JP2008238005A - Dispersing apparatus for liquid raw material - Google Patents

Dispersing apparatus for liquid raw material Download PDF

Info

Publication number
JP2008238005A
JP2008238005A JP2007079875A JP2007079875A JP2008238005A JP 2008238005 A JP2008238005 A JP 2008238005A JP 2007079875 A JP2007079875 A JP 2007079875A JP 2007079875 A JP2007079875 A JP 2007079875A JP 2008238005 A JP2008238005 A JP 2008238005A
Authority
JP
Japan
Prior art keywords
raw material
dispersion
liquid
particles
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007079875A
Other languages
Japanese (ja)
Inventor
Masatada Fuji
正督 藤
Takumi Suzuki
巧 鈴木
Hideo Watanabe
秀夫 渡辺
Kenji Endo
健司 遠藤
Minoru Takahashi
実 高橋
Chika Takai
千加 高井
Hideaki Kiyokawa
英明 清川
Koshichiro Yasue
幸七郎 安江
Yasutaka Okada
康孝 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHUO KAKOKI
Nagoya Institute of Technology NUC
Chuo Kakohki Coltd
Original Assignee
CHUO KAKOKI
Nagoya Institute of Technology NUC
Chuo Kakohki Coltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHUO KAKOKI, Nagoya Institute of Technology NUC, Chuo Kakohki Coltd filed Critical CHUO KAKOKI
Priority to JP2007079875A priority Critical patent/JP2008238005A/en
Publication of JP2008238005A publication Critical patent/JP2008238005A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dispersing apparatus in a new structure capable of uniformly dispersing a liquid raw material (cracking agglomerated particles) with a very simple structure. <P>SOLUTION: The dispersing apparatus for generating shearing stress in the liquid raw material, performing atomization in the liquid raw material and uniformly dispersing it comprises a treatment container 28 with a columnar space 26 and a columnar member 30 fitted to the columnar space 26. The columnar member 3 is rotated at a high speed in the treatment container 28. Also, the treatment container 28 is in a sealed structure with a raw material entrance 28a on one end side and a product exit 28b on the other end side. A shearing flow generation gap is formed between the treatment container 28 and the columnar member 30. A raw material supply means and a product discharge means are connected to the raw material entrance 28a and the product exit 28b. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、新規な構成の液状原料の分散装置及び分散方法に関し、さらに詳しくは、固液混合系の液状原料に垂直回転力を付与して渦流的乃至せん断流的な移動をさせることにより液状原料を均一分散系(微細分散系)とするのに好適な液状原料の分散装置に係る発明である。ここでは、液状原料として固液混合系(サスペンション)を例にとり説明するが、液液混合系(O/Wエマルション、W/Oエマルション)に対しても本発明の分散装置は適用可能と期待される。   The present invention relates to a dispersion device and a dispersion method for a liquid material having a novel structure, and more specifically, a liquid material is obtained by applying a vertical rotational force to a liquid material of a solid-liquid mixing system to cause a vortex or shear flow movement. It is an invention relating to a liquid raw material dispersing apparatus suitable for making a raw material a uniform dispersion (fine dispersion). Here, a solid-liquid mixing system (suspension) will be described as an example of the liquid raw material, but the dispersion apparatus of the present invention is expected to be applicable to a liquid-liquid mixing system (O / W emulsion, W / O emulsion). The

本発明の液状原料の分散装置及び分散方法は、特に、塗料、セラミックス、ハイブリッド材料等の液中分散の形態で製品供給する場合等に好適である。   The dispersion apparatus and dispersion method of the liquid raw material of the present invention are particularly suitable for supplying products in the form of dispersion in liquid such as paints, ceramics, and hybrid materials.

昨今のナノ粒子(1μm未満)の溶解性・反応性、製品化した場合の物性のユニーク性(電磁気的・光学的・機械的特性)から、この液中分散技術に対する要望は増大しつつある。これらの性質は、粒子径の微細化に伴う比表面積の増加に起因するとされている。   Due to the solubility / reactivity of recent nanoparticles (less than 1 μm) and the unique properties (electromagnetic / optical / mechanical properties) when they are commercialized, the demand for this dispersion technology in liquids is increasing. These properties are attributed to an increase in specific surface area accompanying the refinement of the particle diameter.

ナノ粒子は、工業的利用を考えると、粒子は乾粉として貯蔵・輸送され、製品(塗料、セラミックス、ハイブリッド材料)の製造の段階で液中分散される場合が多い。そして、ナノ粒子の性質を最大限発揮させるためには、ナノ粒子が分散媒中に可及的にナノ粒子に近い状態で分散していることが望ましい。しかし、ナノ粒子はその比表面積の大きさから、表面活性サイトを多く有し、凝集力が強固である。特に一度乾燥状態を経たナノ粒子を再分散させることは困難である。ナノ粒子の特性を活かした製品を作るためには、乾燥状態を経た凝集ナノ粒子(以下「凝集粒子」という。)を可及的に一次粒子に近い状態で液中に均一分散させる技術が必要である。   In view of industrial use, nanoparticles are often stored and transported as dry powder and dispersed in liquid at the stage of manufacturing products (paints, ceramics, hybrid materials). In order to maximize the properties of the nanoparticles, it is desirable that the nanoparticles are dispersed in the dispersion medium as close to the nanoparticles as possible. However, nanoparticles have many surface active sites due to their specific surface area and have a strong cohesive force. In particular, it is difficult to re-disperse nanoparticles once dried. In order to make products that take advantage of the characteristics of nanoparticles, technology is needed to uniformly disperse aggregated nanoparticles that have been dried (hereinafter referred to as “aggregated particles”) as close to primary particles as possible. It is.

凝集粒子を、分散させて可及的にナノ粒子化(一次粒子化)させる研究は従来から行われており、それらは物理的なアプローチと化学的なアプローチに大別できる。ここで、一次粒子とは、粒子が単分子又は分子が数個集合したものをいう。物理的な方法とは、粒子の凝集力を上回るエネルギーを物理的に凝集体に与え、凝集体を解砕・分散させる方法である。例えば、超音波振動や媒体流動を利用する方法が挙げられる。また、化学的な方法とは、化学的な処理によって粒子の分散性を向上させる方法である。例えば、粒子の化学的表面改質などが挙げられる。これら二つの物理的・化学的アプローチはこれまで独立して検討されてきたが、乾粉ナノ粒子を一次粒子に近い状態に再分散させるまでには至っていない。物理的な分散法では、分散させた直後から再凝集が始まるという問題があり、化学的分散法では凝集体深部を化学的に処理するのが難しいという問題がある。   Research to disperse aggregated particles into nanoparticles (primary particles) as much as possible has been performed conventionally, and they can be roughly divided into physical approaches and chemical approaches. Here, the primary particle refers to a single particle or a collection of several molecules. The physical method is a method in which energy exceeding the cohesive force of particles is physically given to the aggregate, and the aggregate is crushed and dispersed. For example, a method using ultrasonic vibration or medium flow can be mentioned. The chemical method is a method for improving the dispersibility of particles by chemical treatment. Examples thereof include chemical surface modification of particles. These two physical and chemical approaches have been independently studied so far, but have not yet reached the point of redispersion of dry powder nanoparticles to a state close to primary particles. The physical dispersion method has a problem that reaggregation starts immediately after the dispersion, and the chemical dispersion method has a problem that it is difficult to chemically treat the deep part of the aggregate.

そして、物理的な分散方法に使用する分散装置として、例えば、媒体(メディア:ビーズ)に垂直回転力を付与して渦流的移動をさせる、すなわち、せん断流を発生させることにより、液状原料中の固体粒子(媒質)を微細・分散化(粉砕混合)する媒体攪拌ミルがある。   And as a dispersion apparatus used for a physical dispersion method, for example, by applying a vertical rotational force to a medium (medium: beads) to cause eddy current movement, that is, by generating a shear flow, There is a medium agitation mill that finely disperses (pulverizes and mixes) solid particles (medium).

上記タイプの攪拌ミルとして、例えば、本願出願人の一人が提案した媒体攪拌ミルがある(特許文献1)。   As a stirring mill of the above type, for example, there is a medium stirring mill proposed by one of the applicants of the present application (Patent Document 1).

しかし、当該構成の媒体攪拌ミルは、液状原料(スラリー:固液混合系)輸送のための動力が、相対的に大きなものが要求される。スラリーの輸送のための動力に加えて、ビーズを、遠心力による外周側への移動力に抗して外側から内側に、さらには、外環状隙間における遠心力による浮上り力に抗して外側で上方から下方へビーズの強制循環をさせる必要があるためである。   However, the medium agitating mill having the above configuration is required to have a relatively large power for transporting the liquid raw material (slurry: solid-liquid mixed system). In addition to the power for transporting the slurry, the beads are moved from the outside to the inside against the moving force toward the outer circumference due to the centrifugal force, and further outside against the lifting force due to the centrifugal force in the outer annular gap. This is because it is necessary to forcibly circulate the beads from above to below.

そこで、本願出願人の一人は、液状原料を低動力で均一分散化可能な新規な分散装置および分散方法を提供することを目的として、鋭意開発に努力をした結果、メディア(ビーズ)を使用しなくても、ある程度の凝集粒子の解砕(分散)が可能であることを見出して、下記構成の液状原料の分散装置を提案した(特許文献2)。   Therefore, one of the applicants of the present application has made extensive efforts to develop a new dispersion apparatus and dispersion method that can uniformly disperse liquid raw materials with low power, and as a result, has used media (beads). Even if not, it was found that the aggregated particles could be crushed (dispersed) to some extent, and a liquid raw material dispersing apparatus having the following configuration was proposed (Patent Document 2).

「液状原料に、粉砕媒体(メディア)レスの状態で、垂直回転力を付与して渦流(せん断流)的移動をさせることにより液状原料を均一分散系とする分散装置であって、
縦形の環状処理室を構成する環状処理容器と、前記環状処理室内に垂直回転可能に下端に底部隙間を有して配設され、内・外環状隙間を形成する反転有底筒形(反転椀形)の攪拌部材とを備え、攪拌部材は、周壁に連通孔を備え、環状処理容器は、原料供給口を備えるとともに製品排出口を備えている、ことを特徴とする。」
しかし、上記構成の分散装置は、構造が複雑で、攪拌部材の内外周面に内・外環状隙間を分散効率を上げようとして所定以上に小さく(例えば、0.1mm以下)しようとすると、安定して隙間を形成することが困難であった。
“A dispersion apparatus that makes a liquid raw material a uniform dispersion system by applying a vertical rotational force to the liquid raw material in a state without a pulverizing medium (medium) and moving the liquid raw material in a vortex (shear flow) manner,
An annular processing vessel constituting a vertical annular processing chamber, and an inverted bottomed cylindrical shape (inverted bowl) which is disposed in the annular processing chamber with a bottom clearance at the lower end so as to be vertically rotatable and forms an inner / outer annular clearance. The stirring member is provided with a communication hole in the peripheral wall, and the annular processing vessel is provided with a raw material supply port and a product discharge port. "
However, the dispersing device having the above configuration is complicated in structure, and if the inner and outer annular gaps on the inner and outer peripheral surfaces of the stirring member are made smaller than a predetermined value (for example, 0.1 mm or less) in order to increase the dispersion efficiency, the dispersing device is stable. It was difficult to form a gap.

なお、本発明の特許性に影響を与えるものではないが、ナノサイズのエマルション調製に際して、従来の超高圧ホモジナイザーに代わり得る分散化技術として、薄膜旋回高速攪拌方式の技術が紹介されている(非特許文献1)。その一部を下記に要約乃至引用する。   Although not affecting the patentability of the present invention, a thin-film swirl high-speed stirring system technique has been introduced as a dispersion technique that can replace the conventional ultra-high pressure homogenizer when preparing a nano-sized emulsion (non-native). Patent Document 1). Some of these are summarized or quoted below.

「容器内に保持する処理液体、または底部より注入される処理液体はタービンによって旋回運動し、遠心力によって内壁面に沿って立ち上がる。平衡速度に達すると、容器の内壁全面に沿った薄膜が形成される。例えば、内径80mmの容器で旋回速度(周速度)が50m/sの場合、高速旋回により厚さ(膜厚)20mm程度の中空円柱状の旋回薄膜が形成される。そして、旋回薄膜内の流速はタービンよりほんのわずか遅い速度で追随しており、速度低下はわずかである。ほぼ50m/sの速度(遠心力6700G)でタービンを離れ、速度0m/sの容器内壁面の近くほんの数μmのところで一挙に0m/sまで低下する。6700Gもの遠心力を受けながら50m/sもの急激な速度差が発生することにより、強烈な「ずり応力(超Heavy Friction)」が容器内壁面で、360°まったく同じメカニズム・レベルで発生する。液滴は一瞬に薄く引き延ばされ、引きちぎられ、凝集体は、遠心力で壁面に押えつけられながらも、旋回流によって壁面を転がっていくことにより解砕される。これが薄膜旋回高速攪拌方式による乳化・分散のメカニズムである。この強烈なずり応力により、従来の高速回転型攪拌機では到達し得なかったサブミクロンへの微粒子化を可能とした。」
特開2000−126635号公報(特許請求の範囲等) 特開2005−319403号公報(特許請求の範囲等) 渋谷治男「ナノサイズまでの乳化粒子設計を可能にした新しい攪拌技術」、化学装置、化学調査会、2006年4月、P.55〜56
“The processing liquid held in the container or the processing liquid injected from the bottom swirls by the turbine and rises along the inner wall surface by centrifugal force. When the equilibrium speed is reached, a thin film is formed along the entire inner wall surface of the container. For example, when a turning speed (circumferential speed) is 50 m / s in a container having an inner diameter of 80 mm, a hollow cylindrical turning thin film having a thickness (film thickness) of about 20 mm is formed by high-speed turning. The flow velocity inside follows at a speed that is only slightly slower than the turbine, and the speed drop is slight. It drops to 0 m / s at a few μm at a stroke.A sudden speed difference of 50 m / s is generated while receiving a centrifugal force of 6700 G, so that an intense “heavy stress” is generated on the inner wall surface of the container. , 360 ° Occurs at exactly the same mechanism level. The droplets are thinly drawn and broken instantly, and the aggregates are crushed by rolling on the wall surface by the swirl flow while being pressed against the wall surface by centrifugal force. This is the mechanism of emulsification / dispersion by the thin film swirl high speed stirring method. This intense shear stress made it possible to make fine particles down to submicron, which could not be achieved with a conventional high-speed rotating stirrer. "
JP 2000-126635 A (Claims etc.) JP 2005-319403 A (Claims etc.) Haruo Shibuya “New stirring technology that enables emulsified particle design to nano size”, Chemical Equipment, Chemical Research Committee, April 2006, P.55-56

本発明は、上記にかんがみて、きわめて簡単な構造で液状原料を均一分散化(凝集粒子の解砕)が可能な新規な構造の分散装置を提供することを目的とする。   In view of the above, an object of the present invention is to provide a dispersing device having a novel structure capable of uniformly dispersing a liquid material (disintegrating aggregated particles) with a very simple structure.

本発明の他の目的は、上記分散装置を使用して安定化した解砕凝集粒子の分散液を得ることを提供することにある。   Another object of the present invention is to provide a dispersion of crushed and agglomerated particles that is stabilized using the above-described dispersion apparatus.

本発明者らは、上記課題を解決するために、本発明者らが先に提案した特許文献2に記載のビーズレス分散装置において連通孔を廃した断面蛇行のせん断流発生隙間を有する分散装置(以下「倒立カップ/円柱複合型」という:図1参照)と、円筒容器内に円柱を嵌合させて断面U字形のせん断流発生隙間を有する分散装置(以下「単純円柱型」という:図2参照。)とで、隙間を1mmとして、高速回転(周速:40m/s、1579rpm)させた。その結果、分散能(微粒子化能)は、「単純円柱型」が「倒立カップ/円柱複合型」に優るとも劣らないとの知見を得た(図6参照)。   In order to solve the above-mentioned problems, the present inventors have provided a dispersion device having a meandering shear flow generation gap with a meandering cross section in which a communication hole is eliminated in the beadless dispersion device described in Patent Document 2 previously proposed by the present inventors. (Hereinafter referred to as “inverted cup / column composite type”: see FIG. 1) and a dispersing device (hereinafter referred to as “simple column type”) having a U-shaped shear flow generation gap by fitting a column in a cylindrical container. 2), the gap was set to 1 mm, and high speed rotation (peripheral speed: 40 m / s, 1579 rpm) was performed. As a result, it was found that the dispersibility (micronization ability) is not inferior to the “simple cylindrical type” as compared to the “inverted cup / cylindrical composite type” (see FIG. 6).

上記知見に基づき、上記第一の目的を達成できる、下記構成の液状原料の分散装置に想到した。   Based on the above findings, the inventors have arrived at a liquid raw material dispersing apparatus having the following constitution that can achieve the first object.

液状原料にせん断応力を発生させて液状原料中の凝集粒子を解砕(微粒子化)して均一分散化させる分散装置であって、
円柱状空間を備えた処理容器と、該円柱状空間に嵌合される円柱状部材とを備えるとともに、前記処理容器と前記円柱状部材とを相対回転させる回転駆動手段を備え、
前記処理容器は一端側に原料入口を他端側に製品出口を備え、
前記処理容器と円柱状部材との間には前記原料入口及び前記製品出口と連通するせん断流発生隙間が形成され、
該せん断流発生隙間は、前記原料入口側に位置する円板状隙間と、前記製品出口側に位置する円筒状隙間とを備え、
前記原料入口及び前記製品出口にそれぞれ原料供給手段及び製品排出手段が接続されることを特徴とする。
A dispersing device that generates shear stress in a liquid material to crush (aggregate) the agglomerated particles in the liquid material and uniformly disperse the particles,
A processing container having a columnar space; and a columnar member fitted in the columnar space; and a rotation driving means for relatively rotating the processing container and the columnar member,
The processing vessel comprises a raw material inlet on one end side and a product outlet on the other end side,
A shear flow generation gap communicating with the raw material inlet and the product outlet is formed between the processing container and the cylindrical member,
The shear flow generation gap includes a disk-like gap located on the raw material inlet side and a cylindrical gap located on the product outlet side,
A raw material supply means and a product discharge means are connected to the raw material inlet and the product outlet, respectively.

上記構成の液状原料の分散装置は、メディア(ビーズ)を使用しなくても、攪拌部材(タービン)の外周に連通穴に相当する凹凸孔がなくても、円柱体外周面と円柱空間内壁面との間が極めて近接(例えば、1mm以下)していることにより、分散粒子の微細化が可能である。   The liquid raw material dispersing apparatus having the above-described configuration can be used without using media (beads), and without having uneven holes corresponding to communication holes on the outer periphery of the stirring member (turbine). Are very close to each other (for example, 1 mm or less), so that the dispersed particles can be miniaturized.

さらに、下記方法により、本発明の第2の目的(安定分散液の調製)が達成できる。   Furthermore, the second object of the present invention (preparation of a stable dispersion) can be achieved by the following method.

上記分散装置における前記せん断流発生隙間を凝集粉体を含有する液状原料を通過させて実質的な密閉空間内で解砕(微粒子化)して分散処理を行うに際して、前記液状原料に表面改質剤を添加しながら行うことを特徴する。すなわち、せん断場で表面改質することにより、解砕凝集粒子の再凝集が阻止できる。   When the liquid raw material containing aggregated powder is allowed to pass through the gap for generating shear flow in the dispersion apparatus and pulverized (finely divided) in a substantially sealed space, the liquid raw material is subjected to surface modification. It is characterized by being carried out while adding an agent. That is, re-aggregation of the pulverized and agglomerated particles can be prevented by surface modification in a shear field.

次に、本発明の望ましい一実施形態に基づいて、詳細に説明する。   Next, based on one desirable embodiment of the present invention, it explains in detail.

ここでは、固液分散液(粒子凝集体含有液:スラリー)における、凝集粒子(ナノ粒子凝集体)を解砕(微粒子化:物理的分散)すると同時に、解砕後の凝集粒子(解砕凝集粒子)の表面改質(化学的表面改質)をして、解砕凝集粒子が再凝集しない安定した分散液を調製する場合を例に採り説明する。   Here, the aggregated particles (nanoparticle aggregates) in the solid-liquid dispersion (particle aggregate-containing liquid: slurry) are crushed (micronized: physically dispersed), and at the same time, the aggregated particles after pulverization (pulverized aggregate) The case where a stable dispersion liquid in which the pulverized and agglomerated particles are not re-agglomerated is prepared by surface modification (chemical surface modification) of the particles) will be described as an example.

図3に本発明の方法に適用する分散装置システム図を示す。   FIG. 3 shows a distribution apparatus system diagram applied to the method of the present invention.

基本的には、本発明の分散装置(容器/回転体組体)12と、貯留タンク14とから構成され、貯留タンク14と、分散装置12の容器/回転体組体16との間には供給配管18と戻り配管20とが接続され、さらに、供給配管18は供給ポンプ(スラリーポンプ、ギアポンプ等)22を備え、分散装置12と貯留タンク14との間を分散液(スラリー)を循環可能とされている。さらに、処理容器28の底部には、原料供給側に表面改質剤を供給可能に改質剤注入器24が接続されている(図2参照)。また、処理容器28の原料供給口28aは、逆止手段(逆止弁)を介して、原料供給配管18が接続可能とされている。なお、前記供給ポンプを廃して又は廃さずに戻り配管に吸引ポンプを備えた構成としてもよい。   Basically, the dispersion apparatus (container / rotary body assembly) 12 of the present invention and a storage tank 14 are provided, and between the storage tank 14 and the container / rotation body assembly 16 of the dispersion apparatus 12. The supply pipe 18 and the return pipe 20 are connected, and the supply pipe 18 further includes a supply pump (slurry pump, gear pump, etc.) 22, and can circulate the dispersion (slurry) between the dispersion device 12 and the storage tank 14. It is said that. Furthermore, a modifier injector 24 is connected to the bottom of the processing vessel 28 so that a surface modifier can be supplied to the raw material supply side (see FIG. 2). The raw material supply port 28a of the processing container 28 can be connected to the raw material supply pipe 18 via a check means (check valve). In addition, it is good also as a structure provided with the suction pump in the return piping, without using the supply pump or without using it.

そして、分散装置12は、下記構成を備えている(図2参照)。   And the dispersion | distribution apparatus 12 is provided with the following structure (refer FIG. 2).

円柱状空間26を備えた処理容器28と、該円柱状空間26に嵌合される円柱状部材30とを備えるとともに、処理容器28と円柱状部材30とを相対回転させる回転駆動手段32を備えている。ここで、円柱状とは、テーパ状も含む。ここで、テーパ角度(傾斜角度)は、通常15°、より普通には10°以内とする。通常、テーパは、原料入口から製品出口に向かって広がるものとするが、逆であってもよい。   A processing vessel 28 having a cylindrical space 26 and a columnar member 30 fitted in the cylindrical space 26 are provided, and a rotation driving means 32 for relatively rotating the processing vessel 28 and the cylindrical member 30 is provided. ing. Here, the columnar shape includes a tapered shape. Here, the taper angle (tilt angle) is usually 15 °, more usually within 10 °. Usually, the taper widens from the raw material inlet toward the product outlet, but may be reversed.

処理容器28は一端側に原料入口28aを他端側に製品出口28bを備え、処理容器28と円柱状部材30との間には原料入口28a及び製品出口28bと連通するせん断流発生隙間34が形成され、せん断流発生隙間34は、原料入口28a側に位置する円板状又はコニカル状隙間(以下「底部側隙間」という。)(図例では円板状)34aと、製品出口28b側に位置する円筒状隙間(以下「周面側隙間」という。)34bとを備えたものである。   The processing vessel 28 includes a raw material inlet 28a on one end side and a product outlet 28b on the other end side, and a shear flow generation gap 34 communicating with the raw material inlet 28a and the product outlet 28b is provided between the processing vessel 28 and the cylindrical member 30. The formed shear flow gap 34 is a disc-like or conical gap (hereinafter referred to as a “bottom-side gap”) 34a (in the example shown in the figure) 34a located on the raw material inlet 28a side and a product outlet 28b side. And a cylindrical gap (hereinafter referred to as a “circumferential surface side gap”) 34b.

ここで各底部側・周面側隙間の間隙(寸法)は、2000μm以下(望ましくは1200μm以下)とする。下限は安定した隙間を形成可能で、且つ、液状原料を供給可能で円柱状部材を形成可能であるなら、可及的に狭い方が、せん断応力の増大により分散能の向上が期待できる(通常下限は100〜200μm)。ただし、後述の試験例で示す如く、1200〜400 μmの範囲では、分散能(微粒子化能)に顕著な差が出ない。このため、製造・運転上の安定性の見地からは、1000μm 前後であってもよい。   Here, the gaps (dimensions) between the bottom side and circumferential surface side gaps are set to 2000 μm or less (preferably 1200 μm or less). If the lower limit can form a stable gap, and a liquid material can be supplied and a cylindrical member can be formed, the narrower one can be expected to improve the dispersibility by increasing the shear stress (normally The lower limit is 100 to 200 μm). However, as shown in the test examples to be described later, in the range of 1200 to 400 μm, there is no significant difference in dispersibility (micronization ability). For this reason, it may be around 1000 μm from the viewpoint of stability in manufacturing and operation.

上記間隙寸法は、円柱状空間26および円柱状部材30の断面を同心の真円とした場合のものである。円柱状空間26及び円柱状部材30の断面の一方又は双方を、両者が相対回転可能な範囲で真円に近い正多角形とすることも可能である。さらには、円柱状空間26の内周壁及び円柱状部材30の外周壁の一方又は双方に凹凸(窪み:ディンプル)を全面的又は部分的に形成してもよい。   The gap dimensions are those when the cross-sections of the cylindrical space 26 and the cylindrical member 30 are concentric circles. One or both of the cross-sections of the columnar space 26 and the columnar member 30 may be a regular polygon close to a perfect circle within a range in which both can be relatively rotated. Furthermore, unevenness (dents: dimples) may be formed entirely or partially on one or both of the inner peripheral wall of the cylindrical space 26 and the outer peripheral wall of the cylindrical member 30.

本実施形態では、処理容器28は、縦置きで、処理容器28に原料を底部側から供給し、製品を天井側から排出するものである。原料供給・製品排出は、上下逆も可能であり、さらには、分散装置を横置きも可能である。なお、原料入口28aは、図例では、底部側隙間34aの中心部に位置しているが、円板径の約1/10以内の偏心位置に形成してもよい。その場合は、渦流(せん断流)がより効率的に発生することが期待できる。   In the present embodiment, the processing container 28 is vertically placed, and the raw material is supplied to the processing container 28 from the bottom side, and the product is discharged from the ceiling side. The material supply and product discharge can be reversed upside down, and further, the dispersing device can be placed horizontally. In addition, although the raw material inlet 28a is located in the center part of the bottom part side clearance 34a in the example of a figure, you may form it in the eccentric position within about 1/10 of a disc diameter. In that case, it can be expected that the vortex flow (shear flow) is generated more efficiently.

また、回転駆動手段32は、液封メカニカルシール33を介して、円柱状部材30がモータ(電動機)36でプーリ伝動38により高速回転駆動されるようになっている。処理容器28を回転させることも可能であり、処理容器28と円柱状部材30の双方を逆回転させることも可能である。上記メカニカルシール33は、グランドシール等の他のシール手段に代替でき、プーリ伝動も、歯車、チェーン伝動、タイミングベルト伝動等の他の伝動手段に代替できる。   The rotation driving means 32 is configured such that the columnar member 30 is driven to rotate at high speed by a pulley transmission 38 by a motor (electric motor) 36 via a liquid seal mechanical seal 33. The processing container 28 can be rotated, and both the processing container 28 and the columnar member 30 can be rotated in the reverse direction. The mechanical seal 33 can be replaced with other sealing means such as a ground seal, and the pulley transmission can also be replaced with other transmission means such as a gear, chain transmission, timing belt transmission and the like.

さらに、分散装置を横置きとして、円柱状部材を両端軸支構造としてもよい。両端軸支構造とすることにより、高速回転時の円柱状部材の振れ回りを確実に阻止でき、円筒状隙間をより狭小なものとすることが可能となる。   Furthermore, it is good also considering a dispersion | distribution apparatus as horizontal installation and a cylindrical member as a both-ends axial support structure. By adopting the both-end shaft support structure, it is possible to reliably prevent the columnar member from swinging during high-speed rotation and to make the cylindrical gap narrower.

また、円柱状部材は、断面真円でなく、隙間正多角形の底部側をテーパ(コニカル)嵌合としてもよい。テーパ嵌合した場合は、底部側隙間量の調節が可能となる。   Further, the cylindrical member may have a tapered (conical) fitting on the bottom side of the regular polygon of the gap instead of a perfect circle. When the taper is fitted, the bottom side gap amount can be adjusted.

なお、図示しないが、処理容器には温調手段(冷却手段)を付設する。せん断摩擦による温度が上昇して、分散質である粒子(特に解砕後の一次粒子)が、処理容器の内壁面に付着するおそれがあるためである。通常、ジャケットによる水冷却とするが、空冷等であってもよい。   Although not shown, the processing container is provided with temperature adjusting means (cooling means). This is because the temperature due to shear friction rises, and particles that are dispersoids (particularly primary particles after pulverization) may adhere to the inner wall surface of the processing container. Usually, water cooling by a jacket is used, but air cooling or the like may be used.

そして、必然的ではないが、液状原料の分散粒子が高硬度の場合、処理容器の前記攪拌部材の処理原料と接触する面が耐摩耗性高分子材料又は耐摩耗性金属(例えば、ジルコニア)等でライニングしてもよい。特に、処理容器の底部側が、円柱状部材の遠心力及び重力を受けて摩耗が促進され易いためライニングを施しておくことが望ましい(特許文献2参照)。   And, though not necessarily, when the dispersed particles of the liquid raw material have a high hardness, the surface of the processing vessel that contacts the processing raw material of the stirring member is a wear-resistant polymer material or a wear-resistant metal (for example, zirconia). Lined with In particular, the bottom side of the processing container is preferably subjected to lining because the wear tends to be accelerated by the centrifugal force and gravity of the cylindrical member (see Patent Document 2).

次に、上記実施形態の使用態様について、説明をする。   Next, the usage mode of the above embodiment will be described.

ここでは、液状原料として凝集粒子を含有する固液分散液を例に採り説明するが、液液分散液にも本発明の方法は適用できる。その場合は、表面改質剤は使用しない。   Here, a solid-liquid dispersion containing aggregated particles as a liquid raw material will be described as an example, but the method of the present invention can also be applied to a liquid-liquid dispersion. In that case, no surface modifier is used.

先ず、貯留タンク14に液状原料を、表面改質剤(液状又は粉末状)を注入器24に、それぞれ投入しておく。そして、供給配管18のポンプ22及び分散装置12のモータ36を駆動させるとともに、表面改質剤を処理容器内へ注入する。通常、連続的に注入するが間欠的であってもよい。   First, the liquid raw material and the surface modifier (liquid or powder) are put into the storage tank 14 and the injector 24, respectively. Then, the pump 22 of the supply pipe 18 and the motor 36 of the dispersing device 12 are driven, and the surface modifier is injected into the processing container. Usually, the injection is continuous, but it may be intermittent.

ここで、表面改質剤としては、液状原料を構成する分散媒及び分散質(凝集粒子)により異なる。例えば、分散媒が水で分散質が無機化合物である場合、シランカップリング剤とする。   Here, the surface modifier varies depending on the dispersion medium and dispersoid (aggregated particles) constituting the liquid raw material. For example, when the dispersion medium is water and the dispersoid is an inorganic compound, a silane coupling agent is used.

ここで、円柱状部材30の回転数(周速)は、通常、10〜50 m/s、望ましくは20〜45m/sとする。分散処理時間は、例えば、円柱状部材30の周速40 m/sの場合、通常、3〜20分、望ましくは4〜12分、さらに望ましくは、4〜6分とする。これらの数値は、液状原料の種類及び処理容器28の大きさによっても若干変動する。また、ポンプ22の分散液輸送量は、分散装置の処理能により異なるが、例えば処理容器容量(処理容器のみの)20L(dm3 )の場合、400〜800L(dm3 )/minとする。 Here, the rotation speed (circumferential speed) of the columnar member 30 is usually 10 to 50 m / s, preferably 20 to 45 m / s. For example, when the circumferential speed of the cylindrical member 30 is 40 m / s, the dispersion treatment time is usually 3 to 20 minutes, preferably 4 to 12 minutes, and more preferably 4 to 6 minutes. These numerical values slightly vary depending on the type of the liquid raw material and the size of the processing container 28. Moreover, although the dispersion liquid transport amount of the pump 22 varies depending on the processing capability of the dispersion apparatus, for example, in the case of a processing container capacity (only the processing container) of 20 L (dm 3 ), it is set to 400 to 800 L (dm 3 ) / min.

このとき、液状原料中の凝集粒子は図4に示す如く、発生するせん断流によりせん断応力を受けて解砕され解砕凝集粒子となり、さらに、該解砕凝集粒子の表面に凝集防止改質剤(表面改質剤)が付着する。この結果、解砕された一次粒子が再凝集せず、良好な均一分散状態が維持される。   At this time, as shown in FIG. 4, the aggregated particles in the liquid raw material are crushed by being subjected to shear stress by the generated shear flow to become crushed aggregated particles, and further, the aggregation preventing modifier is formed on the surface of the crushed aggregated particles. (Surface modifier) adheres. As a result, the pulverized primary particles are not re-agglomerated and a good uniform dispersion state is maintained.

次に、本発明の作用・効果を確認するために行った実施例及び比較例についての試験例について説明をする。
<ナノ粒子分散条件の検討>
(1)化学的表面改質を組み合わせることを視野に入れ、凝集ナノ粒子(以下、「凝集粒子」という。)を物理的に分散させるための装置について検討を行い、最適操作条件の決定を試みた。
Next, test examples of Examples and Comparative Examples performed for confirming the operation and effect of the present invention will be described.
<Examination of nanoparticle dispersion conditions>
(1) With a view to combining chemical surface modification, we examined a device for physically dispersing aggregated nanoparticles (hereinafter referred to as “aggregated particles”) and attempted to determine the optimum operating conditions. It was.

液中微粒子の分散装置は、プロペラ翼などを用いて粒子懸濁液を攪拌し、翼近傍の媒体流動の速度勾配や翼への粒子衝突などを利用する「攪拌型」、高速回転する攪拌翼と固定環の間隙に発生する高せん断場を利用する「高速回転せん断型」、硬球間の衝突を利用する「ミル型」、噴出による圧力差を利用する「高圧噴出型」、超音波振動を利用する「超音波型」に大別される。攪拌型では翼近傍の凝集体だけが分散され、均一な分散は期待できない。また、ミル型はミクロンレベルの分散が限界である。高圧噴出型、超音波型はサブミクロンレベルの分散に有効であるが、高圧噴出型は装置の構造上表面改質反応の適用が難しい。超音波型は長時間の超音波照射により再凝集が起こる可能性があり、改質反応の反応時間を確保することが難しい。一方、高速回転せん断型は比較的均一に分散が行われ、さらに閉鎖循環系と組み合わせることで表面改質の反応時間を任意に設定できる。   A dispersion device for fine particles in liquid is a “stirring type” that uses a propeller blade to stir the particle suspension and utilizes the velocity gradient of the medium flow near the blade and particle collision with the blade. "High-speed rotational shear type" using a high shear field generated in the gap between the fixed ring and "Mill type" using collision between hard spheres, "High-pressure jet type" using pressure difference due to jetting, ultrasonic vibration Broadly divided into “ultrasonic type” to be used. In the stirring type, only aggregates near the blade are dispersed, and uniform dispersion cannot be expected. The mill type has a limit of micron level dispersion. The high-pressure jet type and ultrasonic type are effective for dispersion at the submicron level, but the high-pressure jet type is difficult to apply the surface modification reaction due to the structure of the apparatus. In the ultrasonic type, reaggregation may occur due to long-time ultrasonic irradiation, and it is difficult to ensure the reaction time of the reforming reaction. On the other hand, the high-speed rotary shear type is relatively uniformly dispersed, and the surface modification reaction time can be arbitrarily set by combining with a closed circulation system.

したがって、高速回転せん断型分散装置を採用した。   Therefore, a high-speed rotational shearing type dispersion device was adopted.

本検討では、凝集粒子に表面改質を行わないので、分散直後から再凝集が始まる。特に粒子と分散媒の濡れ性が乏しい場合は、粒子分散性の評価を行う前に凝集が起こり、実際の分散性能を正しく評価できない可能性がある。そこで、粒子と分散媒の濡れ性が比較的良好な炭酸カルシウム/水系スラリーを使用することで、分散性評価に必要な測定時間を確保した。分散性能には、せん断流の速度勾配の大きさが影響すると考えられる。   In this study, since the surface of the aggregated particles is not modified, reaggregation starts immediately after dispersion. In particular, when the wettability between the particles and the dispersion medium is poor, aggregation may occur before the evaluation of the particle dispersibility, and the actual dispersion performance may not be evaluated correctly. Therefore, the measurement time required for the evaluation of dispersibility was secured by using a calcium carbonate / water-based slurry in which the wettability of the particles and the dispersion medium was relatively good. The dispersion performance is considered to be affected by the magnitude of the velocity gradient of the shear flow.

高速回転体(円柱状部材又は倒立カップ)の形状、回転体・容器間距離、回転体回転速度、分散処理時間を変化させ、下記方法の粒度分布測定により分散性能を評価し、最適条件の決定を試みた。さらに分散処理後の粒子を下記方法のSEMにより観察し、粒子の破壊(解砕)の有無を確認した。   Change the shape of the high-speed rotating body (columnar member or inverted cup), the distance between the rotating body and the container, the rotational speed of the rotating body, and the dispersion processing time, evaluate the dispersion performance by the particle size distribution measurement of the following method, and determine the optimum conditions. Tried. Furthermore, the particles after the dispersion treatment were observed by SEM of the following method, and the presence or absence of particle destruction (crushing) was confirmed.

1)粒度分布測定
レーザー回折・散乱法を応用した「Microtrac MT3000」(日機装株式会社製)を用いて行った。サンプリングから測定までは5分間とした。
1) Particle size distribution measurement The measurement was performed using “Microtrac MT3000” (manufactured by Nikkiso Co., Ltd.) to which laser diffraction / scattering method was applied. The time from sampling to measurement was 5 minutes.

レーザー回折・散乱法による粒度分布測定は、レーザー光をスラリー中の粒子に照射し、散乱光量とパターンを検出し、演算処理によって粒度分布を測定する方法である。凝集体は一つの粒子として処理されるため、実際には凝集体の粒度分布が測定される。   The particle size distribution measurement by the laser diffraction / scattering method is a method of irradiating the particles in the slurry with laser light, detecting the amount of scattered light and the pattern, and measuring the particle size distribution by arithmetic processing. Since the aggregate is processed as a single particle, the particle size distribution of the aggregate is actually measured.

2)SEM観察
原料粒子のSEM試料は、試料台に塗布したカーボンペースト上に原料粉を付着させ、オスミウムコーティングを施して調製した。分散処理後のSEM試料は、試料台にカーボンペーストを塗布した後、スラリーを滴下、乾燥後、オスミウムコーティングを施して調製した。それぞれの試料を走査型電子顕微鏡(SCANNING MICROSCOPY )「JSM-7000F」 (日本電子株式会社製)にて観察した。
2) SEM observation The SEM sample of the raw material particles was prepared by adhering the raw material powder on the carbon paste applied to the sample stage and applying the osmium coating. The SEM sample after the dispersion treatment was prepared by applying a carbon paste on a sample stage, dropping the slurry, drying, and applying an osmium coating. Each sample was observed with a scanning electron microscope (SCANNING MICROSCOPY) “JSM-7000F” (manufactured by JEOL Ltd.).

走査型電子顕微鏡(Scanning electron microscope:SEM)は、集束電子線を試料表面上に走査し、各走査点から放出される電子を検出、増幅し、走査と同期させて拡大像を映し出す装置である。   A scanning electron microscope (SEM) is a device that scans the surface of a sample with a focused electron beam, detects and amplifies electrons emitted from each scanning point, and displays an enlarged image in synchronization with the scanning. .

(2)実験は下記の如く行った
1)試料調製
蒸留水に炭酸カルシウム(「ナノキューブ60」:一次粒子径:60 nm、日鉄鉱業株式会社製商品名)を加え、30分間静かに攪拌し、固体濃度 4.5 mass%の炭酸カルシウムスラリーを調製した。これをスラリー(液状原料:分散液)Aとした。次に、スラリーAに分散剤として炭酸カルシウム重量に対し1 mass%のヘキサメタリン酸ナトリウム(関東化学株式会社)を添加し、これをスラリー(液状原料:分散液)Bとした。
(2) The experiment was conducted as follows
1) Sample preparation Calcium carbonate (“Nanocube 60”: primary particle size: 60 nm, trade name, manufactured by Nittetsu Mining Co., Ltd.) is added to distilled water, stirred gently for 30 minutes, and calcium carbonate with a solid concentration of 4.5 mass%. A slurry was prepared. This was designated as slurry (liquid raw material: dispersion) A. Next, 1 mass% sodium hexametaphosphate (Kanto Chemical Co., Inc.) was added to slurry A as a dispersant with respect to the weight of calcium carbonate, and this was used as slurry (liquid raw material: dispersion) B.

2)粒子分散処理
高速回転せん断型分散装置では、高速回転体と回転体を覆う容器の間隙にせん断流が発生する。凝集体がせん断流中に置かれたとき、凝集体はせん断流内の速度勾配により、部位によって異なる流体抵抗を受け、破壊されると考えられる。
2) Particle dispersion process In the high-speed rotary shear type dispersion device, a shear flow is generated in the gap between the high-speed rotary body and the container covering the rotary body. When agglomerates are placed in a shear flow, the agglomerates are subject to different fluid resistances depending on the site due to the velocity gradient in the shear flow and are considered to break.

検討に供した高速回転せん断型分散装置の処理容器は実施例1・2・3(図2)及び比較例(図1)である。比較例は、環状空間26Aを備えた処理容器に逆カップ型回転体30Aを被せたものである。各処理容器は、図示の寸法仕様のものを使用した。図2における隙間Gは、実施例1:1mm(1000μm)、実施例2:0.5mm(500μm)、実施例3:0.25mm(250μm)とした。   The processing containers of the high-speed rotary shear type dispersion apparatus used for the study are Examples 1, 2, and 3 (FIG. 2) and a comparative example (FIG. 1). In the comparative example, a reverse cup type rotating body 30A is put on a processing container having an annular space 26A. Each processing container used had the dimensions shown in the figure. The gap G in FIG. 2 was set to Example 1: 1 mm (1000 μm), Example 2: 0.5 mm (500 μm), and Example 3: 0.25 mm (250 μm).

そして、上記実施例1・2・3及び比較例の分散装置を、図3に示す分散処理装置システムに組み込んで実験を行った。   An experiment was conducted by incorporating the dispersion apparatuses of Examples 1, 2, and 3 and the comparative example into the distributed processing apparatus system shown in FIG.

なお、メカニカルシールのシール液として水を使用し、窒素加圧した。分散液(スラリー)の過熱を防ぐため、貯留タンクと処理容器は冷却水で冷却した。   In addition, water was used as a sealing liquid for the mechanical seal, and nitrogen was pressurized. In order to prevent the dispersion (slurry) from overheating, the storage tank and the processing vessel were cooled with cooling water.

3)シミュレーション
実施例1(単純円柱タイプ:隙間1mm)の分散装置について、有限要素法による容器水平断面の水流のシミュレーションの結果の一例を図4に示す。シミュレーションソフトとしてはANSYS(アンシス株式会社)を用いた。
3) Simulation FIG. 4 shows an example of the simulation result of the water flow in the horizontal section of the container by the finite element method for the dispersion apparatus of Example 1 (simple cylinder type: gap 1 mm). ANSYS (Ansys Corporation) was used as simulation software.

シミュレーション条件は要素数2323、接点数2714、水温を27 ℃、粘度を855 μPa・s 、回転体の周速を40 m/s、各種寸法を実測値に設定した。図中の矢印は水流の速度ベクトルである。シミュレーションの結果、円柱状部材(回転体)30の外壁面と処理容器28の内壁面との間隙にせん断流が発生することが確かめられた。   The simulation conditions were 2323 elements, 2714 contacts, water temperature 27 ° C, viscosity 855 µPa · s, rotating body peripheral speed 40 m / s, and various dimensions measured. The arrow in the figure is the velocity vector of the water flow. As a result of the simulation, it was confirmed that a shear flow was generated in the gap between the outer wall surface of the cylindrical member (rotating body) 30 and the inner wall surface of the processing container 28.

(3)評価実験は下記項目について行った。   (3) The evaluation experiment was conducted on the following items.

1)分散性能に対する回転体の形状の影響評価:
実施例1(単純円柱タイプ)と比較例(倒立カップ/円柱複合タイプ)の各処理容器を用いて行った。
1) Evaluation of the influence of the shape of the rotating body on dispersion performance:
It carried out using each processing container of Example 1 (simple cylindrical type) and a comparative example (inverted cup / cylindrical composite type).

スラリーA 2000 ml をタンクに投入し、循環ポンプ(吐出量500 ml/min)を10分間運転した後、回転体周速40 m/s (回転体外側面)で5分間運転した。   2000 ml of the slurry A was put into the tank, and the circulation pump (discharge amount 500 ml / min) was operated for 10 minutes, and then operated for 5 minutes at a rotating body peripheral speed of 40 m / s (rotating body outer surface).

2)分散性能に対する回転体・容器間距離の影響評価:
実施例1・2・3の各処理容器を用いて行った。スラリーB 2000 ml をタンクに投入し、循環ポンプ(吐出量500 ml/min)を10分間運転した後、回転体周速40 m/sで15分間運転した。
2) Evaluation of the influence of the distance between the rotating body and the container on dispersion performance:
It carried out using each processing container of Examples 1, 2, and 3. 2000 ml of slurry B was put into the tank, and the circulation pump (discharge amount 500 ml / min) was operated for 10 minutes, and then it was operated for 15 minutes at a rotating body peripheral speed of 40 m / s.

3)分散性能に対する周速の影響評価:
実施例1・2・3の各処理容器を用いて行った。スラリーB 2000 mlをタンクに投入し、循環ポンプ(吐出量500 ml/min)を10分間運転した後、回転体周速を21, 27, 34, 40 m/sに設定して、分散時間を5分間とした。
3) Evaluation of the influence of peripheral speed on dispersion performance:
It carried out using each processing container of Examples 1, 2, and 3. Put 2000 ml of slurry B into the tank and operate the circulation pump (discharge amount 500 ml / min) for 10 minutes, then set the rotating body peripheral speed to 21, 27, 34, 40 m / s and set the dispersion time. 5 minutes.

4)分散性能に対する分散時間の影響評価:
実施例1・2・3の各処理容器を用いて行った。スラリーB 2000 mlをタンクに投入し、循環ポンプ(吐出量500 ml/min)を10分間運転した後、回転体周速を40 m/sとして、分散時間を 5, 10, 15分間に設定した。
4) Evaluation of influence of dispersion time on dispersion performance:
It carried out using each processing container of Examples 1, 2, and 3. After putting 2000 ml of slurry B into the tank and operating the circulation pump (discharge amount 500 ml / min) for 10 minutes, the peripheral speed of the rotating body was set to 40 m / s and the dispersion time was set to 5, 10, 15 minutes. .

(4)測定実験結果と考察
原料粒子の粒度分布測定結果を図5に示す。体積平均粒子径は21.4 μmを示し、凝集体を形成していることが分かった。
(4) Measurement Experiment Results and Discussion FIG. 5 shows the particle size distribution measurement results of the raw material particles. The volume average particle diameter was 21.4 μm, indicating that aggregates were formed.

1)回転体形状の影響
分散処理を終えた後の、比較例の倒立カップ内壁に粒子ケーキの形成が見られた。一方、回転体を覆う容器内壁には粒子ケーキの形成は見られなかった。同様に、実施例1の処理容器内壁にもケーキ形成は見られなかった。このことから、高速回転せん断型分散機において、回転体内側のせん断流、つまり内側が停止・外側が回転することによって発生するせん断流は粒子分散に不適であることがわかった。この原因としては、外側が回転するせん断流では、遠心分離機と同様の作用が働くためであると考えられる。
1) Influence of Rotating Body Shape Formation of a particle cake was observed on the inner wall of the inverted cup of the comparative example after finishing the dispersion treatment. On the other hand, no particle cake was formed on the inner wall of the container covering the rotating body. Similarly, no cake formation was observed on the inner wall of the processing container of Example 1. From this, it was found that in the high-speed rotary shear type disperser, the shear flow inside the rotating body, that is, the shear flow generated when the inside stops and the outside rotates is unsuitable for particle dispersion. This is considered to be because a shear flow rotating on the outside works in the same manner as a centrifuge.

比較例及び実施例1の各分散装置を用いて分散処理を行ったスラリーAの粒度分布測定結果を図6に示す。両者はほぼ同じ粒度分布を示した。回転体外側については両者の形状は全く同じであることから、分散性能は回転体外側の領域での粒子分散作用が分散性能にとって支配的であると考えられる。   FIG. 6 shows the particle size distribution measurement results of the slurry A subjected to the dispersion treatment using the dispersion devices of the comparative example and the example 1. Both showed almost the same particle size distribution. Since both shapes are exactly the same on the outside of the rotating body, the dispersion performance is considered to be dominated by the particle dispersion action in the region outside the rotating body.

なお、比較のために、原料粒子についても、粒度分布測定を行った。その結果を、図5に示す。明らかに、せん断分散処理後の図6に示すスラリーの粒度分布が小径側へ移行していることが分かる。   For comparison, the particle size distribution was also measured for the raw material particles. The result is shown in FIG. Obviously, it can be seen that the particle size distribution of the slurry shown in FIG. 6 after the shear dispersion treatment has shifted to the smaller diameter side.

2)回転体・容器距離の影響
実施例1・2の処理容器で分散処理を行ったスラリーBの粒度分布測定結果を図7に示す。回転体・容器間距離が小さくなると、より小さく分散された凝集粒子が現れる。これは回転体周速が同じ場合、回転体・容器間距離が小さい方がよりせん断流の速度勾配が大きくなり、より大きな力が凝集粒子に加わるためであると考えられる。さらに両者の距離を小さくすることで、より分散性能が高まることが期待される。
2) Influence of Rotating Body / Container Distance FIG. 7 shows the particle size distribution measurement result of slurry B subjected to dispersion treatment in the treatment containers of Examples 1 and 2. As the distance between the rotating body and the container becomes smaller, smaller dispersed aggregated particles appear. This is considered to be because when the rotating body peripheral speed is the same, the smaller the distance between the rotating body and the container, the larger the velocity gradient of the shear flow, and the greater force is applied to the aggregated particles. Furthermore, it is expected that the dispersion performance is further improved by reducing the distance between the two.

3)回転体周速の影響
実施例1・2・3の分散処理装置を用いてスラリー(液状原料)Bを0〜 40 m/sの周速で分散処理した結果を図8(A)・(B)・(C)に示す。回転体周速の増加に伴い平均粒子径は減少した。これは粗大粒子が分散されたためであり、最小粒子径は周速が25m/s以上では、周速が増加しても変化がほとんどない。凝集体が小さくなると部位による流体抵抗の差が小さくなるため、分散が困難になると考えられる。
3) Influence of rotating body peripheral speed The results of dispersion treatment of slurry (liquid raw material) B at a peripheral speed of 0 to 40 m / s using the dispersion processing apparatus of Examples 1, 2, and 3 are shown in FIG. Shown in (B) and (C). The average particle size decreased with the increase of the peripheral speed of the rotating body. This is because coarse particles are dispersed, and the minimum particle diameter hardly changes even when the peripheral speed is increased when the peripheral speed is 25 m / s or more. When the aggregate becomes smaller, the difference in fluid resistance due to the site becomes smaller, so that it is considered that dispersion becomes difficult.

なお、「D10」は累積体積(小径側からの;以下同じ。)10 %における、「D50」は累積体積50 %における、「D90」は累積体積90 %とにおける各粒子径を示す。以下の図面においても同様である。   “D10” indicates the particle diameter at an accumulated volume (from the small diameter side; the same applies hereinafter) of 10%, “D50” indicates an accumulated volume of 50%, and “D90” indicates an accumulated volume of 90%. The same applies to the following drawings.

4)分散処理時間の影響
実施例1・2・3の処理容器を用いてスラリーBを様々な分散時間で分散処理した結果を図9(A)・(B)・(C)に示す。隙間が1mm及び0.5mmの実施例1・2では分散時間が5分以上では、分散時間を長くしても、粗大粒子が僅かに減少するのみで、平均粒子径は余り変化しない。スラリー循環ポンプの液送量とスラリー量の関係から、分散時間5分間では大部分のスラリーは系内を一巡しただけである。このことから高速回転せん断型分散装置では、高せん断場を一回通過しただけで凝集粒子が解砕され均一分散化されていると考えられる(連続処理化が可能となる。)。また、隙間が0.25mmの実施例3では、分散時間15分頃まで分散性能が維持される。その理由は、他のより大きな間隙のものに比して、より小さい凝集体にまで解砕でき、この凝集体解砕に時間がかかるためである。
4) Influence of dispersion treatment time The results of dispersion treatment of slurry B at various dispersion times using the treatment containers of Examples 1, 2, and 3 are shown in FIGS. 9 (A), (B), and (C). In Examples 1 and 2 with a gap of 1 mm and 0.5 mm, when the dispersion time is 5 minutes or more, even if the dispersion time is increased, the coarse particles are slightly reduced and the average particle diameter does not change much. Due to the relationship between the amount of liquid fed by the slurry circulation pump and the amount of slurry, most of the slurry only made one round in the system in the dispersion time of 5 minutes. From this, it is considered that the aggregated particles are crushed and uniformly dispersed only once through the high shear field in the high-speed rotary shear type dispersion device (continuous processing is possible). In Example 3 where the gap is 0.25 mm, the dispersion performance is maintained until the dispersion time is about 15 minutes. The reason is that it can be crushed to smaller aggregates than those of other larger gaps, and it takes time to break up the aggregates.

なお、各試料についてSEM観察をした結果、分散粒子前では10μm以上の凝集粒子が多く観察されたのに対し、分散処理後では、10μm以上の凝集粒子がほとんど観察されなかった。なお、分散処理後においては、粒子は薄く拡がった集合体を形成していた。これは、一度サブミクロンレベルに分散された凝集体が、SEM試料作製上の乾燥過程で再凝集した結果と推察される。さらに、SEM高倍率(50000倍)での観察によると、一次粒子の形状は変わっておらず粒子の破壊は起こっていないことが確認された。   As a result of SEM observation of each sample, many aggregated particles of 10 μm or more were observed before the dispersed particles, whereas almost no aggregated particles of 10 μm or more were observed after the dispersion treatment. In addition, after the dispersion treatment, the particles formed a thin and wide aggregate. This is presumed to be a result of agglomerates once dispersed at the submicron level being re-aggregated in the drying process in preparation of SEM samples. Furthermore, observation with an SEM high magnification (50000 times) confirmed that the shape of the primary particles did not change and the particles were not destroyed.

(5)まとめ
高速回転せん断型の分散装置の回転体/容器組体(実施例1・2・3及び比較例)において、回転体外側で発生するせん断流が粒子分散に寄与していることが分かった。回転体・容器間距離を小さくする、もしくは回転体の周速を増し、せん断流により大きな速度勾配を与えることで分散効果が高くなることが分かった。また、高速回転せん断型分散装置では、せん断場を通過した粒子が漏れなく一様に分散されていることが分かった。SEM観察から、せん断流により一次粒子の破壊は起きていないことが確認された。
(5) Summary In the rotating body / container assembly (Examples 1, 2, 3 and Comparative Examples) of the high-speed rotating shear type dispersing apparatus, the shear flow generated outside the rotating body contributes to particle dispersion. I understood. It has been found that the dispersion effect is enhanced by reducing the distance between the rotating body and the container, or increasing the peripheral speed of the rotating body and applying a large velocity gradient to the shear flow. In addition, it was found that the particles that passed through the shear field were uniformly dispersed without leakage in the high-speed rotary shear type dispersion device. From SEM observation, it was confirmed that the primary particles were not broken by the shear flow.

以上の結果から、分散処理装置の回転体/容器組体には単純円柱タイプを用い、回転体周速を40 m/s 、分散時間を5 分間以上乃至15分間以上に設定することで液状原料(スラリー)中粒子の分散効果は最大となることが示された。

<高せん断場中シリカナノ粒子表面改質>
(1)高速せん断型分散装置(以下、「分散装置」)による物理的分散と、表面改質による化学的分散を組み合わせた新規粒子分散技術(以下、せん断場表面改質法)の検討を行った。
Based on the above results, a simple column type was used for the rotating body / container assembly of the dispersion processing apparatus, and the liquid raw material was set by setting the peripheral speed of the rotating body to 40 m / s and the dispersing time to 5 minutes to 15 minutes It was shown that the dispersion effect of the particles in the (slurry) is maximized.

<Surface modification of silica nanoparticles in high shear field>
(1) Examination of new particle dispersion technology (hereinafter referred to as shear field surface modification method) that combines physical dispersion by high-speed shearing dispersion device (hereinafter referred to as “dispersion device”) and chemical dispersion by surface modification. It was.

分散機を使用して炭酸カルシウムナノ粒子を一次粒子に分散させることは出来なかったが、凝集体はせん断力により凝集構造に歪みや変形を生じ、凝集体内での粒子の位置交換が起こり、凝集体表面粒子が刻々交換されると考えられる。従って、高せん断場において表面改質を行うことで、一次粒子表面に均一に表面改質が出来ると期待される。   Although the calcium carbonate nanoparticles could not be dispersed into the primary particles using a disperser, the aggregates were distorted or deformed in the aggregated structure due to the shearing force, and the positions of the particles within the aggregates were exchanged. It is considered that the aggregate surface particles are changed every moment. Therefore, it is expected that surface modification can be performed uniformly on the primary particle surface by performing surface modification in a high shear field.

分散技術の効果を示すため、濡れ性の乏しい系を選択した。濡れ性に乏しく、かつ応用展開が多い系としてシリカ/有機溶媒系が挙げられる。シリカナノ粒子を有機溶媒へ分散させることで耐擦過性塗膜、高硬度・高強度ハイブリッド材料などへの応用が期待されている。シリカ粒子の有機溶媒中への分散は、シランカップリング剤を用いた表面改質によって試みられている。シランカップリング剤はケイ素の有機化合物であり、無機、有機材料と各々化学反応する異なる二つ以上の官能基を持つ。図10に示すように、シランカップリング剤中のシリカ表面と化学結合する部位は、加水分解反応によりシラノール基となり無機表面に水素結合的に吸着、脱水縮合反応し化学結合を形成する。このため、無機材料と有機材料間の濡れ性が改善される。シランカップリング剤の種類は豊富で、シランカップリングを適切に選択することで粒子表面に種々の機能性官能基を導入することも可能である。イソシアネート基は反応性の高さと反応後の安定性から、塗料や接着剤の基材において利用されている。シリカ表面にイソシアネート基を導入することで、これらの製品中でシリカは基材と強固に結合することができる。以上のことから、本実験では表面改質試薬として3-イソシアネートプロピルトリエトキシシランを使用した
本検討を行うに際して、せん断場表面改質法の有効性を示すため、オートクレーブにより表面改質を行った後、分散機を用いて分散させた試料(以下、オートクレーブ法)との比較も行った。
A system with poor wettability was selected to show the effect of the dispersion technique. A silica / organic solvent system is a system with poor wettability and many applications. Dispersion of silica nanoparticles in an organic solvent is expected to be applied to scratch-resistant coating films, high-hardness / high-strength hybrid materials, and the like. Dispersion of silica particles in an organic solvent has been attempted by surface modification using a silane coupling agent. Silane coupling agents are organic compounds of silicon and have two or more different functional groups that chemically react with inorganic and organic materials. As shown in FIG. 10, the site chemically bonded to the silica surface in the silane coupling agent becomes a silanol group by a hydrolysis reaction, and is adsorbed and dehydrated and condensed in a hydrogen bond to the inorganic surface to form a chemical bond. For this reason, the wettability between an inorganic material and an organic material is improved. There are a wide variety of silane coupling agents, and various functional functional groups can be introduced on the particle surface by appropriately selecting the silane coupling. Isocyanate groups are used in base materials for paints and adhesives because of their high reactivity and stability after reaction. By introducing isocyanate groups on the silica surface, silica can be firmly bonded to the substrate in these products. Based on the above, in this experiment, 3-isocyanatopropyltriethoxysilane was used as a surface modification reagent. In order to demonstrate the effectiveness of the shear surface modification method, surface modification was performed using an autoclave. Thereafter, a comparison with a sample dispersed using a disperser (hereinafter referred to as an autoclave method) was also performed.

オートクレーブ法は有機溶媒の超臨界状態において反応させる方法である。超臨界溶媒中では系内の極性が下がり粘性が低くなることから改質剤が凝集体深部に到達しやすいと考えられる。オートクレーブの概略図を11に示す。   The autoclave method is a method of reacting in a supercritical state of an organic solvent. In a supercritical solvent, the polarity in the system decreases and the viscosity decreases, so it is considered that the modifier easily reaches the deep part of the aggregate. A schematic diagram of the autoclave is shown in FIG.

そして、前記と同様、粒度分布測定及びSEMによる分散性能評価を行うとともに、下記FT-IRを用いた表面改質反応の確認、下記TG/DTAを用いた粒子表面改質基密度の定量評価も行った。   And as described above, particle size distribution measurement and dispersion performance evaluation by SEM are performed, confirmation of surface modification reaction using the following FT-IR, and quantitative evaluation of particle surface modification group density using the following TG / DTA went.

1)FT-IR法
FT-IR(「FT-IR6200」日本分光株式会社製)を用いて、表面改質反応の確認を行った。
1) FT-IR method
The surface modification reaction was confirmed using FT-IR (“FT-IR6200” manufactured by JASCO Corporation).

分子はそれぞれ固有の振動をしており、分子に赤外線を照射すると分子固有の振動の振動エネルギーに対応した赤外線が吸収され、分子構造に応じた固有のスペクトルが得られる。FT-IRはこの原理を利用して分子構造を解析するものである。   Each molecule has its own vibration, and when the molecule is irradiated with infrared light, the infrared light corresponding to the vibration energy of the vibration unique to the molecule is absorbed, and a unique spectrum corresponding to the molecular structure is obtained. FT-IR uses this principle to analyze the molecular structure.

シリカ/ヘキサンスラリーを加圧ろ過、洗浄し乾燥後、ミクロ錠剤成形器でペレット状の測定試料を作製した。   The silica / hexane slurry was pressure filtered, washed, dried, and then a pellet-shaped measurement sample was prepared with a microtablet molding machine.

2)TG/DTA法
TG/DTA (「Thermo Plus 2 TG8120」株式会社リガク製) にて、加熱による重量減少量を測定した。測定は昇温20 ℃/minの設定で 測定温度範囲30 ℃から500 ℃、酸素雰囲気中で行った。示差熱・熱重量同時測定装置は、温度を変化させながら試料の重量変化と発熱・吸熱量を測定する装置である。
2) TG / DTA method
The weight loss by heating was measured with TG / DTA ("Thermo Plus 2 TG8120" manufactured by Rigaku Corporation). The measurement was performed at a temperature increase of 20 ° C./min and in a measurement temperature range of 30 ° C. to 500 ° C. in an oxygen atmosphere. The differential heat / thermogravimetric simultaneous measurement device is a device for measuring the weight change of a sample and the amount of heat generation / endotherm while changing the temperature.

図12に示すようにDTA曲線から重量減少範囲を決定し、その範囲内での重量減少率を求めた。得られた結果と以下の式を利用して、粒子表面の改質基密度:dMを求めた。 As shown in FIG. 12, the weight reduction range was determined from the DTA curve, and the weight reduction rate within the range was determined. Using the obtained results and the following formula, the modified group density: d M on the particle surface was determined.

Figure 2008238005
但し、ΔWDは改質粒子の重量減少率、ΔWOH:未改質粒子の重量減少率、NA:アボガドロ数(/mol)、 Mw:脱離部の分子量(g/mol) ( = 84)、SN2(m2/g):比表面積である。
Figure 2008238005
Where ΔW D is the weight reduction rate of the modified particles, ΔW OH is the weight reduction rate of the unmodified particles, N A is Avogadro's number (/ mol), and M w is the molecular weight of the desorption site (g / mol) (= 84), S N2 (m 2 / g): specific surface area.

(2)実験は下記の如く行った。   (2) The experiment was conducted as follows.

1)試料調製
シリカナノ粒子として「AerosilOX50」 (日本アエロジル株式会社製商品名) を使用した。一次粒子径は40 nm、比表面積は50 m2/g である。溶媒としてn-ヘキサン(関東化学株式会社) (本文中以下、ヘキサン)を使用した。表面改質剤として3-イソシアネートプロピルトリエトキシシラン(信越化学工業株式会社製)を使用した。
1) Sample preparation “AerosilOX50” (trade name, manufactured by Nippon Aerosil Co., Ltd.) was used as silica nanoparticles. The primary particle size is 40 nm and the specific surface area is 50 m2 / g. As a solvent, n-hexane (Kanto Chemical Co., Inc.) (hereinafter, hexane) was used. 3-Isocyanatopropyltriethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) was used as a surface modifier.

固体濃度1 mass% のシリカ/ヘキサンスラリーを1000 ml 調製した。次に下記式に基づき、改質剤溶液を調製した。   1000 ml of a silica / hexane slurry having a solid concentration of 1 mass% was prepared. Next, a modifier solution was prepared based on the following formula.

Figure 2008238005
但し、cM:改質剤量(ml)、W:粒子重量(g) (= 6.6)、SN2:非表面積(m2/g)、dOH:粒子表面水酸基密度(/nm2)(= 2.8)、Mw:改質剤分子量 (= 247.4)、NA:アボガドロ数(/mol)、ρ:改質剤密度(g/cm3)(= 1.00)である。
Figure 2008238005
Where c M : modifier amount (ml), W: particle weight (g) (= 6.6), S N2 : non-surface area (m 2 / g), d OH : particle surface hydroxyl group density (/ nm 2 ) ( = 2.8), M w : modifier molecular weight (= 247.4), N A : Avogadro number (/ mol), ρ: modifier density (g / cm 3) (= 1.00).

そして、dOHに対し、1倍(等量)、2倍、5倍、10倍量の改質剤を用意し、それぞれにヘキサンを加え総量を30 mlに統一した。以下、本文中では、dOHに対し等量の改質剤を使用した試料を1xと表記し、2倍、5倍、10倍をそれぞれ、2x、5x、10xと表記する。 Then, with respect to d OH, 1-fold (eq), 2-fold, 5-fold, prepared 10-fold amount of the modifying agent, it was unified total addition of hexane in 30 ml each. Below, in this text to the sample used an equivalent amount of the modifying agent to d OH denoted as 1x, 2-fold, 5-fold, respectively 10 times, referred to 2x, 5x, and 10x.

2)試料分散処理
実施例2の分散装置を図3の分散処理システム装置に組み込んでせん断分散処理を行った。なお、メカニカルシールのシール液は分散媒に合わせ、ヘキサンに交換した。調製したシリカ/ヘキサンスラリーを窒素充填したスラリータンクに投入した。スラリー循環ポンプ(液送量:1000 ml/min)を作動させ、10分間放置した。回転体を作動させ、10分間せん断分散を行った。回転体の周速は40 m/sに設定した。次に改質剤注入装置を作動し1 ml/minで改質剤溶液を分散容器中へ注入した。回転体を作動したまま注入開始から150分間反応させた。スラリーは高せん断場による摩擦熱で加熱され、反応容器出口での温度はヘキサンの沸点68.7℃であった。
2) Sample dispersion treatment The dispersion device of Example 2 was incorporated into the dispersion treatment system device of Fig. 3 to perform shear dispersion treatment. The sealing liquid of the mechanical seal was changed to hexane in accordance with the dispersion medium. The prepared silica / hexane slurry was put into a slurry tank filled with nitrogen. The slurry circulation pump (liquid feed amount: 1000 ml / min) was activated and left for 10 minutes. The rotating body was operated and shear dispersion was performed for 10 minutes. The peripheral speed of the rotating body was set to 40 m / s. Next, the modifier injection device was operated to inject the modifier solution into the dispersion vessel at 1 ml / min. The reaction was carried out for 150 minutes from the start of injection while the rotating body was operating. The slurry was heated by frictional heat from a high shear field, and the temperature at the outlet of the reaction vessel was 68.7 ° C., the boiling point of hexane.

3)オートクレーブ法(対照試料調製)
固体濃度82 mass%のシリカ/ヘキサンスラリー200 mlを調製した。スラリーに改質剤を加え、せん断場法と同様にdOHに対し等量、2倍、5倍、10倍の改質剤を添加して各試料を調製した。
3) Autoclave method (control sample preparation)
200 ml of a silica / hexane slurry having a solid concentration of 82 mass% was prepared. The modifier added to the slurry, equal amounts to likewise d OH and shear field method, 2-fold, 5-fold, were prepared 10-fold modifier was added each sample.

そして、各試料をオートクレーブを用いて、235 ℃, 30 kgf/cm2の条件で1時間反応を行った。反応終了後、溶媒を排出し、乾燥状態の試料を得た。さらに、得られた試料をヘキサン1000 mlとともに実施例2の分散装置に投入し、分散処理を行った。スラリー循環ポンプ(液送量:1000 ml/min)を作動させ10分間放置した後、回転体を作動させ10分間せん断分散を行った。回転体の周速は40 m/sに設定した。
(3)下記項目の評価の試験を行ったので、その結果及び考察について述べる。
Each sample was reacted for 1 hour under the conditions of 235 ° C. and 30 kgf / cm 2 using an autoclave. After completion of the reaction, the solvent was discharged to obtain a dry sample. Furthermore, the obtained sample was thrown into the dispersion apparatus of Example 2 together with 1000 ml of hexane to perform dispersion treatment. The slurry circulation pump (liquid feed amount: 1000 ml / min) was operated and allowed to stand for 10 minutes, and then the rotating body was operated to perform shear dispersion for 10 minutes. The peripheral speed of the rotating body was set to 40 m / s.
(3) Since the evaluation test of the following items was conducted, the results and discussion will be described.

1)改質粒子表面の定性評価
(i)FT-IR測定:
図13にせん断場表面改質法を用いて表面改質した粒子のFT-IR測定結果を示す。未処理のシリカ粒子は3750 cm-1にO−H伸縮振動に由来するピークを示し、水酸基を持つことが確認された。一方、せん断場表面改質法の試料は3750 cm-1のO−H伸縮振動が消失し、2840 〜 3000 cm-1にC−H伸縮振動に、2285 cm-1にN=C=O伸縮振動に由来するピークを示した。この結果から表面改質によって、イソシアネートプロピル基が粒子表面に導入されたと考えられる。3400 cm-1に見られるピークは、イソシアネート基が空気中の水分と反応しカルバミン酸を生成、さらにカルバミン酸から二酸化炭素が脱離して生じたアミンに由来していると考えられる。
1) Qualitative evaluation of modified particle surface
(i) FT-IR measurement:
FIG. 13 shows the results of FT-IR measurement of particles whose surface was modified using the shear field surface modification method. Untreated silica particles showed a peak derived from OH stretching vibration at 3750 cm −1, and were confirmed to have a hydroxyl group. On the other hand, the sample shear field surface modification method disappeared O-H stretching vibration of 3750 cm -1, the C-H stretching vibration 2840 ~ 3000 cm -1, the 2285 cm -1 N = C = O stretching A peak derived from vibration was shown. From this result, it is considered that an isocyanate propyl group was introduced on the particle surface by surface modification. The peak observed at 3400 cm −1 is considered to be derived from an amine produced by the reaction of an isocyanate group with moisture in the air to produce carbamic acid and further elimination of carbon dioxide from carbamic acid.

図14にオートクレーブ法を用いて表面改質をした粒子のFT-IR測定結果を示す。せん断場法と同様に、3750 cm-1のO−H伸縮振動が消失し、2840 〜 3000 cm-1にC−H伸縮振動に、2285 cm-1にN=C=O伸縮振動に由来するピークを示した。この結果から表面改質によって、イソシアネートプロピル基が粒子表面に導入されたと考えられる。 FIG. 14 shows the results of FT-IR measurement of particles whose surface was modified using the autoclave method. Similar to the shear field method, the O-H stretching vibration at 3750 cm -1 disappears, derived from the C-H stretching vibration at 2840 to 3000 cm -1 , and the N = C = O stretching vibration at 2285 cm -1 Showed a peak. From this result, it is considered that an isocyanate propyl group was introduced on the particle surface by surface modification.

(ii)表面改質基密度(dM)の定量:
せん断場表面改質法における改質剤の使用量に対する表面改質基密度(dM)を図15に示す。表面改質剤の使用量が増えるに従って、dM が増加した。また、5xから10xにかけては、改質剤の増加量に対しdM の増加が緩やかであるが、これは未反応の表面水酸基数が減少したことと、改質基同士の立体障害により反応の進行が阻害されたためと考えられる。また、反応時間の増加に伴いdM が増加することが分かった。
(ii) Determination of surface modification group density (d M ):
FIG. 15 shows the surface modification group density (d M ) with respect to the amount of modifier used in the shear field surface modification method. According the amount of the surface modifier is increased, d M is increased. Further, from 5x Toward the 10x, an increase of d M to increasing amounts of modifier is gradual, this is a possible number of surface hydroxyl groups of the unreacted decreased, the reaction by steric hindrance between the modifying groups This is thought to be because the progression was inhibited. Further, d M with increasing reaction time was found to increase.

図16にオートクレーブ法における改質剤の使用量と表面改質基密度の関係を示す。改質剤使用量が2xから10xにかけては、改質剤量の増加に対して表面改質基密度の増加が緩やかであった。せん断場法と同様に、未反応の表面水酸基数が減少したことと、改質基同士の立体障害によると考えられる。   FIG. 16 shows the relationship between the amount of modifying agent used and the surface modifying group density in the autoclave method. As the amount of modifier used increased from 2x to 10x, the surface modifying group density increased slowly with increasing modifier amount. Similar to the shear field method, it is considered that the number of unreacted surface hydroxyl groups decreased and steric hindrance between the modifying groups.

2)凝集径測定
未改質シリカ粒子のヘキサン中の粒度分布測定結果を図17に示す。また、せん断場法により表面改質を施した粒子の代表例として、改質剤量5倍、反応時間150分間の粒子のヘキサン中での粒度分布測定結果を図18に示す。表面改質によって粒度分布は小径側へシフトし分布幅が狭くなった。このことからせん断場表面改質法により粒子の分散性が向上することが分かった。
2) Measurement of agglomerated diameter FIG. 17 shows the result of measuring the particle size distribution of unmodified silica particles in hexane. As a representative example of particles subjected to surface modification by the shear field method, FIG. 18 shows the particle size distribution measurement result in hexane of particles having a modifier amount of 5 times and a reaction time of 150 minutes. Due to the surface modification, the particle size distribution shifted to the smaller diameter side and the distribution width became narrower. From this, it was found that the dispersibility of the particles is improved by the surface modification method of the shear field.

図19に表面改質基密度(dM )と平均粒子径の関係を示す。未改質の粒子においては10分間のせん断処理により凝集体の平均粒子径は60μm程度から25μmm程度に減少し、凝集体が分散されていることが分かった。 FIG. 19 shows the relationship between the surface modification group density (d M ) and the average particle diameter. In the unmodified particles, the average particle size of the aggregates decreased from about 60 μm to about 25 μm after 10 minutes of shearing, indicating that the aggregates were dispersed.

さらにせん断場法による表面改質を施すことで平均粒子径は10 〜 20μmに減少し、分散能が向上していることが分かった。平均粒子径はdM の0.9 〜 2.4 /nm2の増加に対して緩やかに減少した。これはシリカ表面の水酸基の性質のためと考えられる。シリカ表面の水酸基は分子内で既に水素結合を形成した水素結合水酸基と、分子内で独立したフリー水酸基に分けられる。フリー水酸基は粒子間に水素結合を形成するため、粒子間の凝集の原因となる。水素結合型よりも化学反応が優先して起こりやすいことと、シリカ表面のフリー水酸基密度(dOHfree)が1.3 /nm2 程度であることから、dM 0.9 /nm2の試料は約70 %のフリー水酸基が表面改質反応で消費されていると考えられる。つまりdM 0.9 /nm2の試料において凝集の原因となるフリー水酸基の影響は既に少なくなっているため、さらにdM が増加しても粒子径の減少量が少なかったと考えられる。 Furthermore, it was found that by carrying out surface modification by the shear field method, the average particle size was reduced to 10 to 20 μm and the dispersibility was improved. The average particle size decreased gradually with increasing d M from 0.9 to 2.4 / nm 2 . This is considered due to the nature of the hydroxyl group on the silica surface. Hydroxyl groups on the silica surface are divided into hydrogen-bonded hydroxyl groups that have already formed hydrogen bonds in the molecule and free hydroxyl groups that are independent in the molecule. The free hydroxyl group forms hydrogen bonds between the particles and causes aggregation between the particles. Because the chemical reaction is more likely to occur than the hydrogen bond type, and the free hydroxyl density (d OH free) on the silica surface is about 1.3 / nm 2 , the sample with d M 0.9 / nm 2 is about 70% It is considered that the free hydroxyl groups are consumed in the surface modification reaction. In other words, since the influence of free hydroxyl groups that cause aggregation in the sample of d M 0.9 / nm 2 has already decreased, it is considered that the amount of decrease in the particle diameter was small even when d M increased.

オートクレーブ法による改質粒子はdM 0.75 /nm2において未改質粒子より大きな凝集径を示し、dM 2.0 /nm2以上では未改質粒子よりも小さな凝集粒子径を示した。また、全ての試料がせん断場法を用いた試料よりも大きな凝集粒子径を示した。この結果から、せん断場表面改質法はオートクレーブ法よりも粒子分散に有効であることが示された。オートクレーブ法による改質粒子が、せん断場法による改質粒子と同等のdMを持つにもかかわらず、分散性に劣るのは、溶媒除去時の乾燥過程が原因であると考えられる。乾燥過程で、未反応水酸基の影響で凝集体の形成が起こり、分散性が低下したと考えられる。特にdM 0.75 /nm2の試料では未反応のフリー水酸基の影響で、強固な凝集体が形成されたため未改質粒子よりも分散性が低下したと考えられる。 The modified particles obtained by the autoclave method showed a larger aggregate diameter than the unmodified particles at d M 0.75 / nm 2 , and a smaller aggregate particle diameter than the unmodified particles at d M 2.0 / nm 2 or more. Moreover, all the samples showed larger aggregate particle diameters than the samples using the shear field method. From this result, it was shown that the shear field surface modification method is more effective for particle dispersion than the autoclave method. Modified particles an autoclave method, despite having a d M equivalent to the modified particles by shear field method, the poor dispersibility, drying process during the solvent removal is thought to be responsible. In the drying process, aggregates are formed due to the influence of unreacted hydroxyl groups, and the dispersibility is considered to have decreased. In particular, in the sample of d M 0.75 / nm 2, it is considered that the dispersibility was lower than that of the unmodified particles because a strong aggregate was formed due to the influence of the unreacted free hydroxyl group.

3)SEM観察
未改質粒子のSEMで観察したところ、10〜80 μmの凝集体が多く観察され、粒度分布測定結果と一致している。せん断場表面改質後の粒子は、粒子が薄く拡がった集合体を形成していた。一度分散された凝集体が、SEM試料作成上の乾燥過程で凝集した結果であると推察される。また、せん断場表面改質後の粒子を高倍率(50000倍)で観察したが、一次粒子の形状は変わっておらず粒子の破壊は起こっていないことが確認された。
3) SEM observation When observed with SEM of unmodified particles, many aggregates of 10 to 80 μm are observed, which is consistent with the particle size distribution measurement results. The particles after the surface modification of the shear field formed an aggregate in which the particles were thinly spread. It is inferred that the aggregates once dispersed are the result of aggregation in the drying process in preparation of the SEM sample. Further, the particles after surface modification of the shear field were observed at a high magnification (50000 times), and it was confirmed that the shape of the primary particles was not changed and the particles were not broken.

(4)まとめ
物理分散のみ、オートクレーブによる表面改質よりも高い分散効果が得られた。このことから、せん断場表面改質法の有効性を示すことができた。せん断場表面改質法は今後、分散装置と表面改質のそれぞれの詳細な検討及び、両者の組み合わせ方の検討を行うことで、さらなる発展が期待できる。
(4) Summary Only the physical dispersion gave a higher dispersion effect than the surface modification by autoclave. From this, the effectiveness of the shear field surface modification method could be demonstrated. Further development of the shear field surface modification method can be expected in the future by examining each of the dispersion device and the surface modification in detail and how to combine them.

本発明の検討段階における分散装置の処理容器のモデル分解斜視図(A)及びモデル断面図(B)である。It is the model exploded perspective view (A) and model sectional view (B) of the processing container of the dispersion apparatus in the examination stage of the present invention. 本発明の分散装置の一形態を示す処理容器のモデル分解斜視図(A)及びモデル断面図(B)である。It is the model disassembled perspective view (A) and model cross-sectional view (B) of the processing container which show one form of the dispersion apparatus of this invention. 本発明の分散装置を組み込む一例の分散装置システム図である。It is an example of a distribution apparatus system incorporating the distribution apparatus of the present invention. 単純円柱タイプのせん断流発生隙間(周面側)におけるシミュレーション図である。It is a simulation figure in the shear flow generation gap (periphery side) of a simple cylinder type. 原料粒子の粒度分布測定結果を示すグラフ図である。It is a graph which shows the particle size distribution measurement result of raw material particles. 実施例1及び比較例の各分散装置で分散処理を行ったスラリーの粒度分布測定結果を示すグラフ図である。It is a graph which shows the particle size distribution measurement result of the slurry which performed the dispersion process with each dispersion apparatus of Example 1 and a comparative example. 実施例1・2の各分散装置で分散処理を行ったスラリーの粒度分布測定結果を示すグラフ図である。It is a graph which shows the particle size distribution measurement result of the slurry which performed the dispersion process with each dispersion apparatus of Example 1-2. 実施例1・2・3の各分散装置で回転体周速を変えて分散処理を行った場合の粒子径の変化を示すグラフ図である。It is a graph which shows the change of the particle diameter at the time of performing a dispersion process by changing rotating body peripheral speed with each dispersion apparatus of Example 1, 2, and 3. FIG. 実施例1・2・3の各分散装置で分散時間回転体周速を変えて分散処理を行った場合の粒子径の変化を示すグラフ図である。It is a graph which shows the change of the particle diameter at the time of performing a dispersion process by changing a dispersion time rotary body peripheral speed with each dispersion apparatus of Example 1, 2, and 3. FIG. シランカップリング剤と無機表面の反応機構を示すモデル図である。It is a model figure which shows the reaction mechanism of a silane coupling agent and an inorganic surface. オートクレーブ法を示す概略斜視図である。It is a schematic perspective view which shows an autoclave method. TG/DTAに使用するDTA曲線である。It is a DTA curve used for TG / DTA. せん断場改質法により表面改質を行った粒子のIRスペクトル図である。It is IR spectrum figure of the particle | grains which surface-modified by the shear field modification method. オートクレーブ法により表面改質を行った粒子のIRスペクトル図である。It is IR spectrum figure of the particle | grains which surface-modified by the autoclave method. せん断場改質法における表面改質剤使用量に対する表面改質密度の測定結果を示すグラフ図である。It is a graph which shows the measurement result of the surface modification density with respect to the surface modification agent usage-amount in a shear-field modification method. オートクレーブ法における表面改質剤使用量に対する表面改質密度の測定結果を示すグラフ図である。It is a graph which shows the measurement result of the surface modification density with respect to the surface modification agent usage-amount in an autoclave method. ヘキサン中の未改質粒子の粒度分布測定結果を示すグラフ図である。It is a graph which shows the particle size distribution measurement result of the unmodified particle | grains in hexane. ヘキサン中せん断場表面改質粒分布測定結果を示すグラフ図である。It is a graph which shows the shear field surface modified grain distribution measurement result in hexane. 表面改質基濃度に対する平均粒子径の関係を示すグラフ図である。It is a graph which shows the relationship of the average particle diameter with respect to surface modification group density | concentration.

符号の説明Explanation of symbols

12 分散装置
14 貯留タンク
18 供給配管
20 戻り配管
24 改質剤注入器
26 円柱状空間
28 処理容器
28a 原料入口
28b 製品出口
30 円柱状部材
32 回転駆動手段
34 せん断流発生隙間
34a 底部側隙間
34b 周面側隙間
DESCRIPTION OF SYMBOLS 12 Dispersing device 14 Storage tank 18 Supply piping 20 Return piping 24 Reformer injector 26 Cylindrical space 28 Processing vessel 28a Raw material inlet 28b Product outlet 30 Cylindrical member 32 Rotation drive means 34 Shear flow generating gap 34a Bottom side gap 34b Circumference Face side clearance

Claims (6)

液状原料にせん断応力を発生させて液状原料中の凝集粒子を解砕(微粒子化)して均一分散化させる分散装置であって、
円柱状(テーパ状を含む。:以下同じ)空間を備えた処理容器と、該円柱状空間に嵌合される円柱状部材とを備えるとともに、前記処理容器と前記円柱状部材とを相対回転させる回転駆動手段を備え、
前記処理容器は一端側に原料入口を他端側に製品出口を備え、
前記処理容器と円柱状部材との間には前記原料入口及び前記製品出口と連通するせん断流発生隙間が形成され、
該せん断流発生隙間は、前記原料入口側に位置する円板状又は断面テーパ状隙間と、前記製品出口側に位置する円筒状隙間とを備え、
前記原料入口及び前記製品出口にそれぞれ原料供給手段及び製品排出手段が接続されることを特徴とする液状原料の分散装置。
A dispersing device that generates shear stress in a liquid material to crush (aggregate) the agglomerated particles in the liquid material and uniformly disperse the particles,
A processing container having a columnar shape (including a tapered shape; the same applies hereinafter) space and a columnar member fitted in the columnar space are provided, and the processing container and the columnar member are relatively rotated. A rotation driving means;
The processing vessel comprises a raw material inlet on one end side and a product outlet on the other end side,
A shear flow generation gap communicating with the raw material inlet and the product outlet is formed between the processing container and the cylindrical member,
The shear flow generation gap includes a disk-like or cross-section tapered gap located on the raw material inlet side, and a cylindrical gap located on the product outlet side,
A liquid raw material dispersing apparatus, wherein a raw material supply means and a product discharge means are connected to the raw material inlet and the product outlet, respectively.
前記原料入口が前記円板状隙間の中心部乃至円板径の約1/10以内の偏心位置に形成されていることを特徴とする請求項1記載の液状原料の分散装置。   2. The liquid raw material dispersing apparatus according to claim 1, wherein the raw material inlet is formed at an eccentric position within a central portion of the disc-shaped gap or within about 1/10 of the disc diameter. 前記円板状隙間及び円筒状隙間の間隙が、2000μm以下の範囲で選択されたものであることを特徴とする請求項1又は2記載の液状原料の分散装置。   The liquid raw material dispersing apparatus according to claim 1 or 2, wherein a gap between the disc-shaped gap and the cylindrical gap is selected within a range of 2000 µm or less. さらに、前記原料供給口には逆止手段を介して、原料輸送動力源と直接的又は間接的に接続された原料供給配管が接続可能とされていることを特徴とする請求項3記載の液状原料の分散装置。   4. The liquid material according to claim 3, wherein a raw material supply pipe connected directly or indirectly to a raw material transport power source is connectable to the raw material supply port via a check means. Raw material dispersion equipment. 前記処理容器が前記円柱空間を形成する外周壁に放熱乃至冷却手段を備えていることを特徴とする請求項1〜4のいずれか一記載の液状原料の分散装置。   The apparatus for dispersing a liquid material according to any one of claims 1 to 4, wherein the processing container includes a heat radiating or cooling means on an outer peripheral wall forming the cylindrical space. 請求項1〜5のいずれか一記載の分散装置における前記せん断流発生隙間を凝集粉体を含有する液状原料を通過させて実質的な密閉空間内で分散(微粒化)処理を行うに際して、前記液状原料に表面改質剤を添加しながら行うことを特徴する液状原料の分散方法。
In carrying out the dispersion (atomization) treatment in a substantially sealed space by passing the liquid raw material containing the agglomerated powder through the shear flow generation gap in the dispersion apparatus according to any one of claims 1 to 5. A method for dispersing a liquid material, comprising adding a surface modifier to the liquid material.
JP2007079875A 2007-03-26 2007-03-26 Dispersing apparatus for liquid raw material Pending JP2008238005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007079875A JP2008238005A (en) 2007-03-26 2007-03-26 Dispersing apparatus for liquid raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007079875A JP2008238005A (en) 2007-03-26 2007-03-26 Dispersing apparatus for liquid raw material

Publications (1)

Publication Number Publication Date
JP2008238005A true JP2008238005A (en) 2008-10-09

Family

ID=39909981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007079875A Pending JP2008238005A (en) 2007-03-26 2007-03-26 Dispersing apparatus for liquid raw material

Country Status (1)

Country Link
JP (1) JP2008238005A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012224A (en) * 2009-07-06 2011-01-20 Hitachi Maxell Ltd Method for producing pigment dispersed composition
JP2011067794A (en) * 2009-09-28 2011-04-07 Sintokogio Ltd High-shearing-type continuous dispersion apparatus
CN102172487A (en) * 2011-01-26 2011-09-07 浙江港龙新材料有限公司 Nano material dispersing device for spray painting and method for preparing ink absorption layer paint by using same
CN102186573A (en) * 2010-08-05 2011-09-14 新东工业株式会社 Circulation dispersion system and circulation dispersion method
WO2012017569A1 (en) * 2010-08-05 2012-02-09 新東工業株式会社 Circulation-type dispersion system, and circulation-type dispersion method
WO2012111218A1 (en) * 2011-02-17 2012-08-23 新東工業株式会社 Tank apparatus, circulating-type dispersion system, and dispersion method
JP2012206888A (en) * 2011-03-29 2012-10-25 Tdk Corp Methods for producing ceramic slurry, green sheet and electronic component
JP2014145053A (en) * 2013-01-30 2014-08-14 Hitachi Maxell Ltd Pigment dispersion and energy ray-curable inkjet ink
JP2016117030A (en) * 2014-12-22 2016-06-30 王子ホールディングス株式会社 Dispersion device and dispersion method, and dispersion treating liquid, and wet type nonwoven fabric
JP2018177548A (en) * 2017-04-04 2018-11-15 日立化成株式会社 Method for producing thin-layer inorganic laminar compound
KR20200034654A (en) 2017-08-02 2020-03-31 가부시키가이샤 히로시마 메탈 앤드 머시너리 Disperser, method for dispersing particles in slurry and method for preparing emulsion

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324329A (en) * 1976-08-18 1978-03-07 Nippon Paint Co Ltd Device for deflocculating of slurry water-dispersed coating compounds
JPH01262112A (en) * 1988-04-12 1989-10-19 Kanegafuchi Chem Ind Co Ltd Continuous mixing method of two-part cured resin
JPH0379834U (en) * 1989-12-01 1991-08-15
JPH10192670A (en) * 1996-12-27 1998-07-28 Inoue Seisakusho:Kk Dispersion and dispersing apparatus utilizing supercritical state
JP2001179071A (en) * 1999-12-28 2001-07-03 Japan Science & Technology Corp Swirling agitation method and apparatus
JP2005279348A (en) * 2004-03-29 2005-10-13 Kansai Paint Co Ltd Stirring device
JP2007260486A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Dispersing machine and manufacturing method of paste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324329A (en) * 1976-08-18 1978-03-07 Nippon Paint Co Ltd Device for deflocculating of slurry water-dispersed coating compounds
JPH01262112A (en) * 1988-04-12 1989-10-19 Kanegafuchi Chem Ind Co Ltd Continuous mixing method of two-part cured resin
JPH0379834U (en) * 1989-12-01 1991-08-15
JPH10192670A (en) * 1996-12-27 1998-07-28 Inoue Seisakusho:Kk Dispersion and dispersing apparatus utilizing supercritical state
JP2001179071A (en) * 1999-12-28 2001-07-03 Japan Science & Technology Corp Swirling agitation method and apparatus
JP2005279348A (en) * 2004-03-29 2005-10-13 Kansai Paint Co Ltd Stirring device
JP2007260486A (en) * 2006-03-27 2007-10-11 Toray Ind Inc Dispersing machine and manufacturing method of paste

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011012224A (en) * 2009-07-06 2011-01-20 Hitachi Maxell Ltd Method for producing pigment dispersed composition
JP2011067794A (en) * 2009-09-28 2011-04-07 Sintokogio Ltd High-shearing-type continuous dispersion apparatus
CN102186573A (en) * 2010-08-05 2011-09-14 新东工业株式会社 Circulation dispersion system and circulation dispersion method
WO2012017569A1 (en) * 2010-08-05 2012-02-09 新東工業株式会社 Circulation-type dispersion system, and circulation-type dispersion method
US9630155B2 (en) 2010-08-05 2017-04-25 Sintokogio, Ltd. System and a method for dispersing by circulation
CN102172487A (en) * 2011-01-26 2011-09-07 浙江港龙新材料有限公司 Nano material dispersing device for spray painting and method for preparing ink absorption layer paint by using same
JP5895853B2 (en) * 2011-02-17 2016-03-30 新東工業株式会社 Tank apparatus, circulation type dispersion system, and dispersion method
CN103391808A (en) * 2011-02-17 2013-11-13 新东工业株式会社 Tank apparatus, circulating-type dispersion system, and dispersion method
WO2012111218A1 (en) * 2011-02-17 2012-08-23 新東工業株式会社 Tank apparatus, circulating-type dispersion system, and dispersion method
US10086344B2 (en) 2011-02-17 2018-10-02 Sintokogio, Ltd. Tank apparatus, a system for dispersing by circulating a mixture, and a method for dispersing by circulating a mixture
JP2012206888A (en) * 2011-03-29 2012-10-25 Tdk Corp Methods for producing ceramic slurry, green sheet and electronic component
JP2014145053A (en) * 2013-01-30 2014-08-14 Hitachi Maxell Ltd Pigment dispersion and energy ray-curable inkjet ink
JP2016117030A (en) * 2014-12-22 2016-06-30 王子ホールディングス株式会社 Dispersion device and dispersion method, and dispersion treating liquid, and wet type nonwoven fabric
JP2018177548A (en) * 2017-04-04 2018-11-15 日立化成株式会社 Method for producing thin-layer inorganic laminar compound
KR20200034654A (en) 2017-08-02 2020-03-31 가부시키가이샤 히로시마 메탈 앤드 머시너리 Disperser, method for dispersing particles in slurry and method for preparing emulsion

Similar Documents

Publication Publication Date Title
JP2008238005A (en) Dispersing apparatus for liquid raw material
US8636974B2 (en) Titanium dioxide superfine particles and method for producing the same
JP5144086B2 (en) Dispersion or grinding apparatus and dispersion or grinding method
US8183299B2 (en) Method for producing ceramic nanoparticles
JP3309093B2 (en) High shear material processing method and apparatus
EP1382380A1 (en) Processing apparatus and method for fluid, and deaerator therewith
US7152819B2 (en) High pressure media mill
US8992981B2 (en) Method for producing microparticles and the microparticles
JP4359858B2 (en) Method for producing titanium dioxide ultrafine particles
JP2006212489A (en) Grinding method using medium stirring type grinder
JP5598824B2 (en) Dispersion or grinding apparatus and dispersion or grinding method
CN101549314A (en) Media mixing mill
JP2005334808A (en) Ultrasonic dispersing apparatus
Kao et al. Study on dispersion of TiO2 nanopowder in aqueous solution via near supercritical fluids
JP2010005540A (en) Wet dispersion or grinding method, and wet disperser used for this method
JP7429039B2 (en) wet bead mill
KR101680653B1 (en) Method for treating slurry and treatment apparatus used for the same
KR101666265B1 (en) Apparatus for Dispersing Carbon nanotubes
KR101661388B1 (en) Apparatus for Improving Dispersibility of Carbon nanotubes
JP4947470B2 (en) Method for controlling dispersion / aggregation of nanoparticle slurry
WO2021033633A1 (en) Organic nanoparticle production method and organic nanoparticles
KR20200144620A (en) A system structure of impeller based on rotator to rotator equipped with cooling system
JP2023542517A (en) Method and apparatus for producing nanometer-scale particles using electrostatically sterically stabilized slurries in a media mill
JP2004050161A (en) Device for grinding and dispersing very fine particle
JPS6082147A (en) Continuous media type dispersing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100303

A131 Notification of reasons for refusal

Effective date: 20120605

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023