって破壊されにくい積層コンデンサを得ることができる。
このような積層コンデンサでは、第1の内部電極群と第2の内部電極群との積層数を調整することにより、全体としての静電容量を調整することができる。
【0010】
この発明の上述の目的,その他の目的,特徴および利点は、図面を参照して行う以下の発明の実施の形態の詳細な説明から一層明らかとなろう。
【0011】
【発明の実施の形態】
図1は、この発明の積層コンデンサの一例を示す斜視図である。積層コンデンサ10は、積層体12を含む。積層体12は、図2(A)(B)(C)に示すように、誘電体層14、第1の内部電極群16および第2の内部電極群18の積層構造となるように形成される。第1の内部電極群16は、第1、第2の接続内部電極16a、16bと、同一平面でその間に位置する浮遊内部電極16cとからなる。また、第2の内部電極群18は、浮遊内部電極18cからなる。ここで、複数の第1の内部電極群16と複数の第2の内部電極群18とが、誘電体層14を挟んで、互いに隣接するように交互に積層される。これらの積層数を調整することにより、積層コンデンサ10全体の静電容量を調整することができる。積層体12の対向端面には、それぞれ外部電極20が形成される。そして、第1の内部電極群16のうち両端に位置する第1および第2の接続内部電極16a、16bが、対向する外部電極20に接続される。なお、第2の内部電極群18は、外部電極20には接続されない。
【0012】
同一平面上に形成された第1の内部電極群16は、図2(A)に示すように、対向する外部電極20間を結ぶ方向に交差する分割線を境界として4分割され、対向する外部電極20間を結ぶ分割線を境界として3分割されることにより、同一平面上において、3個の第1の接続内部電極16a、3個の第2の接続内部電極16b、6個の浮遊内部電極16cに分割される。
【0013】
また、第1の内部電極16に重なって形成された第2の内部電極群18は、対向する外部電極20間を結ぶ分割線を境界として2分割され、対向する外部電極20間を結ぶ方向に交差する分割線を境界として、3分割されることにより、同一平面上において、6個の浮遊内部電極18cに分割される。
【0014】
浮遊内部電極18cのそれぞれは、第1の内部電極群16において同一平面上で分割線が交差した十字部分を囲む4つの第1の内部電極16を覆うように配置される。したがって、図2(A)に示すように、積層体12の積層方向にみて、第1の内部電極群16の分割線と第2の内部電極群18の分割線とが重なる場所に、どちらの内部電極も存在しない無電極領域22が形成される。
【0015】
また、第1の内部電極群16が2つの外部電極20間で縦横に12分割され、第2の内部電極群18が2つの外部電極20間で縦横に6分割されている。そして、第2の内部電極群18の各浮遊内部電極18cが、第1の内部電極群16の分割線が同一平面上で交差する部分を囲む第1、第2の接続内部電極16a、16bおよび浮遊内部電極16cに重なるように配置されている。そのため、図2(B)(C)に示すように、第1の内部電極群16と第2の内部電極群18との対向部分に静電容量が形成され、これらの静電容量が直列および並列に接続される。したがって、図1および図2に示す積層コンデンサ10では、図3に示すように、複数の静電容量が直並列接続された等価回路を有するものとなる。
【0016】
この積層コンデンサ10では、複数の静電容量が直並列接続された構成となっているため、2つの外部電極20間に電圧が印加されても、個々の静電容量に印加される電圧は低くなる。そのため、積層体12内部において、高い耐圧性を得ることができる。
【0017】
また、積層体12の積層方向にみて、無電極領域22が複数形成されるため、これらの無電極領域22には電界が印加されず、この領域においては圧電歪が発生しない。したがって、第1の内部電極群16および第2の内部電極群18が重なった部分において誘電体層14に圧電歪が発生しても、無電極領域22で機械的応力が緩和される。そのため、圧電歪による機械的応力によって基体12が破壊されることを防止することができる。図6や図7に示す従来の積層コンデンサでは、内部電極形成部分の全体で圧電歪が発生するが、図1に示す積層コンデンサ10では、内部電極形成部分に無電極領域22が散在することにより、機械的応力が効果的に緩和される。
【0018】
なお、第1の内部電極群16および第2の内部電極群18は、対向する外部電極20間において、それぞれ縦横に少なくとも2分割されていればよい。これらの第1の内部電極群16および第2の内部電極群18がそれぞれ2分割された場合、図4に示すように、内部電極形成部分の中央部に1つの無電極領域22が形成される。さらに、図5に示すように、対向する外部電極20間を結ぶ方向に交差する分割線を境界として第1の内部電極群16を3分割して第1、第2の接続内部電極16a、16bおよび浮遊内部電極16cを形成し、第2の内部電極群18を縦横に4分割して浮遊内部電極18cを4個形成することにより、2つの無電極領域22を形成することができる。また、図2(A)に示すように、第1の内部電極群16を12分割し、第2の内部電極群18を6分割することにより、7つの無電極領域22を形成することができる。このように、第1の内部電極群16および第2の内部電極群18の分割数を増やすことによって、無電極領域22の数も増加し、圧電歪が発生しない部分を散在させることができる。
【0019】
【実施例】
まず、BaTiO3 を主体とする誘電率3000のB特性のコンデンサ材料粉末に、溶媒、有機バインダ、分散剤、可塑剤を加えてスラリーを作製し、成型機によってセラミックグリーンシートを形成した。得られたセラミックグリーンシートにAg−Pdを主体とした内部電極ペーストを所定のパターンで印刷した。
【0020】
外層用セラミックグリーンシートを数枚積み重ね、続いて所定のパターンで内部電極ペーストを印刷した内層用セラミックグリーンシートを多層に積み重ね、最後に外層用セラミックグリーンシートを数枚積み重ねた。この積層体を加圧プレスしてプレス成型体を形成し、約400℃で脱脂したのち、1200〜1300℃で焼成した。このようにして得られた焼結体の端面に電極を焼き付け、さらにその上にめっき製膜を行って、外部電極を形成した。
【0021】
このような工程で、図2に示す構造を有する積層コンデンサと、図6に示す従来の構造を有する積層コンデンサとを作製した。これらの積層コンデンサは、隣接して積層される内部電極間の素子厚30μmであり、対向する外部電極間において、複数の静電容量を接続した等価回路を有するものである。
【0022】
これらの積層コンデンサについて、外部電極間に直流電圧を印加して、内部欠陥の発生の有無を確認した。なお、圧電歪破壊は、内部破壊が外部まで至らなかったり、絶縁抵抗が低下しないことがあるため、外観や絶縁抵抗測定から判断できない場合がある。そのため、超音波探傷装置により内部欠陥を観察する方法で評価を行った。このとき、直流電圧を0.5kVずつ昇圧して積層コンデンサに印加し、超音波探傷による欠陥検査を行って、どれ位の電圧で圧電歪破壊が生じるかを評価した。そして、その結果を表1に示した。
【0023】
【表1】

Figure 0004039091
【0024】
表1から、本発明の積層コンデンサは、従来の構造の積層コンデンサに比べて、圧電歪による内部破壊電圧が高いことが確認された。これは、圧電歪の発生しない部分、つまり内部電極のない無電極領域が、従来の積層コンデンサでは、基体の両側部のみに存在するのに対して、本発明の積層コンデンサでは、それ以外に、内部電極形成部に無電極領域が散在し、この部分で圧電歪による機械的応力を緩和しているものであると考えられる。
【0025】
【発明の効果】
この発明によれば、内部電極形成部に圧電歪の発生しない無電極領域が散在することにより、内部電極で挟まれた部分に圧電歪が発生しても、無電極領域が強度を保持する役目を果たし、歪に対する耐性が増加する。それによって、圧電歪破壊電圧が増加し、高耐圧の積層コンデンサを得ることができる。
【図面の簡単な説明】
【図1】この発明の積層コンデンサの一例を示す斜視図である。
【図2】(A)は図1に示す積層コンデンサの内部電極が重なる状態を示す平面図であり、(B)は線IIB−IIBにおける断面図解図であり、(C)は線IIC−IICにおける断面図解図である。
【図3】図1および図2に示す積層コンデンサの等価回路図である。
【図4】この発明の積層コンデンサの他の例において、内部電極が重なる状態を示す図解図である。
【図5】この発明の積層コンデンサのさらに他の例において、内部電極が重なる状態を示す図解図である。
【図6】(A)は従来の積層コンデンサの一例において、内部電極が重なる状態を示す平面図であり、(B)は線VIB−VIBにおける断面図解図であり、(C)は線VIC−VICにおける断面図解図である。
【図7】従来の積層コンデンサの他の例を示す断面図解図である。
【符号の説明】
10 積層コンデンサ
12 積層体
14 誘電体層
16 第1の内部電極群
16a 第1の接続内部電極
16b 第2の接続内部電極
16c 浮遊内部電極
18 第2の内部電極群
18c 浮遊内部電極
20 外部電極
22 無電極領域[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer capacitor, and more particularly to a medium-high voltage type multilayer capacitor that mainly requires a high breakdown voltage.
[0002]
[Prior art]
2. Description of the Related Art In recent years, the downsizing and high capacity of multilayer capacitors have been promoted by downsizing electronic devices and surface mounting. This trend has spread to the medium- and high-voltage capacitors market. For example, in the field of capacitors that require high voltage resistance such as for backlights of liquid crystal displays and for switching power supplies, smaller and lower-cost multilayer capacitors are available. It has been demanded.
[0003]
In order to reduce the size and increase the breakdown voltage of the multilayer capacitor 1, it is necessary to solve the three problems of increasing the internal breakdown voltage, preventing surface leakage, and preventing piezoelectric strain breakdown. In order to increase the internal breakdown voltage, for example, as shown in FIGS. 6A, 6B and 6C, the dividing line perpendicular to the direction connecting the external electrodes 3 at both ends of the laminate 2 formed of a dielectric is used. It is conceivable that the internal electrode 4 connected to the opposing external electrode 3 is divided into a plurality of parts with the boundary as a boundary, and adjacent internal electrodes 5 are formed so as to overlap both sides of the divided part. Here, the internal electrode 5 is not connected to the external electrode 3, and is divided so as to be parallel to the divided portion of the internal electrode 4 at a portion different from the divided portion of the internal electrode 4. With such a structure, as shown in FIG. 6B, a capacitance is formed at a portion where the internal electrode 4 and the internal electrode 5 face each other. Therefore, a plurality of capacitances are formed between the opposing external electrodes 3 and these capacitances are connected in series. For this reason, the voltage applied to each capacitance is reduced, and the internal breakdown voltage can be increased.
[0004]
By the way, when a ferroelectric material is used as a dielectric layer constituting the multilayer capacitor, it has a certain degree of piezoelectricity. Therefore, when a high voltage is applied to the multilayer capacitor 1, piezoelectric strain is generated in the dielectric layer, and mechanical stress is applied to the multilayer capacitor 1 to be destroyed. Such breakdown may occur faster than electrical breakdown due to the electric field.
[0005]
Therefore, as a countermeasure against piezoelectric strain destruction, for example, as disclosed in Japanese Patent Application Laid-Open No. 9-180956, as shown in FIG. A method of forming the intermediate layer 6 that relieves stress due to piezoelectric strain is considered. The intermediate layer 6 is formed of the same material as that of the dielectric layer. By making the layer thickness larger than that of the dielectric layer, mechanical stress is relieved and piezoelectric strain breakdown can be reduced.
[0006]
[Problems to be solved by the invention]
However, the method for providing the intermediate layer has the following problems.
That is, the stress due to piezoelectric strain increases as the number of layers increases, but in order to alleviate this stress, the thickness of the intermediate layer is increased or the number of divisions where the capacitance is obtained by the internal electrode is increased. The number of intermediate layers will be increased.
However, the intermediate layer is an extra layer that does not contribute to the capacity.In either case of increasing the thickness of the intermediate layer or increasing the number of intermediate layers, the ratio of the extra layer in the laminate is increased. Therefore, when the stress due to the piezoelectric strain is sufficiently reduced and a necessary capacity is obtained, the thickness of the laminated body becomes too large. On the other hand, if the required capacity is obtained within the determined dimensions, the number of intermediate layers is inevitably reduced or the thickness is reduced, and accordingly, the effect of reducing stress due to piezoelectric strain is reduced. .
In addition, when the thickness of the intermediate layer is increased, if the number of stacked layers is small, stress relaxation can be sufficiently performed in the intermediate layer. However, as the number of stacked layers increases, stress relaxation can be performed in the vicinity of the intermediate layer. However, since the effect of stress relaxation diminishes as the distance from the intermediate layer increases, the effect of reducing the stress due to piezoelectric strain is small.
[0007]
Therefore, a main object of the present invention is to provide a multilayer capacitor that has high pressure resistance and can suppress breakage due to piezoelectric strain.
[0008]
[Means for Solving the Problems]
According to the present invention, a first connection internal electrode that is divided into at least two on the same plane and is connected to one external electrode, with the dividing line intersecting the direction connecting the opposing external electrodes as a boundary, the other external electrode A first internal electrode group formed with a second connection internal electrode connected to each other, and at least two of the first internal electrode group overlap with each other through a dielectric layer mainly composed of barium titanate. The second internal electrode group is formed by forming a plurality of floating internal electrodes which are arranged at least in two on the same plane with a dividing line connecting the opposing external electrodes as a boundary and are not connected to the external electrodes The dividing line for forming the first internal electrode group and the dividing line for forming the second internal electrode group overlap with each other, so that the first and Second internal electrode group exists No electrodeless region is formed, a multilayer capacitor.
In such a multilayer capacitor, the first internal electrode group may be formed by being divided into at least two on the same plane with a dividing line connecting the external electrodes as a boundary.
The present invention also provides a first connection internal electrode that is divided into at least three on the same plane and connected to one external electrode, with the dividing line intersecting the direction connecting the opposing external electrodes as a boundary, A first internal electrode group formed by forming a second connection internal electrode connected to the external electrode, and a floating internal electrode positioned between the first connection internal electrode and the second connection internal electrode; Identical with a dividing line that is arranged to overlap at least two of the first internal electrode groups via a dielectric layer mainly composed of barium titanate and intersects the direction connecting the opposing external electrodes. A first internal electrode group or a second internal electrode, comprising: a laminated body having a second internal electrode group formed of a plurality of floating internal electrodes that are divided into at least two parts on a plane and are not connected to external electrodes. At least either of the group But is divided dividing line connecting the opposing external electrodes as a boundary, since the first division line for forming the internal electrode group of a dividing line for forming the second inner electrode groups overlap, stacked This is a multilayer capacitor in which an electrodeless region in which the first and second internal electrode groups do not exist is formed in the stacking direction of the body.
In such a multilayer capacitor, both the first internal electrode group and the second internal electrode group may be divided and formed with a dividing line connecting the opposing external electrodes as a boundary.
Further, the four first internal electrodes surrounding the portion where the dividing line connecting the external electrodes of the first internal electrode group and the dividing line crossing the direction connecting the external electrodes intersect on the same plane are the second internal electrodes. You may arrange | position so that it may overlap with one floating internal electrode among electrode groups.
Further, the four second internal electrodes surrounding the portion where the dividing line connecting the external electrodes of the second internal electrode group and the dividing line crossing the direction connecting the external electrodes intersect on the same plane are the first internal electrodes. You may arrange | position so that it may overlap with one floating internal electrode among electrode groups.
In these multilayer capacitors, a plurality of first internal electrode groups and a plurality of second internal electrode groups may be alternately stacked with a dielectric layer interposed therebetween.
[0009]
The dividing line for forming the first internal electrode group and the dividing line for forming the second internal electrode group overlap to form an electrodeless region in which no internal electrode exists in the stacking direction of the stacked body. Is done. Therefore, no electric field is applied to the electrodeless region, and no piezoelectric strain is generated in this portion. As a result, even if piezoelectric strain occurs in the dielectric layer between the internal electrodes, the mechanical stress is relieved in the portion where the internal electrodes do not exist.
In addition, since the dividing line of the first internal electrode group and the dividing line of the second internal electrode group cross each other, a plurality of capacitances are connected in series and in parallel between the external electrodes. For this reason, even when a high voltage is applied between the external electrodes, the voltage applied to each capacitance is low, and high voltage resistance can be obtained as a whole.
Further, by increasing the number of divisions of the internal electrode groups, the division lines of adjacent internal electrode groups intersect at a plurality of locations. Therefore, many electrodeless regions where no internal electrode exists are formed in the stacking direction of the stack. Therefore, the number of portions that relieve the mechanical stress generated in the multilayer body is increased, and a multilayer capacitor that is not easily broken by piezoelectric strain can be obtained.
In such a multilayer capacitor, the overall capacitance can be adjusted by adjusting the number of stacked layers of the first internal electrode group and the second internal electrode group.
[0010]
The above object, other objects, features, and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention with reference to the drawings.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view showing an example of the multilayer capacitor of the present invention. The multilayer capacitor 10 includes a multilayer body 12. As shown in FIGS. 2A, 2B, and 2C, the laminated body 12 is formed to have a laminated structure of a dielectric layer 14, a first internal electrode group 16, and a second internal electrode group 18. The The first internal electrode group 16 includes first and second connection internal electrodes 16a and 16b and a floating internal electrode 16c located between them on the same plane. The second internal electrode group 18 includes floating internal electrodes 18c. Here, the plurality of first internal electrode groups 16 and the plurality of second internal electrode groups 18 are alternately stacked so as to be adjacent to each other with the dielectric layer 14 interposed therebetween. By adjusting the number of layers, the capacitance of the entire multilayer capacitor 10 can be adjusted. External electrodes 20 are formed on opposite end surfaces of the stacked body 12, respectively. Then, the first and second connection internal electrodes 16 a and 16 b located at both ends of the first internal electrode group 16 are connected to the opposed external electrodes 20. Note that the second internal electrode group 18 is not connected to the external electrode 20.
[0012]
As shown in FIG. 2A, the first internal electrode group 16 formed on the same plane is divided into four with a dividing line intersecting in a direction connecting the opposing external electrodes 20 as a boundary. The three first connection internal electrodes 16a, the three second connection internal electrodes 16b, and the six floating internal electrodes are formed on the same plane by being divided into three with the dividing line connecting the electrodes 20 as a boundary. It is divided into 16c.
[0013]
The second internal electrode group 18 formed to overlap the first internal electrode 16 is divided into two with a dividing line connecting the opposing external electrodes 20 as a boundary, and in a direction connecting the opposing external electrodes 20. By dividing into three with the intersecting dividing line as a boundary, it is divided into six floating internal electrodes 18c on the same plane.
[0014]
Each of the floating internal electrodes 18 c is arranged so as to cover the four first internal electrodes 16 surrounding the cross portion where the dividing lines intersect on the same plane in the first internal electrode group 16. Therefore, as shown in FIG. 2A, in the stacking direction of the stacked body 12, whichever part of the overlapping line of the dividing line of the first internal electrode group 16 and the dividing line of the second internal electrode group 18 An electrodeless region 22 in which no internal electrode exists is formed.
[0015]
Further, the first internal electrode group 16 is divided into 12 parts vertically and horizontally between the two external electrodes 20, and the second internal electrode group 18 is divided into 6 parts vertically and horizontally between the two external electrodes 20. Then, each floating internal electrode 18c of the second internal electrode group 18 includes first and second connection internal electrodes 16a, 16b surrounding a portion where the dividing lines of the first internal electrode group 16 intersect on the same plane, and It arrange | positions so that it may overlap with the floating internal electrode 16c. Therefore, as shown in FIGS. 2B and 2C, a capacitance is formed in the facing portion between the first internal electrode group 16 and the second internal electrode group 18, and these capacitances are connected in series and Connected in parallel. Therefore, the multilayer capacitor 10 shown in FIGS. 1 and 2 has an equivalent circuit in which a plurality of capacitances are connected in series and parallel as shown in FIG.
[0016]
Since the multilayer capacitor 10 has a configuration in which a plurality of capacitances are connected in series and parallel, even when a voltage is applied between the two external electrodes 20, the voltage applied to each capacitance is low. Become. Therefore, high pressure resistance can be obtained in the laminate 12.
[0017]
In addition, since a plurality of electrodeless regions 22 are formed in the stacking direction of the stacked body 12, an electric field is not applied to these electrodeless regions 22, and no piezoelectric strain is generated in these regions. Therefore, even if piezoelectric strain occurs in the dielectric layer 14 in the portion where the first internal electrode group 16 and the second internal electrode group 18 overlap, the mechanical stress is relaxed in the electrodeless region 22. Therefore, it is possible to prevent the base 12 from being broken by mechanical stress due to piezoelectric strain. In the conventional multilayer capacitor shown in FIGS. 6 and 7, piezoelectric distortion occurs in the entire internal electrode formation portion. However, in the multilayer capacitor 10 shown in FIG. 1, the non-electrode region 22 is scattered in the internal electrode formation portion. , Mechanical stress is effectively relieved.
[0018]
The first internal electrode group 16 and the second internal electrode group 18 may be divided into at least two portions in the vertical and horizontal directions between the opposing external electrodes 20. When each of the first internal electrode group 16 and the second internal electrode group 18 is divided into two, as shown in FIG. 4, one non-electrode region 22 is formed in the central portion of the internal electrode formation portion. . Further, as shown in FIG. 5, the first internal electrode group 16 is divided into three parts with the dividing line intersecting in the direction connecting the opposing external electrodes 20 as a boundary, and the first and second connection internal electrodes 16a, 16b. Then, the floating internal electrode 16c is formed, the second internal electrode group 18 is divided into four in the vertical and horizontal directions, and the four floating internal electrodes 18c are formed, whereby two electrodeless regions 22 can be formed. As shown in FIG. 2A, seven electrodeless regions 22 can be formed by dividing the first internal electrode group 16 into 12 parts and dividing the second internal electrode group 18 into 6 parts. . As described above, by increasing the number of divisions of the first internal electrode group 16 and the second internal electrode group 18, the number of electrodeless regions 22 is also increased, and portions where no piezoelectric strain is generated can be scattered.
[0019]
【Example】
First, a slurry was prepared by adding a solvent, an organic binder, a dispersant, and a plasticizer to a capacitor material powder having a dielectric constant of 3000 and having a dielectric constant of 3000, mainly BaTiO 3 , and a ceramic green sheet was formed by a molding machine. An internal electrode paste mainly composed of Ag—Pd was printed in a predetermined pattern on the obtained ceramic green sheet.
[0020]
Several ceramic green sheets for outer layers were stacked, then ceramic green sheets for inner layers on which internal electrode paste was printed in a predetermined pattern were stacked in multiple layers, and finally several ceramic green sheets for outer layers were stacked. The laminate was pressed to form a press-molded body, degreased at about 400 ° C., and fired at 1200 to 1300 ° C. An electrode was baked on the end face of the sintered body thus obtained, and a plating film was formed thereon to form an external electrode.
[0021]
Through these steps, the multilayer capacitor having the structure shown in FIG. 2 and the multilayer capacitor having the conventional structure shown in FIG. 6 were produced. These multilayer capacitors have an element thickness of 30 μm between adjacent internal electrodes, and have an equivalent circuit in which a plurality of capacitances are connected between opposing external electrodes.
[0022]
With respect to these multilayer capacitors, a DC voltage was applied between the external electrodes to confirm the presence or absence of internal defects. Note that piezoelectric strain breakdown may not be judged from appearance or insulation resistance measurement because internal breakdown may not reach the outside or the insulation resistance may not decrease. Therefore, evaluation was performed by a method of observing internal defects with an ultrasonic flaw detector. At this time, the DC voltage was boosted by 0.5 kV and applied to the multilayer capacitor, and defect inspection by ultrasonic flaw detection was performed to evaluate the voltage at which piezoelectric strain breakdown occurred. The results are shown in Table 1.
[0023]
[Table 1]
Figure 0004039091
[0024]
From Table 1, it was confirmed that the multilayer capacitor of the present invention had a higher internal breakdown voltage due to piezoelectric strain than the multilayer capacitor having the conventional structure. This is because, in the conventional multilayer capacitor, a portion where no piezoelectric strain occurs, that is, an electrodeless region without an internal electrode, exists only on both sides of the base, whereas in the multilayer capacitor of the present invention, It is considered that non-electrode regions are scattered in the internal electrode forming portion, and mechanical stress due to piezoelectric strain is relieved in this portion.
[0025]
【The invention's effect】
According to the present invention, since the non-electrode regions where no piezoelectric strain is generated are scattered in the internal electrode forming portion, the non-electrode region has a function of maintaining the strength even if the piezoelectric strain is generated in the portion sandwiched between the internal electrodes. And resistance to distortion increases. As a result, the piezoelectric strain breakdown voltage increases and a high withstand voltage multilayer capacitor can be obtained.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of a multilayer capacitor according to the present invention.
2A is a plan view showing a state in which internal electrodes of the multilayer capacitor shown in FIG. 1 overlap, FIG. 2B is a cross-sectional view taken along line IIB-IIB, and FIG. 2C is a line IIC-IIC; FIG.
3 is an equivalent circuit diagram of the multilayer capacitor shown in FIGS. 1 and 2. FIG.
FIG. 4 is an illustrative view showing a state in which internal electrodes overlap in another example of the multilayer capacitor of the present invention;
FIG. 5 is an illustrative view showing a state in which internal electrodes overlap in still another example of the multilayer capacitor of the present invention;
6A is a plan view showing a state in which internal electrodes overlap in an example of a conventional multilayer capacitor, FIG. 6B is a sectional view taken along line VIB-VIB, and FIG. 6C is a line VIC- It is a cross-sectional solution figure in VIC.
FIG. 7 is a cross-sectional view illustrating another example of a conventional multilayer capacitor.
[Explanation of symbols]
10 multilayer capacitor 12 multilayer 14 dielectric layer 16 first internal electrode group 16a first connection internal electrode 16b second connection internal electrode 16c floating internal electrode 18 second internal electrode group 18c floating internal electrode 20 external electrode 22 No electrode area

Claims (7)

対向する外部電極間を結ぶ方向と交差する分割線を境界として、同一平面上で少なくとも2分割されて、一方の外部電極と接続される第1の接続内部電極、他方の外部電極と接続される第2の接続内部電極とが形成されてなる第1の内部電極群と、
前記第1の内部電極群の少なくとも2つとチタン酸バリウムを主成分とする誘電体層を介して重なるようにして配設され、対向する前記外部電極間を結ぶ分割線を境界として、同一平面上で少なくとも2分割されて、前記外部電極に接続されない複数の浮遊内部電極が形成されてなる第2の内部電極群とを有する積層体を含み、
前記第1の内部電極群を形成するための分割線と前記第2の内部電極群を形成するための分割線が重なることにより、前記積層体の積層方向に前記第1および第2の内部電極群が存在しない無電極領域が形成された、積層コンデンサ。
The first connecting internal electrode connected to one external electrode and the other external electrode are divided into at least two parts on the same plane with a dividing line intersecting the direction connecting the opposing external electrodes as a boundary. A first internal electrode group formed with a second connection internal electrode;
It is arranged on the same plane with a dividing line connecting between the opposing external electrodes as a boundary, which is disposed so as to overlap with at least two of the first internal electrode groups via a dielectric layer mainly composed of barium titanate. And a second internal electrode group in which a plurality of floating internal electrodes that are not connected to the external electrodes are formed,
The dividing line for forming the first internal electrode group and the dividing line for forming the second internal electrode group overlap, whereby the first and second internal electrodes are arranged in the stacking direction of the stacked body. A multilayer capacitor in which an electrodeless region in which no group exists is formed.
前記第1の内部電極群は、前記外部電極を結ぶ分割線を境界として同一平面上で少なくとも2分割されて形成される、請求項1に記載の積層コンデンサ。  2. The multilayer capacitor according to claim 1, wherein the first internal electrode group is formed by being divided into at least two on the same plane with a dividing line connecting the external electrodes as a boundary. 対向する外部電極間を結ぶ方向と交差する分割線を境界として、同一平面上で少なくとも3分割されて、一方の外部電極と接続される第1の接続内部電極、他方の外部電極と接続される第2の接続内部電極、および前記第1の接続内部電極と前記第2の接続内部電極との間に位置する浮遊内部電極とが形成されてなる第1の内部電極群と、
前記第1の内部電極群の少なくとも2つとチタン酸バリウムを主成分とする誘電体層を介して重なるようにして配設され、対向する前記外部電極間を結ぶ方向と交差する分割線を境界として、同一平面上で少なくとも2分割されて、前記外部電極に接続されない複数の浮遊内部電極が形成されてなる第2の内部電極群とを有する積層体を含み、
前記第1の内部電極群または前記第2の内部電極群の少なくともどちらかが、対向する前記外部電極間を結ぶ分割線を境界として分割され、
前記第1の内部電極群を形成するための分割線と前記第2の内部電極群を形成するための分割線が重なることにより、前記積層体の積層方向に前記第1および第2の内部電極群が存在しない無電極領域が形成された、積層コンデンサ。
The first connecting internal electrode connected to one external electrode and the other external electrode are divided into at least three parts on the same plane with a dividing line intersecting the direction connecting the opposing external electrodes as a boundary. A first internal electrode group in which a second connection internal electrode and a floating internal electrode positioned between the first connection internal electrode and the second connection internal electrode are formed;
At least two of the first internal electrode groups are arranged so as to overlap with each other through a dielectric layer mainly composed of barium titanate, and a dividing line intersecting with a direction connecting the opposed external electrodes is used as a boundary Including a laminate having a second internal electrode group formed of a plurality of floating internal electrodes that are divided into at least two on the same plane and are not connected to the external electrodes,
At least one of the first internal electrode group or the second internal electrode group is divided using a dividing line connecting the opposed external electrodes as a boundary,
The dividing line for forming the first internal electrode group and the dividing line for forming the second internal electrode group overlap, whereby the first and second internal electrodes are arranged in the stacking direction of the stacked body. A multilayer capacitor in which an electrodeless region in which no group exists is formed.
前記第1の内部電極郡および前記第2の内部電極郡の両方が、対向する前記外部電極間を結ぶ分割線を境界として分割されて形成された、請求項3に記載の積層コンデンサ。  4. The multilayer capacitor according to claim 3, wherein both of the first internal electrode group and the second internal electrode group are divided and formed with a dividing line connecting the opposed external electrodes as a boundary. 5. 前記第1の内部電極群の前記外部電極間を結ぶ分割線と前記外部電極を結ぶ方向と交差する分割線が同一平面上で交差する部分を囲む4つの第1の内部電極が、前記第2の内部電極群のうち1つの浮遊内部電極と共通に重なるように配置される、請求項3または請求項4に記載の積層コンデンサ。  Four first internal electrodes surrounding a portion where a dividing line connecting the external electrodes of the first internal electrode group and a dividing line crossing a direction connecting the external electrodes intersect on the same plane are the second internal electrodes. 5. The multilayer capacitor according to claim 3, wherein the multilayer capacitor is disposed so as to overlap with one floating internal electrode in the internal electrode group. 前記第2の内部電極群の前記外部電極間を結ぶ分割線と前記外部電極を結ぶ方向と交差する分割線が同一平面上で交差する部分を囲む4つの第2の内部電極が、前記第1の内部電極群のうち1つの浮遊内部電極と共通に重なるように配置される、請求項3または請求項4に記載の積層コンデンサ。  Four second internal electrodes surrounding a portion where a dividing line connecting the external electrodes of the second internal electrode group and a dividing line crossing the direction connecting the external electrodes intersect on the same plane are the first internal electrode. The multilayer capacitor according to claim 3, wherein the multilayer capacitor is disposed so as to overlap with one floating internal electrode in the internal electrode group. 複数の前記第1の内部電極群と複数の前記第2の内部電極群とが、前記誘電体層を挟んで交互に積層された、請求項1ないし請求項6のいずれかに記載の積層コンデンサ。  The multilayer capacitor according to claim 1, wherein a plurality of the first internal electrode groups and a plurality of the second internal electrode groups are alternately stacked with the dielectric layer interposed therebetween. .
JP2002074425A 2002-03-18 2002-03-18 Multilayer capacitor Expired - Fee Related JP4039091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074425A JP4039091B2 (en) 2002-03-18 2002-03-18 Multilayer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074425A JP4039091B2 (en) 2002-03-18 2002-03-18 Multilayer capacitor

Publications (2)

Publication Number Publication Date
JP2003272946A JP2003272946A (en) 2003-09-26
JP4039091B2 true JP4039091B2 (en) 2008-01-30

Family

ID=29203823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074425A Expired - Fee Related JP4039091B2 (en) 2002-03-18 2002-03-18 Multilayer capacitor

Country Status (1)

Country Link
JP (1) JP4039091B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4654854B2 (en) * 2005-09-13 2011-03-23 パナソニック株式会社 Multilayer capacitors and molded capacitors
JP6881271B2 (en) 2017-12-08 2021-06-02 株式会社村田製作所 Multilayer ceramic electronic components

Also Published As

Publication number Publication date
JP2003272946A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
KR101452068B1 (en) Multi-layered ceramic capacitor and circuit board for mounting the same
US9236186B2 (en) Multi-layered ceramic capacitor
KR101452049B1 (en) Multi-layered ceramic capacitor, mounting structure of circuit having thereon multi-layered ceramic capacitor and packing unit for multi-layered ceramic capacitor
KR101867982B1 (en) Capacitor and board having the same mounted thereon
KR101548771B1 (en) Chip type laminated capacitor
KR20150011263A (en) Multi-layered ceramic capacitor and board for mounting the same
KR101452057B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR101452067B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR102029529B1 (en) Multi-layered ceramic capacitor
KR20120058128A (en) Multi-layered ceramic capacitor
KR20140142848A (en) Multi-layered ceramic electronic component and method of manufacturing the same
US9691550B2 (en) Multi-layer capacitor and method for producing a multi-layer capacitor
KR20180073083A (en) Capacitor Component
KR20160047876A (en) Multi-layered ceramic electronic components and board having the same mounted thereon
KR101452070B1 (en) Multi-layered ceramic capacitor and method of manufacturing the same
CN107799305B (en) Capacitor assembly
KR101761938B1 (en) Multi-layered ceramic electronic component
KR20150005308A (en) Multi-layered ceramic capacitor, mounting circuit board thereof and manufacturing method the same
TW201423793A (en) Multilayered ceramic capacitor and method of manufacturing the same
KR20190116142A (en) Multilayered capacitor and board having the same mounted thereon
JP4105665B2 (en) Multilayer ceramic capacitor
KR101462759B1 (en) Multi-layered ceramic capacitor and board for mounting the same
KR20180068911A (en) Capacitor and board having the same mounted thereon
JPH09180956A (en) Multilayer ceramic capacitor
KR101963258B1 (en) array-type multilayered ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4039091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees