JP4038918B2 - Pulse power supply - Google Patents

Pulse power supply Download PDF

Info

Publication number
JP4038918B2
JP4038918B2 JP03368399A JP3368399A JP4038918B2 JP 4038918 B2 JP4038918 B2 JP 4038918B2 JP 03368399 A JP03368399 A JP 03368399A JP 3368399 A JP3368399 A JP 3368399A JP 4038918 B2 JP4038918 B2 JP 4038918B2
Authority
JP
Japan
Prior art keywords
tank
core
toroidal core
output terminal
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03368399A
Other languages
Japanese (ja)
Other versions
JP2000232795A (en
Inventor
栄二 笹本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP03368399A priority Critical patent/JP4038918B2/en
Publication of JP2000232795A publication Critical patent/JP2000232795A/en
Application granted granted Critical
Publication of JP4038918B2 publication Critical patent/JP4038918B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lasers (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス発生回路と磁気パルス圧縮回路を組み合わせ、高い繰り返しで狭幅の大電流パルスを発生するパルス電源装置に係り、特にタンクに収納するパルストランスや可飽和リアクトルと入出力端子との接続構造に関する。
【0002】
【従来の技術】
従来のパルス電源装置例を図7に示す。パルス発生回路は、電力用の初段コンデンサC0を設け、このコンデンサC0を高圧充電器により初期充電しておき、半導体スイッチSWのオン制御でコンデンサC0から可飽和リアクトルSI0を通してパルストランスPTにパルス電流I0を供給する。可飽和リアクトルSI0は、半導体スイッチSWの完全なオン後に飽和動作してパルス電流I0を発生させることでスイッチSWの責務を軽減する。
【0003】
パルストランスPTの二次側には2段の磁気パルス圧縮回路が縦続接続され、初段の磁気パルス発生回路ではパルストランスPTで昇圧したパルス電流I1でコンデンサC1が高圧充電され、このコンデンサC1の充電電圧で可飽和リアクトルSI1が磁気スイッチ動作することにより磁気パルス圧縮した狭幅のパルス電流I2を図示の極性で次段の磁気パルス圧縮回路に供給する。同様に、可飽和リアクトルSI2の磁気スイッチ動作により、パルス幅の磁気パルス圧縮を行い、パルス電流I3を図示の極性で出力する。
【0004】
磁気パルス圧縮回路のパルス出力は、レーザヘッドのチャンバなどの負荷に狭幅・高電圧のパルス電流を高い繰り返しで供給する。
【0005】
ここで、可飽和リアクトルSI0〜SI2やパルストランスPTは、巻線に流れる高い繰り返しのパルス電流でコアに渦電流損失が発生してコア温度が上昇するため、コアをもつ主回路部品はその冷却手段となる油密タンクに収納する。また、コンデンサC1,C2は、可飽和リアクトルとの間で狭幅パルス電流を流せるよう近接配置するため、油密タンク内に一括収納される。
【0006】
このように、装置構成としては、可飽和リアクトルやパルストランス及びコンデンサを回路接続した主回路を油密タンクに一括収納し、外部の回路とは入出力端子を介して回路接続する。
【0007】
図8は、出力端子部の接続構造を断面図で示す。出力端子1は、タンク内突出部1Aがネジ構造にされ、油密タンク2の底板(グランド端子)3に固定される絶縁部材4にそれを貫通した突出部1Aをナット1Bで止める。絶縁部材4は、Oリング4A等で液密構造で油密タンク2に取り付けられる。出力端子1のタンク内突出部1Aの先端にはコア巻線と接続を得るための導体5がネジ等で止められる。
【0008】
可飽和リアクトルSI2のトロイダルコア6は、固定用絶縁物7によって底板3上に起立した状態に取り付けられる。このトロイダルコア6に巻回されるコア巻線8は、一端がコンデンサ9(コンデンサC2)に端子接続され、他端が導体5に接続される。
【0009】
図9は、入力端子部の接続構造を断面図で示す。P側及びN側の入力端子11P、11Nは、ピン構造にされ、油密タンク2の側板に設けられる絶縁部材12を貫通したタンク内突出部をもつ。絶縁部材12は、Oリング12A等で液密構造でタンク2に取り付けられる。
【0010】
可飽和リアクトルSI0及びパルストランスPTのトロイダルコア13、14は、固定用絶縁物15によって底板3上に起立した状態に取り付けられる。トロイダルコア13に巻回されるコア巻線16は、一端が入力端子11Pに接続され、他端がトロイダルコア14の一次巻線17の一端に接続される。この一次巻線17の他端は入力端子11Nに接続される。また、トロイダルコア14の二次巻線18は、図示を省略するがコンデンサC1等に接続される。
【0011】
【発明が解決しようとする課題】
入出力端子と可飽和リアクトル、パルストランスの従来の接続構造では、巻線と入出力端子との間を接続する導体の長さが大きくなり、この部分のループインダクタンスLが大きくなる。このインダクタンスLは、巻線に流れるパルス電流の狭幅化等を阻害する要因となっている。
【0012】
具体的には、図8の場合は、タンク内に突出させた端子1の位置を避けてコア6等からなる可飽和リアクトルを固定する必要があるため、出力端子1とコア巻線8の接続には導体5が介在し、この部分のインダクタンスが出力パルス電流I3を鈍らす要因となる。また、導体5の抵抗値がパルス電源の内部インピーダンスを高めてしまう。また、導体5は、部品点数の増加になる。
【0013】
図9の入力端子11P、11Nと巻線16、17の接続には、入力端子とコア13、14の間の隙間が大きくなってしまい、この部分を引き回すための巻線(又は導体)のインダクタンスが入力パルス電流I0を鈍らす要因となる。また、隙間が大きくなることでタンク2自体の大型化、重量増加を招くし、必要とする絶縁油量が増える。また、巻線16と17は、コア13と14にそれぞれ個別に巻回されるため、リアクトルやトランス自体の大型化を招くし、互いの接続のための端子19が余分に必要とする。
【0014】
本発明の目的は、タンクに設ける入出力端子とタンクに収納する可飽和リアクトルやパルストランスとの接続構造に、インダクタンスの介入を小さくし、しかもコンパクト化できるパルス電源装置を提供することにある。
【0015】
【課題を解決するための手段】
本発明は、上記の課題を解決するため、入出力端子のタンク内突出部がタンク内に突出する方向に対して、可飽和リアクトル等のトロイダルコアの半径方向を直交させ、突出部にトロイダルコアを近接配置した構造、または突出部がトロイダルコアを貫通もしくはトロイダルコア位置まで延長した構造としたもので、以下の構成を特徴とする。
【0016】
(第1の発明)
可飽和リアクトルやパルストランス等のトロイダルコアをもつ主回路部品をタンクに収納し、該主回路部品のコア巻線を前記タンクに設けた入力端子又は出力端子と接続してパルス電流の入出力を得るパルス電源装置において、
前記出力端子又は入力端子は、その先端を前記タンク内に突出させた突出部を有し、
前記突出部に直交してかつ近接配置で固定した絶縁性の支持板を有し、
前記トロイダルコアは、その半径方向を前記突出部がタンク内に突出する方向に対して直交させて前記支持板に固定した構造を特徴とする。
【0017】
(第2の発明)
可飽和リアクトルやパルストランス等のトロイダルコアをもつ主回路部品をタンクに収納し、該主回路部品のコア巻線を前記タンクに設けた入力端子又は出力端子と接続してパルス電流の入出力を得るパルス電源装置において、
前記出力端子又は入力端子は、その先端を前記タンク内に突出させた突出部を有し、
前記突出部に直交してかつ該突出部が貫通して該突出部に固定した絶縁板を有し、
前記トロイダルコアは、その半径方向を前記突出部がタンク内に突出する方向に対して直交させて前記絶縁板に固定し
前記突出部は、前記コア巻線の一部として前記トロイダルコアを貫通した構造またはコア巻線の一部として延長した構造を特徴とする。
【0019】
【発明の実施の形態】
(第1の実施形態)
図1は、本発明の実施形態を示す出力端子部の断面図である。同図が図8と異なる部分は、トロイダルコア6を横置きで出力端子1の直上に配置し、これを固定用絶縁物7に代えて固定物22と支持板21で固定した点にある。
【0020】
絶縁性の支持板21は、底板3に固定される固定物22によって出力端子1のタンク内突出部1Aの直上に片持支持(又は両側支持)され、その上にトロイダルコア6とコア巻線8からなる可飽和リアクトルSI2が横置きで固定される。
【0021】
すなわち、出力端子1のタンク内突出部1Aがタンク2内に突出する方向に対して、トロイダルコア6の半径方向(環の矢印RA方向)を直交させて突出部1Aに近接配置する。
【0022】
コア巻線8は、その一端がコンデンサ9に接続され、他端が突出部1Aに直接に接続固定される。
【0023】
この接続構造によれば、トロイダルコア6が横置きで突出部1Aの直上に配置されるため、コア巻線8と出力端子1の間の接続が従来の導体5を介することなく直接に接続、つまり最短の接続になり、接続導体のインダクタンス分が介在することなく、出力パルス電流I3を鈍らす要因を無くすことができる。また、導体5の抵抗値でパルス電源の内部インピーダンスを高めることがない。また、設置スペースの縮小でコンパクト化を図ることができる。
【0024】
(第2の実施形態)
図2は、本発明の実施形態を示す出力端子部の断面図である。同図が図1と異なる部分は、絶縁用固定物22を省き、出力端子1のタンク内突出部1Aで絶縁板23を支持し、この絶縁板23上にトロイダルコア6を横置きに固定した点にある。図2では、絶縁板23を突出部1Aにネジ24で止め、この上にトロイダルコア6を固定する。
【0025】
この接続構造によれば、図1の場合と同様の作用効果を得ることができるのに加えて、固定物22を省くことができ、部品点数の削減と組み立て工数をへらすことができる。
【0026】
(第3の実施形態)
図3は、本発明の実施形態を示す出力端子部の断面図である。同図が図2と異なる部分は、出力端子1のタンク内突出部1Aをトロイダルコア6を貫通させる位置まで延長し、絶縁板23を突出部1Aに固定する構造にある。
【0027】
出力端子1の突出部1Aは、トロイダルコア6の中空部高さ位置まで延長したものにする。絶縁板23は、突出部1Aに嵌め込まれ、突出部1Aに螺合させる一対のナット1B、1Cで挟持される。そして、コア巻線8の一端はトロイダルコア6の高さ以上になる突出部1Aの先端で接続される。
【0028】
この接続構造によれば、図1又は図2の場合と同様の作用効果を得ることができるのに加えて、突出部1Aをトロイダルコア6を貫通させることでコア巻線8の一部として兼用でき、コア巻線8に必要なターン数を減らすと共に、突出部1Aの断面積が大きいことからループインダクタンスを減らすことができる。また、図2の構造に比べて、絶縁板23の高さ位置を下げることができ、設置スペースを一層縮小できる。
【0029】
(第4の実施形態)
図4は、本発明の実施形態を示す入力端子部の断面図である。同図が図9と異なる部分は、トロイダルコア13、14を入力端子11P,11N側に近づけ、タンク2内に突出する入力端子11Pの突出部がトロイダルコア13を貫通してその巻線16の一部に兼用させる点にある。
【0030】
トロイダルコア13の巻線16及びトロイダルコア14の一次巻線17は、それぞれのコアの下側で巻回される。これら巻線16、17のタンク内高さ位置に合わせて入力端子11Pのタンク取り付け位置が変えられ、入力端子11Pのタンク内に突出する突出部はトロイダルコア13を貫通してその巻線16の一端に接続される。また、入力端子11Nのタンク内の突出部は、トロイダルコア14位置まで延長され、その巻線17の一端に接続される。
【0031】
この接続構造によれば、入力端子11Pのタンク内突出部をトロイダルコア13を貫通させてその巻線16に接続するため、入力端子のタンク内突出部を巻線16の一部に兼用させることができると共に、入力端子11P,11Nとコア巻線16、17の間の隙間が小さくなり、その間の接続導体の長さを短かくすることができる。これらのことから、コア巻線16のターン数を減らすと共にループインダクタンスを減らすことができる。
【0032】
したがって、入力端子とトロイダルコアの隙間を小さくし、インダクタンスの低減で入力パルス電流I0を鈍らす要因を無くすことができる。また、隙間が小さくなることでタンク2自体の小型化、軽量化を図ることができるし、必要とする絶縁油量も減らすことができる。
【0033】
(第5の実施形態)
図5は、本発明の実施形態を示す入力端子部の断面図である。同図が図4と異なる部分は、トロイダルコア13の巻線数を1ターンとし、入力端子11Pのタンク内突出部をトロイダルコア13及び14を貫通させた点にある。
【0034】
入力端子11Pのタンク内突出部は、トロイダルコア13、14を貫通する位置まで延長される。また、入力端子11Nのタンク内突出部は、トロイダルコア14位置まで延長される。そして、トロイダルコア14の一次巻線17は、両入力端子11P、11Nのタンク内突出部の間で接続される。なお、一次巻線17Aは、トロイダルコア14に2ターン以上巻回する場合の構造を示す。
【0035】
この接続構造によれば、図4の場合と同様の作用効果を得ることができるのに加えて、トロイダルコア13のコア巻線16を入力端子11Pのタンク内に突出する突出部で兼用とし、さらにトロイダルコア14の一次巻線17(または17A)の一部として兼用させることができ、トロイダルコアに必要な巻線数を減らすことができる。
【0036】
(第6の実施形態)
図6は、本発明の実施形態を示す入力端子部の断面図である。同図が図5と異なる部分は、トロイダルコア14に巻回する一次巻線17Bとして、トロイダルコア13にも一緒に巻回した点にある。
【0037】
入力端子11Pのタンク内突出部は、トロイダルコア13、14を貫通する位置まで延長される。また、入力端子11Nのタンク内突出部は、トロイダルコア14位置まで延長される。そして、トロイダルコア14の一次巻線17Bは、トロイダルコア13及び14を束ねて巻回し、両入力端子11P、11Nのタンク内突出部の間で接続される。
【0038】
すなわち、トロイダルコア13、14は、回路的に直列接続になる主回路部品のトロイダルコアになり、それぞれに巻線を施すのに代えて、1つの巻線で両トロイダルコアを一緒に巻回してタンク内突出部に接続する。
【0039】
この接続構造によれば、図5の場合と同様の作用効果を得ることができるのに加えて、トロイダルコア13のコア巻線数を2ターン以上にすることができる。また、巻線の巻線作業工数を減らすことができるし、従来の端子19が不要になる。
【0040】
なお、本実施形態では入力端子のタンク内突出部をトロイダルコア13を貫通させない構造の場合でも巻線工数を減らすのに有効となる。
【0041】
以上までの各実施形態は、油密タンク内に主回路を収納する装置で示すが、主回路をガス密封タンクや単なるケースに収納する装置に適用して同等の作用効果を得ることができる。
【0042】
また、出力端子をタンクへの取り付け位置をタンク側板に取り付けた構造、入力端子をタンク底板に取り付けた構造など、端子の取り付け位置は、適宜変更できる。さらに、出力端子1と絶縁部材4との組み立て構造をピン式とするもの、入力端子と絶縁部材12との組み立て構造をネジ式とするものなど、適宜変更できる。
【0043】
また、図4〜図6に示す入力端子部の接続構造において、コア巻線16、17、17A,17Bをトロイダルコア13、14の上部で巻回する構造とすることができる。
【0044】
さらに、パルス電源装置の主回路構成は、図7に示す2段のパルス圧縮回路のものに限らず、その変形した主回路をもつ装置、例えばパルストランスに代えて可飽和トランスとする装置などに本発明の接続構造を適用できる。
【0045】
【発明の効果】
以上のとおり、本発明によれば、入出力端子のタンク内突出部がタンク内に突出する方向に対して、可飽和リアクトル等のトロイダルコアの半径方向を直交させ、突出部にトロイダルコアを近接配置した構造、または突出部がトロイダルコアを貫通もしくはトロイダルコア位置まで延長した構造としたため、入出力端子と可飽和リアクトル等との接続に、インダクタンスの介入を小さくして急峻なパルスの入出力を得、しかもコンパクト化して装置の小型軽量化等を図ることができる。
【図面の簡単な説明】
【図1】本発明の実施形態を示す出力端子部の断面図。
【図2】本発明の他の実施形態を示す出力端子部の断面図。
【図3】本発明の他の実施形態を示す出力端子部の断面図。
【図4】本発明の他の実施形態を示す入力端子部の断面図。
【図5】本発明の他の実施形態を示す入力端子部の断面図。
【図6】本発明の他の実施形態を示す入力端子部の断面図。
【図7】パルス電源装置の回路例。
【図8】従来の出力端子部の断面図。
【図9】従来の入力端子部の断面図。
【符号の説明】
1…出力端子
1A…出力端子の突出部
1B、1C…ナット
2…油密タンク
3…底板
8、16…コア巻線
11P、11N…入力端子
17…一次巻線
6、13、14…トロイダルコア
17、17A、18…二次巻線
21、23…支持板
22…固定物
SI0、SI1、SI2…可飽和リアクトル
PT…パルストランス
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pulse power supply device that combines a pulse generation circuit and a magnetic pulse compression circuit to generate a large current pulse with a high repetition rate, and in particular, a pulse transformer stored in a tank, a saturable reactor, and an input / output terminal. Concerning connection structure.
[0002]
[Prior art]
An example of a conventional pulse power supply device is shown in FIG. The pulse generation circuit is provided with a first-stage capacitor C 0 for power, and this capacitor C 0 is initially charged by a high-voltage charger. When the semiconductor switch SW is turned on, the pulse transformer PT is passed from the capacitor C 0 through the saturable reactor SI 0. Is supplied with a pulse current I 0 . The saturable reactor SI 0 reduces the duty of the switch SW by generating a pulse current I 0 by performing a saturation operation after the semiconductor switch SW is completely turned on.
[0003]
A two-stage magnetic pulse compression circuit is cascaded on the secondary side of the pulse transformer PT. In the first-stage magnetic pulse generation circuit, the capacitor C 1 is charged with a high voltage by the pulse current I 1 boosted by the pulse transformer PT. When the saturable reactor SI 1 operates as a magnetic switch at a charge voltage of 1 , a narrow pulse current I 2 compressed by magnetic pulses is supplied to the magnetic pulse compression circuit of the next stage with the polarity shown in the figure. Similarly, magnetic pulse compression with a pulse width is performed by the magnetic switch operation of the saturable reactor SI 2 , and the pulse current I 3 is output with the illustrated polarity.
[0004]
The pulse output of the magnetic pulse compression circuit supplies a pulse current of a narrow width and a high voltage to a load such as a chamber of a laser head with high repetition.
[0005]
Here, the saturable reactors SI 0 to SI 2 and the pulse transformer PT have a high repetitive pulse current flowing through the windings, causing eddy current loss in the core and increasing the core temperature. It is stored in an oil-tight tank as a cooling means. Further, since the capacitors C 1 and C 2 are arranged close to each other so as to allow a narrow pulse current to flow between them and the saturable reactor, they are collectively stored in an oil-tight tank.
[0006]
As described above, as a device configuration, a main circuit in which a saturable reactor, a pulse transformer, and a capacitor are connected in a circuit is collectively stored in an oil-tight tank, and is connected to an external circuit through an input / output terminal.
[0007]
FIG. 8 is a sectional view showing the connection structure of the output terminal portion. In the output terminal 1, the in-tank protruding portion 1 </ b> A has a screw structure, and the protruding portion 1 </ b> A passing through the insulating member 4 fixed to the bottom plate (ground terminal) 3 of the oil-tight tank 2 is stopped with a nut 1 </ b> B. The insulating member 4 is attached to the oil-tight tank 2 with an O-ring 4A or the like in a liquid-tight structure. A conductor 5 for obtaining connection with the core winding is fastened to the tip of the in-tank protruding portion 1A of the output terminal 1 with a screw or the like.
[0008]
The toroidal core 6 of the saturable reactor SI 2 is attached in a standing state on the bottom plate 3 by a fixing insulator 7. The core winding 8 wound around the toroidal core 6 has one end connected to the capacitor 9 (capacitor C 2 ) and the other end connected to the conductor 5.
[0009]
FIG. 9 is a cross-sectional view showing the connection structure of the input terminal portion. The P-side and N-side input terminals 11 P and 11 N have a pin structure and have in-tank protruding portions that penetrate through the insulating member 12 provided on the side plate of the oil-tight tank 2. The insulating member 12 is attached to the tank 2 with a liquid-tight structure such as an O-ring 12A.
[0010]
The saturable reactor SI 0 and the toroidal cores 13 and 14 of the pulse transformer PT are attached in a standing state on the bottom plate 3 by a fixing insulator 15. The core winding 16 wound around the toroidal core 13 has one end connected to the input terminal 11 P and the other end connected to one end of the primary winding 17 of the toroidal core 14. The other end of the primary winding 17 is connected to the input terminal 11 N. Further, the secondary winding 18 of the toroidal core 14 is connected to a capacitor C 1 or the like although not shown.
[0011]
[Problems to be solved by the invention]
In the conventional connection structure of the input / output terminal, the saturable reactor, and the pulse transformer, the length of the conductor connecting the winding and the input / output terminal increases, and the loop inductance L of this portion increases. This inductance L is a factor that hinders narrowing of the pulse current flowing through the winding.
[0012]
Specifically, in the case of FIG. 8, it is necessary to fix the saturable reactor composed of the core 6 etc. avoiding the position of the terminal 1 protruding into the tank, so that the connection between the output terminal 1 and the core winding 8 is possible. In this case, the conductor 5 is interposed, and the inductance of this portion causes the output pulse current I 3 to be dull. In addition, the resistance value of the conductor 5 increases the internal impedance of the pulse power supply. Further, the conductor 5 increases the number of parts.
[0013]
In the connection between the input terminals 11 P and 11 N and the windings 16 and 17 in FIG. 9, a gap between the input terminal and the cores 13 and 14 becomes large, and a winding (or conductor) for routing this portion. This causes the input pulse current I 0 to become dull. In addition, an increase in the gap leads to an increase in size and weight of the tank 2 itself, and an increase in the amount of insulating oil required. Further, since the windings 16 and 17 are individually wound around the cores 13 and 14, respectively, the size of the reactor and the transformer itself is increased, and an extra terminal 19 is required for mutual connection.
[0014]
An object of the present invention is to provide a pulse power supply apparatus that can reduce the intervention of inductance in a connection structure between an input / output terminal provided in a tank and a saturable reactor and a pulse transformer housed in the tank and can be made compact.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, the present invention makes the radial direction of a toroidal core such as a saturable reactor perpendicular to the direction in which the in-tank protruding portion of the input / output terminal protrudes into the tank, and the protruding portion has a toroidal core. Are arranged close to each other, or have a structure in which the protruding portion penetrates the toroidal core or extends to the toroidal core position, and has the following configuration.
[0016]
(First invention)
A main circuit component having a toroidal core such as a saturable reactor or a pulse transformer is stored in a tank, and the core winding of the main circuit component is connected to an input terminal or an output terminal provided in the tank to input / output pulse current. In the obtained pulse power supply device,
The output terminal or the input terminal has a projecting portion whose tip projects into the tank,
Having an insulating support plate fixed orthogonally in close proximity to the protrusion,
The toroidal core has a structure in which a radial direction thereof is fixed to the support plate so as to be orthogonal to a direction in which the protruding portion protrudes into the tank.
[0017]
(Second invention)
A main circuit component having a toroidal core such as a saturable reactor or a pulse transformer is stored in a tank, and the core winding of the main circuit component is connected to an input terminal or an output terminal provided in the tank to input / output pulse current. In the obtained pulse power supply device,
The output terminal or the input terminal has a projecting portion whose tip projects into the tank,
Having an insulating plate orthogonal to the projecting portion and fixed to the projecting portion through the projecting portion;
The toroidal core is fixed to the insulating plate with its radial direction orthogonal to the direction in which the protruding portion protrudes into the tank,
The protrusion may have a structure that penetrates the toroidal core as a part of the core winding or a structure that extends as a part of the core winding.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
(First embodiment)
FIG. 1 is a cross-sectional view of an output terminal portion showing an embodiment of the present invention. 8 differs from FIG. 8 in that the toroidal core 6 is placed horizontally and directly above the output terminal 1 and is fixed by a fixed object 22 and a support plate 21 instead of the fixing insulator 7.
[0020]
The insulating support plate 21 is cantilevered (or supported on both sides) directly above the in-tank protruding portion 1A of the output terminal 1 by a fixed object 22 fixed to the bottom plate 3, and the toroidal core 6 and the core winding are provided thereon. A saturable reactor SI 2 consisting of 8 is fixed horizontally.
[0021]
That is, the in-tank protruding portion 1A of the output terminal 1 is disposed close to the protruding portion 1A with the radial direction of the toroidal core 6 (in the direction of the arrow arrow RA) orthogonal to the direction in which the protruding portion in the tank 2 projects.
[0022]
One end of the core winding 8 is connected to the capacitor 9 and the other end is directly connected and fixed to the protruding portion 1A.
[0023]
According to this connection structure, since the toroidal core 6 is placed horizontally and directly above the projecting portion 1A, the connection between the core winding 8 and the output terminal 1 is directly connected without using the conventional conductor 5, That is, the shortest connection is achieved, and the cause of the output pulse current I 3 being blunted can be eliminated without interposing the inductance of the connection conductor. Further, the resistance value of the conductor 5 does not increase the internal impedance of the pulse power supply. Further, the installation space can be reduced and the size can be reduced.
[0024]
(Second Embodiment)
FIG. 2 is a cross-sectional view of the output terminal portion showing the embodiment of the present invention. 1 is different from FIG. 1 in that the insulating fixture 22 is omitted, the insulating plate 23 is supported by the in-tank protruding portion 1A of the output terminal 1, and the toroidal core 6 is fixed horizontally on the insulating plate 23. In the point. In FIG. 2, the insulating plate 23 is fixed to the projecting portion 1A with a screw 24, and the toroidal core 6 is fixed thereon.
[0025]
According to this connection structure, in addition to obtaining the same operational effects as in the case of FIG. 1, the fixed object 22 can be omitted, and the number of parts can be reduced and the number of assembly steps can be reduced.
[0026]
(Third embodiment)
FIG. 3 is a cross-sectional view of the output terminal portion showing the embodiment of the present invention. 2 differs from FIG. 2 in the structure in which the in-tank protruding portion 1A of the output terminal 1 is extended to a position where the toroidal core 6 penetrates, and the insulating plate 23 is fixed to the protruding portion 1A.
[0027]
The protruding portion 1 </ b> A of the output terminal 1 is extended to the height of the hollow portion of the toroidal core 6. The insulating plate 23 is fitted into the protruding portion 1A and is sandwiched between a pair of nuts 1B and 1C that are screwed into the protruding portion 1A. Then, one end of the core winding 8 is connected at the tip of the projecting portion 1 </ b> A that is higher than the height of the toroidal core 6.
[0028]
According to this connection structure, in addition to obtaining the same function and effect as in FIG. 1 or 2, the projecting portion 1 </ b> A can be used as a part of the core winding 8 by penetrating the toroidal core 6. In addition, the number of turns required for the core winding 8 can be reduced, and the loop inductance can be reduced since the cross-sectional area of the protrusion 1A is large. Further, compared to the structure of FIG. 2, the height position of the insulating plate 23 can be lowered, and the installation space can be further reduced.
[0029]
(Fourth embodiment)
FIG. 4 is a cross-sectional view of the input terminal portion showing the embodiment of the present invention. 9 is different from FIG. 9 in that the toroidal cores 13 and 14 are brought closer to the input terminals 11 P and 11 N , and the protruding portion of the input terminal 11 P protruding into the tank 2 penetrates the toroidal core 13 and is wound. The point is that it is also used as a part of the line 16.
[0030]
The winding 16 of the toroidal core 13 and the primary winding 17 of the toroidal core 14 are wound below the respective cores. These tanks mounting position of the input terminal 11 P fit within the height position tank windings 16 and 17 is changed, the winding projection projecting into the tank of the input terminal 11 P extends through a toroidal core 13 16 is connected to one end. Further, the protruding portion of the input terminal 11 N in the tank extends to the position of the toroidal core 14 and is connected to one end of the winding 17.
[0031]
According to this connection structure, since the protruding portion in the tank of the input terminal 11 P penetrates the toroidal core 13 and is connected to the winding 16, the protruding portion in the tank of the input terminal is also used as a part of the winding 16. In addition, the gap between the input terminals 11 P and 11 N and the core windings 16 and 17 can be reduced, and the length of the connecting conductor therebetween can be shortened. As a result, the number of turns of the core winding 16 can be reduced and the loop inductance can be reduced.
[0032]
Therefore, the gap between the input terminal and the toroidal core can be reduced, and the factor of dulling the input pulse current I 0 can be eliminated by reducing the inductance. Further, since the gap is reduced, the tank 2 itself can be reduced in size and weight, and the required amount of insulating oil can be reduced.
[0033]
(Fifth embodiment)
FIG. 5 is a cross-sectional view of the input terminal portion showing the embodiment of the present invention. 4 is different from FIG. 4 in that the number of windings of the toroidal core 13 is one turn and the in-tank protruding portion of the input terminal 11 P is passed through the toroidal cores 13 and 14.
[0034]
The in-tank protruding portion of the input terminal 11 P is extended to a position penetrating the toroidal cores 13 and 14. Further, the in-tank protruding portion of the input terminal 11 N is extended to the position of the toroidal core 14. The primary winding 17 of the toroidal core 14 is connected between the in-tank protrusions of the input terminals 11 P and 11 N. The primary winding 17 </ b> A shows a structure when the toroidal core 14 is wound two or more turns.
[0035]
According to this connection structure, the same effect as in the case of FIG. 4 can be obtained, and in addition, the core winding 16 of the toroidal core 13 is shared by the protruding portion protruding into the tank of the input terminal 11 P. Furthermore, it can also be used as a part of the primary winding 17 (or 17A) of the toroidal core 14, and the number of windings required for the toroidal core can be reduced.
[0036]
(Sixth embodiment)
FIG. 6 is a cross-sectional view of the input terminal portion showing the embodiment of the present invention. 5 differs from FIG. 5 in that the primary winding 17B wound around the toroidal core 14 is also wound around the toroidal core 13 together.
[0037]
The in-tank protruding portion of the input terminal 11 P is extended to a position penetrating the toroidal cores 13 and 14. Further, the in-tank protruding portion of the input terminal 11 N is extended to the position of the toroidal core 14. The primary winding 17B of the toroidal core 14 is wound by bundling the toroidal cores 13 and 14, and is connected between the in-tank protrusions of the input terminals 11 P and 11 N.
[0038]
That is, the toroidal cores 13 and 14 become toroidal cores of main circuit components that are connected in series in circuit, and instead of winding each of them, both toroidal cores are wound together with one winding. Connect to the protruding part in the tank.
[0039]
According to this connection structure, in addition to obtaining the same operational effects as in the case of FIG. 5, the number of core windings of the toroidal core 13 can be two or more turns. Further, the number of winding work steps for the winding can be reduced, and the conventional terminal 19 becomes unnecessary.
[0040]
In the present embodiment, it is effective to reduce the number of winding man-hours even in a structure in which the protruding portion in the tank of the input terminal does not penetrate the toroidal core 13.
[0041]
Each of the above embodiments is shown as a device that houses a main circuit in an oil-tight tank, but the same effect can be obtained by applying the main circuit to a gas-sealed tank or a device that simply houses a case.
[0042]
Moreover, the attachment position of the terminal can be changed as appropriate, such as a structure in which the output terminal is attached to the tank at the attachment position to the tank, or a structure in which the input terminal is attached to the tank bottom plate. Furthermore, the assembly structure of the output terminal 1 and the insulating member 4 is a pin type, and the assembly structure of the input terminal and the insulating member 12 is a screw type.
[0043]
4 to 6, the core windings 16, 17, 17 </ b> A, and 17 </ b> B can be wound around the top of the toroidal cores 13 and 14.
[0044]
Furthermore, the main circuit configuration of the pulse power supply device is not limited to that of the two-stage pulse compression circuit shown in FIG. 7, but may be a device having a modified main circuit, for example, a device using a saturable transformer instead of a pulse transformer. The connection structure of the present invention can be applied.
[0045]
【The invention's effect】
As described above, according to the present invention, the radial direction of a toroidal core such as a saturable reactor is orthogonal to the direction in which the protruding portion in the tank of the input / output terminal protrudes into the tank, and the toroidal core is brought close to the protruding portion. Because the structure is arranged or the protruding part penetrates the toroidal core or extends to the toroidal core position, steep pulse input / output is achieved by reducing the intervention of inductance in the connection between the input / output terminal and the saturable reactor, etc. In addition, the apparatus can be made compact and the apparatus can be reduced in size and weight.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an output terminal portion showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view of an output terminal portion showing another embodiment of the present invention.
FIG. 3 is a cross-sectional view of an output terminal portion showing another embodiment of the present invention.
FIG. 4 is a cross-sectional view of an input terminal portion showing another embodiment of the present invention.
FIG. 5 is a cross-sectional view of an input terminal portion showing another embodiment of the present invention.
FIG. 6 is a cross-sectional view of an input terminal portion showing another embodiment of the present invention.
FIG. 7 is a circuit example of a pulse power supply device.
FIG. 8 is a cross-sectional view of a conventional output terminal portion.
FIG. 9 is a cross-sectional view of a conventional input terminal portion.
[Explanation of symbols]
1 ... output terminal 1A ... protrusion 1B of the output terminal, 1C ... nut 2 ... oil-tight tank 3 ... bottom plate 8, 16 ... core windings 11 P, 11 N ... input terminal 17 ... primary winding 6,13,14 ... toroidal core 17 and 17A, 18 ... secondary winding 21, 23 ... support plate 22 ... fixture SI 0, SI 1, SI 2 ... saturable reactors PT ... pulse transformer

Claims (2)

可飽和リアクトルやパルストランス等のトロイダルコアをもつ主回路部品をタンクに収納し、該主回路部品のコア巻線を前記タンクに設けた入力端子又は出力端子と接続してパルス電流の入出力を得るパルス電源装置において、
前記出力端子又は入力端子は、その先端を前記タンク内に突出させた突出部を有し、
前記突出部に直交してかつ近接配置で固定した絶縁性の支持板を有し、
前記トロイダルコアは、その半径方向を前記突出部がタンク内に突出する方向に対して直交させて前記支持板に固定した構造を特徴とするパルス電源装置。
A main circuit component having a toroidal core such as a saturable reactor or a pulse transformer is stored in a tank, and the core winding of the main circuit component is connected to an input terminal or an output terminal provided in the tank to input / output pulse current. In the obtained pulse power supply device,
The output terminal or the input terminal has a projecting portion whose tip projects into the tank,
Having an insulating support plate fixed orthogonally in close proximity to the protrusion,
The pulse power supply device, wherein the toroidal core has a structure in which a radial direction of the toroidal core is fixed to the support plate so as to be orthogonal to a direction in which the protrusion protrudes into the tank.
可飽和リアクトルやパルストランス等のトロイダルコアをもつ主回路部品をタンクに収納し、該主回路部品のコア巻線を前記タンクに設けた入力端子又は出力端子と接続してパルス電流の入出力を得るパルス電源装置において、
前記出力端子又は入力端子は、その先端を前記タンク内に突出させた突出部を有し、
前記突出部に直交してかつ該突出部が貫通して該突出部に固定した絶縁板を有し、
前記トロイダルコアは、その半径方向を前記突出部がタンク内に突出する方向に対して直交させて前記絶縁板に固定し
前記突出部は、前記コア巻線の一部として前記トロイダルコアを貫通した構造またはコア巻線の一部として延長した構造を特徴とするパルス電源装置。
A main circuit component having a toroidal core such as a saturable reactor or a pulse transformer is stored in a tank, and the core winding of the main circuit component is connected to an input terminal or an output terminal provided in the tank to input / output pulse current. In the obtained pulse power supply device,
The output terminal or the input terminal has a projecting portion whose tip projects into the tank,
Having an insulating plate orthogonal to the projecting portion and fixed to the projecting portion through the projecting portion;
The toroidal core is fixed to the insulating plate with its radial direction orthogonal to the direction in which the protruding portion protrudes into the tank,
The pulse power supply device according to claim 1, wherein the protruding portion has a structure penetrating the toroidal core as a part of the core winding or a structure extending as a part of the core winding.
JP03368399A 1999-02-12 1999-02-12 Pulse power supply Expired - Fee Related JP4038918B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03368399A JP4038918B2 (en) 1999-02-12 1999-02-12 Pulse power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03368399A JP4038918B2 (en) 1999-02-12 1999-02-12 Pulse power supply

Publications (2)

Publication Number Publication Date
JP2000232795A JP2000232795A (en) 2000-08-22
JP4038918B2 true JP4038918B2 (en) 2008-01-30

Family

ID=12393246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03368399A Expired - Fee Related JP4038918B2 (en) 1999-02-12 1999-02-12 Pulse power supply

Country Status (1)

Country Link
JP (1) JP4038918B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4540243B2 (en) * 2001-03-26 2010-09-08 ニチコン株式会社 Pulse laser power supply
JP5050240B2 (en) * 2006-03-14 2012-10-17 ウシオ電機株式会社 High voltage pulse generator and discharge excitation gas laser device using the same
JP5358655B2 (en) * 2011-12-02 2013-12-04 ウシオ電機株式会社 High voltage pulse generator and discharge excitation gas laser device using the same

Also Published As

Publication number Publication date
JP2000232795A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
US8274804B2 (en) Voltage transforming apparatus
US4800479A (en) High frequency power converter having compact output transformer, rectifier and choke
US7065122B2 (en) Wire-wound apparatus and high-voltage pulse generating circuit using wire-wound apparatus
US11557973B2 (en) Single-stage DC-DC power converter
JP4038918B2 (en) Pulse power supply
JP2894908B2 (en) Piezoelectric transformer and driving method thereof
JP3837842B2 (en) Pulse power supply
US6100781A (en) High leakage inductance transformer
WO2018078734A1 (en) Power conversion device
JPS62107676A (en) Dc-dc converter
JP3658957B2 (en) Pulse power supply
JP3663761B2 (en) Pulse transformation circuit
JPH11308882A (en) Pulse discharge circuit and laser apparatus
JPH0246016A (en) Magnetic pulse generator
JP3126624B2 (en) Power supply transformer
SU95428A1 (en) Three-core Serial Transformer
SU603009A1 (en) Cascade current transformer
JPH04352304A (en) Pulse transformer and high voltage pulse generator
RU1825681C (en) Source of power supply for loads of type of electric arc
JPH11178359A (en) Pulse power supply
JPH04362714A (en) Current/voltage converter
JP2002151769A (en) Pulse discharge circuit
JP2000262073A (en) Pulse power supply
JP2004023981A (en) Step-down type dc/dc converter
JPH0645710A (en) Metal vapor laser device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees