JP4035989B2 - Light-transmitting synthetic resin foam - Google Patents

Light-transmitting synthetic resin foam Download PDF

Info

Publication number
JP4035989B2
JP4035989B2 JP2001377457A JP2001377457A JP4035989B2 JP 4035989 B2 JP4035989 B2 JP 4035989B2 JP 2001377457 A JP2001377457 A JP 2001377457A JP 2001377457 A JP2001377457 A JP 2001377457A JP 4035989 B2 JP4035989 B2 JP 4035989B2
Authority
JP
Japan
Prior art keywords
synthetic resin
inert gas
foam
light
norbornene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001377457A
Other languages
Japanese (ja)
Other versions
JP2003176375A (en
Inventor
健 石川
晃太郎 能澤
敬信 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2001377457A priority Critical patent/JP4035989B2/en
Publication of JP2003176375A publication Critical patent/JP2003176375A/en
Application granted granted Critical
Publication of JP4035989B2 publication Critical patent/JP4035989B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光透過性を保つ程度に微細気泡が形成された合成樹脂発泡体に関する。
【0002】
【従来の技術】
合成樹脂発泡体は、重量低減、断熱特性の向上、或いは防音性の付与を目的として、各種構造材料に用いられる。この合成樹脂発泡体にあっては、軽量化や機能性の向上の面からは、発泡倍率を高め、比重の小さい発泡体とすることが望まれるが、発泡倍率の増加に伴って発泡体の強度は低下するため、工業的用途においては、強度の面から発泡倍率に制約を受けていた。
【0003】
これに対して、発泡体の気泡を微細化することにより、発泡倍率の増加に伴う強度低下の抑制ないしは強度の向上を図る技術が提案されている。例えば、Shimbo et al., Polymer Engineering Science, 35, 1387 (1995)には、3.5〜9.5μm径の発泡気泡を形成することにより、剛性がやや向上することが記載されている。この技術は、マイクロセルラープラスチックと呼ばれ、USP4,473,665(1984), USP5,158,986(1992)にその詳細が記載されている。この方法は、具体的には、(1)高圧容器内で熱可塑性樹脂に高圧下で窒素や二酸化炭素など不活性ガスを高圧もしくは超臨界状態で含浸させ、次いで(2)ガスを含浸させた熱可塑性樹脂を高圧容器より取り出し、オイルバス等で熱可塑性樹脂のガラス転移温度Tg以上の温度まで昇温し、(3)核生成を誘発して気泡成長させることにより微細気泡の発泡体を得るものである。
【0004】
また、オプトエレクトロニクス分野では、無機ガラスなど無機透明材料を多孔質化することにより低屈折率化が図られており、光透過性を有する微細多孔構造を有するフィルム・膜については、ゾルゲル法と超臨界抽出を組み合わせて合成した無機多孔質体が知られている。例えばT. Tsutsui, et al., MRS Meeting Abstract, 663(2000)或いはS. Tokito and T. Tsutttsui, Applied Physics, 86,2407(1999)には、屈折率1.1以下の低屈折率層を有機ELディスプレーのガラス基板内側に形成することにより、発光の外部量子効率を6割以上向上させる結果が得られている。
【0005】
なお、合成樹脂に不活性ガスを含浸させることによりガラス転移温度Tg又は融点Tmが低下することは良く知られている。例えば、特開平11−263858号公報にはポリフェニレンエーテルに超臨界二酸化炭素を含浸させてガラス転移温度Tgを変化させることにより、低温成形を実現させる方法が開示されている。また、Handa et. al., Journal of Polymer Science: Part B: Polymer Physics,
32, 2549(1994)には、ポリフェニレンエーテルのTgが、61.2atmの二酸化炭素を含浸させることにより、31.6℃低下することを、高圧セルによる示差走査熱量計(DSC)測定により確認したことが報告されている。
【0006】
【発明が解決しようとする課題】
上記オプトエレクトロニクス分野で利用される無機透明材料の多孔質体は、脆くて靱性、屈曲性にかけるため、実装工程で潰れたり、傷が付く等、或いは連続プロセスの適用が困難である等の問題点があった。また、強度を上げるためには、多孔体積比率を上げることが一つの方法であるが、多孔質体を合成するプロセスではそれも限界があった。そのためこれらを合成樹脂にような有機材料で製造することができれば、屈曲性、靱性を有し、また多孔体体積比率を大きくすることも容易であり、ディスプレー、通信デバイス等の実装プロセスにおいてハンドリングが容易となり、結果として歩留まりの向上、或いは連続プロセス化が達成され、製造コストの大幅な削減が可能となる。
【0007】
ところで、合成樹脂発泡体において、光透過性を保つためには、一般に1/4波長以下に気泡直径を制限することが必要とされる。従って、可視光の最小波長は400nmであることから、これを対象とした場合には100nm未満の気泡直径が必須である。
【0008】
しかしながら、前記マイクロセルラープラスチックの製造法による発泡体の平均気泡直径の最小値は、特開平10−45936号公報や特開2000−109579号公報によると、100nm以上であるため、光透過性の発泡体を得ることは困難である。
【0009】
更に、前記マイクロセルラープラスチックの製造法は、ガス含浸に費やす時間が膨大で、通常24〜48時間の長時間に亘って高圧ガス下で保持した後発泡させるため、生産効率が著しく悪く、工業化には適していないという問題もある。
【0010】
本発明は、上記従来の問題点を解決し、十分な光透過性を確保し得る微細気孔が形成された光透過性合成樹脂発泡体、特に、合成樹脂に不活性ガス又はその超臨界流体を含浸させることにより製造された光透過性合成樹脂発泡体であって、不活性ガス又はその超臨界流体の含浸に要する時間が短く、工業的な生産性を十分に確保し得る光透過性合成樹脂発泡体を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明の光透過性合成樹脂発泡体は、平均気泡直径が10〜200nmの範囲内にあり、気泡数密度が10〜1015個/cmで、波長400〜800nmの可視光領域における該発泡体の光透過率と、該発泡体と同一形状の非発泡体の光透過率との比(百分率)が70%以上である光透過性合成樹脂発泡体であって、該合成樹脂がノルボルネン系樹脂であることを特徴とする。
【0012】
このような微細気孔を有する合成樹脂発泡体であれば、著しく良好な光透過性を得ることができる。
【0013】
このような本発明の光透過性合成樹脂発泡体は、本発明に従って、容易かつ効率的に製造することができる。
【0014】
請求項の光透過性合成樹脂発泡体は、請求項において、ノルボルネン系樹脂に不活性ガス又はその超臨界流体を高圧、加熱条件下で含浸させた後、圧力を解放することにより製造されたノルボルネン系樹脂であって、前記加熱条件を、該ノルボルネン系樹脂のガラス転移温度よりも低い温度であって、該不活性ガス又はその超臨界流体が含浸された非晶性熱可塑性樹脂のガラス転移温度よりも高い温度とし、ノルボルネン系樹脂に不活性ガス又はその超臨界流体を含浸させることにより、該不活性ガス又はその超臨界流体が含浸されたノルボルネン系樹脂のガラス転移温度を、該ノルボルネン系樹脂のガラス転移温度よりも10〜250℃低下させ、その後圧力を解放することにより該不活性ガス又はその超臨界流体が含浸されたノルボルネン系樹脂のガラス転移温度を圧力解放前のガラス転移温度よりも10〜250℃上昇させることにより製造されたことを特徴とする。
【0015】
即ち、本発明者らは、光透過性を有する程度に十分に小さい気泡直径と十分に大きな気泡数密度を有する合成樹脂発泡体を工業的有利に製造する方法について検討した結果、不活性ガスの含浸の有無による合成樹脂のTgもしくはTmの変化を利用し、含浸前の合成樹脂のTg又はTmよりも低く、かつ含浸後の合成樹脂のTg又はTmよりも高い温度に保持することにより、従来法に比べて飛躍的に短い含浸時間で非常に微細な気泡を有する発泡体を製造することができることを見出し、本発明を完成させた。
【0016】
不活性ガスの含浸により、Tg又はTmは含浸前に比べて低下する。この低下の度合は、不活性ガスの含浸濃度が大きい程大きい。このため、本発明の加熱条件で保持することにより、分子鎖の運動性の高い状態、即ちガス拡散係数の高い状態で不活性ガスが合成樹脂中に含浸することとなり、含浸時の高圧下での保持時間を飛躍的に短くすることができる。
【0017】
この含浸操作後、急激に圧力を解放して急減圧することにより発泡体を得るが、この発泡工程においては、不活性ガスを含浸した合成樹脂のTg又はTmは上昇し、保持温度を超えるため、気泡成長が抑制され、微細気泡が形成される。即ち、圧力解放による発泡工程では、合成樹脂中に含浸された不活性ガスが急激に放出されることで合成樹脂中の不活性ガス濃度が急激に低下し、これに伴いTg又はTmは上昇する。この結果、当該保持温度では、分子鎖の運動が束縛されることとなり、気泡成長が抑制された状態で固定されることにより、微細気泡を有する光透過性合成樹脂発泡体を得ることができる。
【0018】
本発明の方法では、高圧下でノルボルネン系樹脂に不活性ガス又はその超臨界流体を含浸させることにより、そのガラス転移温度を、含浸前のノルボルネン系樹脂のガラス転移温度よりも10〜250℃、好ましくは20〜250℃低下させ、その後圧力を解放して発泡させることにより不活性ガス濃度を低下させ、圧力解放後のガラス転移温度を圧力解放前のガラス転移温度よりも10〜250℃、好ましくは20〜250℃上昇させることにより、気泡の成長を抑制して微細気泡を形成させることが好ましい。
【0019】
また、本発明において、不活性ガスとしては窒素及び/又は二酸化炭素が好適に用いられる。
【0020】
【発明の実施の形態】
以下に本発明の実施の形態を、本発明の光透過性合成樹脂発泡体の製造方法に従って詳細に説明する。
【0021】
本発明では、具体的には、次の手順で光透過性合成樹脂発泡体を製造する。
(1) バルブ付きの圧力容器に固体の合成樹脂を仕込む。
(2) 固体の合成樹脂を入れた圧力容器を、外部熱源を用いて所定の温度まで加熱する。
【0022】
この加熱温度は、用いたノルボルネン系樹脂のTg(以下「Tg(max)」と称す。)よりも低く、かつ、下記(6)の工程でノルボルネン系樹脂に不活性ガスが十分に含浸された状態における不活性ガス含浸ノルボルネン系樹脂のTgよりも高い温度とす。以下、高圧条件で不活性ガスが合成樹脂に十分に含浸された状態を飽和含浸状態と称し、この飽和含浸状態の不活性ガス含浸合成樹脂のTgをTg(min)と称す
【0023】
この加熱温度は、上記範囲においても低過ぎると、ガス拡散性の向上による不活性ガスの含浸時間の短縮効果を十分に得ることができず、高過ぎると下記(7)の発泡工程における気泡成長の抑制効果を十分に得ることができない。従って、加熱温度は製造する合成樹脂発泡体の平均気泡直径や気泡数密度、飽和含浸状態の不活性ガス含浸濃度等によっても異なるが、本発明では、不活性ガスを含浸させることにより、Tg(min)をTg(max)より10〜250℃、好ましくは20〜250℃、より好ましくは50〜250℃低下させ、この加熱温度をTg(max)より10〜250℃、好ましくは20〜250℃、より好ましくは50〜250℃低く、Tg(min)よりも0〜250℃、好ましくは0〜200℃高い温度とすることが好ましい。
【0024】
(3) 上記(2)の温度で加熱しながら、同時に圧力容器内に不活性ガスを仕込む。この不活性ガスとしては、窒素、二酸化炭素又はこれらの混合ガスを用いることができる。不活性ガスは、多くの場合、加熱加圧下においては超臨界流体として合成樹脂に含浸される。
(4) 圧力容器、合成樹脂及び不活性ガスを熱源温度と平衡させる。
(5) 不活性ガスが十分合成樹脂に溶解するような最終圧力を達成するため、更に不活性ガスを加えることにより圧力容器中の圧力を調整する。この圧力は、用いる合成樹脂や目的とする合成樹脂発泡体の光透過性、即ち、平均気泡直径や気泡数密度によっても異なるが、前述の如く、Tg(min)をTg(max)よりも10〜250℃、好ましくは20〜250℃低下させるためには、13〜30MPa、特に15〜30MPaとすることが好ましい。
(6) 所定時間上記加熱温度及び圧力で保持する。この保持時間、即ち、含浸時間は、加熱、加圧条件によっても異なるが、本発明では、上記加熱条件で加熱することにより、この保持時間を従来に比べて飛躍的に短縮することができ、一般的には1〜12時間、好ましくは2〜10時間の保持時間で十分小さい気泡直径と十分大きい気泡数密度を持つ合成樹脂発泡体を製造することができる。
(7) 圧力容器のバルブを全開放して、急速に圧力容器内の圧力を解放する。
【0025】
これにより、微細発泡を有する本発明の光透過性合成樹脂発泡体が得られる。なお、圧力解放後の降温は気泡の成長を抑制するため、液化ガスや水を用いてできるだけ速い条件で行うのが好ましい。
【0026】
このような本発明の光透過性合成樹脂発泡体に用いられる合成樹脂は、ノルボルネン系樹脂である。
【0027】
また、この合成樹脂には、通常の合成樹脂の発泡成形に用いられる添加剤、例えば発泡核剤、着色剤、熱安定剤、離型剤、防腐剤、紫外線吸収剤、可塑剤、難燃剤、導電性付与剤、帯電防止剤、結晶核剤等の1種又は2種以上含んでいても良い。
【0028】
このようにして製造される本発明の光透過性合成樹脂発泡体の平均気泡直径は10〜200nmで、気泡数密度は10〜1015個/cmである。平均気泡直径が10nm未満の合成樹脂発泡体を製造することは、本発明による発泡工程における気泡成長の抑制効果を十分に発揮させても困難であり、また、平均気泡直径が200nmを超える合成樹脂発泡体では、十分な光透過性を得ることができない。好適な気泡数密度は、平均気泡直径によっても異なるが、10個/cm未満では、発泡体としての十分な気孔率を確保し得ず、1015個/cmを超えると強度が損なわれる傾向があるため、10〜1015個/cmの範囲とする。
【0029】
また、本発明の光透過性合成樹脂発泡体は、波長400〜800nmの可視光領域における、同一形状の発泡体の光透過率と非発泡体の光透過率との比(百分率:以下「可視光透過率比」と称す場合がある。)が70%以上の高光透過性を有するものである。
【0030】
なお、この可視光透過率比は、例えば、前述の本発明の方法に従って、不活性ガス又はその超臨界流体を含浸させる前の合成樹脂の非発泡体成形体と、本発明に従って、不活性ガス又はその超臨界流体の含浸を行って、この非発泡成形体と同一形状に発泡成形して得られた本発明の発泡体について、波長400〜800nmの可視光領域で光透過率を測定し、その比(百分率)を算出することにより、求めることができる。
【0031】
なお、本発明の光透過性合成樹脂発泡体は、前述の本発明の製造方法において、不活性ガス含浸時間と含浸圧力を制御することにより、表面近傍のみ発泡し、内部が未発泡の傾斜材料としたものであっても良い。また、減圧時の温度を制御し、表面をより冷却することにより、表面近傍が未発泡で内部が発泡した、上記とは逆の傾斜材料としたものであっても良い。この場合、気泡数密度とは、均一発泡領域のみについての気泡数密度とする。
【0032】
このような本発明の光透過性合成樹脂発泡体は、その優れた光透過性により、プラスチック光ファイバー、反射防止膜、有機ELディスプレイ、有機合成樹脂材料ベースのフォトニクス結晶等としての用途として以下のような効果が期待される。
【0033】
プラスチック光ファイバーは、SI型光ファイバーのクラッド層として、またGI型光ファイバーの発泡による傾斜構造を利用することが可能である。SI型光ファイバーにおいては従来のフッ素系ポリマーによるクラッド層と比較し材料費の削減が可能であること、またGI型光ファイバーにおいては製造プロセスが容易となることから製造費の削減が期待できる。
【0034】
また、反射防止膜の設計においては、屈折率1.5の基材上に1/4波長厚の薄膜を形成して反射防止させる場合、屈折率n=1.23の透明材料を使用できれば、理論上、反射損失を0%に押さえることができる。ところが、従来技術では真空蒸着が可能な無機材料でMgFのn=1.38、ウエットコーティング可能な有機材料で環状フッ化ポリオレフィン(旭硝子社製;商品名サイトップ)のn=1.34が最低であり、反射防止効果は不十分であった。このため、反射防止効果を高めるために反射防止層を多層化する必要があり、コストダウン上問題があった。また、真空プロセスは特に大面積においてコスト上不利であり、またフッ素化樹脂は合成に手間がかかることから材料コストが非常に高くなる問題点があった。これに対して、本発明の光透過性合成樹脂発泡体であれば、理想の反射防止効果を発現する屈折率1.23の膜を従来技術に比較して安価に製作することが可能であり、コスト競争力に優れる部材を提供することが可能である。
【0035】
また、有機ELディスプレイ或いは有機EL光源においては、従来、光取り出し側のガラス基板中を導波して出射面より取り出せない光量損失が大半を占めると言われている。このガラス基板の発光体側に本発明の光透過性合成樹脂発泡体による低屈折率層を設けることにより、出射面より取り出し可能な光量を5割から10割程度向上させることが可能となる。
【0036】
更に、有機ポリマー材料ベースのフォトニクス結晶、或いは発泡体を延伸することによるフォトニクス結晶製ファイバーにおいては、本発明の光透過性合成樹脂発泡体によれば、有機ポリマー材料ベースであることから、無機ガラス製(例えばデンマークCRYSTAL FIBER社製)に比べ高い屈曲性及び靱性が得られる。
【0037】
【実施例】
以下に、実施例及び比較例を挙げて本発明をより具体的に説明するが、本発明は、その要旨を超えない限り、以下の実施例により何ら制限を受けるものではない。
【0038】
なお、以下の実施例及び比較例において、Tg又はTmの測定、発泡体の平均気泡直径の測定、気泡数密度の測定、光透過率の測定、可視光透過率比の算出、屈折率の測定は下記の方法により行った。
【0039】
[Tg又はTmの測定]
不活性ガスの含浸によるガラス転移温度Tg又は融点Tmの低下は、高圧セルを配備したDSCを用いて測定した。即ち、まず、不活性ガスの入ったボンベを昇圧ポンプを介して高圧セルに連結させ、次いでその高圧セル内に合成樹脂を仕込み、不活性ガス雰囲気高圧下で一定時間保持した後、セルを密閉し、この試料入りセルをDSCに仕込んだ。DSCとしては、Parkin−Elmer社製DSC「Pyris1」を用い、約5mgの試料を10℃/分で昇温した。その際、得られるDSC曲線から、ガラス転移温度TgはJIS―K7121に記載される中間点ガラス転移温度(Tmg)として、又融点TmはJIS―K7121に記載される融解ピーク温度(Tpm)により定義した。
【0040】
上記高圧セルの耐圧限界は3MPaであり、前記合成樹脂発泡体の製造手順(5)に記すように不活性ガス含浸圧力15〜30MPaとは大きく異なる。このため製造時の不活性ガス含浸圧力時のTg又はTmは、DSCでの1〜3MPaのTg又はTmの測定値を圧力に対して線形補間し、それらより線形外挿することにより求め、Tg又はTmの予想値と定義した。
【0041】
[平均気泡直径と気泡数密度の測定]
平均気泡直径と気泡数密度は、透過電子顕微鏡(TEM)で発泡体試料断面を写真撮影した後、市販の画像処理ソフトで統計処理して求めた。即ち、発泡体試料断面をウルトラミクロトームにダイヤモンドナイフを装着し、切片の厚さ設定値を100nmで数枚の切片を切削し、その後支持膜なし300メッシュのグリッドにこの切片を載せ、TEM(日本電子製「JEM−1230」)観察用検鏡試料とした。この検鏡試料をTEMで加速電圧120kVにて観察撮影した。この写真をデジタルスキャナー(セイコーエプソン社製「GT9500」)でコンピュータ内にデジタルデータとして読み込んだ後、画像解析ソフト(三谷商事社製「Win
ROOF」)で二値化、統計処理し、合成樹脂発泡体断面の平均気泡直径Dを求め、また次式より気泡数密度Nを求めた。
N=(n/A)3/2/(1−4/3π(D/2)・(n/A)3/2
式中、Nは気泡数密度[個/cm]、Aは統計処理領域の面積、nはA中の気泡個数、Dは平均気泡直径である。
【0042】
[光透過率の測定および可視光透過率比の算出]
0.5〜4mm厚みの板状の合成樹脂発泡体を用意し、紫外線可視分光光度計(日本分光社製「V―550」)を用い、合成樹脂発泡体を光度計中に仕込み、スペクトル測定モードで200〜800nmの波長の光に対して、厚み方向の光透過率を測定した。
【0043】
同一形状の未発泡体に対しても上記と同様の測定を実施し、発泡による光透過率の低下を次式で定義し、可視光透過率比と称する。
可視光透過率比(%)=
(合成樹脂発泡体の光透過率÷同一形状合成樹脂未発泡体の光透過率)×100
【0044】
[屈折率の測定]
カルニュー光学工業(株)社製精密屈折計KPR−2を用いて、サンプルに587.6nmの波長光を透過させ、その屈折率を測定した。
【0045】
実施例1〜8、比較例1〜3
ノルボルネン系樹脂:商品名「ZEONEX」(日本ゼオン社製)を0〜3MPaのCO含浸条件下でTgの測定を行うと共に、20MPaのCO含浸条件でのTgの予想値を求め、結果を表1に示した。
【0046】
【表1】

Figure 0004035989
【0047】
表1に示すように、CO含浸によりTgが低下している、このCO含浸時のTg変化を元に表2に示す条件を設定した。即ち、実施例1〜8としてはZEONEXのTg143.0℃とCO含浸状態のZEONEXのTg61.8℃の間の加熱温度条件とし、比較例1〜3としてはその範囲から外れる加熱条件とし、次のようにして発泡体の製造を行った。
【0048】
まず、表2に示す厚みのZEONEXの試験片を圧力容器に仕込み、外部電源を用いて表2に示す温度に加熱した。その後、加熱温度を保持した状態で圧力容器内に不活性ガスとしてCOを仕込み、表2に示す圧力に、表2に示す一定時間保持した。その後、圧力容器のバルブを全開放して急激に容器内の圧力を解放した。なお、圧力解放時の温度は加圧時の温度と同温度とした。
【0049】
得られた合成樹脂発泡体について平均気泡直径、気泡数密度、可視光透過率比及び屈折率を調べ、結果を表2に示した。
【0050】
【表2】
Figure 0004035989
【0051】
表2より明らかなように、ZEONEXのTg143.0℃とCO含浸状態のZEONEXのTg61.8℃の間の加熱温度条件とした実施例1〜8では気泡が十分に微細で光透過性を有する発泡体が得られる。これに対して、ZEONEXのTg143.0℃より高い温度で加熱した比較例1,2では、発泡工程において気泡成長が抑制されないため、微細気泡を形成することができない。一方、CO含浸状態のZEONEXのTg61.8℃よりも低い温度で加熱した比較例3では、COの含浸が十分でなく、かつ発泡に必要な分子鎖の運動が束縛されるために未発泡となる。
【0052】
実施例9〜16、比較例4、5
ノルボルネン系樹脂:商品名「ARTON」(JSR社製)を0〜3MPaのCO含浸条件下でのTgの測定を行うと共に、20MPaのCO含浸条件でのTgの予想値を求め、結果を表3に示した。
【0053】
【表3】
Figure 0004035989
【0054】
表3に示すように、CO含浸によりTgが低下している、このCO含浸時のTg変化を元に表4に示す条件を設定した。即ち、実施例9〜16としてはARTONのTg167.0℃とCO含浸状態のARTONのTg−37.1℃の間の加熱温度条件とし、比較例4,5としてはその範囲から外れる加熱条件とし、次のようにして発泡体の製造を行った。
【0055】
まず、表4に示す厚みのARTONの試験片を圧力容器に仕込み、外部電源を用いて表4に示す温度に加熱した。その後、加熱温度を保持した状態で圧力容器内に不活性ガスとしてCOを仕込み、表4に示す圧力に、表4に示す一定時間保持した。その後、圧力容器のバルブを全開放して急激に容器内の圧力を解放した。なお、圧力解放時の温度は加圧時の温度と同温度とした。
【0056】
得られた合成樹脂発泡体について平均気泡直径、気泡数密度、可視光透過率比及び屈折率を調べ、結果を表4に示した。
【0057】
【表4】
Figure 0004035989
【0058】
表4より明らかなように、ARTONのTg167.0℃とCO含浸状態のARTONのTg−37.1℃の間の加熱温度条件とした実施例9〜16では気泡が十分に微細で光透過性を有する発泡体が得られる。これに対して、ARTONのTg167.0℃より高い温度で加熱した比較例4では、発泡工程において気泡成長が抑制されないため、微細気泡を形成することができない。一方、CO含浸状態のARTONのTg−37.1℃よりも低い温度で加熱した比較例5では、COの含浸が十分でなく、かつ発泡に必要な分子鎖の運動が束縛されるために未発泡となる。
【0059】
【発明の効果】
以上詳述した通り、本発明によれば、十分に高い光透過性を確保し得る微細気孔が形成された高機能性合成樹脂発泡体が提供される。このような本発明の光透過性合成樹脂発泡体は、その優れた光透過性と、合成樹脂発泡体としての易成形性、低価格性、屈曲性、靭性、軽量性、取り扱い性等により、プラスチック光ファイバー、反射防止膜、有機ELディスプレイ、有機合成樹脂材料ベースのフォトニクス結晶等として工業的に極めて有用である。
本発明によれば、合成樹脂発泡体に不活性ガス又はその超臨界流体を含浸させることによりこのような本発明の光透過性合成樹脂発泡体を製造するにあたり、不活性ガス又はその超臨界流体の含浸に要する時間を短縮することができる。このため、微細気泡を有し、従って、光透過性に優れた高機能性合成樹脂発泡体を高い生産性にて製造することにより、安価に提供することが可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a synthetic resin foam in which fine bubbles are formed to such an extent that light transmittance is maintained.
[0002]
[Prior art]
Synthetic resin foams are used in various structural materials for the purpose of reducing weight, improving heat insulation properties, or imparting soundproofing properties. In the case of this synthetic resin foam, it is desired to increase the expansion ratio and reduce the specific gravity from the viewpoint of weight reduction and functional improvement. However, as the expansion ratio increases, Since the strength decreases, in industrial applications, the expansion ratio is restricted from the viewpoint of strength.
[0003]
On the other hand, there has been proposed a technique for reducing the strength or increasing the strength accompanying the increase in the expansion ratio by refining the bubbles of the foam. For example, Shimbo et al., Polymer Engineering Science, 35, 1387 (1995) describes that the rigidity is slightly improved by forming foamed bubbles having a diameter of 3.5 to 9.5 μm. This technique is called microcellular plastic, and its details are described in USP 4,473,665 (1984), USP 5,158,986 (1992). Specifically, this method was (1) impregnating a thermoplastic resin in a high-pressure vessel under high pressure with an inert gas such as nitrogen or carbon dioxide in a high-pressure or supercritical state, and then (2) impregnating the gas. The thermoplastic resin is taken out from the high-pressure vessel, heated to a temperature equal to or higher than the glass transition temperature Tg of the thermoplastic resin with an oil bath or the like, and (3) a fine bubble foam is obtained by inducing nucleation and causing bubble growth. Is.
[0004]
In the field of optoelectronics, the refractive index is lowered by making porous inorganic transparent materials such as inorganic glass. For films and membranes having a microporous structure with light transmission, the sol-gel method and super An inorganic porous material synthesized by combining critical extraction is known. For example, in T. Tsutsui, et al., MRS Meeting Abstract, 663 (2000) or S. Tokito and T. Tsutttsui, Applied Physics, 86, 2407 (1999), a low refractive index layer having a refractive index of 1.1 or less is used. By forming it inside the glass substrate of the organic EL display, the result of improving the external quantum efficiency of light emission by 60% or more is obtained.
[0005]
It is well known that the glass transition temperature Tg or the melting point Tm is lowered by impregnating the synthetic resin with an inert gas. For example, Japanese Patent Application Laid-Open No. 11-263858 discloses a method for realizing low-temperature molding by impregnating polyphenylene ether with supercritical carbon dioxide and changing the glass transition temperature Tg. Handa et.al., Journal of Polymer Science: Part B: Polymer Physics,
32, 2549 (1994) confirmed that the Tg of polyphenylene ether decreased by 31.6 ° C. by impregnating 61.2 atm of carbon dioxide by differential scanning calorimetry (DSC) measurement using a high pressure cell. It has been reported.
[0006]
[Problems to be solved by the invention]
The porous body of inorganic transparent material used in the optoelectronics field is brittle and is subject to toughness and flexibility, so that it is crushed or scratched in the mounting process, or it is difficult to apply a continuous process. There was a point. In order to increase the strength, one method is to increase the porous volume ratio. However, the process for synthesizing the porous body has a limit. Therefore, if these can be manufactured with an organic material such as a synthetic resin, it has flexibility and toughness, and it is easy to increase the volume ratio of the porous body, and handling is possible in the mounting process of displays, communication devices, etc. As a result, the yield can be improved or a continuous process can be achieved, and the manufacturing cost can be greatly reduced.
[0007]
By the way, in the synthetic resin foam, it is generally necessary to limit the bubble diameter to ¼ wavelength or less in order to maintain light transmittance. Therefore, since the minimum wavelength of visible light is 400 nm, a bubble diameter of less than 100 nm is essential for this target.
[0008]
However, the minimum value of the average cell diameter of the foam produced by the microcellular plastic manufacturing method is 100 nm or more according to JP-A-10-45936 and JP-A-2000-109579. Getting a body is difficult.
[0009]
Furthermore, the manufacturing method of the above-mentioned microcellular plastic has a huge amount of time spent for gas impregnation, and since it is foamed after being held under high pressure gas for a long time of usually 24 to 48 hours, the production efficiency is remarkably poor, and it is industrialized. There is also a problem that is not suitable.
[0010]
The present invention solves the above-mentioned conventional problems, and a light-transmitting synthetic resin foam in which fine pores capable of ensuring sufficient light transmission are formed, particularly an inert gas or a supercritical fluid thereof in the synthetic resin. A light-transmitting synthetic resin foam manufactured by impregnation, having a short time required for impregnation with an inert gas or its supercritical fluid, and sufficiently ensuring industrial productivity The object is to provide a foam.
[0011]
[Means for Solving the Problems]
The light-transmitting synthetic resin foam of the present invention has an average cell diameter in the range of 10 to 200 nm, a cell number density of 10 9 to 10 15 / cm 3 , and a visible light region having a wavelength of 400 to 800 nm. A light-transmitting synthetic resin foam in which the ratio (percentage) between the light transmittance of a foam and the light transmittance of a non-foam having the same shape as the foam is 70% or more , wherein the synthetic resin is norbornene It is a system resin .
[0012]
If it is a synthetic resin foam having such fine pores, remarkably good light transmittance can be obtained.
[0013]
Such a light-transmitting synthetic resin foam of the present invention can be easily and efficiently produced according to the present invention.
[0014]
Optically transparent synthetic resin foam of claim 2, in claim 1, norbornene resin inert gas or a high pressure that a supercritical fluid is impregnated under heating conditions, is produced by releasing the pressure a norbornene-based resin, the heating conditions, a temperature lower than the glass transition temperature of the norbornene resin, glass amorphous thermoplastic resin inert gas or a supercritical fluid is impregnated a temperature higher than the transition temperature, by impregnating the inert gas or a supercritical fluid in a norbornene resin, a glass transition temperature of the norbornene resin inert gas or a supercritical fluid is impregnated, the norbornene 10 to 250 ° C. to lower than the glass transition temperature of the system resin, inert gas or a supercritical fluid is impregnated by subsequently releasing the pressure Norubo Characterized in that it is manufactured by increasing 10 to 250 ° C. than the glass transition temperature before the glass transition temperature pressure release Nene resin.
[0015]
That is, as a result of examining the industrially advantageous method for producing a synthetic resin foam having a sufficiently small bubble diameter and a sufficiently large bubble number density to have light permeability, By utilizing the change in Tg or Tm of the synthetic resin depending on the presence or absence of impregnation, the temperature is lower than the Tg or Tm of the synthetic resin before impregnation and higher than the Tg or Tm of the synthetic resin after impregnation. The inventors have found that a foam having very fine bubbles can be produced in a drastically short impregnation time as compared with the method, and completed the present invention.
[0016]
By impregnation with the inert gas, Tg or Tm is decreased as compared with that before the impregnation. The degree of this decrease is larger as the inert gas impregnation concentration is higher. For this reason, by maintaining the heating conditions of the present invention, the synthetic resin is impregnated into the synthetic resin in a state where the mobility of the molecular chain is high, that is, in a state where the gas diffusion coefficient is high. The holding time can be dramatically shortened.
[0017]
After this impregnation operation, the foam is obtained by suddenly releasing the pressure and rapidly reducing the pressure. In this foaming step, the Tg or Tm of the synthetic resin impregnated with the inert gas rises and exceeds the holding temperature. Bubble growth is suppressed and fine bubbles are formed. That is, in the foaming process by pressure release, the inert gas impregnated in the synthetic resin is suddenly released, so that the concentration of the inert gas in the synthetic resin is drastically decreased, and Tg or Tm is increased accordingly. . As a result, at the holding temperature, the movement of the molecular chain is restricted, and the light-transmitting synthetic resin foam having fine bubbles can be obtained by fixing in a state where the bubble growth is suppressed.
[0018]
In the method of the present invention, by impregnating a norbornene-based resin in an inert gas or a supercritical fluid under high pressure, the glass transition temperature of its, 10 to 250 ° C. than the glass transition temperature of the norbornene-based resin before impregnation Preferably, the inert gas concentration is lowered by lowering the pressure by 20 to 250 ° C. and then foaming by releasing the pressure, and the glass transition temperature after the pressure release is 10 to 250 ° C. higher than the glass transition temperature before the pressure release, It is preferable to suppress the growth of bubbles to form fine bubbles by raising the temperature preferably by 20 to 250 ° C.
[0019]
In the present invention, nitrogen and / or carbon dioxide is preferably used as the inert gas.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail according to the method for producing a light-transmitting synthetic resin foam of the present invention.
[0021]
In the present invention, specifically, a light-transmitting synthetic resin foam is produced by the following procedure.
(1) Charge a solid synthetic resin into a pressure vessel equipped with a valve.
(2) A pressure vessel containing a solid synthetic resin is heated to a predetermined temperature using an external heat source.
[0022]
The heating temperature is, the norbornene resin had use Tg (hereinafter referred to as "Tg (max)".) Lower than, and norbornene resin inert gas is sufficiently impregnated with the following steps (6) It shall be the temperature higher than the Tg of the inert gas impregnation norbornene resin in the state. Below it refers to the state in which the inert gas is sufficiently impregnated with the synthetic resin under high pressure conditions and saturated impregnation state, called the Tg of the inert gas impregnation synthetic resin saturation state impregnated with Tg (min).
[0023]
If the heating temperature is too low in the above range, the effect of shortening the impregnation time of the inert gas due to the improvement of gas diffusivity cannot be sufficiently obtained. It is not possible to obtain a sufficient suppression effect. Accordingly, although the heating temperature varies depending on the average cell diameter and cell number density of the synthetic resin foam to be produced, the concentration of saturated gas impregnated with the inert gas, etc., in the present invention, by impregnating the inert gas , T g (Min) is lowered from Tg (max) by 10 to 250 ° C., preferably 20 to 250 ° C., more preferably 50 to 250 ° C., and the heating temperature is lowered from Tg (max) by 10 to 250 ° C., preferably 20 to 250 ° C. It is preferable that the temperature is lower by 0 ° C., more preferably by 50 to 250 ° C., and higher by 0 to 250 ° C., preferably 0 to 200 ° C. than Tg (min).
[0024]
(3) While heating at the temperature of (2) above, an inert gas is charged into the pressure vessel at the same time. As the inert gas, nitrogen, carbon dioxide, or a mixed gas thereof can be used. In many cases, the inert gas is impregnated into the synthetic resin as a supercritical fluid under heating and pressurization.
(4) Equilibrate the pressure vessel, synthetic resin and inert gas to the heat source temperature.
(5) In order to achieve a final pressure at which the inert gas is sufficiently dissolved in the synthetic resin, the pressure in the pressure vessel is adjusted by adding additional inert gas. This pressure varies depending on the light transmittance of the synthetic resin to be used and the target synthetic resin foam, that is, the average bubble diameter and bubble number density. However, as described above, Tg (min) is 10 times higher than Tg (max). to 250 DEG ° C., to preferably order to reduce 20~250 ℃, 13~30MPa, particularly it is preferable that the 15~30MPa.
(6) Hold at the above heating temperature and pressure for a predetermined time. The holding time, that is, the impregnation time varies depending on the heating and pressurizing conditions, but in the present invention, the holding time can be drastically shortened compared to the conventional case by heating under the above heating conditions, In general, a synthetic resin foam having a sufficiently small cell diameter and a sufficiently large cell number density can be produced with a holding time of 1 to 12 hours, preferably 2 to 10 hours.
(7) Fully open the pressure vessel valve to quickly release the pressure in the pressure vessel.
[0025]
Thereby, the light-transmitting synthetic resin foam of the present invention having fine foam is obtained. Note that the temperature drop after releasing the pressure is preferably performed under the fastest possible condition using liquefied gas or water in order to suppress the growth of bubbles.
[0026]
Synthetic resin used in the light-transmitting synthetic resin foam of the present invention as described above, a norbornene resin.
[0027]
Further, this synthetic resin, additives used in the foam molding of the conventional synthetic resins, for example, foam nucleating agents, colorants, heat stabilizers, mold release agents, preservatives, ultraviolet absorbers, plasticizers, flame retardants, You may contain 1 type (s) or 2 or more types, such as an electroconductivity imparting agent, an antistatic agent, and a crystal nucleating agent.
[0028]
The light-transmitting synthetic resin foam of the present invention thus produced has an average cell diameter of 10 to 200 nm and a cell number density of 10 9 to 10 15 / cm 3 . It is difficult to produce a synthetic resin foam having an average cell diameter of less than 10 nm, even if the effect of suppressing cell growth in the foaming process according to the present invention is sufficiently exhibited, and a synthetic resin having an average cell diameter exceeding 200 nm. With foam, sufficient light transmission cannot be obtained. The preferred cell number density varies depending on the average cell diameter, but if it is less than 10 9 / cm 3 , sufficient porosity as a foam cannot be secured, and if it exceeds 10 15 / cm 3 , the strength is impaired. Therefore, the range is 10 9 to 10 15 pieces / cm 3 .
[0029]
Further, the light-transmitting synthetic resin foam of the present invention has a ratio (percentage: hereinafter referred to as “visible”) of the light transmittance of the foam having the same shape and the light transmittance of the non-foamed body in the visible light region having a wavelength of 400 to 800 nm. May be referred to as “light transmittance ratio”)) having a high light transmittance of 70% or more.
[0030]
The visible light transmittance ratio is determined, for example, according to the above-described method of the present invention. The non-foamed molded body of the synthetic resin before impregnation with the inert gas or its supercritical fluid and the inert gas according to the present invention Or the impregnation of the supercritical fluid, and the foam of the present invention obtained by foam molding in the same shape as this non-foam molded article, the light transmittance is measured in the visible light region of wavelength 400-800 nm, It can be obtained by calculating the ratio (percentage).
[0031]
The light-transmitting synthetic resin foam of the present invention is a gradient material in which only the vicinity of the surface is foamed and the inside is unfoamed by controlling the inert gas impregnation time and the impregnation pressure in the production method of the present invention described above. It may be a thing. Further, by controlling the temperature at the time of depressurization and further cooling the surface, an inclined material opposite to the above, in which the vicinity of the surface is not foamed and the inside is foamed, may be used. In this case, the bubble number density is the bubble number density for only the uniform foam region.
[0032]
Such a light-transmitting synthetic resin foam of the present invention is used as a plastic optical fiber, an antireflection film, an organic EL display, a photonic crystal based on an organic synthetic resin material, etc. Expected.
[0033]
The plastic optical fiber can be used as a cladding layer of the SI optical fiber and a tilted structure formed by foaming of the GI optical fiber. In the SI type optical fiber, the material cost can be reduced as compared with the conventional clad layer made of a fluoropolymer, and in the GI type optical fiber, the manufacturing process can be simplified, so that the manufacturing cost can be expected to be reduced.
[0034]
Further, in the design of the antireflection film, when a thin film having a quarter wavelength thickness is formed on a substrate having a refractive index of 1.5 to prevent reflection, a transparent material having a refractive index of n = 1.23 can be used. Theoretically, the reflection loss can be suppressed to 0%. However, in the conventional technique, n = 1.38 of MgF 2 which is an inorganic material that can be vacuum-deposited, and n = 1.34 of an organic material that can be wet-coated is a cyclic fluorinated polyolefin (manufactured by Asahi Glass; trade name Cytop). It was the lowest and the antireflection effect was insufficient. For this reason, in order to improve the antireflection effect, it is necessary to make the antireflection layer multi-layered, which causes a problem of cost reduction. In addition, the vacuum process is disadvantageous in cost especially in a large area, and the fluorinated resin has a problem that the material cost becomes very high because it takes time to synthesize. On the other hand, with the light-transmitting synthetic resin foam of the present invention, it is possible to manufacture a film having a refractive index of 1.23 that exhibits an ideal antireflection effect at a lower cost than in the prior art. It is possible to provide a member having excellent cost competitiveness.
[0035]
In addition, in an organic EL display or an organic EL light source, it is conventionally said that most of the light quantity loss that cannot be extracted from the exit surface after being guided through the glass substrate on the light extraction side. By providing a low refractive index layer made of the light-transmitting synthetic resin foam of the present invention on the light-emitting body side of the glass substrate, the amount of light that can be extracted from the exit surface can be improved by about 50% to 100%.
[0036]
Further, in the photonic crystal fiber based on the stretching of the organic polymer material-based photonic crystal, the optically transparent synthetic resin foam of the present invention is based on the organic polymer material. High flexibility and toughness can be obtained as compared with a product made by CRYSTAL FIBER (for example, Denmark).
[0037]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by the following examples unless it exceeds the gist.
[0038]
In the following Examples and Comparative Examples, measurement of Tg or Tm, measurement of average bubble diameter of foam, measurement of bubble number density, measurement of light transmittance, calculation of visible light transmittance ratio, measurement of refractive index Was carried out by the following method.
[0039]
[Measurement of Tg or Tm]
The decrease in glass transition temperature Tg or melting point Tm due to impregnation with inert gas was measured using a DSC equipped with a high-pressure cell. That is, first, a cylinder containing an inert gas is connected to a high-pressure cell via a booster pump, and then a synthetic resin is charged into the high-pressure cell and held for a certain period of time under a high pressure in an inert gas atmosphere. Then, this sample-containing cell was charged into a DSC. As DSC, DSC “Pyris1” manufactured by Parkin-Elmer was used, and a temperature of about 5 mg of the sample was increased at 10 ° C./min. At that time, from the obtained DSC curve, the glass transition temperature Tg is defined as the intermediate glass transition temperature (Tmg) described in JIS-K7121, and the melting point Tm is defined by the melting peak temperature (Tpm) described in JIS-K7121. did.
[0040]
The pressure limit of the high pressure cell is 3 MPa, which is significantly different from the inert gas impregnation pressure of 15 to 30 MPa as described in the synthetic resin foam production procedure (5). For this reason, the Tg or Tm at the time of the inert gas impregnation pressure at the time of production is obtained by linearly interpolating the measured value of Tg or Tm of 1 to 3 MPa in DSC with respect to the pressure, and linearly extrapolating from these values. Or it was defined as the expected value of Tm.
[0041]
[Measurement of average bubble diameter and bubble number density]
The average bubble diameter and bubble number density were obtained by taking a photograph of a cross section of the foam sample with a transmission electron microscope (TEM) and then statistically processing with commercially available image processing software. In other words, the foam sample cross section was mounted on an ultramicrotome and a diamond knife was attached. The thickness of the slice was set to 100 nm, and several slices were cut. Then, the slice was placed on a 300 mesh grid without a supporting film, and TEM (Japan) Electronic “JEM-1230”) was used as an observation spectroscopic sample. This microscopic sample was observed and photographed with a TEM at an acceleration voltage of 120 kV. This photograph is read as digital data into a computer with a digital scanner (“GT9500” manufactured by Seiko Epson Corporation), and then image analysis software (“Win” manufactured by Mitani Corporation).
(ROOF "), binarization and statistical processing were performed to determine the average cell diameter D of the cross section of the synthetic resin foam, and the cell number density N was determined from the following equation.
N = (n / A) 3/2 / (1-4 / 3π (D / 2) 3 · (n / A) 3/2 )
In the formula, N is the bubble number density [number / cm 3 ], A is the area of the statistical processing region, n is the number of bubbles in A, and D is the average bubble diameter.
[0042]
[Measurement of light transmittance and calculation of visible light transmittance ratio]
Prepare a plate-shaped synthetic resin foam with a thickness of 0.5 to 4 mm. Using a UV-visible spectrophotometer (“V-550” manufactured by JASCO Corporation), prepare the synthetic resin foam in the photometer and measure the spectrum. The light transmittance in the thickness direction was measured for light having a wavelength of 200 to 800 nm in the mode.
[0043]
The same measurement as described above is performed for an unfoamed body having the same shape, and a decrease in light transmittance due to foaming is defined by the following equation, which is referred to as a visible light transmittance ratio.
Visible light transmittance ratio (%) =
(Light transmittance of synthetic resin foam / light transmittance of non-foamed synthetic resin) × 100
[0044]
[Measurement of refractive index]
Using a precision refractometer KPR-2 manufactured by Kalnew Optical Industry Co., Ltd., the sample was allowed to transmit light having a wavelength of 587.6 nm, and its refractive index was measured.
[0045]
Examples 1-8, Comparative Examples 1-3
Norbornene-based resin: trade name "ZEONEX" (manufactured by Nippon Zeon Co., Ltd.) together with the measurement of Tg in the CO 2 impregnation conditions of 0~3MPa, seeking the expected value of the Tg of a CO 2 impregnation conditions of 20MPa, the results It is shown in Table 1.
[0046]
[Table 1]
Figure 0004035989
[0047]
As shown in Table 1, Tg is reduced by CO 2 impregnated and set the conditions shown in Table 2 based on the Tg change during the CO 2 impregnated. That is, the Examples 1 to 8 and the heating temperature conditions during Tg61.8 ° C. of ZEONEX of Tg143.0 ° C. and CO 2 impregnated state of ZEONEX, as Comparative Examples 1 to 3 and heating conditions departing from the scope thereof, The foam was produced as follows.
[0048]
First, a ZEONEX test piece having a thickness shown in Table 2 was charged into a pressure vessel and heated to a temperature shown in Table 2 using an external power source. Thereafter, CO 2 was charged as an inert gas in the pressure vessel while maintaining the heating temperature, and the pressure shown in Table 2 was maintained for a certain period of time as shown in Table 2. Thereafter, the pressure vessel valve was fully opened, and the pressure in the vessel was suddenly released. The temperature at the time of pressure release was the same as the temperature at the time of pressurization.
[0049]
The resulting synthetic resin foam was examined for average cell diameter, cell number density, visible light transmittance ratio and refractive index, and the results are shown in Table 2.
[0050]
[Table 2]
Figure 0004035989
[0051]
As is apparent from Table 2, in Examples 1 to 8 in which the heating temperature condition was between Tg 143.0 ° C. of ZEONEX and Tg 61.8 ° C. of ZEONEX in a CO 2 impregnated state, the bubbles were sufficiently fine and light transmissive. The foam which has is obtained. On the other hand, in Comparative Examples 1 and 2 heated at a temperature higher than ZEONEX's Tg of 143.0 ° C., the bubble growth is not suppressed in the foaming step, so that fine bubbles cannot be formed. On the other hand, in Comparative Example 3 heated at a temperature lower than Tg61.8 ° C. of ZEONEX in the state of CO 2 impregnation, the impregnation of CO 2 is not sufficient and the movement of molecular chains necessary for foaming is restricted, so that It becomes foaming.
[0052]
Examples 9 to 16, Comparative Examples 4 and 5
Norbornene resin: trade name "ARTON" a (JSR Corporation) along with the measurement of Tg in the CO 2 impregnated conditions 0 to 3 MPa, it obtains a predicted value of Tg in the CO 2 impregnated condition of 20 MPa, the results It is shown in Table 3.
[0053]
[Table 3]
Figure 0004035989
[0054]
As shown in Table 3, Tg is lowered by CO 2 impregnated and set the conditions shown in Table 4 based on the Tg change during the CO 2 impregnated. In other words, Examples 9 to 16 were heating temperature conditions between TART 167.0 ° C. of ARTON and Tg-37.1 ° C. of ARTON in a CO 2 impregnated state, and Comparative Examples 4 and 5 were heating conditions outside the range. And the foam was manufactured as follows.
[0055]
First, an ARTON test piece having a thickness shown in Table 4 was placed in a pressure vessel and heated to a temperature shown in Table 4 using an external power source. Thereafter, CO 2 was charged as an inert gas into the pressure vessel while maintaining the heating temperature, and the pressure shown in Table 4 was maintained for a certain period of time as shown in Table 4. Thereafter, the pressure vessel valve was fully opened, and the pressure in the vessel was suddenly released. The temperature at the time of pressure release was the same as the temperature at the time of pressurization.
[0056]
The resulting synthetic resin foam was examined for average cell diameter, cell number density, visible light transmittance ratio and refractive index, and the results are shown in Table 4.
[0057]
[Table 4]
Figure 0004035989
[0058]
As is apparent from Table 4, in Examples 9 to 16 where the heating temperature was between ARTON Tg 167.0 ° C. and CO 2 impregnated ARTON Tg-37.1 ° C., the bubbles were sufficiently fine and light transmitted. A foam having properties is obtained. On the other hand, in Comparative Example 4 heated at a temperature higher than ARTON's Tg of 167.0 ° C., the bubble growth is not suppressed in the foaming step, and therefore, fine bubbles cannot be formed. On the other hand, in Comparative Example 5 heated at a temperature lower than Tg-37.1 ° C. of ARTON in a CO 2 impregnated state, the impregnation of CO 2 is insufficient and the movement of molecular chains necessary for foaming is restricted. It becomes unfoamed.
[0059]
【The invention's effect】
As described above in detail, according to the present invention, there is provided a highly functional synthetic resin foam in which fine pores capable of ensuring sufficiently high light transmittance are formed. Such a light-transmitting synthetic resin foam of the present invention has excellent light transmittance, easy moldability as a synthetic resin foam, low price, flexibility, toughness, lightness, handleability, etc. It is extremely useful industrially as a plastic optical fiber, an antireflection film, an organic EL display, a photonic crystal based on an organic synthetic resin material, and the like.
According to the present invention, in producing such a light-transmitting synthetic resin foam of the present invention by impregnating a synthetic resin foam with an inert gas or its supercritical fluid, the inert gas or its supercritical fluid is produced. The time required for impregnation of can be shortened. For this reason, it is possible to provide at low cost by producing a highly functional synthetic resin foam having fine bubbles and excellent in light transmittance with high productivity.

Claims (3)

平均気泡直径が10〜200nmの範囲内にあり、気泡数密度が10〜1015個/cmで、波長400〜800nmの可視光領域における該発泡体の光透過率と、該発泡体と同一形状の非発泡体の光透過率との比(百分率)が70%以上である光透過性合成樹脂発泡体であって、該合成樹脂がノルボルネン系樹脂であることを特徴とする光透過性合成樹脂発泡体。The average bubble diameter is in the range of 10 to 200 nm, the bubble number density is 10 9 to 10 15 / cm 3 , and the light transmittance of the foam in the visible light region with a wavelength of 400 to 800 nm; A light-transmitting synthetic resin foam having a ratio (percentage) to a light transmittance of a non-foam of the same shape of 70% or more , wherein the synthetic resin is a norbornene resin Synthetic resin foam. 請求項において、ノルボルネン系樹脂に不活性ガス又はその超臨界流体を高圧、加熱条件下で含浸させた後、圧力を解放することにより製造された光透過性合成樹脂発泡体であって、
前記加熱条件を、該ノルボルネン系樹脂のガラス転移温度よりも低い温度であって、該不活性ガス又はその超臨界流体が含浸されたノルボルネン系樹脂のガラス転移温度よりも高い温度とし、ノルボルネン系樹脂に不活性ガス又はその超臨界流体を含浸させることにより、該不活性ガス又はその超臨界流体が含浸されたノルボルネン系樹脂のガラス転移温度を、該ノルボルネン系樹脂のガラス転移温度よりも10〜250℃低下させ、その後圧力を解放することにより該不活性ガス又はその超臨界流体が含浸されたノルボルネン系樹脂のガラス転移温度を圧力解放前のガラス転移温度よりも10〜250℃上昇させることにより製造されたことを特徴とする光透過性合成樹脂発泡体。
The light transmissive synthetic resin foam according to claim 1, wherein the norbornene-based resin is impregnated with an inert gas or a supercritical fluid thereof under high pressure and heating conditions, and then released by releasing the pressure,
The heating conditions, a temperature lower than the glass transition temperature of the norbornene-based resin, a temperature higher than the glass transition temperature of the inert gas or norbornene resin that supercritical fluid is impregnated, norbornene resin the by impregnating an inert gas or a supercritical fluid, a glass transition temperature of the norbornene resin inert gas or a supercritical fluid is impregnated, than the glass transition temperature of the norbornene-based resin 10-250 Produced by raising the glass transition temperature of the norbornene-based resin impregnated with the inert gas or its supercritical fluid by 10 to 250 ° C. above the glass transition temperature before pressure release by lowering the temperature and then releasing the pressure. A light-transmitting synthetic resin foam characterized by being made.
請求項1又は2において、前記不活性ガスが窒素及び/又は二酸化炭素であることを特徴とする光透過性合成樹脂発泡体。 3. The light-transmitting synthetic resin foam according to claim 1 , wherein the inert gas is nitrogen and / or carbon dioxide.
JP2001377457A 2001-12-11 2001-12-11 Light-transmitting synthetic resin foam Expired - Fee Related JP4035989B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001377457A JP4035989B2 (en) 2001-12-11 2001-12-11 Light-transmitting synthetic resin foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377457A JP4035989B2 (en) 2001-12-11 2001-12-11 Light-transmitting synthetic resin foam

Publications (2)

Publication Number Publication Date
JP2003176375A JP2003176375A (en) 2003-06-24
JP4035989B2 true JP4035989B2 (en) 2008-01-23

Family

ID=19185412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377457A Expired - Fee Related JP4035989B2 (en) 2001-12-11 2001-12-11 Light-transmitting synthetic resin foam

Country Status (1)

Country Link
JP (1) JP4035989B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246822A (en) * 2004-03-05 2005-09-15 Mitsubishi Chemicals Corp Multi-layer foamed resin molding and its production method
JP2008074057A (en) * 2006-09-25 2008-04-03 Sekisui Chem Co Ltd Multilayered laminate and multilayered natural lighting insulator material
RU2012143158A (en) * 2010-03-10 2014-04-20 ДАУ ГЛОБАЛ ТЕКНОЛОДЖИЗ ЭлЭлСи NANOPOROUS FOAM POLYMER, CHARACTERIZED BY HIGH CELL ACHYLITY IN THE ABSENCE OF NANO-FILLER
US11067514B2 (en) * 2017-12-20 2021-07-20 Palo Alto Research Center Incorporated Environmental sensor
US11614409B2 (en) * 2018-12-20 2023-03-28 Palo Alto Research Center Incorporated Printed sensor with vibrant colorimetric particles
CN113201166A (en) * 2021-05-31 2021-08-03 江苏中科聚合新材料产业技术研究院有限公司 High-magnification high-rigidity foaming amorphous polyester bead and preparation method thereof

Also Published As

Publication number Publication date
JP2003176375A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
US8030375B2 (en) Fiber-reinforced composite material and process for producing the same
US6232354B1 (en) Microcellular polymer foams and method for their production
Sun et al. Preparation, characterization, and mechanical properties of some microcellular polysulfone foams
JP2005115051A (en) Polycarbonate resin sheet for reflection of light and layered body for reflection of light using the same
JP4035989B2 (en) Light-transmitting synthetic resin foam
US20050232561A1 (en) Porous plastic optical transmission article and method for its production
TW200930749A (en) Process for producing polarizing element, polarizing element, polarizing plate, optical film, and image display
WO1997001117A1 (en) Light reflection plate
KR20180105752A (en) Polycarbonate film, transparent film, and precess for producing same
TWI574842B (en) Composite film and liquid crystal display device
JPWO2016031776A1 (en) Optical film
KR20190062625A (en) Long retardation film, circularly polarizing plate and organic el panel
WO2006030640A1 (en) Thermoplastic resin foam
WO2013031924A1 (en) Foam molded body
JP4999041B2 (en) Polycarbonate foam
JP2015034255A (en) Foam and production method thereof
KR20220098344A (en) Polarizing film, polarizing plate and image display device
Denny et al. Effects of thermal processes on the structure of monolithic tungsten and tungsten alloy photonic crystals
JP5617245B2 (en) Method for producing glass fiber woven polycarbonate resin molded body, resin-impregnated sheet, and glass fiber woven polycarbonate resin molded body
Zhang et al. Fabrication of nanoporous structures in block copolymer using selective solvent assisted with compressed carbon dioxide
US6555590B1 (en) Transparent supermicrocellular polymer foams from high Tg polymers and method for manufacture
JP2003089727A (en) Method for producing thermoplastic resin foam and thermoplastic resin foam
KR100850793B1 (en) Foamed sheet for light reflection having good thermal conductivity and light reflectance
Syurik et al. Bio-inspired micro-to-nanoporous polymers with tunable stiffness
JP2004271635A (en) Light guide/light diffusing resin material, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20061003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees