JP4038535B2 - Shock vibration detection switch - Google Patents

Shock vibration detection switch Download PDF

Info

Publication number
JP4038535B2
JP4038535B2 JP35208796A JP35208796A JP4038535B2 JP 4038535 B2 JP4038535 B2 JP 4038535B2 JP 35208796 A JP35208796 A JP 35208796A JP 35208796 A JP35208796 A JP 35208796A JP 4038535 B2 JP4038535 B2 JP 4038535B2
Authority
JP
Japan
Prior art keywords
electrodes
electrode
conductive
diameter
circular protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35208796A
Other languages
Japanese (ja)
Other versions
JPH10154451A (en
Inventor
文雄 中嶋
堂示 桑原
Original Assignee
日帝無線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日帝無線株式会社 filed Critical 日帝無線株式会社
Priority to JP35208796A priority Critical patent/JP4038535B2/en
Publication of JPH10154451A publication Critical patent/JPH10154451A/en
Application granted granted Critical
Publication of JP4038535B2 publication Critical patent/JP4038535B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Switches Operated By Changes In Physical Conditions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は衝撃振動検知スイッチに係り、特に家電製品から産業機器までの分野における衝撃振動を無指向性で自動的に検出する小型の衝撃振動スイッチに関するものである。
【0002】
【従来の技術】
一般に使用されている振動スイッチには,機械式の振動スイッチや水銀を使用した振動スイッチなどが開発されている。
【0003】
【発明が解決しようとする課題】
従来の機械式の振動スイッチは,■スプリングと錘の使用で経年する。■作動感度は,調整が不可能である。■外形寸法は.高感度にすれば大きくなる。速度の遅い振動は,検出しない。■傾斜では.全く動作しない。■機器への組込みは,金具・リード線などに半田付けが必要のため,自動半田実装が不可能である。■部品が多いので,コストが高くなる。■小径化が難しい,などの問題点があった。また,水銀を使用した振動スイッチは、■水銀やガラスを用いるので,破損しやすい。●微小振動では動作しないので.作動感度が低い。■小型化が難しい。■水銀を使用しているので,破損した場合に危険である。■速度の振動は,感知しない。■傾斜を与えても,全く作動しない。■リード線などに半田付けが必要なので,自動半田実装が不可能である。■水銀とガラスを使用しているので,高価なる。■水銀は季節により変化する温度に反応して体積が膨張及び縮小するので,誤動作の発生及び感度が低下する,などの問題点があった。
【0004】
そこで本発明は、上記の従来技術の問題点を解消するために創案されたものであり,たとえば、盗難防止装置、ゲーム機機、玩具、測定器,工業機械振動検知装置、アクセサリー、家電製品横転検知装置、家庭製品におけるON・OFF自動検知装置,ホビー商品,セキュリティー装置などの家電製品から産業機器までの分野における振動を無指向性で自動的に繰出する小型の衝撃振動検知スイッチを提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明に係る衝撃振動スイッチは、円板部と周壁部を有する円形キャップ状の一対の電極と、前記電極をそれらの周壁側を所要の空隙を残して対向させて嵌着保持する環状保持枠と、前記電極に接触して前記電極相互を導通させる転動自在な複数の同径の導電球とから構成され、前記円板部はその内側にその直径より小径な中高の円形突起を有する一方、前記環状保持枠はその内側にその内部に収容した前記導電球を載置し得る断面略V字状の環状溝を有し、前記導電球の直径は一方の電極の前記円形突起の中高部と他方の電極の前記円形突起の中高部との間の空所の幅寸法より大きく設定されていて、各導電球が該空所内に移動しないようになっており、振動がない状態では前記導電球は前記環状溝に接触し、前記電極双方に接触しないようにされていることを特徴とするものである。
また,本発明の衛撃振動検知スイッチは.円板部と周壁部を有する円形キャップ状の一対の電極と、前記電極をそれらの周壁側を所要の空隙を残して対向させ、かつリング状の絶縁部材を介して嵌着保持する環状保持枠と、前記電極に接触して前記電極相互を導通させる転動自在な複数の同径の導電球とから構成され、前記鉛版部はその内側にその直径より小径な中高の円形突起を有する一方、前記環状保持枠はその内側にその内部に収容した前記導電球を載置し得る断面略V字状の環状溝を有し、前記導電球の直径は一方の電極の前記円形突起の中高部と他方の電極の前記円形突起の中高部との間の空所の幅寸法より大きく設定されていて、各導電球が該空所内に移動しないようになっており、振動がない状態では前記導電球は前記環状溝に接触し、前記電極双方に接触しないようにされていることを特徴とするものである。
【0006】
【作用】
電極の円板部の外側円形面を導電板でプリント基板のパターンに位置させた後に,半田で固定して振動がないように横置にした状態では,導電球は両電極の中高円形突起に当接しないので,オフの状態である。このようなオフの状態において,衝撃振動検知スイッチに外部から上下又は水平方向などに振動が加わると導電球が前記円形突起に当接するので,オンとなる。また,該スイッチの両電極の側面をプリント基板のパターンに位置させた後に.半田で固定して振動がないように縦置にした状態では,前記環状溝の底部に載置されていて,両電極のいずれにも当接しないので,オフの状態である。このようなオフの状態において,衝撃振動検知スイッチに外部から上下又は水平方向などに振動が加わると導電球が両電極の前記中高円形突起に当接するので.オンとなる。
【0007】
【実施例】
次の本発明の無指向性振動検知スイッチを縦置した実施例について図面を参照しながら説明する。図1は概略構成を示す説明囲,図2は各部材を分解した状態の説明図である。この実施例の衝撃振動検知スイッチ10(以下、本発明スイッチという)は、3個の同径の導電球17を備えているが、その個数は3個に限定されない。また、本発明スイッチ10は一対の電極を備えている。
【0008】
11は一対の電極の一方の電極である第1電極であり、該第1電極11は円板部111Aと周壁部11B有する円形キャップ状の電極であり、該円板部11Aはその内側にその直径より小径な段部11A1を有する中高の円形突起を備えている。11Bは該円板部11Aとともに円形キャップ状の電極を構成する周壁部であるが、図示の例にあっては、この周壁部と前記中高の円形突起との間には環状の係止部11B1が形成されている。12は一対の電極の他方の電極である第2電極である。この第2電極12は前記第1電極11と同一の形状、構造を有し、前記第1電極11の円板部、周壁部、段部を有する中高の円形突起、環状の係止部にそれぞれ相当する円板部12A、周壁部12B、段部12A1を有 する中高の円形突起、環状の係止部12B1をそれぞれ備えている。
【0009】
15は前記第1電極11及び第2電極12を、図1に示すように、それらの周壁11B、12B側を所要の空隙14を残して対向させて嵌着保持する環状保持枠であり、その内側に収容した前記導電球17を載置し得る断面略V字状の環状溝Gを備えている。また、各導電球17の直径は第1電極11の前記円形突起の中高部と第2電極12の前記円形突起部の中高部との間の空所13の幅寸法Dより大きく設定されている。各導電球が該空所13内に移動しないようになっている。
【0010】
図示の例にあっては、第1電極11及び第2電極12は、前記したそれぞれの環状係止部11B1、12B1内にリング状に張設係合されるリング状の絶縁部材16、16を介して環状保持枠15に密に嵌着保持されている。前記した環状保持枠15の略V字状の環状溝Gは、図示の例にあっては、突起部15A、15A、約30度の傾斜面15A1、15A1及び平坦部15A2からなつており、本発明スイッチに衝撃ん振動が加えられると、導電球17は、図1から分かるように、感情溝Gに載置されている状態ないし位置から移動せしめられ、1点鎖線で示してあるように、移動可能な空洞内において、両電極11、12と当接し、両電極相互間を導通させることになる。なお、図2において、15B、15Bは係止部、15C、15Dは両電極11、12を環状保持枠15に嵌着する際に前記した各電極の中高部11A1、12A1を有する円形突起の該枠内への挿入を許すための透孔である。
【0011】
上記構成の本発明に係る無指向性振動スイッチの1実施例においては.振動がない状態では,図1の実線で示すように導電部材17が環状保持枠15に載置され、第1電極11の段部11A及び第2電極12の段部12Aに当接しないので,オフの状懸である。すなわち.導電部材17は,図1の実線で示すように環状溝Gの約30度の傾斜面15A1にだけ当接し.第1電極11の段部11A及び第2電極12の段部12Aのいずれにも当接していない。このようにオフの状態において,振動検知スイッチ10に外部から上下又は水平方向などに振動が加わると,図1の1点鎖線で示すように3個の導電部材17のうちの1個が第1電極11の段部11Aと第2電極12の段部12Aに当接するので,オンとなる。このオンの状態では,導電部材17の直径は,第1電極11の段部11Aと第2電極12の段部12Aとで形成されている空所13の距離Dより長いので.空所13内に導電部材17が移動しない。このため、図1の1点鎖線で示すように3個の導電部材17のうちのいずれか1個が第1電極11の段部11A1と第2電極12の段部12Aに当接中だけオンであるが,導電部材17が図1の実線で示すよう保持枠15に載置される位置まで移動すれば,その時点でオフになる。また.第1電極11、策2電極12及び導電部材17には.メッキが施されているので,導電性の向上及び内部の酸化防止を図ることができる。さらにまた,図3及び図4に示すように衝撃振動検知スイッチ10を縦置又は横置して半田21でプリント基板19に固定しているので、用途に対応して使用することができる。さらにまた.第1電極11、第2電極12及び導電部材17には.メッキが施されているので,導電性の向上及び内部の酸化防止を図ることができる。ところで、第1電極11及び第2電極12の内部に,球状の導電部材17を3個収容したのは,■縦置にした場合においては,1番下に位置している導電部材17が台となり残りの2個の導電部材17が水平方向に近くなり第1電極11の段部11A及び第2電極12の段部12Aに当接が容易になるようにするためである。
■ 横置した場合においては,導電部材17が内部で円周運動を防止するためである。
【0012】
このような本発明に係る衝撃振動検知スイッチの実施例においては,■振動に対する検知が無指向性なので,全方向の振動に対応でき用途が広い。■電極が金属のため,外的強度が高い。■導電球にボールベアリングのボールなどを使用しているので,小型化が可能である。■機械接点のため従来と相違して,信号増幅回路が不要のため,構成が簡単になり.また,従来の無指向性振動スイッチと比較して,感度が高く,また,感度調整も可能である。■スプリング・マグネット水銀及び磁石を使用していないので,それぞれ経時変化による動作不安定、人体に対する危険及び外的磁気の影響が解消される。■素材が汎用品のため,コストを低減にすることができる。
【0013】
【発明の効果】
以上説明したように本発明に係る衝撃振動検知スイッチは,無指向性で振動を自動的に検出することができるので,従来の振動スイッチに比較して,小型化が図れ、しかも性能及び信頼性が著しく向上したとともに,コストの大幅低減及び用途の大幅増加などを図ることができる。
【図面の簡単な説明】
【図1】衝撃振動検知スイッチの第1実施例の概略横成を示す説明図
【図2】衝撃振動検知スイッチの第1実施例の各部材の説明
【図3】衝撃振動検知スイッチの第1実施例を縦置にして使用している状態の説明図
【図4】衝撃振動検知スイッチの第1実施例を横置にして使用している状態の説明図
【図5】衝撃振動検知スイッチの第2実施例の槻略構成を示す説明図
【図6】衝撃振動検知スイッチの第2実施例の各部材の説明図
【図7】衝撃振動検知スイッチの第2実施例を縦置にして使用している状態の説明図
【図8】衝撃振動検知スイッチの策2実施例を横置にして使用している状慈の説明図
【符号の説明】
10・・・衝撃振動検知スイッチ
11・・・第1電極
12・・・第2電極
13・・・空洞部
14・・・空隙部
15・・・取付部材
16・・・絶縁部材
17・・・導電部材
100・・・衝撃振動検知スイッチ
110・・・第1電極
120・・・第2電極
130・・・空洞部
140・・・空隙部
150・・・取付部材
160・・・蓋体
170・・・導電部材
[0001]
[Industrial application fields]
The present invention relates to an impact vibration detection switch, and more particularly to a small impact vibration switch that automatically detects non-directional impact vibration in fields from household appliances to industrial equipment.
[0002]
[Prior art]
Commonly used vibration switches include mechanical vibration switches and vibration switches using mercury.
[0003]
[Problems to be solved by the invention]
Conventional mechanical vibration switches are aged by using springs and weights. ■ The operating sensitivity cannot be adjusted. ■ External dimensions are. Higher sensitivity increases. Slow vibration is not detected. ■ In the slope. Does not work at all. ■ Automatic solder mounting is impossible because mounting to equipment requires soldering to metal fittings and lead wires. ■ The cost increases because there are many parts. ■ There were problems such as difficulty in reducing the diameter. In addition, vibration switches using mercury are easily damaged because they use mercury or glass. ● Because it does not work with minute vibration. Low operating sensitivity. ■ It is difficult to downsize. ■ Because mercury is used, it is dangerous when damaged. ■ Speed vibration is not detected. ■ Even if a tilt is given, it does not work at all. ■ Soldering is necessary for lead wires, so automatic solder mounting is impossible. ■ Because it uses mercury and glass, it becomes expensive. ■ Since mercury expands and contracts in response to seasonally changing temperatures, it has problems such as malfunctions and reduced sensitivity.
[0004]
Accordingly, the present invention has been developed to solve the above-described problems of the prior art, and includes, for example, an anti-theft device, a game machine, a toy, a measuring instrument, an industrial machine vibration detection device, an accessory, and a home appliance. To provide a small impact vibration detection switch for automatically and non-directionally delivering vibration in fields ranging from home appliances to industrial equipment such as detection devices, ON / OFF automatic detection devices for household products, hobby products, security devices, etc. With the goal.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, an impact vibration switch according to the present invention comprises a pair of circular cap-shaped electrodes having a disk portion and a peripheral wall portion, and the electrodes are opposed to each other on the peripheral wall side leaving a required gap. And an annular holding frame that fits and holds, and a plurality of rollable conductive balls having the same diameter that contact the electrodes and make the electrodes conductive with each other, and the disk portion has a diameter smaller than its diameter inside. On the other hand, the annular holding frame has an annular groove having a substantially V-shaped cross section on which the conductive ball accommodated therein can be placed, and the diameter of the conductive ball is It is set to be larger than the width of the space between the middle and high part of the circular protrusion of the electrode and the middle and high part of the circular protrusion of the other electrode, and each conductive sphere is prevented from moving into the space. In the absence of vibration, the conductive sphere contacts the annular groove, And it is characterized in that it is prevented from contacting the serial electrodes both.
Also, the guard vibration detection switch of the present invention is. A pair of circular cap-shaped electrodes having a disk part and a peripheral wall part, and an annular holding frame that holds the electrodes facing the peripheral wall side leaving a required gap and is fitted and held via a ring-shaped insulating member And a plurality of rollable conductive balls having the same diameter which are in contact with the electrodes and are electrically connected to each other, and the lead plate portion has a medium-high circular protrusion having a diameter smaller than the diameter inside thereof. The annular holding frame has an annular groove having a substantially V-shaped cross section in which the conductive sphere accommodated in the annular holding frame can be placed, and the diameter of the conductive sphere is a mid-high portion of the circular protrusion of one electrode. Is set to be larger than the width dimension of the space between the circular protrusion of the other electrode and the middle and high portions of the circular protrusion so that each conductive sphere does not move into the space, The sphere contacts the annular groove and does not contact both electrodes And it is characterized in that it is.
[0006]
[Action]
When the outer circular surface of the disk part of the electrode is positioned on the printed circuit board pattern with the conductive plate and then placed horizontally so that it does not vibrate by being fixed with solder, the conductive spheres form the middle and high circular protrusions of both electrodes. Since it does not contact, it is in an off state. In such an off state, when vibration is applied to the impact vibration detection switch from the outside in the vertical or horizontal direction , the conductive ball comes into contact with the circular protrusion, so that the switch is turned on. In addition, after the sides of both electrodes of the switch are positioned on the printed circuit board pattern. In a state where it is fixed with solder and is vertically disposed so as not to vibrate, it is placed on the bottom of the annular groove and is not in contact with either electrode , so it is in an off state. In such an off state, when a vibration is applied to the impact vibration detection switch from the outside in the vertical or horizontal direction, the conductive ball comes into contact with the middle and high circular protrusions of both electrodes . Turn on.
[0007]
【Example】
Next, an embodiment in which a non-directional vibration detection switch of the present invention is installed vertically will be described with reference to the drawings. FIG. 1 is an explanatory view showing a schematic configuration, and FIG. 2 is an explanatory view showing a state where each member is disassembled. The impact vibration detection switch 10 (hereinafter referred to as the present invention switch) of this embodiment includes three conductive balls 17 having the same diameter, but the number is not limited to three. The switch 10 of the present invention includes a pair of electrodes.
[0008]
Reference numeral 11 denotes a first electrode which is one of a pair of electrodes. The first electrode 11 is a circular cap-shaped electrode having a disc portion 111A and a peripheral wall portion 11B, and the disc portion 11A is disposed on the inside thereof. It has a middle and high circular protrusion having a step portion 11A1 smaller in diameter than the diameter. Reference numeral 11B denotes a peripheral wall portion that constitutes a circular cap-shaped electrode together with the disc portion 11A. In the illustrated example, an annular locking portion 11B1 is provided between the peripheral wall portion and the middle-high circular protrusion. Is formed. Reference numeral 12 denotes a second electrode which is the other electrode of the pair of electrodes. The second electrode 12 has the same shape and structure as the first electrode 11, and each of the first electrode 11 has a circular plate portion, a peripheral wall portion, a stepped portion, a medium-high circular protrusion, and an annular locking portion. corresponding disc portion 12A, and includes a peripheral wall portion 12B, crowned circular projections have a stepped portion 12A1, an annular locking portion 12B1, respectively.
[0009]
Reference numeral 15 denotes an annular holding frame for fitting and holding the first electrode 11 and the second electrode 12 with their peripheral walls 11B and 12B facing each other leaving a required gap 14 as shown in FIG. An annular groove G having a substantially V-shaped cross section on which the conductive ball 17 accommodated inside can be placed. The diameter of each conductive sphere 17 is set to be larger than the width D of the space 13 between the middle and high part of the circular protrusion of the first electrode 11 and the middle and high part of the circular protrusion of the second electrode 12. . Each conductive ball is prevented from moving into the space 13.
[0010]
In the example shown in the figure, the first electrode 11 and the second electrode 12 are provided with ring-shaped insulating members 16 and 16 that are stretched and engaged in a ring shape in the respective annular locking portions 11B1 and 12B1. Are closely fitted and held on the annular holding frame 15. In the illustrated example, the substantially V-shaped annular groove G of the annular holding frame 15 includes protrusions 15A and 15A, inclined surfaces 15A1 and 15A1 of about 30 degrees, and a flat portion 15A2. When impact vibration is applied to the inventive switch, the conductive ball 17 is moved from the state or position placed in the emotional groove G, as can be seen from FIG. In the movable cavity, the electrodes 11 and 12 are brought into contact with each other, and the two electrodes are brought into conduction. In FIG. 2, 15B and 15B are locking portions, and 15C and 15D are circular protrusions having the middle and high portions 11A1 and 12A1 of the electrodes described above when the electrodes 11 and 12 are fitted to the annular holding frame 15, respectively. It is a through hole for allowing insertion into the frame.
[0011]
In one embodiment of the non-directional vibration switch according to the present invention having the above-described configuration,. In a state where there is no vibration, the conductive member 17 is placed on the annular holding frame 15 as shown by a solid line in FIG. 1 and does not contact the step portion 11A of the first electrode 11 and the step portion 12A of the second electrode 12. It ’s off. That is. The conductive member 17 contacts only the inclined surface 15A1 of about 30 degrees of the annular groove G as shown by the solid line in FIG. It does not contact any of the step portion 11A of the first electrode 11 and the step portion 12A of the second electrode 12. In this state, when vibration is applied to the vibration detection switch 10 in the vertical or horizontal direction from the outside, one of the three conductive members 17 is the first as shown by the one-dot chain line in FIG. Since it contacts the step portion 11A of the electrode 11 and the step portion 12A of the second electrode 12, it is turned on. In this ON state, the diameter of the conductive member 17 is longer than the distance D of the space 13 formed by the step portion 11A of the first electrode 11 and the step portion 12A of the second electrode 12. The conductive member 17 does not move into the void 13. For this reason, as indicated by a one-dot chain line in FIG. 1, only one of the three conductive members 17 is on while it is in contact with the step portion 11A1 of the first electrode 11 and the step portion 12A of the second electrode 12. However, if the conductive member 17 moves to the position where it is placed on the holding frame 15 as shown by the solid line in FIG. Also. For the first electrode 11, the measure 2 electrode 12 and the conductive member 17. Since plating is applied, it is possible to improve conductivity and prevent internal oxidation. Furthermore, as shown in FIGS. 3 and 4, the shock vibration detection switch 10 is vertically or horizontally placed and fixed to the printed circuit board 19 with the solder 21, so that it can be used according to the application. Furthermore again. The first electrode 11, the second electrode 12 and the conductive member 17 are. Since plating is applied, it is possible to improve conductivity and prevent internal oxidation. By the way, three spherical conductive members 17 are accommodated in the first electrode 11 and the second electrode 12 in the case where they are placed vertically, the conductive member 17 located at the bottom is the base. This is because the remaining two conductive members 17 are close to the horizontal direction and can easily come into contact with the stepped portion 11A of the first electrode 11 and the stepped portion 12A of the second electrode 12.
(2) When the device is placed horizontally, the conductive member 17 prevents the circumferential movement inside.
[0012]
In such an embodiment of the impact vibration detection switch according to the present invention, the detection of vibration is omnidirectional, so that it can deal with vibrations in all directions and has a wide range of applications. ■ External strength is high because the electrode is metal. ■ Since a ball bearing ball is used for the conductive ball, it can be downsized. ■ Because it is a mechanical contact, unlike the conventional case, no signal amplification circuit is required, so the configuration is simplified. In addition, the sensitivity is higher than that of a conventional omnidirectional vibration switch, and the sensitivity can be adjusted. ■ Spring magnets Since mercury and magnets are not used, the unstable operation due to changes over time, the danger to the human body, and the effects of external magnetism are eliminated. ■ Since the material is a general-purpose product, the cost can be reduced.
[0013]
【The invention's effect】
As described above, the impact vibration detection switch according to the present invention can automatically detect vibrations with no directivity, and thus can be reduced in size and performance and reliability compared to conventional vibration switches. As a result, the cost can be significantly reduced and the number of applications can be greatly increased.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a schematic configuration of a first embodiment of an impact vibration detection switch. FIG. 2 is an explanation of each member of the first embodiment of the impact vibration detection switch. FIG. FIG. 4 is an explanatory diagram of a state where the embodiment is used in a vertical position. FIG. 4 is an explanatory diagram of a state where the first embodiment of the shock vibration detection switch is used in a horizontal position. FIG. FIG. 6 is an explanatory view showing a schematic configuration of the second embodiment. FIG. 6 is an explanatory view of each member of the second embodiment of the shock vibration detection switch. FIG. 7 is a vertical use of the second embodiment of the shock vibration detection switch. Explanatory diagram of the state in which it is in operation [Fig. 8] Explanatory diagram of the state of using the shock vibration detection switch measure 2 embodiment in a horizontal position [Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Shock vibration detection switch 11 ... 1st electrode 12 ... 2nd electrode 13 ... Cavity part 14 ... Cavity part 15 ... Mounting member 16 ... Insulating member 17 ... Conductive member 100 ... shock vibration detection switch 110 ... first electrode 120 ... second electrode 130 ... cavity 140 ... gap 150 ... mounting member 160 ... lid 170- ..Conductive members

Claims (2)

円板部と周壁部を有する円形キャップ状の一対の電極と、前記電極をそれらの周壁側を所要の空隙を残して対向させて嵌着保持する環状保持枠と、前記電極に接触して前記電極相互を導通させる転動自在な複数の同径の導電球とから構成され、前記円板部はその内側にその直径より小径な中高の円形突起を有する一方、前記環状保持枠はその内側にその内部に収容した前記導電球を載置し得る断面略V字状の環状溝を有し、前記導電球の直径は一方の電極の前記円形突起の中高部と他方の電極の前記円形突起の中高部との間の空所の幅寸法より大きく設定されていて、各導電球が該空所内に移動しないようになっており、振動がない状態では前記導電球は前記環状溝に接触し、前記電極双方に接触しないようにされていることを特徴とする衝撃振動検知スイッチ。A pair of circular cap-shaped electrodes having a disk part and a peripheral wall part, an annular holding frame for fitting and holding the electrodes with their peripheral wall sides facing each other leaving a required gap, and the electrodes in contact with the electrodes It is composed of a plurality of rollable conductive balls having the same diameter that conduct each other, and the disk portion has a medium-high circular protrusion having a diameter smaller than its diameter on the inner side, while the annular holding frame is on the inner side. An annular groove having a substantially V-shaped cross section on which the conductive sphere accommodated therein can be placed, and the diameter of the conductive sphere is the middle height of the circular protrusion of one electrode and the circular protrusion of the other electrode. It is set to be larger than the width dimension of the space between the middle and high portions, so that each conductive ball does not move into the space, and in the absence of vibration, the conductive ball contacts the annular groove, The electrodes are configured not to contact both electrodes. Vibration detection switch. 円板部と周壁部を有する円形キャップ状の一対の電極と、前記電極をそれらの周壁側を所要の空隙を残して対向させ、かつリング状の絶縁部材を介して嵌着保持する環状保持枠と、前記電極に接触して前記電極相互を導通させる転動自在な複数の同径の導電球とから構成され、前記円板部はその内側にその直径より小径な中高の円形突起を有する一方、前記環状保持枠はその内側にその内部に収容した前記導電球を載置し得る断面略V字状の環状溝を有し、前記導電球の直径は一方の電極の前記円形突起の中高部と他方の電極の前記円形突起の中高部との間の空所の幅寸法より大きく設定されていて、各導電球が該空所内に移動しないようになっており、振動がない状態では前記導電球は前記環状溝に接触し、前記電極双方に接触しないようにされていることを特徴とする衝撃振動検知スイッチ。A pair of circular cap-shaped electrodes having a disk part and a peripheral wall part, and an annular holding frame that holds the electrodes facing the peripheral wall side leaving a required gap and is fitted and held via a ring-shaped insulating member And a plurality of rollable conductive balls having the same diameter that are in contact with the electrodes and electrically connect the electrodes, and the disk portion has a medium-high circular protrusion having a diameter smaller than the diameter inside thereof. The annular holding frame has an annular groove having a substantially V-shaped cross section in which the conductive sphere accommodated in the annular holding frame can be placed, and the diameter of the conductive sphere is a mid-high portion of the circular protrusion of one electrode. Is set to be larger than the width dimension of the space between the circular protrusion of the other electrode and the middle and high portions of the circular protrusion so that each conductive sphere does not move into the space, The sphere contacts the annular groove and does not contact both electrodes Shock vibration detecting switch, characterized in that it is.
JP35208796A 1996-11-22 1996-11-22 Shock vibration detection switch Expired - Fee Related JP4038535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35208796A JP4038535B2 (en) 1996-11-22 1996-11-22 Shock vibration detection switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35208796A JP4038535B2 (en) 1996-11-22 1996-11-22 Shock vibration detection switch

Publications (2)

Publication Number Publication Date
JPH10154451A JPH10154451A (en) 1998-06-09
JP4038535B2 true JP4038535B2 (en) 2008-01-30

Family

ID=18421697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35208796A Expired - Fee Related JP4038535B2 (en) 1996-11-22 1996-11-22 Shock vibration detection switch

Country Status (1)

Country Link
JP (1) JP4038535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001059742A (en) * 1999-08-25 2001-03-06 Sharp Corp Walk data measuring instrument
JP5612141B2 (en) * 2012-02-10 2014-10-22 孫 允縞Yun−Ho SON Salinity meter with built-in impact switch

Also Published As

Publication number Publication date
JPH10154451A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US6706978B2 (en) Tilt detector
JP3470124B2 (en) Tilt / vibration switch and tilt angle adjuster for tilt / vibration switch.
JP4038535B2 (en) Shock vibration detection switch
US3560680A (en) Inertia switch responsive to high and low level shocks
JP2003227747A (en) Normally closed small vibration sensor
JP4067700B2 (en) Horizontally installed omnidirectional tilt vibration sensor
US3617664A (en) Acceleration-responsive switch
JP3950919B2 (en) Tilt / vibration switch
JP3006828B2 (en) Motion detection device
JP2928161B2 (en) Tilt vibration switch
JP3376424B2 (en) Angle detection switch
JPH10149753A (en) Inclination detecting switch
JP2006292436A (en) Acceleration sensor and acceleration sensor equipment
JP3130883B2 (en) Contactor
JPH06249869A (en) Acceleration switch
JP2933619B1 (en) Motion sensor and motion sensor
JP2872199B2 (en) Tilt vibration sensor
JPH08292204A (en) Shock sensor
WO1994025974A1 (en) Inclination-vibration sensing switch
JP2912341B1 (en) Tilt / vibration sensor
JP3026542U (en) Vibration detection switch
JP2001091350A (en) Seismic movement detecting device
JP2003157754A (en) Inclination and vibration switch and inclination angle adjustment tool for the same
JP2002050268A (en) Three dimensional position-detecting switch
KR200361323Y1 (en) Vibration detecting switch and it's set

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20010305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20010306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070814

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees