JP4038083B2 - Dispersion emulsification apparatus and dispersion emulsification method - Google Patents

Dispersion emulsification apparatus and dispersion emulsification method Download PDF

Info

Publication number
JP4038083B2
JP4038083B2 JP2002207533A JP2002207533A JP4038083B2 JP 4038083 B2 JP4038083 B2 JP 4038083B2 JP 2002207533 A JP2002207533 A JP 2002207533A JP 2002207533 A JP2002207533 A JP 2002207533A JP 4038083 B2 JP4038083 B2 JP 4038083B2
Authority
JP
Japan
Prior art keywords
processing
fluid
pressure
processing surface
processed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002207533A
Other languages
Japanese (ja)
Other versions
JP2004049957A (en
Inventor
眞一 榎村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
M Technique Co Ltd
Original Assignee
M Technique Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002207533A priority Critical patent/JP4038083B2/en
Application filed by M Technique Co Ltd filed Critical M Technique Co Ltd
Priority to CN031784186A priority patent/CN1483515B/en
Priority to AT03254461T priority patent/ATE337085T1/en
Priority to DE60307741T priority patent/DE60307741T2/en
Priority to CN2009101513812A priority patent/CN101612533B/en
Priority to US10/619,479 priority patent/US7131604B2/en
Priority to EP03254461A priority patent/EP1382380B1/en
Publication of JP2004049957A publication Critical patent/JP2004049957A/en
Priority to US11/499,755 priority patent/US7278592B2/en
Application granted granted Critical
Publication of JP4038083B2 publication Critical patent/JP4038083B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2713Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the surfaces having a conical shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • B01F27/2714Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator the relative position of the stator and the rotor, gap in between or gap with the walls being adjustable

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Disintegrating Or Milling (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、分散乳化装置及び分散乳化方法に関し、詳しくは、塗料、インク、磁性体、セラミック、電池、接着剤、電子材料、液晶カラーフィルター、医薬品、化粧品、香料、食品などの、所望の懸濁物、乳化物、固体粒子、高分子溶液、スラリー等被処理流動体を得るのに適した分散乳化装置及び分散乳化方法に関する。
【0002】
【従来の技術】
従来、塗料、インク、磁性体、セラミック、電池、接着剤、電子材料、液晶カラーフィルター、医薬品、化粧品、香料、食品などの製造装置には、メディアミルと総称される分散装置が広く利用されている。この分散装置は、メディアと呼ばれるビーズやサンド、ボールなどの媒体が充填された分散室に、被処理流動体を投入し攪拌操作を行うことにより、被処理流動体にせん断力や衝撃力を与えて分散処理を行い、所望の分散状態を得るものである。
【0003】
ここで第一に問題になるのは、メディア同士間、メディアと装置の攪拌羽根との間、或いはメディアと容器内面との間の、磨耗によって、これらの一部が削られ、不純物として、被処理流動体内に混入する不都合である。また当然磨耗によって消耗した、メディアの補充、部品交換などが頻繁に発生し、手間やコストが掛かるものでもある。
【0004】
第二の問題について説明すると、より大きなせん断力を与えるために、またより小さい粒子径を求めるために、従来に比して粒径の小さなメディアの使用を必要とする場合が多々あり、例えば、直径が0.05mmや0.1mm程度の微小なメディアを使用する場合も見受けられ、相対的にメディア径の小さなものが求められる傾向にある。しかし、メディア径が小さくなればなるほどメディア一つ一つの質量が小さくなって被処理流動体の分散可能粘度域が狭まり、低粘度物しか対応できないものとなる。
【0005】
一方、このようなメディアミルの他にロールミルやコロイドミルが知られている。
コロイドミルは、上下ディスクの隙間に被処理流動体を通過させて、この被処理流動体にせん断力を与えるものである。この場合隙間は、間隙調整ハンドルで機械的に決定されるが、装置の物理的な精度から、実質数十ミクロン以上でしか調整できない(十ミクロン以下の調整は不可能であった)。また、これ以上隙間を狭めると回転軸の熱膨張や芯振れなどによる、ディスク同士の接触にて、大事故につながる恐れがある。
【0006】
ロールミルは、速度の違う2本もしくは3本のロールを異なる方向に回転させて被処理流動体にせん断力を与えるものである。これらのロール間の隙間は、機械的に調整される。この場合もコロイドミル同様に数十ミクロン以下の隙間調整が難しくロール間の圧力を調整するために適切なクラウンを取る必要があり作業に熟練を要しかつ危険を伴う。また装置自体が開放状態であり蒸発性の高い溶剤を含む被処理流動体には、不向きである。そしてコロイドミルもロールミルも被処理流動体にせん断力を効率良く与えるにはその大きな隙間に依存するため高粘度であることが条件となる。
【0007】
その他、高速回転式ホモジナイザーや高圧式ホモジナイザーも知られているが前者は、プレ分散装置として使用されており精密分散には不向きである。また、後者は、オリフィス部の磨耗や細管での詰まりや、更に増圧ポンプのシール磨耗など、工業設備として問題が多いことが知られている。
【0008】
このため、不純物の混入がなく、被処理流動体の適応粘度域が広く且つ被処理流動体に対して大きなせん断力を与えられると共に、高い精度で分散、乳化、破砕が可能な分散装置の開発が切望されていた。
【0009】
【発明が解決しようとする課題】
本願発明は、上記事情に基づいてなされたものであり、メカニカルシールにおける軸封の機構を、分散や乳化のための手段として利用するという独創的な発想により、高精度で分散、乳化、破砕が出来しかも生産性の高い、シンプルな構造の分散乳化装置を提供することを可能とし、上記問題の解決を図る。
即ち、本願発明は、不純物の混入を防止することができると共に高精度の分散、乳化、破砕が可能な分散乳化装置を提供することを目的とする。
特に、本願発明は、相対的に回転する少なくもと2つの処理用面間の間隔を所定の微小間隔に設定することができ、大きなせん断力を被処理流動体に与えることができる分散乳化装置を提供することを目的とする。
また、本願発明は、被処理流動体の適応粘度領域が広い分散乳化装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本願第1の発明に係る分散乳化装置は、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な及び第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備える。両処理用面1,2間にて、被処理流動体の分散乳化の処理を行うものである。第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面 (1) から第2処理用面 (2) を離反させる方向に移動させる力を発生させ、接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に所定圧力の被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものである。
ここで、分散又は乳化の処理とは、文字通り、分散や乳化を含むことは勿論、分散や乳化以外の攪拌や、粉砕も含むものである。
【0011】
上記本願の第1の発明は、第1処理用面1と第2処理用面2の間隔を、機械的に一定に保つという従来の方式とは全く異なる発想により、所定の微小間隔に設定するようにした分散乳化装置を提供する。
上記の通り、メカニカルシールに用いられ原理を利用して、受圧面を設定しておくことで、被処理用流動体に掛け圧力を、第1処理用部10及び第2処理用部20の接近又は離反に作用させる。
受圧面として、第2処理用面2は、両処理用部を離反させる方向に、上記の圧力を作用させる。
【0012】
第2処理用部20には、必要に応じて、第2処理用面2の他、第2処理用面2と反対側を臨む受圧面(近接用調整面)と、第2処理用面2と同じ側に形成された受圧面(離反用調整面)とを設定することができる。
この場合第2処理用面2と離反用調整面とは、被処理用流動体に掛けた所定の圧力を受けて、第1処理用部10に対して第2処理用部20を離反させる方向に移動させる力を発生する。但し不要であれば、上記の離反用調整面は、設けなくてもよい(ここで、離反用調整面を設ける場合は、第2処理用面2と離反用調整面の双方を纏めて離反用面と称する。離反用調整面を設けない場合、離反用面は、第2処理用面2そのものである)。
そして、近接用調整面は、被処理用流動体に掛けた所定の圧力を受けて、第1処理用部10に対して第2処理用部20を接近させる方向に移動する力を発生する(近接用調整面が複数ある場合、全近接用調整面を纏めて近接用面と呼ぶ。近接用調整面が1つの場合は、当該近接用調整面のみが近接用面である)。
この場合、このような両処理用部を接近させる方向に上記所定の圧力を働かせる近接用面の面積と、離反用面の面積との比(面積比)をバランス比と呼び、近接用面の面積を離反用面の面積よりも大きくすることによって、上記所定の圧力のうち両処理用部を接近する方に働く力を離反させる方に働く力よりも大きいものとすることができる。
逆に、離反用面の面積を近接用面の面積よりも大きくすることによって、上記所定の圧力のうち両処理用部を離反する方に働く力を接近させる方に働く力よりも大きいものとすることができる。
また、上記の近接用面を設けないことにより、上記所定の圧力を全て離反用面で受け、当該所定の圧力の全てを上記の離反に働く力とすることができる。
【0013】
これにて、他の要因によって生じた、両処理用部を接近させる力或いは離反させる力に対して、被処理用流動体に掛けた所定の圧力による両処理用部の接近又は離反の作用とを均衡させ、上記第1処理用面1と第2処理用面2との間に所望の微小な膜厚の流体膜を形成することができるのである。
即ち、このように、両処理用面1、2間を微小間隔に調整することにより、必要な大きさの剪断力を被処理流動体に付与することができる。その結果、従来得ることがでなかった精度の高い(均質な)分散乳化や、或いは、従来得ることができなかった微小なオーダーに調整された乳化或いは分散を、実現することも可能とした。即ち、被処理流動体に対して、両処理用面1,2間を通過する際、一定の微小隙間で大きなせん断力が与えられるものであり、二次凝集した微粒子を一次粒子に解砕し、また大きな結晶を微細化し、また油滴を微粒化し効率的に分散乳化が達成できる。よって、ロールミルやコロイドミルでは不可能であった、10ミクロン以下のオーダーに調整された、乳化或い分散状態の被処理流動体を得ることも可能となった。
しかも、従来のメディアミルのように被処理流動体中へメディアを投入することが不要となるため、不純物の混入を抑制することができる。
【0014】
本願第2の発明に係る分散乳化装置は、上記本願第1の発明に係る分散乳化装置にあって、第1処理用面1及び第2処理用面2の少なくとも一方の、微振動やアライメントを調整する緩衝機構を備えることを特徴とする。
このように、緩衝機構を備えたフローティング構造を用いることにより、芯振れなどのアライメントを吸収し、接触による磨耗などを原因とする事故の危険性を排除することができる。
【0015】
本願第3の発明に係る分散乳化装置は、上記本願第1又は第2の発明に係る分散乳化装置にあって、第1処理用面1及び第2処理用面2の一方又は双方の、磨耗などによる軸方向の変位を調整して、両処理用面1,2間の流体膜の膜厚を維持することを可能とする変位調整機構を備えたものである。
上記の変位調整機構にて、第1処理用面1及び第2処理用面2の間隔を保ち、流体膜の膜厚を所定の厚みに維持することにより、長期に渡って、均一な高品質の分散又は乳化を行うことが可能となった。
【0016】
本願第4の発明に係る分散乳化装置は、上記本願第1乃至第3の何れかの発明に係る分散乳化装置にあって、流体圧付与機構が、分散や乳化の処理を施す被処理流動体に、送り込み圧を掛けるコンプレッサなどの加圧装置であることを特徴とする。
このように被処理流動体に加える圧力にて第1処理用面1と第2処理用面2との間の隙間を調整できるので、これにて上記の流体膜の厚みの調整が可能である。従って、当該調整にて所望の分散や乳化の処理を選択し得る。
【0017】
本願第5の発明に係る分散乳化装置は、上記本願第1乃至第4の何れかの発明に係る分散乳化装置にあって、上記の第1処理用面1と第2処理用面2との間の最大間隔を規定し、それ以上の両処理用面1,2の離反を抑止する離反抑止部を備える。
このため、第1処理用面1と第2処理用面2との間の隙間が必要以上に広がることを防止し、均一な分散や乳化の処理を確実且つ円滑に行うことを可能とした。
【0018】
本願第6の発明に係る分散乳化装置は、上記本願第1乃至第5の何れかの発明に係る分散乳化装置にあって、上記の第1処理用面1と第2処理用面2との間の最小間隔を規定し、それ以上の両処理用面1,2の近接を抑止する近接抑止部を備える。
これによって、第1処理用面1と第2処理用面2との間の隙間が必要以上に狭まることを防止し、均一な分散や乳化の処理を確実且つ円滑に行うことを可能とした。
【0019】
本願第7の発明に係る分散乳化装置では、上記本願第1乃至第6の何れかの発明に係る分散乳化装置にあって、第1処理用面1と第2処理用面2の双方が、互いに逆の方向に回転するものである。
このように、第1処理用面1と第2処理用面2の双方を互いに逆の方向に回転させるとによって、より大きな剪断力を発生させることが可能となり、より微小なオーダーの分散や乳化を可能とし、また、より均一な高品質の分散や乳化を効率良く行うことを可能とした。
【0020】
本願第8の発明に係る分散乳化装置は、上記本願第1乃至第7の何れかの発明に係る分散乳化装置にあって、上記第1処理用面1と第2処理用面2の一方或いは双方の温度を調整する、温度調整用のジャケットを備える。
このような温度調整用のジャケットにて、第1処理用面1及び第2処理用面2の一方或いは双方を、分散や乳化の処理を行うのに適した温度に加熱或いは冷却することを可能として、より能率良くまた、精度の高い分散や乳化の処理を可能とした。
【0021】
本願第9の発明に係る分散乳化装置では、上記本願第1乃至第8の何れかの発明に係る分散乳化装置にあって、上記第1処理用面1及び第2処理用面2の一方或いは双方の少なくとも一部は、鏡面加工されたものである。
このような鏡面加工にて、第1処理用面1及び第2処理用面2間における上記分散や乳化の処理をより高精度に行うことを可能とし、またより微細な分散や乳化の処理を実現し得た。
【0022】
本願第10の発明に係る分散乳化装置では、上記本願第1乃至第9の何れかの発明に係る分散乳化装置にあって、上記第1処理用面1及び第2処理用面2の一方或いは双方は、凹部を備えたものである。
このように第1処理用面1又は第2処理用面2或いはその双方に凹部を形成することにより、攪拌能力を高めて、より効率的な分散や乳化の処理を可能とし、また回転時凹部に動圧が発生することにより非接触で回転し確実に流体膜を形成する。
【0023】
なお、分散乳化装置に、上記の流体通路とは独立した別途の導入路を備え、上記第1処理用面(11)と第2処理用面(12)の少なくとも何れ一方には、上記の導入路に通じる開口部を備え、導入路から送られてきた移送物を、上記処理中の被処理流動体に導入することもできる。
【0024】
本願第11の発明に係る分散乳化装置は、被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に接続された第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面と、両処理用面1,2間に接面圧力を付与する接面圧力付与機構と、第1処理用面1と第2処理用面2とを相対的に回転させる回転駆動機構と、を備えることにより、両処理用面1,2間にて、被処理流動体の分散乳化の処理を行うものである。そして、接面圧力が付与されつつ相対的に回転する第1処理用面1と第2処理用面2との間に所定圧力の被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものである。
【0025】
上記本願の第11の発明に係る分散乳化装置にあっては、密封された流体流路に接続された第1処理用面11と第2処理用面12の間に、所定の圧力が付与された被処理流動体が通され、これにより、第1処理用面11と第2処理用面12とを離反させる力が作用する。他方、両処理用面1、2間には、接面圧力付与機構により接面圧力が付与され、且つ、相対的に接近離反可能であると同時に回転する第1処理用面1と第2処理用面2との間に被処理流動体を通過させる。その結果、処理流動体により両処理用面1、2間を離反させる方向に加えられる力と、接面圧力付与機構によって両処理用面1,2間に付与される接面圧力とが均衡し、両処理用面1、2間の間隔が所定の微小間隔に保たれるものであり、被処理流動体は流体膜を形成しながら両処理用面1、2間を通過する。
【0026】
上記の接面圧力付与機構については、第1処理用面1と第2処理用面2とを近接させる方向に力を加えるものであり、スプリング、空気圧又は油圧等の流体圧(正圧)の加圧装置、被処理流動体に掛けた所定の圧力受けて両処理用面1,2を接近させる方向に働く接近用の受圧面の、少なくとも何れか一つにより構成することができる。
【0027】
一方、このような接面圧力付与機構の押圧力(接面圧力)に抗する両処理用面1,2を離反させる離反力としては、第1或いは第2処理用面1,2などの被処理流動体に掛けた所定の圧力を離反方向に働かせる受圧面において受けた当該圧力、第1処理用面1と第2処理用面2とを相対的に回転させることによって生じた遠心力、空気圧又は油圧等の流体圧(負圧)を利用した吸引装置による吸引力、比処理流動体の粘性などを掲げることができる。
【0028】
本願第12の発明に係る分散乳化装置は、被処理流動体に圧力を付与する流体圧付与機構Pと、この被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な及び第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第2処理用面2が露出するように第2処理用部20を受容するホルダ21と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構と、第1処理用面1に対して第2処理用面2を圧接又は近接した状態に第2処理用部20を押圧する接面圧付与機構4とを備える。両処理用面1,2間にて、被処理流動体の分散乳化の処理を行うものである。上記ホルダ21は、被処理流動体の導入部22を備えると共に、処理用面1,2間の隙間に影響を与えるようには可動でない。第2処理用部20は、環状体であり、第2処理用面2がホルダ21に対して摺動して第1処理用面1に近接離反する。第2処理用部20は、受圧面を備える。受圧面は、流体圧付与機構Pが被処理流動体に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させる。上記受圧面の少なくとも一部は、第2処理用面2にて構成されている。接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものであり、接面圧力付与機構4の接面圧力と、流体圧付与機構Pが付与する流体圧力の両処理用面1,2間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる微小間隔を両処理用面1,2間に保つ。
【0029】
本願第13の発明に係る分散乳化装置にあっては、被処理流動体に圧力を付与する流体圧付与機構Pと、この被処理流動体が流される密封された流体流路に設けられた第1処理用部10と第1処理用部10に対して相対的に接近離反可能な第2処理用部20の少なくとも2つの処理用部と、これらの処理用部10,20において互いに対向する位置に設けられた第1処理用面1及び第2処理用面2の少なくとも2つの処理用面と、第1処理用部10と第2処理用部20とを相対的に回転させる回転駆動機構とを備える。両処理用面1,2間にて、被処理流動体の分散乳化の処理を行うものである。第1処理用部10と第2処理用部20のうち少なくとも第2処理用部20は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面2により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させる。更に、第2処理用部20は、第2処理用面2と反対側を向く近接用調整面24を備えるものであり、近接用調整面24は、被処理流体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させる。この近接用調整面24の面積A1と、第2処理用部20の上記受圧面の面積A2との面積比A1/A2を、バランス比Kとし、当該バランス比Kにより、被処理流動体から受ける全圧力の合力として、第1処理用面1に対する第2処理用面2の離反方向へ移動する力が決まる。接近離反可能且つ相対的に回転する第1処理用面1と第2処理用面2との間に圧力が付与された被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面1,2間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものである。
上記のバランス比の設定により、被処理流動体に掛けた所定の圧力のうち、押圧力として作用するものと、離反力として作用するものとの、大小を決定することができる。
被処理流動体は、上記の接面圧力と離反力の均衡の上で、被処理流動体は所定の微小厚さを有する流動体(即ち、流体膜)を形成して、両処理用面1、2間を通過するものであり、所定膜厚を示すように上記諸条件を調整することにより、両処理用面1、2間の間隔が所定の微小間隔に保たれた状態となる。
本願第14の発明に係る分散乳化方法は、被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路に、第1処理用面1及び第2処理用面2の少なくとも2つの相対的に接近離反可能な処理用面を接続し、両処理用面1、2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させ且つこれらの処理用面1、2間に被処理流動体を通過させて、当該被処理流動体の分散乳化の処理を行うものであり、少なくとも被処理流動体に付与した上記の所定の圧力を両処理用面1、2を離反させる離反力とし、当該離反力と上記接面圧力とを、処理用面1、2間の被処理流動体を介して均衡させることにより、両処理用面1、2間を所定の微小間隔に維持し、被処理流動体を所定の厚みの流体膜として両処理用面1、2間を通過させて、所望の分散乳化状態を得るものである。
【0030】
【発明の実施の形態】
以下、図面に基づき本願発明の実施の形態について説明する。
図1及び図2(A)へ本願発明の一実施の形態を示す。この図1は、本願発明に係る装置の一部切欠縦断面図である。図2(A)は、図1に示す分散乳化装置の要部略縦断面図である。
説明の便宜上、各図中、Uは上方を、Sは下方を示している。
【0031】
先ず、装置の構成について説明する。
この装置は、被処理流動体に対する、ミクロン単位からナノメータ単位の微小なオーダーの分散や乳化の処理に適したものであり、液体同士、液体と固体(粉体)、固体(粉体)同士、気体と液体、或いは、気体と固体(粉体)について、上記の分散や乳化の処理を施すのに適したものである。
図1に示す通り、この分散乳化装置は、第1ホルダ11(メイティングリングホルダ)と、第1ホルダ11の前方(上方)に配置された第2ホルダ21(コンプレッションリングホルダ)と、第2ホルダ21と共に第1ホルダ11を覆うケース3と、流体圧付与機構Pと、接面圧付与機構4とを備える。
以下各部の構成について、順に説明する。
【0032】
第1ホルダ11には、第1処理用部10と、回転軸50と、攪拌羽根6とが設けられている。
第1処理用部10は、メイティングリングと呼ばれる金属製の環状体であり、鏡面加工された第1処理用面1を備える。
回転軸50は、第1ホルダ11の中心にボルトなどの固定具51にて固定されたものであり、その後端が電動機などの回転駆動装置5(回転駆動機構)と接続され、回転駆動装置5の駆動力を第1ホルダ11に伝えて、当該第1ホルダ11を回転させる。第1処理用部10は、回転軸50と同心に第1ホルダ11前部(上端)へ取り付けられ、回転軸50の回転にて、上記第1ホルダ11と一体となって回転する。また、攪拌羽根6は、プレ攪拌(分散乳化の前処理)を行うために設けられたものであり、第1ホルダ11前部(上面)において、環状の第1処理用部10の内側に、回転軸50と同心となるように第1ホルダ11に軸止されている。
【0033】
第1ホルダ11の前部(上面)には、第1処理用部10を受容することが可能な受容部が設けられており、当該受容部内にOリングと共に第1処理用部10をはめ込むことにて、第1ホルダ11への第1処理用部10の上記取付けが行われている。更に、第1処理用部10は、回り止めピン12にて、第1ホルダ11に対して回転しないように固定されている。但し回り止めピン12に代え、焼き嵌めなどの方法にて、回転しないように固定するものとしても良い。
上記の第1処理用面1は、第1ホルダ11から露出して、第2ホルダ21側を臨む。この第1処理用面1は、第1ホルダ11にはめ込まれてから、研磨やラッピング、ポリッシングなどの鏡面加工を施すのが好ましい。
第1処理用部10の材質は、セラミックや焼結金属、耐磨耗鋼、その他金属に硬化処理を施したものや、硬質材をライニングやコーティング、メッキなどを施工したものを採用する。特に、回転するため、軽量な素材にて第1処理用部10を形成するのが望ましい。
【0034】
上記のケース3は、軸挿通口31と、排出部32とを備えた有底の容器であり、その内部空間30に、上記の第1ホルダ11を収容する。軸挿通口31は、ケース3の底部中央に設けられ、ケース3の内外を連絡する貫通口であり、上記の回転軸50を挿通するものである。ケース3外部(下方)に配置された回転駆動装置5から上記の軸挿通口31を通じて回転軸50先端をケース3内部に挿通せしめ、上記の通りケース3内の第1ホルダ11と回転軸50とを接続する。
【0035】
第2ホルダ21には、第2処理用部20と、被処理流動体の導入部22と、接面圧力付与機構4とが設けられている。
第2処理用部20は、コンプレッションリングと呼ばれる金属製の環状体であり、鏡面加工された第2処理用面2と、第2処理用面2の内側に位置して当該第2処理用面2に隣接する受圧面23(以下離反用調整面23と呼ぶ。)とを備える。図示の通り、この離反用調整面23は、傾斜面である。第2処理用面2に施す鏡面加工は、第1処理用面1と同様の方法を採用する。また、第2処理用部20の素材についても、第1処理用部10と同様のものを採用する。離反用調整面23は、環状の第2処理用部20の内周面25と隣接する。
【0036】
第2ホルダ21の底部(下部)には、収容部40が形成され、その収容部40内に、上記のOリングと共に第2処理用部20が受容されている。また、回り止め45にて、第2処理用部20は、第2ホルダ21に対して回転しないよう、受容されている。上記の第2処理用面2は、第2ホルダ21から露出する。
第2ホルダ21は、図1に示すように、ケース3の開口部(上部)に配置されて当該開口部を覆い、周知の密閉手段33にて、ケース3の内部空間30を密閉する。この状態において、第2処理用面2は、ケース3内にて、第1処理用部10の第1処理用面1と対面する。
【0037】
流体圧付与機構Pは、第2ホルダ21の外部(上部)において、上記の導入部22と接続されている。この流体圧付与機構Pは、分散や乳化の処理を施す被処理流動体に、一定の送り込み圧を掛けるコンプレッサなどの加圧装置である。
【0038】
接面圧力付与機構4は、第1処理用面1に対して第2処理用面2を、圧接又は近接した状態に押圧するものであり、この接面圧力と流体圧力(被処理流動体の流体圧)等の両処理用面1、2間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる(言い換えれば、両処理用面1、2間の間隔を所定の微小間隔に保つ)。
具体的には、この実施の形態において、接面圧力付与機構4は、上記の収容部41と、収容部41の奥に(最深部)に設けられた発条受容部42と、スプリング43と、エア導入部44とにて構成されている。
但し、接面圧力付与機構4は、上記収容部41と、上記発条受容部42と、スプリング43と、エア導入部44の少なくとも、何れか1つを備えるものであればよい。
【0039】
収容部41は、収容部42内の第2処理用部20の位置を深く或いは浅く(上下に)変位することが可能なように、第2処理用部20を遊嵌している。
上記のスプリング43の一端は、発条受容部42の奥に当接し、スプリング43の他端は、収容部42内の第2処理用部20の前部(上部)と当接する。図1において、スプリング43は、1つしか現れていないが、複数のスプリング44にて、第2処理用部20の各部を押圧するものとするのが好ましい。即ち、スプリング43の数を増やすことによって、より均等な押圧力を第2処理用部20に与えることができるからである。従って、第2ホルダ21については、スプリング43が数本から数十本取付けられたマルチ型とするのが好ましい。
【0040】
この実施の形態において、上記の通りエア導入部44にて他から、空気を収容部42内に導入することを可能としている。このような空気の導入により、収容部42と第2処理用部20との間を加圧室として、スプリング43と共に、空気圧を押圧力として第2処理用部20に与えることができる。従って、エア導入部44から導入する空気圧を調整することにて、運転中に(第1処理用面1に対する第2処理用面2の)接面圧力を調整することが可能である。尚空気圧を利用するエア導入部44の代わりに、油圧などの他の流体圧にて押圧力を発生させる機構を利用しても実施可能である。
接面圧力付与機構4は、上記の押圧力(接面圧力)の一部を供給し調節する他、変位調整機構と、緩衝機構とを兼ねる。
詳しくは、接面圧力付与機構4は、変位調整機構として、始動時や運転中の軸方向への伸びや磨耗による軸方向変位にも、空気圧の調整によって追従し、当初の押圧力を維持できる。また、接面圧力付与機構4は、上記の通り、第2処理用部20を変位可能に保持するフローティング機構を採用することによって、微振動や回転アライメントの緩衝機構としても機能するのである。
【0041】
以上の構成を備えた第1の実施の形態に係る分散乳化装置にあっては、次の作用により、分散や乳化の処理がなされる。
まず、分散や乳化の処理を施す被処理流動体が、流体圧付与機構Pから一定の送圧を受けて、密閉されたケース3の内部空間へ、導入部22より導入される。他方、回転駆動装置5(回転駆動機構)によって、第1処理用部10が回転する。これにより、第1処理用面1と第2処理用面2とは微小間隔を保った状態で相対的に回転する。
ケース3の内部空間に導入された被処理流動体は、微小間隔を保った両処理用面1,2間で、流体膜となり、第1処理用面1の回転により第2処理用面2との間で剪断を受けることにて分散や乳化が施される。ここで、第1処理用面1と第2処理用面2とは、1μmから1mm(特に、1μmから10μm)の微小間隔に調整されることにより、数nm単位の超微粒子の分散をも可能とする。
処理された被処理流動体は、両処理用面1,2間を経て、排出部32から排出される。
尚、攪拌羽根6は、上記被処理流動体の送圧を受けて第1ホルダ11に対して回転し、上記の両処理用面1,2間における処理に先立ち、被処理流動体のプレ分散を行う。
【0042】
上記のように、第1処理用面1と第2処理用面2とは、機械的なクリアランスの設定では不可能とされたμm単位の微小間隔に調整され得るものであるが、そのメカニズムを次に説明する。
第1処理用面1と第2処理用面2とは、相対的に接近離反可能であり、且つ相対的に回転する。この例では、第1処理用面1が回転し、第2処理用面2が軸方向に摺動して第1処理用面に対して接近離反する。
よって、この例では、第2処理用面2の軸方向位置が、力(前述の接面圧力と離反力)のバランスによって、μm単位の精度で設定されることにより、両処理用面1,2間の微小間隔の設定がなされる。
【0043】
接面圧力としては、接面圧力付与機構4において、エア導入部44から正圧(空気圧)を付与した場合の当該圧力、スプリング43の押圧力を挙げることができる。
他方、離反力としては、離反側の受圧面(即ち、第2処理用面2及び離反用調整面23)に作用する流体圧と、第1処理用部1の回転による遠心力と、エア導入部44に負圧を掛けた場合の当該負圧とを挙げることができる。
そして、これらの力の均衡によって、第2処理用面2が第1処理用面1に対して所定の微小間隔を隔てた位置にて安定することにより、μm単位の精度での設定が実現する。
【0044】
離反力をさらに詳しく説明する。
まず、流体圧に関しては、密閉された流路中にある第2処理用部20は、流体圧付与機構Pから被処理流動体の送り込み圧力(流体圧)を受ける。その際、流路中の第1処理用面に対向する面(第2処理用面2と離反用調整面23)が離反側の受圧面となり、この受圧面に流体圧が作用して、流体圧による離反力が発生する。
次に、遠心力に関しては、第1処理用部10が高速にすると、流体に遠心力が作用し、この遠心力の一部は両処理用面1,2を互いに遠ざける方向に作用する離反力となる。
更に、上記のエア導入部44から負圧を(第2処理用部20へ)与えた場合には、当該負圧が離反力として作用する。
以上、本願の説明においては、第1第2の処理用面1,2を互いに離反させる力を離反力として説明するものであり、上記の示した力を離反力から排除するものではない。
【0045】
上述のように、密閉された被処理流動体の流路において、処理用面1,2 間の被処理流動体を介し、離反力と、接面圧力付与機構4が奏する接面圧力とが均衡した状態を形成することにより、両処理用面1,2 間に、分散・乳化の処理を行うのに適した流体膜を形成する。このように、この分散乳化装置は、処理用面1,2間に強制的に流体膜を介することにより、従来の機械的な分散装置では、機械的変形により不可能であった微小な間隔を、両処理用面1,2維持するを可能として、高精度な分散乳化の処理を実現したのである。
【0046】
言い換えると処理用面1,2 間における流体膜の膜厚は、上述の離反力と接面圧力の調整により、所望の厚みに調整し、必要とする分散乳化の処理を行うことができる。従って、流体膜の厚みを小さくしようとする場合、離反力に対して相対的に接面圧力が大きくなるように、接面圧力或いは離反力を調整すればよく、逆に流体膜の厚みを大きくようとすれば、接面圧力に対して相対的に離反力が大きくなるように、離反力或いは接面圧力を調整すればよい。
接面圧力を増加させる場合、接面圧力付与機構4において、エア導入部44から正圧(空気圧)を付与し、又は、スプリング43を押圧力の大きなものに変更或いはその個数を増加させればよい。
離反力を増加させる場合、流体圧付与機構Pの送り込み圧力を増加させ、或いは第2処理用面2や離反用調整面23の面積を増加させ、またこれに加えて、第2処理用部20の回転を調整して遠心力を増加させ或いはエア導入部44からの負圧(空気圧)を付与すればよい。スプリング43は、伸びる方向に押圧力を発する押し発条としたが、縮む方向に力を発する引き発条として、接面圧力付与機構4の構成の一部又は全部とすることが可能である。
【0047】
さらに、接面圧力及び離反力の増加減少の要素として、上記の他に分散粒子の径や粘度などの被処理流動体の性状も加えることができ、このような被処理流動体の性状の調整も、上記の要素の調整として、行うことができる。
【0048】
なお、離反力のうち、離反側の受圧面(即ち、第2処理用面2及び離反用調整面23)に作用する流体圧は、メカニカルシールにおけるオープニングフォースを構成する力として理解される。
メカニカルシールにあっては、第2処理用部20がコンプレッションリングに相当するが、この第2処理用部20に対して流体圧が加えられた場合に、第2処理用部2を第1処理用部1から離反する力が作用する場合、この力がオープニングフォースとされる。
より詳しくは、上記の第1の実施の形態のように、第2処理用部20に離反側の受圧面(即ち、第2処理用面2及び離反用調整面23)のみが設けられている場合には、送り込み圧力の全てがオープニングフォースを構成する。なお、 第2処理用部20の背面側にも受圧面が設けられている場合(具体的には、後述する図2(B)及び図9の場合)には、送り込み圧力のうち、離反力として働くものと接面圧力として働くものとの差が、オープニングフォースとなる。
【0049】
ここで、図2(B)を用いて、第2処理用部20の他の実施の形態について説明する。
図2(B)に示す通り、この第2処理用部20の収容部41より露出する部位であり且つ内周面側に、第2処理用面2と反対側(上方側)を臨む近接用調整面24が設けられている。
即ち、この実施の形態において、接面圧力付与機構4は、収容部41と、エア導入部44と、上記近接用調整面24とにて構成されている。但し、接面圧力付与機構4は、上記収容部41と、上記発条受容部42と、スプリング43と、エア導入部44と、上記近接用調整面24の少なくとも、何れか1つを備えるものであればよい。
【0050】
この近接用調整面24は、被処理流体に掛けた所定の圧力を受けて第1処理用面1に第2処理用面2を接近させる方向に移動させる力を発生させ、近接用接面圧力付与機構4の一部として、接面圧力の供給側の役目を担う。一方第2処理用面2(と前述の離反用調整面23と)は、被処理流体に掛けた所定の圧力を受けて第1処理用面1から第2処理用面2を離反させる方向に移動させる力を発生させ、離反力(の一部について)の供給側の役目を担うものである。
近接用調整面24と、第2処理用面2(及び離反用調整面23)とは、共に前述の被処理流動体の送圧を受ける受圧面であり、その向きにより、上記接面圧力の発生と、離反力の発生という異なる作用を奏する。
【0051】
この近接用調整面24の面積A1と、第2処理用部20の第2処理用面2と離反側受圧面23との合計面積A2との面積比(A1/A2)は、バランス比Kと呼ばれ、上記のオープニングフォースの調整に重要である。
近接用調整面24の先端と離反側受圧面23の先端とは、共に環状の第2調整用部20の内周面25(先端線L1)に規定されている。このため、近接用調整面24の基端線L2をどこに置くかの決定で、バランス比の調整が行われる。
即ち、この実施の形態において、被処理用流動体の送り出しの圧力をオープニングフォースとして利用する場合、第2処理用面2及び離反用調整面23との合計面積を、近接用調整面24の面積より大きいものとすることによって、その面積比率に応じたオープニングフォースを発生させることができる。
【0052】
上記のオープニングフォースについては、上記バランスライン、即ち近接用調整面24の面積A1を変更することで、被処理流動体圧力(流体圧)により調整できる。
摺動面実面圧P(接面圧力のうち流体圧によるもの)は次式で計算される。
P=P1×(K−k)+Ps
ここでP1は、被処理流動体の圧力(流体圧)を示し、Kは上記のバランス比を示し、kはオープニングフォース係数を示し、Psはスプリング及び背圧力を示す。
この(バランスラインの調整により)摺動面実面圧Pを調整することで処理用面1,2間を所望の微小隙間量(隙間幅)にし被処理流動体による流動体膜を形成させ所望のせん断力を与え分散、乳化、破砕などを行うのである。
【0053】
通常、両処理用面1,2間の流体膜の厚みを小さくすれば、分散・乳化粒子の径を小さくすることができる。逆に、当該流体膜の厚みを大きくすれば、分散・乳化粒子の径が大きくなる。従って、上記の摺動面実面圧P(以下面圧P)の調整により、両処理用面1,2間の間隔(隙間)を調整して、所望の径の分散・乳化粒子を得ることができる。
この関係を纏めると、上記の粒子の径を大きくする場合、バランス比を小さくし、面圧Pを小さくし、上記隙間を大きくして、上記膜厚を大きくすればよい。逆に、上記の粒子の径を小さくする場合、バランス比を大きくし、面圧Pを大きくし、上記隙間を小さくし、上記膜厚を小さくする。
このように、接面圧力付与機構4の一部として、近接用調整面24を形成して、そのバランスラインの位置にて、接面圧力の調整、即ち処理用面間の隙間を調整するものとしても実施可能である。
【0054】
上記の隙間の調整には、既述の通り、他に、前述のスプリング43の押圧力や、エア導入部44の空気圧を考慮して行う。また、流体圧即ち被処理流動体の送り圧力の調整や、更に、第1処理用部10(第1ホルダ11)の回転(遠心力)の調整(も、重要な調整の要素(パラメータ)である。
上述の通り、この装置は、第2処理用部20と、第2処理用部20に対して回転する第1処理用部10とについて、被処理流動体の送り込み圧力と当該回転遠心力、また接面圧力で圧力バランスを取り両処理用面に所定の流体膜を形成させ所望のせん断力を被処理流動体に与える構成にしている。またリングの少なくとも一方をフローティング構造とし芯振れなどのアライメントを吸収し接触による磨耗などの危険性を排除している。
【0055】
この図2(B)の実施の形態においても、上記の調整用面を備える以外の構成については、図1に示す実施の形態と同様である。
また、図2(B)に示す実施の形態において、図9に示すように、上記の離反側受圧面23を設けずに実施することも可能である。この場合、上記のバランス比Kは、近接用調整面24の面積A1と、第2処理用部20の第2処理用面2の面積A2との、面積比(A1/A2)となる。
図2(B)や図9に示す実施の形態のように、近接用調整面24を設ける場合、近接用調整面24の面積A1を上記の面積A2よりも大きいものとすること、即ちメカニカルシールにおけるアンバランス型とすることにより、オープニングフォースを発生させずに、逆に、被処理流動体に掛けられた所定の圧力は、全て接面圧力として働くことになる。このような設定も可能であり、この場合、他の離反力を大きくすることにより、両処理用面1,2を均衡させることができる。
【0056】
上記の実施の形態において、既述の通り、スプリング43は、摺動面(処理用面)に均一な応力を与える為に、取付け本数は、多いほどよい。但し、このスプリング43については、図3(A)へ示すように、シングルコイル型スプリングを採用することも可能である。これは、図示の通り、中心を環状の第2処理用部20と同心とする1本のコイル型スプリングである。
第2処理用部20と第2ホルダ21との間のシールには、既述の通りOリングを用いるのがよいが、このようなOリングに代え、或いはOリングと共に、図3(B)へ示すベローズ26や、図3(C)へ示すダイアフラム27を設けても実施可能である。
【0057】
図4に示すように、第2ホルダ21には、第2処理用面2(第2処理用部20)とを、冷却或いは加熱して、その温度を調整することが可能な温度調整用ジャケット46が設けられている。また、ケース3にも、同様の目的の温度調整用ジャケット35が設けられている。
第2ホルダ21の温度調整用ジャケット46は、第2ホルダ21内において、収容部41の側面に形成された水回り用の空間であり、第2ホルダ21の外部に通じる通路47,48と連絡している。通路47,48は、何れか一方が温度調整用ジャケット46に、冷却用或いは加熱用の媒体を導入し、何れか他方が当該媒体を排出する。
また、ケース3の温度調整用ジャケット35は、ケース3の外周を被覆する被覆部34にて、ケース3の外周面と当該被覆部34との間に設けられた、加熱用水或いは冷却水を通す通路である。
この実施の形態では、第2ホルダ21とケース3とが、上記の温度調整用のジャケットを備えるものとしたが、第1ホルダ11にも、このようなジャケットを設けて実施することが可能である。
【0058】
接面圧力付与機構4の一部として、図1及び図2に示す構成と共に、図5に示すシリンダ機構7を設けて実施することも可能である。
このシリンダ機構7は、第2ホルダ21内に設けられたシリンダ空間部70と、シリンダ空間部70を収容部41と連絡する連絡部71と、シリンダ空間部70内に収容され且つ連絡部71を通じて第2処理用部20と連結されたピストン体72と、シリンダ空間部70上部に連絡する第1ノズル73と、シリンダ空間部70下部に第2ノズル74と、シリンダ空間部70上部とをピストン体72との間に介された発条などの押圧体75とを備えたものである。
【0059】
ピストン体72は、シリンダ空間部70内にて上下に摺動可能であり、ピストン体72の当該摺動にて第2処理用部20が上下に摺動して、第1処理用面1と第2処理用面2との間の隙間を変更することができる。
具体的には、コンプレッサなどの圧力源(図示せず。)と第1ノズル73とを接続し、第1ノズル73からシリンダ空間部70内のピストン体72上方に空気圧(正圧)を掛けることにて、ピストン体72を下方に摺動させ、第2処理用部20を第1及び第2処理用面1,2間の隙間を狭める(閉じる方向に移動させる)ことができる。またコンプレッサなどの圧力源(図示せず。)と第2ノズル74とを接続し、第2ノズル74からシリンダ空間部70内のピストン体72下方に空気圧(正圧)を掛けることにて、ピストン体72を上方に摺動させ、第2処理用部20を第1及び第2処理用面1,2間の隙間を広げる(開く方向に移動させる)ことができる。このように、ノズル73,74にて得た空気圧で、接面圧力を調整できるのである。
【0060】
収容部41内における第2処理用部20の上部と、収容部41の最上部との間に余裕があっても、ピストン体7がシリンダ空間部70の最上部70aと当接するよう設定することにより、このシリンダ空間部70(の最上部70a)が、両処理用面1,2間の隙間の幅の上限を規定する。即ち、ピストン体7とシリンダ空間部70の最上部70aとが、両処理用面1,2の離反を抑止する離反抑止部(両処理用面1,2間の隙間の最大開き量を規制する機構)として機能する。
【0061】
また、両処理用面1,2とが当接していなくても、ピストン体7がシリンダ空間部70の最下部70bと当接するよう設定することにより、このシリンダ空間部70(の最下部70b)が、両処理用面1,2間の隙間の幅の下限を規定する。即ち、ピストン体7とシリンダ空間部70の最下部70bとが、両処理用面1,2の近接を抑止する近接抑止部(両処理用面1,2間の隙間の最小開き量を規制する機構)として機能する。
このように上記隙間の最大及び最小の開き量を規制しつつ、ピストン体7とシリンダ空間部70の最上部70aとの間隔z1(換言するとピストン体7とシリンダ空間部70の最下部70bとの間隔z2)を上記ノズル73,74の空気圧にて調整する。
【0062】
ノズル73,74は、別個の圧力源に接続されたものとしてもよく、一つの圧力源を切り換えて(つなぎ換えて)接続するものとしてもよい。
また圧力源は、正圧を供給するものでも負圧を供給するものでも何れでも実施可能である。真空などの負圧源と、ノズル73,74とを接続する場合、上記の動作は反対になる。
前述の他の接面圧力付与機構4に代え或いは前述の接面圧力付与機構4の一部として、このようなシリンダ機構7を設けて、被処理流動体の粘度や性状によりノズル73,74に接続する圧力源の圧力や間隔z1,z2の設定を行い流動体液膜の厚みを所望値にしせん断力をかけ分散,乳化,破砕を行うことができる。特に、このようなシリンダ機構7にて、洗浄時や蒸気滅菌時など摺動部の強制開閉を行い洗浄や滅菌の確実性を上昇させることも可能とした。
【0063】
図6(A)〜(C)に示すように、第1処理用部10の第1処理用面1に、第1処理用部10の中心側から外側に向けて(径方向について伸びる)溝状の凹部13…13を形成して実施してもよい。この場合、図6(A)へ示すように、凹部13…13は、第1処理用面1上をカーブして或いは渦巻き状伸びるものとして実施可能であり、図6(B)へ示すように、個々の凹部13がL字状に屈曲するものであっても実施可能であり、また、図6(C)に示すように、凹部13…13fは真っ直ぐ放射状に伸びるものであっても実施可能である。
【0064】
また、図6(D)へ示すように、図6(A)〜(C)の凹部13は、第1処理用面1の中心側に向かう程深いものとなるように勾配をつけて実施するのが好ましい。また、溝状の凹部13は、連続したものの他、断続するものであっても実施可能である。
この様な凹部13を形成することにより被処理流動体の吐出量(供給量)の増加または発熱量の減少への対応や、キャビテーションコントロールなど効果がある。
上記の図6に示す各実施の形態において、凹部13は、第1処理用面1に形成するものとしたが、第2処理用面2に形成するものとしても実施可能であり、更には、第1及び第2の処理用面1,2の双方に形成するものとしても実施可能である。
【0065】
処理用面に、上記の凹部13やテーパを設けない場合、若しくは、これらを処理用面の一部に偏在させた場合、処理用面1,2(平滑部)の面粗度が被処理流動体(流体)に与える影響は、上記(凹部13を形成するもの)に比して、大きいものとなる。従って、このような場合、被処理流動体(流体)の微粒子が小さくなればなるほど、面粗度を下げる(きめの細かいものとする)必要がある。特にナノサイズの微粒子が対象となる場合その処理用面の面粗度については、既述の鏡面(鏡面加工を施した面)とするほうが所望のせん断力を与える上で有利である。
【0066】
図7に示すように、導入部22とは別に、第2処理用部20に第2処理用面2に開口する供給通路28を設け、当該供給通路28を通じて他より、第1処理用面1と第2処理用面2との間の被処理流動体(流体)に直接違った物質または、被分断流動体の一部を投入するものとしても実施可能である。このように構成した場合、プレ分散を省きたい場合や、反応性の高い被処理流動体を取り扱う場合に有効である。
【0067】
図1に示す実施の形態において、不動の第2処理用部20(第2ホルダ21)に対して、第1処理用部10(第1ホルダ11)が回転駆動装置5より回転力を受けて回転するものであった。この他、図8に示すように、第2ホルダ21を、別途の副回転駆動装置52へ別途の回動軸53(以下副回動軸53と呼ぶ。)を介して接続して、第1ホルダ11と逆方向に回転させるものとしても、より大きな剪断力を得る上で、効果的である。
この場合、前述の回転軸50と上記の副回転軸53とは、同心に配置される。そして。被処理流動体(流体)の導入部22は、副回転駆動装置52の内部及び副回転軸53に設けられた中空の通路として形成され、ロータリージョイント(図示せず。)を利用して、被処理流動体(流体)を、副回転駆動装置52の反対側(上方)より、第2処理用部20の中心へ放出する。このようにケース3内に導入されて両処理用面1,2間にて処理された被処理流動体は、排出部32より外部へ排出される。
【0068】
この図11に示す装置では、回転速度を上げて大きなせん断力を得ようとする場合、極めて有効である。またこの場合、第1ホルダ11と第2ホルダ21の回転の速さ(回転数)は、同じとしても、異なるものとしても何れでも実施可能である。
この図8に示す実施の形態では、攪拌用羽根6は、設けていない。
【0069】
図3乃至図8に示す実施の形態においても、特に明示した以外の構成については図1又は図2に示す実施の形態と同様である。
図1に示す実施の形態では、プレ分散を目的とする攪拌羽根6を有するものを示したが、この他、プレ分散としない場合は、このような攪拌羽根6を持たないものとしても実施可能である(図示しない)。但し、分散や乳化の処理の円滑のためには、プレ分散するもののほうが、そうでないものより好ましい。
【0070】
また、上記各実施の形態において、被処理流動体は、環状の第2処理用部2或いは第1処理用部10の内側から外側に移動するものとした。この他、処理される被処理流動体を第2処理用部2或いは第1処理用部10の外部からその内部へ移動させることによって、第1処理用面1と第2処理用面2との間を通過させるものとしてもよい(図示しない)。例えば、図1に示す装置の排出部を導入部として、導入部を排出部とするように変更して実施することも可能である。この場合、図1に示す排出部側から加圧する。但し、図1に示す導入部側から負圧で吸引するものとしても実施可能である。
【0071】
このように、被処理流動体の移動を、第2処理用部2或いは第1処理用部10の外部からその内部へ向けて行う場合、図6(E)に示すように、第1処理用部10の第1処理用面1に、第1処理用部10の外側から中心側に向けて伸びる溝状の凹部13…13を形成して実施することも可能である。このような図6(E)に示す凹部13…13を形成することにより、前述のバランス比については、100%以上のアンバランス型とするのが好ましい。この結果、回転時に、上記の溝状の凹部13…13に動圧が発生し、両処理用面1,2は確実に非接触で回転でき、接触による磨耗などの危険がなくなる。
この図6(E)に示す実施の形態において、被処理流体の圧力による離反力は、凹部13の内端13aにて発生する。
【0072】
また、上記の各実施の形態において、ケース3内は全て密封されたものとしたが、この他、第1処理用部10及び第2処理用部20の内側のみ密封され、その外側は開放されたものとしても実施可能である。即ち、第1処理用面1及び第2処理用面2との間を通過するまでは流路は密封され、被処理流動体は送圧を全て受けるものとするが、通過後は、流路は開放され処理後の被処理流動体は送圧を受けないものとしてもよい。
加圧装置は、既述のとおり、コンプレッサを用いて実施するのが好ましいが、常に被処理流動体に所定の圧力を掛けることが可能であれば、他の手段を用いて実施することも可能である。例えば、被処理流動体の自重(位置エネルギー)を利用して、常に一定の圧力を被処理流動体に付与するものとしても実施可能である。
【0073】
本願発明に係る分散乳化方法について総括すると、被処理流動体に所定の圧力を付与し、この所定の圧力のを受けた被処理流動体が流される密封された流体流路に、第1処理用面1及び第2処理用面2の少なくとも2つの接近離反可能な処理用面を接続し、両処理用面1,2を接近させる接面圧力を付与し、第1処理用面1と第2処理用面2とを相対的に回転させることにより、メカニカルシールにおいてシールに利用される流体膜を、被処理流動体を用いて発生させ、メカニカルシールと逆に(流体膜をシールに利用するのではなく)、当該流体膜を第1処理用面1及び第2処理用面2の間から敢えて漏らして、分散乳化の処理を両面間1,2にて、膜とされた被処理流動体に施し回収することを特徴とするものである。
このような画期的な分散乳化処理の方法により、従来困難とされた両処理用面1,2間の間隔を1μから1mmとする調整、特に、1〜10μとする調整を可能とした。
【0074】
【発明の効果】
本願第1〜14の発明の実施によって、不純物の混入がなく、被処理流動体の適応粘度域が広く且つ被処理流動体に対して大きなせん断力を与えられると共に、高い精度で分散、乳化、破砕が可能な分散乳化装置及び分散乳化方法を提供することを可能とした。高精度で分散、乳化、破砕が出来しかも生産性の高い、シンプルな構造の分散乳化装置及び分散乳化方法を提供し得た。
即ち、メカニカルシールにおける軸封の機構を、分散や乳化のための手段として利用することにより、高精度で分散、乳化、破砕が出来しかも生産性の高い、シンプルな構造の分散乳化装置及び分散乳化方法を提供し得た。
特に、上気本願発明の実施によって、被処理流動体の送り込み圧力(流体圧)や、コンプレッションリング(第2処理用部)の背圧またメイティングリング(第1処理用部)の回転などで被処理流動体の粘度域に制限を受けず、被処理流動体膜の厚みを微小量から調整でき、従来の装置では、不可能であった数nm(ナノメートル)程度の超微粒子の分散をも可能としかつ、微振動やアライメント、軸方向変位など緩衝装置を設けているため不純物など発生無くして高度な分散状態を得ることが出来る。また簡単な機構であるため、装置の制御に熟練を要せず、無人化、自動化も容易であり、装置は安定稼動し生産性が高く安価に製作できる。
【図面の簡単な説明】
【図1】本願発明の一実施の形態に係る装置の一部切欠縦断面図である。
【図2】(A)は上記装置の要部略縦断面図であり、(B)は他の実施の形態の要部略縦断面図である。
【図3】(A)は更に他の実施の形態の要部略縦断面であり、(B)は又他の実施の形態の要部略縦断面図であり、(C)は又更に他の実施の形態の要部略縦断面図である。
【図4】更に又他の実施の形態の要部略縦断面図である。
【図5】又他の実施の形態の要部略縦断面図である。
【図6】(A)は更に他の実施の形態の要部略横断面であり、(B)は又他の実施の形態の要部略横断面図であり、(C)は又更に他の実施の形態の要部略横断面図であり、(D)は又他の実施の形態の一部切欠要部略縦断面図であり、(E)は更に他の実施の形態の要部略横断面である。
【図7】更に他の実施の形態の要部略縦断面図である。
【図8】又更に他の実施の形態の縦断面図である。
【図9】又更に他の実施の形態の要部略縦断面図である。
【符号の説明】
1 第1処理用面
2 第2処理用面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dispersion emulsification apparatus and a dispersion emulsification method. More specifically, the present invention relates to desired suspensions such as paints, inks, magnetic materials, ceramics, batteries, adhesives, electronic materials, liquid crystal color filters, pharmaceuticals, cosmetics, perfumes and foods. The present invention relates to a dispersion emulsification apparatus and a dispersion emulsification method suitable for obtaining a fluid to be treated such as a turbid material, an emulsion, a solid particle, a polymer solution, and a slurry.
[0002]
[Prior art]
Conventionally, a dispersion device collectively called a media mill has been widely used in manufacturing apparatuses for paints, inks, magnetic materials, ceramics, batteries, adhesives, electronic materials, liquid crystal color filters, pharmaceuticals, cosmetics, fragrances, foods, and the like. Yes. This dispersing device applies shearing force and impact force to the fluid to be treated by introducing the fluid to be treated into a dispersion chamber filled with media such as beads, sand, and balls called media, and performing a stirring operation. Then, a dispersion process is performed to obtain a desired dispersion state.
[0003]
The first problem here is that some of these are scraped by wear between the media, between the media and the stirring blades of the apparatus, or between the media and the inner surface of the container. Inconvenient to be mixed into the processing fluid. Of course, media replenishment, parts replacement, etc., which are consumed due to wear, occur frequently, which is troublesome and costly.
[0004]
To explain the second problem, in order to give a larger shearing force and to obtain a smaller particle size, it is often necessary to use a medium having a smaller particle size as compared with the conventional case, for example, There is a case where a minute medium having a diameter of about 0.05 mm or 0.1 mm is used, and a medium having a relatively small diameter is required. However, the smaller the media diameter, the smaller the mass of each media and the dispersible viscosity range of the fluid to be treated becomes narrower, so that only low-viscosity products can be handled.
[0005]
On the other hand, roll mills and colloid mills are known in addition to such media mills.
In the colloid mill, a fluid to be treated is passed through a gap between upper and lower disks, and a shearing force is applied to the fluid to be treated. In this case, the gap is mechanically determined by the gap adjustment handle, but can be adjusted only to a few tens of microns or more (adjustment of 10 microns or less was impossible) due to the physical accuracy of the apparatus. Further, if the gap is further narrowed, there is a risk that a major accident may occur due to contact between the disks due to thermal expansion of the rotating shaft or runout of the core.
[0006]
In the roll mill, two or three rolls having different speeds are rotated in different directions to give a shearing force to the fluid to be treated. The gap between these rolls is adjusted mechanically. In this case as well, it is difficult to adjust the gap of several tens of microns or less like the colloid mill, and it is necessary to take an appropriate crown to adjust the pressure between the rolls. Further, the apparatus itself is in an open state and is not suitable for a fluid to be processed containing a highly evaporable solvent. In order for both the colloid mill and the roll mill to efficiently apply a shearing force to the fluid to be treated, it is necessary to have a high viscosity because it depends on the large gap.
[0007]
In addition, a high-speed rotation type homogenizer and a high-pressure type homogenizer are known, but the former is used as a pre-dispersing device and is not suitable for precise dispersion. Further, the latter is known to have many problems as industrial equipment such as wear of the orifice portion, clogging with a thin tube, and further, seal wear of the pressure increasing pump.
[0008]
For this reason, the development of a dispersion device that is free of impurities, has a wide adaptive viscosity range for the fluid to be treated, and can provide a large shearing force to the fluid to be treated, and can disperse, emulsify and crush with high accuracy. Was anxious.
[0009]
[Problems to be solved by the invention]
The present invention has been made on the basis of the above circumstances, and with a unique idea of utilizing the shaft seal mechanism in the mechanical seal as a means for dispersion and emulsification, dispersion, emulsification and crushing can be performed with high accuracy. It is possible to provide a dispersion emulsification apparatus having a simple structure that is high in productivity and can solve the above problems.
That is, an object of the present invention is to provide a dispersion emulsification apparatus capable of preventing the mixing of impurities and capable of highly accurate dispersion, emulsification, and crushing.
In particular, the invention of this application is a dispersion emulsification apparatus that can set a distance between at least two processing surfaces that rotate relatively to a predetermined minute distance, and can impart a large shearing force to the fluid to be processed. The purpose is to provide.
Another object of the present invention is to provide a dispersion emulsification apparatus having a wide adaptive viscosity range of the fluid to be treated.
[0010]
[Means for Solving the Problems]
The dispersion emulsification apparatus according to the first invention of the present application is provided in a fluid pressure applying mechanism that applies a predetermined pressure to the fluid to be processed and a sealed fluid flow path through which the fluid to be processed having the predetermined pressure flows. At least two processing parts of the second processing part 20 that are relatively close to and away from the first processing part 10 and the first processing part 10, and these processing parts 10, 20 face each other. Rotation drive for relatively rotating at least two processing surfaces of the first processing surface 1 and the second processing surface 2 provided at a position where the first processing surface 10 and the second processing surface 20 are rotated. And a mechanism. Dispersion emulsification of the fluid to be processed is performed between both processing surfaces 1 and 2. At least the second processing unit 20 of the first processing unit 10 and the second processing unit 20 includes a pressure receiving surface, and at least a part of the pressure receiving surface is constituted by the second processing surface 2. The pressure receiving surface receives a pressure applied to the fluid to be processed by the fluid pressure applying mechanism and generates a force for moving the second processing surface (2) away from the first processing surface (1) . by the processed fluid of a predetermined pressure between the approaching to and separating from possible and relatively first processing surface rotates 1 and the second processing surface 2 is passed, the processed fluid is predetermined thickness By passing between the processing surfaces 1 and 2 while forming the fluid film, a desired dispersion emulsified state is obtained for the fluid to be processed.
Here, the treatment of dispersion or emulsification literally includes dispersion and emulsification, as well as stirring and pulverization other than dispersion and emulsification.
[0011]
In the first invention of the present application, the interval between the first processing surface 1 and the second processing surface 2 is set to a predetermined minute interval based on a completely different concept from the conventional method of keeping the mechanical constant. A dispersion emulsification apparatus is provided.
As described above, by utilizing the principle used in the mechanical seal, by leaving to set the pressure receiving surface, the pressure applied to the fluid for the treatment, the first processing member 10 and the second processing member 20 It acts on the approach or separation.
As the pressure receiving surface, the second processing surface 2 applies the above-described pressure in a direction in which both processing portions are separated from each other.
[0012]
If necessary, the second processing unit 20 includes a second processing surface 2, a pressure receiving surface (adjacent adjustment surface) facing the second processing surface 2, and a second processing surface 2. And a pressure-receiving surface (adjustment surface for separation) formed on the same side.
In this case, the second processing surface 2 and the separation adjusting surface receive a predetermined pressure applied to the fluid to be processed and cause the second processing portion 20 to separate from the first processing portion 10. Generates a force to move to. However, if it is not necessary, the above adjustment surface for separation may not be provided. (Here, when the adjustment surface for separation is provided, both the second processing surface 2 and the adjustment surface for separation are combined.) (When the separation adjustment surface is not provided, the separation surface is the second processing surface 2 itself).
The proximity adjustment surface receives a predetermined pressure applied to the fluid to be processed, and generates a force that moves in the direction in which the second processing unit 20 approaches the first processing unit 10 ( When there are a plurality of proximity adjustment surfaces, all the proximity adjustment surfaces are collectively referred to as a proximity surface (when there is one proximity adjustment surface, only the proximity adjustment surface is the proximity surface).
In this case, the ratio (area ratio) between the area of the proximity surface that applies the predetermined pressure in the direction in which both the processing parts are brought close to the area of the separation surface is called a balance ratio, By making the area larger than the area of the separation surface, it is possible to make the force acting on the direction of approaching both the processing parts out of the predetermined pressure larger than the force acting on the direction of separating.
On the contrary, by making the area of the separation surface larger than the area of the proximity surface, it is greater than the force that works to approach the force that works to separate the processing parts of the predetermined pressure. can do.
Further, by not providing the proximity surface, all of the predetermined pressure can be received by the separation surface, and all of the predetermined pressure can be used as the force acting on the separation.
[0013]
Thus, the action of approaching or separating the two processing parts by a predetermined pressure applied to the fluid to be treated against the force causing the two processing parts to approach or separate from each other caused by other factors. Thus, a fluid film having a desired minute thickness can be formed between the first processing surface 1 and the second processing surface 2.
That is, by adjusting the distance between the processing surfaces 1 and 2 to a minute distance in this way, a shearing force having a required magnitude can be applied to the fluid to be processed. As a result, it has become possible to realize highly accurate (homogeneous) dispersion emulsification that could not be obtained conventionally, or emulsification or dispersion adjusted to a minute order that could not be obtained conventionally. That is, when the fluid to be treated passes between the processing surfaces 1 and 2, a large shearing force is given with a certain minute gap, and the secondary agglomerated fine particles are crushed into primary particles. In addition, it is possible to achieve fine dispersion and emulsification efficiently by refining large crystals and atomizing oil droplets. Therefore, it became possible to obtain a fluid to be treated in an emulsified or dispersed state adjusted to an order of 10 microns or less, which was impossible with a roll mill or a colloid mill.
In addition, it is not necessary to put media into the fluid to be processed as in the conventional media mill, so that contamination of impurities can be suppressed.
[0014]
A dispersion emulsification apparatus according to a second invention of the present application is the dispersion emulsification apparatus according to the first invention of the present application, wherein fine vibration and alignment of at least one of the first processing surface 1 and the second processing surface 2 are performed. It is characterized by including a buffering mechanism for adjustment.
As described above, by using the floating structure including the buffer mechanism, it is possible to absorb alignment such as runout and eliminate the risk of an accident caused by wear due to contact.
[0015]
A dispersion emulsification apparatus according to a third invention of the present application is the dispersion emulsification apparatus according to the first or second invention of the present application, wherein one or both of the first processing surface 1 and the second processing surface 2 are worn. The displacement adjustment mechanism which adjusts the displacement of the axial direction by the etc. and can maintain the film thickness of the fluid film between both the processing surfaces 1 and 2 is provided.
By maintaining the distance between the first processing surface 1 and the second processing surface 2 and maintaining the film thickness of the fluid film at a predetermined thickness with the above displacement adjustment mechanism, a uniform high quality over a long period of time. Can be dispersed or emulsified.
[0016]
A dispersion emulsification apparatus according to a fourth invention of the present application is the dispersion emulsification apparatus according to any one of the first to third inventions of the present application, wherein the fluid pressure imparting mechanism performs a treatment of dispersion or emulsification. It is a pressurizing device such as a compressor that applies a feeding pressure to the body .
As described above, the gap between the first processing surface 1 and the second processing surface 2 can be adjusted by the pressure applied to the fluid to be processed, so that the thickness of the fluid film can be adjusted. . Therefore, a desired dispersion or emulsification process can be selected by the adjustment.
[0017]
A dispersion emulsification apparatus according to a fifth invention of the present application is the dispersion emulsification apparatus according to any one of the first to fourth inventions of the present application, wherein the first processing surface 1 and the second processing surface 2 are provided. A separation prevention unit is provided that regulates a maximum distance between the two processing surfaces 1 and 2 and further prevents separation of both processing surfaces 1 and 2.
For this reason, the gap between the first processing surface 1 and the second processing surface 2 is prevented from being unnecessarily widened, and uniform dispersion and emulsification processing can be reliably and smoothly performed.
[0018]
A dispersion emulsification device according to a sixth invention of the present application is the dispersion emulsification device according to any one of the first to fifth inventions of the present application, wherein the first processing surface 1 and the second processing surface 2 are provided. There is provided a proximity deterrence part that regulates a minimum interval between them and deters further proximity of both processing surfaces 1 and 2.
Thus, the gap between the first processing surface 1 and the second processing surface 2 is prevented from being unnecessarily narrowed, and uniform dispersion and emulsification processing can be performed reliably and smoothly.
[0019]
In the dispersion emulsification device according to the seventh invention of the present application, in the dispersion emulsification device according to any one of the first to sixth inventions of the present application, both the first processing surface 1 and the second processing surface 2 are They rotate in opposite directions.
In this way, by rotating both the first processing surface 1 and the second processing surface 2 in opposite directions, it becomes possible to generate a greater shearing force, and to achieve finer order dispersion and emulsification. In addition, more uniform high-quality dispersion and emulsification can be performed efficiently.
[0020]
A dispersion emulsification apparatus according to an eighth aspect of the present application is the dispersion emulsification apparatus according to any one of the first to seventh aspects of the present application, wherein one of the first processing surface 1 and the second processing surface 2 or A temperature adjustment jacket for adjusting both temperatures is provided.
With such a temperature adjustment jacket, it is possible to heat or cool one or both of the first processing surface 1 and the second processing surface 2 to a temperature suitable for performing dispersion or emulsification processing. As a result, the dispersion and emulsification treatment can be performed more efficiently and with high accuracy.
[0021]
A dispersion emulsification apparatus according to a ninth aspect of the present application is the dispersion emulsification apparatus according to any one of the first to eighth aspects of the present application, wherein one of the first processing surface 1 and the second processing surface 2 or At least a part of both is mirror-finished.
With such mirror surface processing, it is possible to perform the dispersion and emulsification processing between the first processing surface 1 and the second processing surface 2 with higher accuracy, and to perform finer dispersion and emulsification processing. Could be realized.
[0022]
A dispersion emulsification apparatus according to a tenth aspect of the present invention is the dispersion emulsification apparatus according to any one of the first to ninth aspects of the present application, wherein one of the first processing surface 1 and the second processing surface 2 or Both are provided with a recess.
In this way, by forming recesses on the first processing surface 1 or the second processing surface 2 or both, the stirring ability is increased, and more efficient dispersion and emulsification processing is possible. When a dynamic pressure is generated, the fluid rotates in a non-contact manner and reliably forms a fluid film.
[0023]
The dispersion emulsification apparatus is provided with a separate introduction path independent of the fluid passage, and the introduction is provided on at least one of the first processing surface (11) and the second processing surface (12). It is also possible to provide an opening communicating with the path and introduce the transferred material sent from the introduction path into the fluid to be processed during the processing.
[0024]
A dispersion emulsification apparatus according to an eleventh invention of the present application is connected to a fluid pressure applying mechanism that applies a predetermined pressure to a fluid to be processed and a sealed fluid flow path through which the fluid to be processed having the predetermined pressure flows. At least two processing surfaces that are relatively close to and away from each other, the first processing surface 1 and the second processing surface 2, and a contact pressure applying mechanism that applies a contact pressure between the processing surfaces 1 and 2. And a rotational drive mechanism that relatively rotates the first processing surface 1 and the second processing surface 2, thereby dispersing and emulsifying the fluid to be processed between the processing surfaces 1 and 2. The processing is performed. Then, the fluid to be treated is passed through the first treatment surface 1 and the second treatment surface 2 that rotate relatively while being in contact with the surface pressure, thereby the fluid to be treated. Passes between the processing surfaces 1 and 2 while forming a fluid film having a predetermined thickness, thereby obtaining a desired dispersed emulsified state for the fluid to be processed.
[0025]
In the dispersion emulsification apparatus according to the eleventh invention of the present application, a predetermined pressure is applied between the first processing surface 11 and the second processing surface 12 connected to the sealed fluid flow path. Thus, a force for separating the first processing surface 11 and the second processing surface 12 is applied. On the other hand, a contact surface pressure is applied between the processing surfaces 1 and 2 by a contact surface pressure applying mechanism, and the first processing surface 1 and the second processing that rotate at the same time are relatively close to and away from each other. A fluid to be processed is passed between the work surface 2 and the surface 2. As a result, the force applied in the direction separating the processing surfaces 1 and 2 by the processing fluid is balanced with the contact pressure applied between the processing surfaces 1 and 2 by the contact pressure applying mechanism. The distance between the processing surfaces 1 and 2 is kept at a predetermined minute distance, and the fluid to be processed passes between the processing surfaces 1 and 2 while forming a fluid film.
[0026]
About said contact surface pressure provision mechanism, force is applied in the direction which makes the 1st processing surface 1 and the 2nd processing surface 2 adjoin, and fluid pressure (positive pressure), such as a spring, air pressure, or hydraulic pressure, is applied. It can be constituted by at least one of a pressurizing device and a pressure receiving surface for access that acts in a direction in which both the processing surfaces 1 and 2 are received by receiving a predetermined pressure applied to the fluid to be processed.
[0027]
On the other hand, as the separation force that separates both the processing surfaces 1 and 2 against the pressing force (contacting surface pressure) of the contact surface pressure applying mechanism, the first and second processing surfaces 1 and 2 are covered. The pressure received at the pressure receiving surface that exerts a predetermined pressure applied to the processing fluid in the direction of separation, the centrifugal force generated by relatively rotating the first processing surface 1 and the second processing surface 2, and the air pressure Alternatively, suction force by a suction device using fluid pressure (negative pressure) such as hydraulic pressure, viscosity of a specific processing fluid, and the like can be listed.
[0028]
A dispersion emulsification apparatus according to a twelfth aspect of the present invention is a first processing apparatus provided in a fluid pressure applying mechanism P for applying pressure to a fluid to be processed and a sealed fluid flow path through which the fluid to be processed flows. At least two processing parts of the second processing part 20 that are relatively close to and away from the part 10 and the first processing part 10 and provided at positions facing each other in the processing parts 10 and 20. At least two processing surfaces of the first processing surface 1 and the second processing surface 2, a holder 21 for receiving the second processing portion 20 so that the second processing surface 2 is exposed, and a first A rotation drive mechanism that relatively rotates the processing unit 10 and the second processing unit 20, and the second processing unit in a state in which the second processing surface 2 is pressed against or in close proximity to the first processing surface 1. And a contact surface pressure applying mechanism 4 that presses 20. Dispersion emulsification of the fluid to be processed is performed between both processing surfaces 1 and 2. The holder 21 includes an introduction portion 22 for the fluid to be processed and is not movable so as to affect the gap between the processing surfaces 1 and 2. The second processing portion 20 is an annular body, and the second processing surface 2 slides with respect to the holder 21 and moves close to and away from the first processing surface 1. The second processing unit 20 includes a pressure receiving surface. The pressure receiving surface receives a pressure applied to the fluid to be processed by the fluid pressure applying mechanism P and generates a force that moves the second processing surface 2 away from the first processing surface 1. At least a part of the pressure receiving surface is constituted by the second processing surface 2. The fluid to be treated is passed between the first processing surface 1 and the second processing surface 2 that can move toward and away from each other and rotate relative to each other. By passing between the processing surfaces 1 and 2 while forming a thick fluid film, a desired dispersed emulsified state is obtained for the fluid to be processed. The contact pressure of the contact pressure application mechanism 4 And a balance between the force of the fluid pressure applied by the fluid pressure applying mechanism P and the force separating the processing surfaces 1 and 2 from each other, the minute interval for generating the fluid film having the predetermined film thickness is set to the both processing surfaces 1 and 2. Keep between 2.
[0029]
In the dispersion emulsification apparatus according to the thirteenth invention of the present application, a fluid pressure applying mechanism P for applying pressure to the fluid to be processed and a fluid flow path provided in a sealed fluid flow path through which the fluid to be processed flows. At least two processing parts of the second processing part 20 that are relatively close to and away from the first processing part 10 and the first processing part 10, and positions that face each other in these processing parts 10 and 20 And at least two processing surfaces of the first processing surface 1 and the second processing surface 2 provided on the surface, and a rotation drive mechanism for relatively rotating the first processing portion 10 and the second processing portion 20. Is provided. Dispersion emulsification of the fluid to be processed is performed between both processing surfaces 1 and 2. At least the second processing unit 20 of the first processing unit 10 and the second processing unit 20 includes a pressure receiving surface, and at least a part of the pressure receiving surface is constituted by the second processing surface 2. Then, the pressure receiving surface receives a pressure applied to the fluid to be processed by the fluid pressure applying mechanism and generates a force that moves the second processing surface 2 away from the first processing surface 1. Furthermore, the second processing unit 20 includes a proximity adjustment surface 24 facing the opposite side of the second processing surface 2, and the proximity adjustment surface 24 receives a predetermined pressure applied to the fluid to be processed. Thus, a force for moving the second processing surface 2 in a direction to approach the first processing surface 1 is generated. An area ratio A1 / A2 between the area A1 of the proximity adjustment surface 24 and the area A2 of the pressure receiving surface of the second processing unit 20 is defined as a balance ratio K, and is received from the fluid to be processed by the balance ratio K. As a resultant force of all pressures, a force for moving the second processing surface 2 away from the first processing surface 1 is determined. The fluid to be treated is passed between the first processing surface 1 and the second processing surface 2 that can move toward and away from each other and rotate relative to each other. By passing between the processing surfaces 1 and 2 while forming a thick fluid film, a desired dispersion and emulsification state is obtained for the fluid to be processed.
By setting the balance ratio described above, it is possible to determine the size of the predetermined pressure applied to the fluid to be treated, which acts as a pressing force and that acts as a separation force.
The fluid to be treated forms a fluid (that is, a fluid film) having a predetermined minute thickness on the balance between the contact surface pressure and the separation force, and both treatment surfaces 1 By adjusting the above conditions so as to show a predetermined film thickness, the distance between the processing surfaces 1 and 2 is maintained at a predetermined minute distance.
Dispersing emulsification method according to the present fourteenth invention imparts predetermined pressure to a processed fluid, the fluid flow path sealed the processed fluid that has received the predetermined pressure is flowed, for the first treatment The first processing surface 1 is applied by connecting at least two processing surfaces that are relatively close to and away from each other, the surface 1 and the second processing surface 2, and applying contact pressure to bring both processing surfaces 1 and 2 close to each other. And the second processing surface 2 are rotated relative to each other and the processing fluid is passed between the processing surfaces 1 and 2 to perform dispersion emulsification processing of the processing fluid. At least the predetermined pressure applied to the fluid to be treated is a separation force that separates the processing surfaces 1 and 2, and the separation force and the contact surface pressure are treated flows between the processing surfaces 1 and 2. By maintaining the balance through the body, the processing surfaces 1 and 2 are maintained at a predetermined minute distance, It is passed between the processing surfaces 1 and 2 as a fluid film of predetermined thickness, thereby obtaining a desired dispersion emulsified state.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
One embodiment of the present invention is shown in FIG. 1 and FIG. FIG. 1 is a partially cutaway longitudinal sectional view of an apparatus according to the present invention. FIG. 2A is a schematic vertical cross-sectional view of the main part of the dispersion emulsification apparatus shown in FIG.
For convenience of explanation, in each figure, U indicates the upper side and S indicates the lower side.
[0031]
First, the configuration of the apparatus will be described.
This device is suitable for the processing of minute order dispersion and emulsification of micron to nanometer unit for the fluid to be processed. It is suitable for liquids, liquids and solids (powder), solids (powder), For gas and liquid, or gas and solid (powder), it is suitable for performing the above dispersion and emulsification treatments.
As shown in FIG. 1, the dispersion emulsification apparatus includes a first holder 11 (a mating ring holder), a second holder 21 (a compression ring holder) disposed in front (upward) of the first holder 11, a second A case 3 that covers the first holder 11 together with the holder 21, a fluid pressure application mechanism P, and a contact pressure application mechanism 4 are provided.
Hereinafter, the structure of each part is demonstrated in order.
[0032]
The first holder 11 is provided with a first processing unit 10, a rotating shaft 50, and a stirring blade 6.
The first processing unit 10 is a metal annular body called a mating ring, and includes a first processing surface 1 that is mirror-finished.
The rotation shaft 50 is fixed to the center of the first holder 11 by a fixing tool 51 such as a bolt, and the rear end thereof is connected to a rotation drive device 5 (rotation drive mechanism) such as an electric motor. Is transmitted to the first holder 11 to rotate the first holder 11. The first processing unit 10 is attached to the front portion (upper end) of the first holder 11 concentrically with the rotation shaft 50, and rotates integrally with the first holder 11 by the rotation of the rotation shaft 50. Further, the stirring blade 6 is provided for performing pre-stirring (pretreatment of dispersion emulsification), and at the front portion (upper surface) of the first holder 11, inside the annular first processing portion 10, It is fixed to the first holder 11 so as to be concentric with the rotation shaft 50.
[0033]
The front portion (upper surface) of the first holder 11 is provided with a receiving portion capable of receiving the first processing portion 10, and the first processing portion 10 is fitted into the receiving portion together with the O-ring. The above-described attachment of the first processing portion 10 to the first holder 11 is performed. Further, the first processing unit 10 is fixed by a rotation prevention pin 12 so as not to rotate with respect to the first holder 11. However, instead of the rotation-preventing pin 12, it may be fixed so as not to rotate by a method such as shrink fitting.
The first processing surface 1 is exposed from the first holder 11 and faces the second holder 21 side. The first processing surface 1 is preferably subjected to mirror processing such as polishing, lapping, and polishing after being fitted into the first holder 11.
The material for the first processing part 10 is ceramic, sintered metal, wear-resistant steel, or other metal that has undergone hardening treatment, or hard material that has been subjected to lining, coating, plating, or the like. In particular, since it rotates, it is desirable to form the 1st process part 10 with a lightweight raw material.
[0034]
The case 3 is a bottomed container including a shaft insertion port 31 and a discharge part 32, and the first holder 11 is accommodated in the internal space 30. The shaft insertion port 31 is a through-hole that is provided at the center of the bottom of the case 3 and connects the inside and the outside of the case 3, and through which the rotation shaft 50 is inserted. The tip of the rotary shaft 50 is inserted into the case 3 through the shaft insertion port 31 from the rotary drive device 5 arranged outside (downward) the case 3, and the first holder 11 and the rotary shaft 50 in the case 3 as described above. Connect.
[0035]
The second holder 21 is provided with a second processing part 20, an introduction part 22 for a fluid to be processed, and a contact pressure applying mechanism 4.
The second processing portion 20 is a metal annular body called a compression ring, and is a mirror-finished second processing surface 2 and the second processing surface 2 located inside the second processing surface 2. 2 and a pressure receiving surface 23 (hereinafter referred to as a separation adjusting surface 23). As shown in the figure, the separation adjusting surface 23 is an inclined surface. The mirror processing applied to the second processing surface 2 employs the same method as the first processing surface 1. In addition, the same material as that of the first processing unit 10 is used for the material of the second processing unit 20. The separation adjusting surface 23 is adjacent to the inner peripheral surface 25 of the annular second processing portion 20.
[0036]
A housing part 40 is formed at the bottom (lower part) of the second holder 21, and the second processing part 20 is received in the housing part 40 together with the O-ring. Further, the second processing unit 20 is received by the rotation stopper 45 so as not to rotate with respect to the second holder 21. The second processing surface 2 is exposed from the second holder 21.
As shown in FIG. 1, the second holder 21 is disposed at the opening (upper part) of the case 3 to cover the opening, and the internal space 30 of the case 3 is sealed by a known sealing means 33. In this state, the second processing surface 2 faces the first processing surface 1 of the first processing portion 10 in the case 3.
[0037]
The fluid pressure imparting mechanism P is connected to the introduction part 22 outside (upper part) of the second holder 21. The fluid pressure imparting mechanism P is a pressurizing device such as a compressor that applies a constant feeding pressure to a fluid to be treated for dispersion or emulsification.
[0038]
The contact surface pressure imparting mechanism 4 presses the second processing surface 2 against the first processing surface 1 in a pressure contact state or a close state, and this contact surface pressure and fluid pressure (of the fluid to be processed) The fluid film having the predetermined film thickness is generated by balancing with the force separating the processing surfaces 1 and 2 such as (fluid pressure) (in other words, the distance between the processing surfaces 1 and 2 is set to a predetermined value). Keep it at a small interval).
Specifically, in this embodiment, the contact surface pressure applying mechanism 4 includes the above-described storage portion 41, the sway receiving portion 42 provided in the back (the deepest portion) of the storage portion 41, the spring 43, The air introduction part 44 is comprised.
However, the contact surface pressure imparting mechanism 4 only needs to include at least one of the housing portion 41, the sway receiving portion 42, the spring 43, and the air introduction portion 44.
[0039]
The accommodating part 41 loosely fits the second treating part 20 so that the position of the second treating part 20 in the accommodating part 42 can be displaced deeply or shallowly (up and down).
One end of the spring 43 is in contact with the back of the sway receiving part 42, and the other end of the spring 43 is in contact with the front part (upper part) of the second processing part 20 in the accommodation part 42. Although only one spring 43 appears in FIG. 1, it is preferable that the plurality of springs 44 press each part of the second processing unit 20. That is, by increasing the number of springs 43, a more uniform pressing force can be applied to the second processing unit 20. Accordingly, the second holder 21 is preferably a multi-type in which several to several tens of springs 43 are attached.
[0040]
In this embodiment, as described above, air can be introduced into the accommodating portion 42 from the air introduction portion 44 from the other. By introducing such air, it is possible to apply air pressure to the second processing unit 20 as a pressing force together with the spring 43 using the space between the accommodating portion 42 and the second processing unit 20 as a pressurizing chamber. Therefore, it is possible to adjust the contact surface pressure (of the second processing surface 2 with respect to the first processing surface 1) during operation by adjusting the air pressure introduced from the air introduction unit 44. It is also possible to use a mechanism that generates a pressing force with another fluid pressure such as a hydraulic pressure instead of the air introduction portion 44 that uses the air pressure.
The contact surface pressure imparting mechanism 4 supplies and adjusts a part of the above pressing force (contact surface pressure), and also serves as a displacement adjustment mechanism and a buffer mechanism.
Specifically, the contact surface pressure applying mechanism 4 is a displacement adjusting mechanism, and can follow the axial displacement due to axial extension or wear during start-up or operation by adjusting the air pressure, and can maintain the initial pressing force. . Further, as described above, the contact surface pressure applying mechanism 4 also functions as a buffer mechanism for fine vibration and rotational alignment by adopting a floating mechanism that holds the second processing member 20 in a displaceable manner.
[0041]
In the dispersion emulsification apparatus according to the first embodiment having the above configuration, dispersion and emulsification are performed by the following action.
First, a fluid to be processed to be subjected to dispersion or emulsification processing is introduced from the introduction portion 22 into the sealed internal space of the case 3 under a constant pressure supplied from the fluid pressure applying mechanism P. On the other hand, the first processing unit 10 is rotated by the rotation drive device 5 (rotation drive mechanism). Thereby, the 1st processing surface 1 and the 2nd processing surface 2 rotate relatively in the state where a minute interval was maintained.
The fluid to be processed introduced into the internal space of the case 3 becomes a fluid film between the processing surfaces 1 and 2 at a minute interval, and the second processing surface 2 is rotated by the rotation of the first processing surface 1. Dispersion and emulsification are performed by being sheared between. Here, the first processing surface 1 and the second processing surface 2 are adjusted to a minute interval of 1 μm to 1 mm (especially 1 μm to 10 μm), thereby enabling dispersion of ultrafine particles in units of several nm. And
The processed fluid to be processed is discharged from the discharge portion 32 through both the processing surfaces 1 and 2.
The stirring blade 6 receives the pressure of the fluid to be treated and rotates with respect to the first holder 11, and pre-dispersion of the fluid to be treated prior to the treatment between the treatment surfaces 1 and 2. I do.
[0042]
As described above, the first processing surface 1 and the second processing surface 2 can be adjusted to a minute interval of μm, which is impossible by setting mechanical clearance. Next, a description will be given.
The first processing surface 1 and the second processing surface 2 are relatively close to and away from each other and rotate relatively. In this example, the first processing surface 1 rotates, and the second processing surface 2 slides in the axial direction and approaches and separates from the first processing surface.
Therefore, in this example, the axial position of the second processing surface 2 is set with an accuracy in units of μm according to the balance of the forces (the contact surface pressure and the separation force described above). A minute interval between the two is set.
[0043]
Examples of the contact surface pressure include the pressure when a positive pressure (air pressure) is applied from the air introduction portion 44 in the contact surface pressure applying mechanism 4 and the pressing force of the spring 43.
On the other hand, as the separation force, the fluid pressure acting on the pressure-receiving surface on the separation side (that is, the second processing surface 2 and the separation adjusting surface 23), the centrifugal force due to the rotation of the first processing portion 1, and air introduction The negative pressure when a negative pressure is applied to the portion 44 can be mentioned.
Then, due to the balance between these forces, the second processing surface 2 is stabilized at a predetermined distance from the first processing surface 1 so that setting with an accuracy of μm is realized. .
[0044]
The separation force will be described in more detail.
First, regarding the fluid pressure, the second processing unit 20 in the sealed flow path receives the feed pressure (fluid pressure) of the fluid to be processed from the fluid pressure applying mechanism P. At that time, the surface (the second processing surface 2 and the separation adjusting surface 23) facing the first processing surface in the flow path becomes the separation pressure receiving surface, and fluid pressure acts on the pressure receiving surface to A separation force due to pressure is generated.
Next, regarding the centrifugal force, when the first processing unit 10 is operated at a high speed, the centrifugal force acts on the fluid, and a part of the centrifugal force is a separating force that acts in a direction in which the processing surfaces 1 and 2 are moved away from each other. It becomes.
Furthermore, when a negative pressure is applied from the air introduction part 44 (to the second processing part 20), the negative pressure acts as a separation force.
As described above, in the description of the present application, the force that separates the first and second processing surfaces 1 and 2 from each other is described as a separation force, and the above-described force is not excluded from the separation force.
[0045]
As described above, in the sealed flow path of the fluid to be processed, the separation force and the contact surface pressure exerted by the contact surface pressure applying mechanism 4 are balanced through the fluid to be processed between the processing surfaces 1 and 2. By forming such a state, a fluid film suitable for performing dispersion / emulsification processing is formed between the processing surfaces 1 and 2. As described above, this dispersion emulsification apparatus forcibly passes a fluid film between the processing surfaces 1 and 2, thereby reducing a minute interval that was impossible due to mechanical deformation in a conventional mechanical dispersion apparatus. Thus, it is possible to maintain both processing surfaces 1 and 2 and realize highly accurate dispersion emulsification processing.
[0046]
In other words, the film thickness of the fluid film between the processing surfaces 1 and 2 can be adjusted to a desired thickness by adjusting the separation force and the contact surface pressure, and the necessary dispersion emulsification processing can be performed. Therefore, when trying to reduce the thickness of the fluid film, the contact surface pressure or the separation force may be adjusted so that the contact surface pressure is relatively increased with respect to the separation force, and conversely, the thickness of the fluid film is increased. If it does so, what is necessary is just to adjust a separation force or a contact surface pressure so that a separation force may become large relatively with respect to a contact surface pressure.
When increasing the contact pressure, if the contact pressure application mechanism 4 applies positive pressure (air pressure) from the air introduction part 44, or the spring 43 is changed to one having a large pressing force or the number thereof is increased. Good.
When increasing the separation force, the feeding pressure of the fluid pressure applying mechanism P is increased, or the areas of the second processing surface 2 and the separation adjusting surface 23 are increased, and in addition to this, the second processing portion 20 May be adjusted to increase the centrifugal force or to apply a negative pressure (air pressure) from the air introduction portion 44. The spring 43 is a pushing ridge that generates a pressing force in the extending direction, but can be a part or all of the configuration of the contact surface pressure applying mechanism 4 as a pulling ridge that generates a force in the contracting direction.
[0047]
In addition to the above, the properties of the fluid to be treated, such as the diameter and viscosity of the dispersed particles, can be added as factors for increasing and decreasing the contact pressure and separation force. Can also be done as an adjustment of the above elements.
[0048]
Of the separation force, the fluid pressure acting on the separation-side pressure receiving surface (that is, the second processing surface 2 and the separation adjustment surface 23) is understood as a force constituting an opening force in the mechanical seal.
In the mechanical seal, the second processing unit 20 corresponds to a compression ring, but when fluid pressure is applied to the second processing unit 20, the second processing unit 2 is treated as the first processing. When a force separating from the use portion 1 is applied, this force is used as an opening force.
More specifically, as in the first embodiment, only the pressure-receiving surface on the separation side (that is, the second processing surface 2 and the separation adjusting surface 23) is provided in the second processing portion 20. In some cases, all of the infeed pressure constitutes the opening force. When a pressure receiving surface is also provided on the back side of the second processing unit 20 (specifically, in the case of FIGS. 2B and 9 to be described later), the separation force of the infeed pressure. The difference between what works as a contact pressure and what works as a contact pressure is the opening force.
[0049]
Here, another embodiment of the second processing unit 20 will be described with reference to FIG.
As shown in FIG. 2 (B), it is a part exposed from the accommodating portion 41 of the second processing portion 20 and the proximity surface facing the side opposite to the second processing surface 2 (upper side) on the inner peripheral surface side. An adjustment surface 24 is provided.
In other words, in this embodiment, the contact surface pressure applying mechanism 4 is configured by the accommodating portion 41, the air introducing portion 44, and the proximity adjusting surface 24. However, the contact surface pressure imparting mechanism 4 includes at least one of the accommodation portion 41, the sway receiving portion 42, the spring 43, the air introduction portion 44, and the proximity adjustment surface 24. I just need it.
[0050]
The proximity adjustment surface 24 receives a predetermined pressure applied to the fluid to be processed and generates a force for moving the second processing surface 2 in the direction in which the first processing surface 1 approaches the first processing surface 1. As a part of the applying mechanism 4, it plays the role of the contact pressure supply side. On the other hand, the second processing surface 2 (and the above-described separation adjusting surface 23) receives a predetermined pressure applied to the fluid to be processed in a direction to separate the second processing surface 2 from the first processing surface 1. It generates the force to move, and plays the role of the supply side of the separation force (for part of it).
The proximity adjusting surface 24 and the second processing surface 2 (and the separation adjusting surface 23) are both pressure receiving surfaces that receive the pressure of the fluid to be processed, and the direction of the contact pressure depends on the orientation thereof. It produces different actions of generation and separation force generation.
[0051]
The area ratio (A1 / A2) between the area A1 of the proximity adjustment surface 24 and the total area A2 of the second processing surface 2 and the separation-side pressure receiving surface 23 of the second processing unit 20 is the balance ratio K. Called and important in adjusting the above opening force.
Both the tip of the proximity adjustment surface 24 and the tip of the separation-side pressure receiving surface 23 are defined on the inner peripheral surface 25 (tip line L1) of the annular second adjustment portion 20. For this reason, the balance ratio is adjusted by determining where to place the base end line L2 of the adjustment surface 24 for proximity.
That is, in this embodiment, when the pressure of feeding the fluid to be processed is used as an opening force, the total area of the second processing surface 2 and the separation adjusting surface 23 is the area of the proximity adjusting surface 24. By making it larger, an opening force corresponding to the area ratio can be generated.
[0052]
The opening force can be adjusted by the fluid pressure (fluid pressure) to be processed by changing the balance line, that is, the area A1 of the adjustment surface 24 for proximity.
The actual sliding surface pressure P (the contact pressure due to fluid pressure) is calculated by the following equation.
P = P1 × (K−k) + Ps
Here, P1 represents the pressure (fluid pressure) of the fluid to be treated, K represents the balance ratio, k represents the opening force coefficient, and Ps represents the spring and back pressure.
By adjusting the sliding surface actual surface pressure P (by adjusting the balance line), a desired minute gap (gap width) is formed between the processing surfaces 1 and 2 to form a fluid film by the fluid to be processed. Dispersing, emulsifying, crushing, etc.
[0053]
Usually, if the thickness of the fluid film between the processing surfaces 1 and 2 is reduced, the diameter of the dispersed / emulsified particles can be reduced. Conversely, increasing the thickness of the fluid film increases the diameter of the dispersed / emulsified particles. Therefore, by adjusting the sliding surface actual surface pressure P (hereinafter referred to as surface pressure P), the distance (gap) between the processing surfaces 1 and 2 is adjusted to obtain dispersed / emulsified particles having a desired diameter. Can do.
To summarize this relationship, when the particle diameter is increased, the balance ratio is decreased, the surface pressure P is decreased, the gap is increased, and the film thickness is increased. Conversely, when the particle diameter is reduced, the balance ratio is increased, the surface pressure P is increased, the gap is decreased, and the film thickness is decreased.
As described above, the proximity adjustment surface 24 is formed as a part of the contact surface pressure applying mechanism 4, and the contact surface pressure is adjusted at the position of the balance line, that is, the gap between the processing surfaces is adjusted. Can also be implemented.
[0054]
As described above, the clearance is adjusted in consideration of the pressing force of the spring 43 and the air pressure of the air introduction portion 44 as described above. In addition, adjustment of fluid pressure, that is, feed pressure of the fluid to be processed, and adjustment of rotation (centrifugal force) of the first processing unit 10 (first holder 11) (also important adjustment factors (parameters)) is there.
As described above, this apparatus uses the second processing unit 20 and the first processing unit 10 that rotates relative to the second processing unit 20 to feed the fluid to be processed and the rotational centrifugal force, The pressure is balanced by the contact surface pressure, a predetermined fluid film is formed on both processing surfaces, and a desired shear force is applied to the fluid to be processed. Also, at least one of the rings has a floating structure to absorb alignment such as runout and eliminate the risk of wear due to contact.
[0055]
In the embodiment of FIG. 2B as well, the configuration other than the provision of the adjustment surface is the same as that of the embodiment shown in FIG.
Further, in the embodiment shown in FIG. 2 (B), as shown in FIG. 9, it is possible to carry out without providing the separation side pressure receiving surface 23. In this case, the balance ratio K is an area ratio (A1 / A2) between the area A1 of the proximity adjustment surface 24 and the area A2 of the second processing surface 2 of the second processing unit 20.
When the proximity adjustment surface 24 is provided as in the embodiment shown in FIG. 2B and FIG. 9, the area A1 of the proximity adjustment surface 24 is larger than the area A2, that is, a mechanical seal. By adopting an unbalanced type, the opening force is not generated, and on the contrary, the predetermined pressure applied to the fluid to be treated all works as a contact pressure. Such a setting is also possible. In this case, both processing surfaces 1 and 2 can be balanced by increasing other separation force.
[0056]
In the above-described embodiment, as described above, the number of attachments of the spring 43 is better in order to apply a uniform stress to the sliding surface (processing surface). However, as the spring 43, as shown in FIG. 3A, a single coil spring can be adopted. As shown in the figure, this is a single coil spring whose center is concentric with the annular second processing portion 20.
As described above, an O-ring is preferably used for the seal between the second processing portion 20 and the second holder 21, but in place of such an O-ring or together with the O-ring, FIG. The present invention can also be implemented by providing the bellows 26 shown in FIG. 5 or the diaphragm 27 shown in FIG.
[0057]
As shown in FIG. 4, the second holder 21 has a temperature adjusting jacket capable of adjusting the temperature by cooling or heating the second processing surface 2 (second processing portion 20). 46 is provided. The case 3 is also provided with a temperature adjustment jacket 35 for the same purpose.
The temperature adjustment jacket 46 of the second holder 21 is a water-use space formed on the side surface of the accommodating portion 41 in the second holder 21 and communicates with the passages 47 and 48 that communicate with the outside of the second holder 21. is doing. One of the passages 47 and 48 introduces a cooling or heating medium into the temperature adjusting jacket 46, and either one discharges the medium.
Further, the temperature adjusting jacket 35 of the case 3 allows heating water or cooling water provided between the outer peripheral surface of the case 3 and the covering portion 34 to pass through the covering portion 34 covering the outer periphery of the case 3. It is a passage.
In this embodiment, the second holder 21 and the case 3 are provided with the above-described temperature adjustment jacket. However, the first holder 11 can also be provided with such a jacket. is there.
[0058]
As a part of the contact surface pressure applying mechanism 4, the cylinder mechanism 7 shown in FIG. 5 can be provided in addition to the configuration shown in FIGS. 1 and 2.
The cylinder mechanism 7 includes a cylinder space 70 provided in the second holder 21, a communication part 71 that communicates the cylinder space 70 with the accommodation part 41, and is accommodated in the cylinder space 70 and through the communication part 71. The piston body 72 connected to the second processing section 20, the first nozzle 73 communicating with the upper part of the cylinder space part 70, the second nozzle 74 at the lower part of the cylinder space part 70, and the upper part of the cylinder space part 70 are connected to the piston body. 72 and a pressing body 75 such as a ridge interposed between them.
[0059]
The piston body 72 can slide up and down in the cylinder space 70, and the second processing portion 20 slides up and down by the sliding of the piston body 72, and the first processing surface 1. The gap between the second processing surface 2 can be changed.
Specifically, a pressure source (not shown) such as a compressor is connected to the first nozzle 73, and air pressure (positive pressure) is applied from the first nozzle 73 above the piston body 72 in the cylinder space 70. Thus, the piston body 72 can be slid downward, and the second processing portion 20 can be narrowed (moved in the closing direction) between the first and second processing surfaces 1 and 2. Further, a pressure source (not shown) such as a compressor is connected to the second nozzle 74, and air pressure (positive pressure) is applied from the second nozzle 74 to the lower side of the piston body 72 in the cylinder space 70, whereby the piston The body 72 can be slid upward, and the second processing portion 20 can be widened (moved in the opening direction) between the first and second processing surfaces 1 and 2. Thus, the contact pressure can be adjusted by the air pressure obtained by the nozzles 73 and 74.
[0060]
Even if there is a margin between the upper part of the second processing unit 20 in the accommodating part 41 and the uppermost part of the accommodating part 41, the piston body 7 is set so as to contact the uppermost part 70a of the cylinder space part 70. Thus, this cylinder space part 70 (the uppermost part 70a thereof) defines the upper limit of the width of the gap between the processing surfaces 1 and 2. That is, the piston body 7 and the uppermost portion 70a of the cylinder space portion 70 restrict the separation between the processing surfaces 1 and 2 (the maximum opening amount of the gap between the processing surfaces 1 and 2 is regulated. Function as a mechanism).
[0061]
Further, even if the processing surfaces 1 and 2 are not in contact with each other, the cylinder space portion 70 (the lowermost portion 70b) is set by setting the piston body 7 in contact with the lowermost portion 70b of the cylinder space portion 70. Defines the lower limit of the width of the gap between the processing surfaces 1 and 2. That is, the piston body 7 and the lowermost portion 70b of the cylinder space 70 restrict the proximity of the processing surfaces 1 and 2 (the minimum opening amount of the gap between the processing surfaces 1 and 2 is restricted). Function as a mechanism).
In this way, while restricting the maximum and minimum opening amounts of the gap, the distance z1 between the piston body 7 and the uppermost portion 70a of the cylinder space 70 (in other words, between the piston body 7 and the lowermost portion 70b of the cylinder space 70). The interval z2) is adjusted by the air pressure of the nozzles 73 and 74.
[0062]
The nozzles 73 and 74 may be connected to separate pressure sources, or may be connected by switching (switching) one pressure source.
The pressure source can be implemented by either a positive pressure supply or a negative pressure supply. When a negative pressure source such as a vacuum is connected to the nozzles 73 and 74, the above operation is reversed.
Such a cylinder mechanism 7 is provided in place of the other contact surface pressure application mechanism 4 or as a part of the contact surface pressure application mechanism 4 described above, and the nozzles 73 and 74 are provided depending on the viscosity and properties of the fluid to be processed. By setting the pressure of the pressure source to be connected and the intervals z1 and z2, the thickness of the fluid film can be set to a desired value, and shearing can be applied to perform dispersion, emulsification, and crushing. In particular, with such a cylinder mechanism 7, the sliding part can be forcibly opened and closed during cleaning or steam sterilization to increase the reliability of cleaning and sterilization.
[0063]
As shown in FIGS. 6A to 6C, a groove is formed in the first processing surface 1 of the first processing unit 10 from the center side of the first processing unit 10 to the outside (extends in the radial direction). It may be carried out by forming the concave portions 13. In this case, as shown in FIG. 6 (A), the recesses 13... 13 can be implemented as curved or spirally extending on the first processing surface 1, as shown in FIG. 6 (B). This is possible even if the individual recesses 13 are bent in an L shape, and as shown in FIG. 6C, the recesses 13... 13f can be implemented even if they extend straight radially. It is.
[0064]
Further, as shown in FIG. 6 (D), the recess 13 in FIGS. 6 (A) to 6 (C) is carried out with a gradient so as to become deeper toward the center side of the first processing surface 1. Is preferred. Further, the groove-like recess 13 can be implemented even if it is continuous or intermittent.
By forming such a concave portion 13, it is possible to cope with an increase in the discharge amount (supply amount) of the fluid to be processed or a decrease in the heat generation amount, and cavitation control.
In each of the embodiments shown in FIG. 6 described above, the recess 13 is formed on the first processing surface 1, but can also be formed on the second processing surface 2. The present invention can also be implemented by forming both the first and second processing surfaces 1 and 2.
[0065]
When the above-mentioned concave portion 13 or taper is not provided on the processing surface, or when these are unevenly distributed on a part of the processing surface, the surface roughness of the processing surfaces 1 and 2 (smooth portions) is the flow to be processed. The influence on the body (fluid) is greater than that described above (that forms the recess 13). Therefore, in such a case, it is necessary to reduce the surface roughness (to be finer) as the fine particles of the fluid to be processed (fluid) become smaller. In particular, when nano-sized fine particles are targeted, the surface roughness of the processing surface is more advantageous to give a desired shearing force by using the above-described mirror surface (surface subjected to mirror processing).
[0066]
As shown in FIG. 7, a supply passage 28 that opens to the second processing surface 2 is provided in the second processing portion 20 separately from the introduction portion 22, and the first processing surface 1 is supplied to the other through the supply passage 28. It is also possible to apply a different material or a part of the fluid to be separated directly to the fluid to be treated (fluid) between the first treatment surface 2 and the second treatment surface 2. Such a configuration is effective when it is desired to omit pre-dispersion or when a highly reactive fluid to be treated is handled.
[0067]
In the embodiment shown in FIG. 1, the first processing unit 10 (first holder 11) receives a rotational force from the rotational drive device 5 with respect to the stationary second processing unit 20 (second holder 21). It was rotating. In addition, as shown in FIG. 8, the second holder 21 is connected to a separate sub-rotation drive device 52 via a separate rotation shaft 53 (hereinafter referred to as a sub-rotation shaft 53). Even rotating the holder 11 in the opposite direction is effective in obtaining a larger shearing force.
In this case, the rotating shaft 50 and the auxiliary rotating shaft 53 are arranged concentrically. And then. The fluid to be treated (fluid) introduction portion 22 is formed as a hollow passage provided in the sub-rotation driving device 52 and the sub-rotation shaft 53, and is to be subjected to a rotation using a rotary joint (not shown). The processing fluid (fluid) is discharged from the opposite side (upper side) of the sub-rotation driving device 52 to the center of the second processing unit 20. The fluid to be processed introduced into the case 3 and processed between the processing surfaces 1 and 2 in this way is discharged from the discharge portion 32 to the outside.
[0068]
The apparatus shown in FIG. 11 is extremely effective when increasing the rotational speed to obtain a large shear force. In this case, the first holder 11 and the second holder 21 may be rotated at the same speed (number of rotations) or different.
In the embodiment shown in FIG. 8, the stirring blade 6 is not provided.
[0069]
In the embodiment shown in FIG. 3 to FIG. 8 as well, the configuration other than that explicitly described is the same as that of the embodiment shown in FIG. 1 or FIG.
In the embodiment shown in FIG. 1, the one having the stirring blade 6 for the purpose of pre-dispersion is shown. However, in the case where the pre-dispersion is not used, the embodiment can be implemented even without the stirring blade 6. (Not shown). However, in order to facilitate the dispersion and emulsification treatment, the pre-dispersion is more preferable than the non-dispersion.
[0070]
Further, in each of the above embodiments, the fluid to be processed moves from the inside of the annular second processing portion 2 or the first processing portion 10 to the outside. In addition, by moving the processed fluid to be processed from the outside of the second processing section 2 or the first processing section 10 to the inside thereof, the first processing surface 1 and the second processing surface 2 It is good also as what passes between (not shown). For example, it is possible to change the apparatus shown in FIG. 1 so that the discharge section is an introduction section and the introduction section is a discharge section. In this case, pressure is applied from the discharge portion side shown in FIG. However, the present invention can also be implemented by suctioning from the introduction part side shown in FIG.
[0071]
In this way, when the fluid to be processed is moved from the outside of the second processing unit 2 or the first processing unit 10 to the inside thereof, as shown in FIG. It is also possible to carry out by forming groove-like recesses 13... 13 extending from the outside of the first processing part 10 toward the center side on the first processing surface 1 of the part 10. By forming the recesses 13... 13 shown in FIG. 6E, it is preferable that the balance ratio is an unbalanced type of 100% or more. As a result, dynamic pressure is generated in the groove-like recesses 13... 13 during rotation, and the processing surfaces 1 and 2 can be reliably rotated without contact, and there is no danger of wear due to contact.
In the embodiment shown in FIG. 6E, the separation force due to the pressure of the fluid to be processed is generated at the inner end 13 a of the recess 13.
[0072]
In each of the above embodiments, the case 3 is entirely sealed. However, only the inside of the first processing part 10 and the second processing part 20 is sealed, and the outside is opened. It can also be implemented. That is, the flow path is sealed until it passes between the first processing surface 1 and the second processing surface 2, and the fluid to be processed receives all the pressure, but after passing, May be opened, and the treated fluid after treatment may not receive pressure.
As described above, the pressurizing apparatus is preferably implemented using a compressor, but can be implemented using other means as long as a predetermined pressure can be constantly applied to the fluid to be treated. It is. For example, the present invention can be implemented by always applying a constant pressure to the fluid to be treated by utilizing its own weight (potential energy).
[0073]
When the dispersion emulsification method according to the present invention is summarized, a predetermined pressure is applied to the fluid to be processed, and the sealed fluid flow path through which the fluid to be processed that has received the predetermined pressure flows is used for the first processing. The first processing surface 1 and the second processing surface 1 and the second processing surface 2 are connected by connecting at least two processing surfaces that can approach and leave the surface 1 and the second processing surface 2, and applying contact pressures that bring the processing surfaces 1 and 2 closer to each other. By rotating the processing surface 2 relative to each other, a fluid film used for the seal in the mechanical seal is generated using the fluid to be processed, and contrary to the mechanical seal (the fluid film is used for the seal). Instead, the fluid film is intentionally leaked from between the first processing surface 1 and the second processing surface 2, and dispersion emulsification processing is performed between the both surfaces 1 and 2 to form a film to be processed fluid. It is characterized by applying and collecting.
By such an epoch-making dispersion emulsification method, it is possible to adjust the distance between the processing surfaces 1 and 2 which has been difficult in the past to be 1 μm to 1 mm, particularly 1 to 10 μm.
[0074]
【The invention's effect】
By carrying out the inventions of the present application Nos. 1 to 14 , there is no mixing of impurities, the adaptive viscosity range of the fluid to be treated is wide and a large shearing force is given to the fluid to be treated, and the dispersion, emulsification, It became possible to provide a dispersion emulsification apparatus and a dispersion emulsification method capable of being crushed. It was possible to provide a dispersion emulsification apparatus and a dispersion emulsification method with a simple structure that can be dispersed, emulsified and crushed with high accuracy and have high productivity.
That is, by utilizing the shaft seal mechanism in the mechanical seal as a means for dispersion and emulsification, the dispersion emulsification apparatus and the dispersion emulsification with a simple structure that can disperse, emulsify and crush with high accuracy and have high productivity. Could provide a method.
In particular, due to the implementation of the present invention, the pressure of the fluid to be treated (fluid pressure), the back pressure of the compression ring (second processing part), the rotation of the mating ring (first processing part), etc. Regardless of the viscosity range of the fluid to be treated, the thickness of the fluid film to be treated can be adjusted from a very small amount, and dispersion of ultrafine particles of several nanometers, which was impossible with conventional equipment, is possible. In addition, since a shock absorber such as fine vibration, alignment, and axial displacement is provided, a highly dispersed state can be obtained without generation of impurities. In addition, since it is a simple mechanism, it does not require skill to control the device, and it is easy to unmanned and automated, and the device can operate stably, with high productivity and low cost.
[Brief description of the drawings]
FIG. 1 is a partially cutaway longitudinal sectional view of an apparatus according to an embodiment of the present invention.
2A is a schematic vertical cross-sectional view of the main part of the apparatus, and FIG. 2B is a schematic vertical cross-sectional view of the main part of another embodiment.
FIG. 3A is a schematic vertical cross-sectional view of a main part of still another embodiment, FIG. 3B is a schematic vertical cross-sectional view of a main part of another embodiment, and FIG. It is a principal part schematic longitudinal cross-sectional view of this embodiment.
FIG. 4 is a schematic longitudinal sectional view of a main part of still another embodiment.
FIG. 5 is a schematic longitudinal sectional view of a main part of another embodiment.
6A is a schematic cross-sectional view of a main part of still another embodiment, FIG. 6B is a schematic cross-sectional view of a main part of another embodiment, and FIG. It is the principal part general | schematic cross-sectional view of embodiment of this invention, (D) is a partially notch principal part schematic longitudinal cross-sectional view of other embodiment, (E) is the principal part of further another embodiment. It is a substantially cross section.
FIG. 7 is a schematic vertical sectional view showing a main part of still another embodiment.
FIG. 8 is a longitudinal sectional view of still another embodiment.
FIG. 9 is a schematic longitudinal sectional view of a main part of still another embodiment.
[Explanation of symbols]
1 First processing surface 2 Second processing surface

Claims (14)

被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に設けられた第1処理用部(10)と第1処理用部(10)に対して相対的に接近離反可能な第2処理用部(20)の少なくとも2つの処理用部と、
これらの処理用部(10)(20)において互いに対向する位置に設けられた第1処理用面(1)及び第2処理用面(2)の少なくとも2つの処理用面と、
第1処理用部(10)と第2処理用部(20)とを相対的に回転させる回転駆動機構とを備え、
両処理用面(1) (2)間にて、被処理流動体の分散乳化の処理を行うものであり、
第1処理用部(10)と第2処理用部(20)のうち少なくとも第2処理用部(20)は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面(2)により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面(1)から第2処理用面(2)を離反させる方向に移動させる力を発生させ、
接近離反可能且つ相対的に回転する第1処理用面(1) と第2処理用面(2)との間に所定圧力の被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面(1)(2)間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものであることを特徴とする分散乳化装置。
A fluid pressure applying mechanism for applying a predetermined pressure to the fluid to be processed, a first processing part (10) provided in a sealed fluid flow path through which the fluid to be processed having the predetermined pressure flows, and a first processing At least two processing parts of the second processing part (20) that are relatively close to and away from the working part (10);
At least two processing surfaces of a first processing surface (1) and a second processing surface (2) provided at positions facing each other in the processing portions (10) and (20);
A rotation drive mechanism for relatively rotating the first processing section (10) and the second processing section (20);
Between the processing surfaces (1) and (2), the processing fluid is dispersed and emulsified.
At least the second processing portion (20) of the first processing portion (10) and the second processing portion (20) includes a pressure receiving surface, and at least a part of the pressure receiving surface is the second. The processing surface (2) is configured, and the pressure receiving surface receives the pressure applied to the fluid to be processed by the fluid pressure applying mechanism and separates the second processing surface (2) from the first processing surface (1). Generate a force to move in the direction,
A fluid to be treated having a predetermined pressure is passed between the first processing surface (1) and the second processing surface (2), which can move toward and away from each other, so that the fluid to be treated is Dispersion characterized in that a desired dispersion emulsified state is obtained for the fluid to be treated by passing between the treatment surfaces (1) and (2) while forming a fluid film having a predetermined thickness. Emulsifying device.
第1処理用面(1)及び第2処理用面(2)の少なくとも一方の、微振動やアライメントを調整する緩衝機構を備えたことを特徴とする請求項1記載の分散乳化装置。  The dispersion emulsification apparatus according to claim 1, further comprising a buffer mechanism for adjusting fine vibration and alignment of at least one of the first processing surface (1) and the second processing surface (2). 第1処理用面(1)及び第2処理用面(2) の一方又は双方の、磨耗などによる軸方向の変位を調整して、両処理用面(1) (2)間の流体膜の膜厚を維持することを可能とする変位調整機構を備えたものであることを特徴とする請求項1又は2記載の分散乳化装置。  By adjusting the axial displacement of one or both of the first processing surface (1) and the second processing surface (2) due to wear or the like, the fluid film between the processing surfaces (1) and (2) The dispersion emulsification apparatus according to claim 1 or 2, further comprising a displacement adjustment mechanism capable of maintaining the film thickness. 流体圧付与機構は、分散や乳化の処理を施す被処理流動体に、一定の送り込み圧を掛けるコンプレッサなどの加圧装置であることを特徴とする請求項1乃至3の何れかに記載の分散乳化装置。  The dispersion according to any one of claims 1 to 3, wherein the fluid pressure imparting mechanism is a pressurizing device such as a compressor that applies a constant feeding pressure to a fluid to be treated for dispersion or emulsification. Emulsifying device. 上記の第1処理用面(1)と第2処理用面(2) との間の最大間隔を規定し、それ以上の両処理用面(1) (2)の離反を抑止する離反抑止部を備えることを特徴とする請求項1乃至4の何れかに記載の分散乳化装置。  A separation deterrence part that regulates the maximum distance between the first processing surface (1) and the second processing surface (2) and prevents further separation of both processing surfaces (1) and (2). The dispersion emulsification apparatus according to any one of claims 1 to 4, further comprising: 上記の第1処理用面(1)と第2処理用面(2) との間の最小間隔を規定し、それ以上の両処理用面(1) (2)の近接を抑止する近接抑止部を備えることを特徴とする請求項1乃至5の何れかに記載の分散乳化装置。  Proximity deterrence part that regulates the minimum distance between the first processing surface (1) and the second processing surface (2) and prevents the proximity of both processing surfaces (1) and (2) beyond that. The dispersion emulsification apparatus according to any one of claims 1 to 5, further comprising: 第1処理用面(1) と第2処理用面(2)の双方が、互いに逆の方向に回転するものであることを特徴とする請求項1乃至6の何れかに記載の分散乳化装置。  7. The dispersion emulsification apparatus according to claim 1, wherein both the first processing surface (1) and the second processing surface (2) rotate in directions opposite to each other. . 上記第1処理用面(1)と第2処理用面(2)の一方或いは双方の温度を調整する、温度調整用のジャケットを備えることを特徴とする請求項1乃至7の何れかに記載の分散乳化装置。  The temperature adjusting jacket for adjusting the temperature of one or both of the first processing surface (1) and the second processing surface (2) is provided. Dispersion emulsifier. 上記第1処理用面(1)及び第2処理用面(2)の一方或いは双方の少なくとも一部は、鏡面加工されたものであることを特徴とする請求項1乃至8の何れかに記載の分散乳化装置。  9. At least a part of one or both of the first processing surface (1) and the second processing surface (2) is mirror-finished. Dispersion emulsifier. 上記第1処理用面(1)及び第2処理用面(2)の一方或いは双方は、凹部を備えたものであることを特徴とする請求項1乃至9の何れかに記載の分散乳化装置。  The dispersion emulsification apparatus according to any one of claims 1 to 9, wherein one or both of the first processing surface (1) and the second processing surface (2) are provided with a recess. . 被処理流動体に所定の圧力を付与する流体圧付与機構と、この所定圧力の被処理流動体が流される密封された流体流路に接続された第1処理用面(1)及び第2処理用面(2)の少なくとも2つの相対的に接近離反可能な処理用面と、両処理用面(1) (2)間に接面圧力を付与する接面圧力付与機構と、第1処理用面(1) と第2処理用面(2)とを相対的に回転させる回転駆動機構と、を備えることにより、両処理用面(1)(2) 間にて、被処理流動体の分散乳化の処理を行うものであり、
接面圧力が付与されつつ相対的に回転する第1処理用面(1) と第2処理用面(2)との間に所定圧力の被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面(1)(2)間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものであることを特徴とする分散乳化装置。
A fluid pressure applying mechanism for applying a predetermined pressure to the fluid to be processed, a first processing surface (1) connected to a sealed fluid flow path through which the fluid to be processed having the predetermined pressure flows, and a second processing At least two treatment surfaces that can be moved relatively close to and away from the working surface (2), a contact surface pressure applying mechanism that applies a contact pressure between the processing surfaces (1) and (2), and a first processing surface. Dispersion of the fluid to be processed between the processing surfaces (1) and (2) by providing a rotational drive mechanism that relatively rotates the surface (1) and the second processing surface (2). Emulsification treatment,
A fluid to be treated having a predetermined pressure is passed between the first processing surface (1) and the second processing surface (2), which are relatively rotated while a contact surface pressure is applied. The fluid is obtained between the processing surfaces (1) and (2) while forming a fluid film having a predetermined film thickness, thereby obtaining a desired dispersed emulsified state for the fluid to be treated. A dispersion emulsification apparatus.
被処理流動体に圧力を付与する流体圧付与機構(P)と、この被処理流動体が流される密封された流体流路に設けられた第1処理用部(10)と第1処理用部(10)に対して相対的に接近離反可能な第2処理用部(20)の少なくとも2つの処理用部と、これらの処理用部(10)(20)において互いに対向する位置に設けられた第1処理用面(1)及び第2処理用面(2)の少なくとも2つの処理用面と、第2処理用面(2)が露出するように第2処理用部(20)を受容するホルダ(21)と、第1処理用部(10)と第2処理用部(20)とを相対的に回転させる回転駆動機構と、第1処理用面(1)に対して第2処理用面(2)を圧接又は近接した状態に第2処理用部(20)を押圧する接面圧付与機構(4) とを備え、
両処理用面(1) (2)間にて、被処理流動体の分散乳化の処理を行うものであり、
上記ホルダ(21)は、被処理流動体の導入部(22)を備えると共に、処理用面(1) (2)間の隙間に影響を与えるようには可動でなく、
第2処理用部(20)は、環状体であり、第2処理用面(2)がホルダ(21)に対して摺動して第1処理用面(1)に接近離反するものであり、
第2処理用部(20)は、受圧面を備えるものであり、
受圧面は、流体圧付与機構(P)が被処理流動体に付与する圧力を受けて第1処理用面(1) から第2処理用面(2)を離反させる方向に移動させる力を発生させ、
上記受圧面の少なくとも一部は、第2処理用面(2)にて構成され、
接近離反可能且つ相対的に回転する第1処理用面(1) と第2処理用面(2)との間に圧力が付与された被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面(1)(2)間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものであり、
接面圧力付与機構(4)の接面圧力と、流体圧付与機構(P) が付与する流体圧力の両処理用面(1) (2)間を離反させる力との均衡によって、上記の所定膜厚の流体膜を発生させる微小間隔を両処理用面(1)(2)間に保つことを特徴とする分散乳化装置。
Fluid pressure applying mechanism (P) for applying pressure to the fluid to be processed, and a first processing portion (10) and a first processing portion provided in a sealed fluid flow path through which the fluid to be processed flows. At least two processing parts of the second processing part (20) that can be moved closer to and away from (10), and these processing parts (10) and (20) are provided at positions facing each other. The second processing portion (20) is received so that at least two processing surfaces of the first processing surface (1) and the second processing surface (2) and the second processing surface (2) are exposed. A rotary drive mechanism for rotating the holder (21), the first processing part (10) and the second processing part (20) relative to each other, and the second processing relative to the first processing surface (1). A contact surface pressure applying mechanism (4) for pressing the second processing part (20) in a state where the surface (2) is in pressure contact or close proximity,
Between the processing surfaces (1) and (2), the processing fluid is dispersed and emulsified.
The holder (21) includes an introduction portion (22) for a fluid to be processed and is not movable so as to affect the gap between the processing surfaces (1) and (2).
The second processing portion (20) is an annular body, and the second processing surface (2) slides relative to the holder (21) and approaches and separates from the first processing surface (1). ,
The second processing part (20) has a pressure receiving surface,
The pressure receiving surface receives the pressure applied to the fluid to be processed by the fluid pressure applying mechanism (P) and generates a force to move the second processing surface (2) away from the first processing surface (1). Let
At least a part of the pressure receiving surface is constituted by the second processing surface (2),
When the fluid to be treated is passed between the first processing surface (1) and the second processing surface (2) that can approach and separate from each other and rotate relatively, the above-mentioned fluid to be treated The body passes between both processing surfaces (1) and (2) while forming a fluid film having a predetermined film thickness, so as to obtain a desired dispersion emulsified state for the fluid to be processed.
The predetermined pressure is determined by the balance between the contact surface pressure of the contact surface pressure applying mechanism (4) and the force of the fluid pressure applied by the fluid pressure applying mechanism (P) separating the processing surfaces (1) and (2). A dispersion emulsification apparatus characterized in that a minute interval for generating a fluid film having a film thickness is maintained between both processing surfaces (1) and (2).
被処理流動体に圧力を付与する流体圧付与機構(P)と、この被処理流動体が流される密封された流体流路に設けられた第1処理用部(10)と第1処理用部(10)に対して相対的に接近離反可能な第2処理用部(20)の少なくとも2つの処理用部と、
これらの処理用部(10)(20)において互いに対向する位置に設けられた第1処理用面(1) 及び第2処理用面(2)の少なくとも2つの処理用面と、
第1処理用部(10)と第2処理用部(20)とを相対的に回転させる回転駆動機構とを備え、
両処理用面(1) (2)間にて、被処理流動体の分散乳化の処理を行うものであり、
第1処理用部(10)と第2処理用部(20)のうち少なくとも第2処理用部(20)は、受圧面を備えるものであり、且つ、この受圧面の少なくとも一部が第2処理用面(2)により構成され、受圧面は、流体圧付与機構が被処理流動体に付与する圧力を受けて第1処理用面(1)から第2処理用面(2)を離反させる方向に移動させる力を発生させ、
更に、第2処理用部(20)は、第2処理用面(2)と反対側を向く近接用調整面(24)を備えるものであり、近接用調整面(24)は、被処理流体に掛けた所定の圧力を受けて第1処理用面(1)に第2処理用面(2)を接近させる方向に移動させる力を発生させ、
この近接用調整面(24)の面積(A1)と、第2処理用部(20)の上記受圧面の面積(A2)との面積比(A1/A2)を、バランス比(K)とし、当該バランス比(K)により、被処理流動体から受ける全圧力の合力として、第1処理用面(1)に対する第2処理用面(2)の離反方向へ移動する力が決まるものであり、
接近離反可能且つ相対的に回転する第1処理用面(1) と第2処理用面(2)との間に圧力が付与された被処理流動体が通されることにより、上記被処理流動体が所定膜厚の流体膜を形成しながら両処理用面(1)(2)間を通過することで、当該被処理流動体について、所望の分散乳化状態を得るものであることを特徴とする分散乳化装置。
Fluid pressure applying mechanism (P) for applying pressure to the fluid to be processed, and a first processing portion (10) and a first processing portion provided in a sealed fluid flow path through which the fluid to be processed flows. At least two processing parts of the second processing part (20) that are relatively close to and away from (10);
At least two processing surfaces of a first processing surface (1) and a second processing surface (2) provided at positions facing each other in the processing portions (10) and (20);
A rotation drive mechanism for relatively rotating the first processing section (10) and the second processing section (20);
Between the processing surfaces (1) and (2), the processing fluid is dispersed and emulsified.
At least the second processing portion (20) of the first processing portion (10) and the second processing portion (20) includes a pressure receiving surface, and at least a part of the pressure receiving surface is the second. The processing surface (2) is configured, and the pressure receiving surface receives the pressure applied to the fluid to be processed by the fluid pressure applying mechanism and separates the second processing surface (2) from the first processing surface (1). Generate a force to move in the direction,
Furthermore, the second processing section (20) includes a proximity adjusting surface (24) facing the opposite side of the second processing surface (2), and the proximity adjusting surface (24) is a fluid to be processed. Receiving a predetermined pressure applied to the first processing surface (1), generating a force to move the second processing surface (2) in a direction approaching the first processing surface (1),
The area ratio (A1 / A2) between the area (A1) of the adjustment surface (24) for proximity and the area (A2) of the pressure receiving surface of the second processing section (20) is defined as a balance ratio (K). The balance ratio (K) determines the force of moving the second processing surface (2) away from the first processing surface (1) as a total force received from the fluid to be processed,
When the fluid to be treated is passed between the first processing surface (1) and the second processing surface (2) that can approach and separate from each other and rotate relatively, the above-mentioned fluid to be treated The body passes between both processing surfaces (1) and (2) while forming a fluid film having a predetermined film thickness to obtain a desired dispersion emulsified state for the fluid to be processed. Dispersing emulsifier.
被処理流動体に所定の圧力を付与し、この所定の圧力を受けた被処理流動体が流される密封された流体流路に、第1処理用面(1)及び第2処理用面(2) の少なくとも2つの相対的に接近離反可能な処理用面を接続し、両処理用面(1)(2) を接近させる接面圧力を付与し、第1処理用面(1)と第2処理用面(2) とを相対的に回転させ且つこれらの処理用面(1) (2)間に被処理流動体を通過させて、当該被処理流動体の分散乳化の処理を行うものであり、
少なくとも被処理流動体に付与した上記の所定の圧力を両処理用面(1)(2) を離反させる離反力とし、当該離反力と上記接面圧力とを、処理用面(1) (2) 間の被処理流動体を介して均衡させることにより、両処理用面(1)(2)間を所定の微小間隔に維持し、被処理流動体を所定の厚みの流体膜として両処理用面(1) (2)間を通過させて、所望の分散乳化状態を得るものであることを特徴とする分散乳化方法。
A predetermined pressure is applied to the fluid to be processed, and the first processing surface (1) and the second processing surface (2) are sealed in the sealed fluid flow path through which the fluid to be processed that has received the predetermined pressure flows. ) At least two processing surfaces that are relatively close to and away from each other, and applying contact pressure to bring both processing surfaces (1) and (2) close to each other, the first processing surface (1) and the second processing surface The processing surface (2) is relatively rotated and the processing fluid is passed between these processing surfaces (1) and (2) to perform dispersion emulsification processing of the processing fluid. Yes,
At least the predetermined pressure applied to the fluid to be treated is defined as a separation force that separates both treatment surfaces (1) and (2), and the separation force and the contact surface pressure are defined as treatment surfaces (1) (2 ) Is maintained through a fluid to be treated between the two treatment surfaces (1) and (2) so as to maintain a predetermined minute distance between them, and the fluid to be treated is used as a fluid film with a predetermined thickness for both treatments. A dispersion emulsification method characterized in that a desired dispersion emulsification state is obtained by passing between the surfaces (1) and (2).
JP2002207533A 2002-07-16 2002-07-16 Dispersion emulsification apparatus and dispersion emulsification method Expired - Lifetime JP4038083B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002207533A JP4038083B2 (en) 2002-07-16 2002-07-16 Dispersion emulsification apparatus and dispersion emulsification method
AT03254461T ATE337085T1 (en) 2002-07-16 2003-07-16 METHOD AND APPARATUS FOR LIQUIDS
DE60307741T DE60307741T2 (en) 2002-07-16 2003-07-16 Process and processing device for liquids
CN2009101513812A CN101612533B (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid, and deaerator therewith
CN031784186A CN1483515B (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid, and deaerator with mecronizing device
US10/619,479 US7131604B2 (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid, and deaerator therewith
EP03254461A EP1382380B1 (en) 2002-07-16 2003-07-16 Processing apparatus and method for fluid
US11/499,755 US7278592B2 (en) 2002-07-16 2006-08-07 Processing apparatus and method for fluid, and deaerator therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002207533A JP4038083B2 (en) 2002-07-16 2002-07-16 Dispersion emulsification apparatus and dispersion emulsification method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007241592A Division JP4742201B2 (en) 2007-09-18 2007-09-18 Fluid treatment method

Publications (2)

Publication Number Publication Date
JP2004049957A JP2004049957A (en) 2004-02-19
JP4038083B2 true JP4038083B2 (en) 2008-01-23

Family

ID=31931953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002207533A Expired - Lifetime JP4038083B2 (en) 2002-07-16 2002-07-16 Dispersion emulsification apparatus and dispersion emulsification method

Country Status (2)

Country Link
JP (1) JP4038083B2 (en)
CN (1) CN101612533B (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336566B2 (en) * 2002-11-08 2009-09-30 キヤノン株式会社 Method for producing toner particles
JP3923000B2 (en) * 2002-11-11 2007-05-30 株式会社日本ボロン Method and apparatus for separating and drying fine substances
JP4185806B2 (en) * 2003-04-28 2008-11-26 キヤノン株式会社 Toner particle manufacturing method and toner manufacturing method
JP2005313102A (en) * 2004-04-30 2005-11-10 M Technique Co Ltd Fine particle and method for manufacturing the same
JP4336621B2 (en) * 2004-05-24 2009-09-30 キヤノン株式会社 Method for producing polymerized toner
JP4441359B2 (en) * 2004-08-31 2010-03-31 キヤノン株式会社 Toner production method
KR101402734B1 (en) 2007-07-06 2014-06-02 엠. 테크닉 가부시키가이샤 Method for producing nanoparticles by forced ultra-thin film rotary processing
CN102516809B (en) * 2007-07-06 2015-04-01 M技术株式会社 Method for producing nanoparticles by forced ultra-thin film rotary processing
CN101790430B (en) * 2007-07-06 2012-07-04 M技术株式会社 Method for production of metal microparticle, and metal colloid solution comprising metal microparticle
US8708550B2 (en) * 2007-07-06 2014-04-29 M. Technique Co., Ltd. Fluid processing apparatus and processing method
US8911545B2 (en) * 2007-07-06 2014-12-16 M. Technique Co., Ltd. Method for producing pigment nanoparticles by forced ultrathin film rotary reaction method, pigment nanoparticles, and inkjet ink using the same
WO2009008389A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Method for production of metal-supporting carbon, method for production of crystal composed of fullerene molecule and fullerene nanowhisker/nanofiber nanotube, and apparatus for production of fullerene molecule and fullerene nanowhisker/nanofiber nanotube
JP4419157B2 (en) * 2007-07-06 2010-02-24 エム・テクニック株式会社 Production method of fine particles for living ingestion
WO2009008392A1 (en) * 2007-07-06 2009-01-15 M.Technique Co., Ltd. Process for production of ceramic nanoparticle
WO2009020188A1 (en) 2007-08-09 2009-02-12 M.Technique Co., Ltd. Process for producing semiconductor fine particles and the fine particles
EP2196194B1 (en) * 2007-09-10 2017-08-09 M Technique Co., Ltd. Process for producing biological ingesta and biological ingesta obtained thereby
CN101808942B (en) 2007-09-12 2013-07-17 M技术株式会社 Process for producing the titanium dioxide ultrafine particles
WO2009038008A1 (en) 2007-09-21 2009-03-26 M.Technique Co., Ltd. Process for producing fine particles and the fine particles
JPWO2009041274A1 (en) 2007-09-27 2011-01-20 エム・テクニック株式会社 Method for producing magnetic fine particles, magnetic fine particles and magnetic fluid obtained thereby, and method for producing magnetic product
EP2194087B1 (en) 2007-09-28 2013-11-20 M Technique Co., Ltd. Method for production of aqueous resin microparticle dispersion, and aqueous resin microparticle dispersion and resin microparticle produced by the method
US8592498B2 (en) 2007-10-22 2013-11-26 M. Technique Co., Ltd. Method for producing organic compound and organic compound obtained by the method
JP4670104B2 (en) * 2007-11-09 2011-04-13 エム・テクニック株式会社 Method for producing resin fine particle aqueous dispersion
JP4399612B2 (en) * 2007-11-09 2010-01-20 エム・テクニック株式会社 Method for producing magnetic fine particles, magnetic fine particles and magnetic fluid obtained thereby, and magnetic product
US8980958B2 (en) 2007-11-09 2015-03-17 M. Technique Co., Ltd. Method for producing emulsion and thereby obtained emulsion
JP4359858B2 (en) * 2007-11-09 2009-11-11 エム・テクニック株式会社 Method for producing titanium dioxide ultrafine particles
JP4986300B2 (en) * 2007-11-09 2012-07-25 エム・テクニック株式会社 Method for producing fine particles
DE102007061688A1 (en) * 2007-12-19 2009-06-25 Bayer Materialscience Ag Process and mixing unit for the production of isocyanates by phosgenation of primary amines
WO2010035861A1 (en) 2008-09-29 2010-04-01 エム・テクニック株式会社 Novel copper phthalocyanine pigment and process for producing copper phthalocyanine fine particles
EP2418015B1 (en) 2008-11-25 2016-01-06 M. Technique Co., Ltd. Fluid treatment equipment and treatment method
KR101848716B1 (en) 2010-02-03 2018-04-13 엠. 테크닉 가부시키가이샤 Method for producing nanoparticles
EP2540390B1 (en) 2010-02-26 2019-03-27 M Technique Co., Ltd. Fluid treatment device and treatment method
US9873103B2 (en) 2010-04-08 2018-01-23 M. Technique Co., Ltd. Fluid processing apparatus and processing method
JP2011147936A (en) 2010-09-29 2011-08-04 Sintokogio Ltd Shearing type dispersing device, circulation type dispersing system and circulation type dispersing method
JP5502793B2 (en) * 2011-03-31 2014-05-28 トヨタ自動車株式会社 High durability fuel cell catalyst and method for producing the same
US9427891B2 (en) 2011-04-26 2016-08-30 M. Technique Co., Ltd. Method for producing fine particles
US20140072502A1 (en) 2011-05-27 2014-03-13 M. Technique Co., Ltd. Fine bubble generating apparatus, method for generating fine bubbles, and method for gas-liquid reaction using same
KR101912136B1 (en) 2011-05-28 2018-10-26 엠. 테크닉 가부시키가이샤 Method for increasing production of fine particles using forced thin-film fluid treatment device
JP5936142B2 (en) * 2011-05-28 2016-06-15 エム・テクニック株式会社 Method for preventing adhesion of treated object using forced thin film type fluid treatment system
WO2012169351A1 (en) 2011-06-10 2012-12-13 エム・テクニック株式会社 Fluid treatment method including extraction
JP6364593B2 (en) * 2013-04-30 2018-08-01 エム・テクニック株式会社 Fluid processing method
WO2014178388A1 (en) * 2013-04-30 2014-11-06 エム・テクニック株式会社 Fluid processing device
EP3012015A4 (en) * 2013-06-21 2017-03-01 Tohkai-Giken Co., Ltd Mixing device for powder raw material and liquid raw material and method for manufacturing mixture using said mixing device
JP6146928B2 (en) * 2015-06-11 2017-06-14 エム・テクニック株式会社 Microbubble generating device, microbubble generating method, and gas-liquid reaction method using the same
WO2018069997A1 (en) 2016-10-12 2018-04-19 エム・テクニック株式会社 Immediately-before-stirring-type fluid processing device and processing method
KR101864136B1 (en) * 2016-11-08 2018-07-04 박노성 Surface friction mill
WO2018142943A1 (en) * 2017-01-31 2018-08-09 エム・テクニック株式会社 Method for manufacturing highly crystalline silver particles
CN110013908B (en) * 2019-03-11 2021-07-13 济南佳宝乳业有限公司 Colloid mill is used in dairy products processing
KR20210138630A (en) * 2019-03-14 2021-11-19 엠. 테크닉 가부시키가이샤 PLGA microparticles, sustained-release formulation thereof, and manufacturing method thereof
CN110976024A (en) * 2019-12-12 2020-04-10 唐振三 Rotatory controllable formula particulate matter grinder

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6191337U (en) * 1984-11-21 1986-06-13
ATE48767T1 (en) * 1986-08-12 1990-01-15 Ni I Tscherna Metalurgia DISC BREAKER.
SU1708397A1 (en) * 1989-08-08 1992-01-30 Всероссийский научно-исследовательский и проектно-технологический институт механизации и электрификации сельского хозяйства Apparatus for making suspension
JP2828834B2 (en) * 1992-06-19 1998-11-25 日本ペイント株式会社 Dispersion equipment
ES2101502T5 (en) * 1993-01-25 1999-11-01 Ion Enterprises Ltd DEVICE AND PROCEDURE FOR THE TREATMENT OF FLUIDS.
JP2620210B2 (en) * 1994-12-07 1997-06-11 西村産業有限会社 Grinding equipment
DK1075453T3 (en) * 1998-03-31 2005-12-19 Denis-Michel Ledoux Apparatus and method for molecular polarization in water
JP2002012546A (en) * 2000-06-29 2002-01-15 Noevir Co Ltd Skin care preparation

Also Published As

Publication number Publication date
CN101612533B (en) 2013-01-23
JP2004049957A (en) 2004-02-19
CN101612533A (en) 2009-12-30

Similar Documents

Publication Publication Date Title
JP4038083B2 (en) Dispersion emulsification apparatus and dispersion emulsification method
US7278592B2 (en) Processing apparatus and method for fluid, and deaerator therewith
JP4742201B2 (en) Fluid treatment method
JP3955254B2 (en) Deaerator with miniaturization device and deaeration method by miniaturization
JP4849648B2 (en) Method for producing emulsion
JP4363499B2 (en) Method for producing ceramic nanoparticles
JP3309093B2 (en) High shear material processing method and apparatus
JP5305480B2 (en) Fluid processing equipment
JP4335968B2 (en) Method for producing metal fine particles and metal colloid solution containing the metal fine particles
JP3923000B2 (en) Method and apparatus for separating and drying fine substances
CN1342100A (en) Processing product compositions
JP2004314066A (en) Ball mill with agitator
JP3222139U (en) Beads mill
JP2008238005A (en) Dispersing apparatus for liquid raw material
JP2007229686A (en) Media agitation type wet disperser and fine particle dispersion method
King et al. Colloid mills: theory and experiment
Szegvari et al. Attritor grinding and dispersing equipment
KR20060096276A (en) Media-agitating wet pulverizer
JP2005313102A (en) Fine particle and method for manufacturing the same
JP2010164118A (en) Method and apparatus for sealing shaft sealing device for slurry
JP4565068B2 (en) Method for producing resin particles
JP2003144950A (en) Pulverizer
JP7429039B2 (en) wet bead mill
JP4989092B2 (en) Bead mill
JP4446128B1 (en) Method for producing fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071102

R150 Certificate of patent or registration of utility model

Ref document number: 4038083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term