JP4034805B2 - Method and apparatus for detecting input / output characteristics of semiconductor laser element - Google Patents

Method and apparatus for detecting input / output characteristics of semiconductor laser element Download PDF

Info

Publication number
JP4034805B2
JP4034805B2 JP2006024953A JP2006024953A JP4034805B2 JP 4034805 B2 JP4034805 B2 JP 4034805B2 JP 2006024953 A JP2006024953 A JP 2006024953A JP 2006024953 A JP2006024953 A JP 2006024953A JP 4034805 B2 JP4034805 B2 JP 4034805B2
Authority
JP
Japan
Prior art keywords
input
pulse
output
semiconductor laser
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006024953A
Other languages
Japanese (ja)
Other versions
JP2007207999A (en
Inventor
克彦 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daitron Technology Co Ltd
Original Assignee
Daitron Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daitron Technology Co Ltd filed Critical Daitron Technology Co Ltd
Priority to JP2006024953A priority Critical patent/JP4034805B2/en
Publication of JP2007207999A publication Critical patent/JP2007207999A/en
Application granted granted Critical
Publication of JP4034805B2 publication Critical patent/JP4034805B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、パルス駆動された半導体レーザ素子の入出力特性を検出する方法とその装置に関する。   The present invention relates to a method and apparatus for detecting input / output characteristics of a pulse-driven semiconductor laser device.

近年、代表的なフォトエレクトロニクスデバイスの1つとして、半導体レーザ素子が多くの分野で利用されており、例えば、光ディスクドライブの分野では、書き込み用光源としてパルス駆動される半導体レーザ素子が使用されている。この分野では、書き込み速度を高速化することに対する要求が高いことに伴い、半導体レーザ素子は年々高出力・高速化しており、そのため、高出力かつ短パルス駆動に対しても安定してレーザ発振可能な半導体レーザ素子を提供する事が必要になっている。   In recent years, as one of typical photoelectronic devices, a semiconductor laser element has been used in many fields. For example, in the field of an optical disk drive, a semiconductor laser element that is pulse-driven as a light source for writing is used. . In this field, as the demand for higher writing speeds is increasing, semiconductor laser elements have been increasing in output and speed year by year, so that stable laser oscillation is possible even with high output and short pulse drive. It is necessary to provide a simple semiconductor laser element.

ところで、製造された半導体レーザ素子の中には、高電流領域において、駆動電流に対する光出力特性(入出力特性)を示すグラフ上に直線性の乱れが生じるものがある。このような現象はキンク現象と呼ばれ、横モードの発振が不安定化するため、このような半導体レーザ素子は書き込み用光源として利用に供することができない。   By the way, some of the manufactured semiconductor laser elements have a disorder of linearity on a graph showing optical output characteristics (input / output characteristics) with respect to drive current in a high current region. Such a phenomenon is called a kink phenomenon, and the oscillation of the transverse mode becomes unstable. Therefore, such a semiconductor laser element cannot be used as a light source for writing.

そこで、半導体レーザ素子の製造にあたっては、製造された半導体レーザ素子全数を対象として入出力特性を測定することでスクリーニングを行い、上記のようなキンクを発生する半導体レーザを除去することが行われている(例えば、特許文献1参照)。   Therefore, in the manufacture of semiconductor laser elements, screening is performed by measuring input / output characteristics of all manufactured semiconductor laser elements, and semiconductor lasers that generate kinks as described above are removed. (For example, refer to Patent Document 1).

このような半導体レーザ素子の入出力特性の検出では、連続駆動時にキンクが発生しなくても短パルス駆動時にキンクが発生することがあるため、被検査素子が高速短パルス駆動により使用される場合、光出力特性測定においても実使用条件に即した高速短パルス駆動条件で測定する必要がある。   When detecting input / output characteristics of such semiconductor laser elements, kinks may occur during short pulse drive even if kinks do not occur during continuous drive. In the light output characteristic measurement, it is necessary to perform measurement under a high-speed and short-pulse driving condition that matches the actual use condition.

しかしながら、高速パルス駆動条件では受光素子の応答性能が不十分となって正確なパルス光の波高値を計測することができないという問題がある。これに対し、受光素子の受光面積を小さくすることによって応答性を高めることができるが、かかる場合、被検査素子から出力されるレーザ光の全光束を受光できず結合効率が低下するため、パルス光の正確な波高値を測定するのが困難になるという問題がある。
特開2000−241294号公報
However, under the high-speed pulse driving condition, there is a problem that the response performance of the light receiving element is insufficient and an accurate peak value of pulsed light cannot be measured. On the other hand, responsiveness can be improved by reducing the light receiving area of the light receiving element, but in such a case, the total luminous flux of the laser light output from the element to be inspected cannot be received and the coupling efficiency is lowered. There is a problem that it is difficult to measure an accurate peak value of light.
JP 2000-241294 A

本発明は、上記の問題に鑑みてなされたものであり、高速短パルス駆動における半導体レーザ素子の入出力特性を正確に測定することができる半導体レーザ素子の入出力特性検出方法とその装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an input / output characteristic detection method and apparatus for a semiconductor laser element capable of accurately measuring the input / output characteristics of the semiconductor laser element in high-speed and short-pulse driving. The purpose is to do.

請求項1にかかる発明は、(1)第1パルス幅を有し、一定周期をもって段階状に波高値が増大する第1電流パルス列信号を入力して半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第1パルス光を、その全光束を受光可能な受光面を有する第1受光素子により受光し、光電変換して第1検出パルス信号を得て、(3)前記第1検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第1サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第1検出パルス信号の波高値の変化を示す第1入出力特性を検出し、(4)前記第1入出力特性の微分特性である第1入出力微分特性を演算する第1工程と、(1)前記第1パルス光を、前記第1受光素子より小さい受光面を有する第2受光素子により受光し、光電変換して第2検出パルス信号を得て、(2)前記第2検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第2サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第2検出パルス信号の波高値の変化を示す第2入出力特性を検出し(3)前記第2入出力特性の微分特性である第2入出力微分特性を演算する第2工程と、前記第2入出力微分特性を前記第1入出力微分特性で除して、前記半導体レーザ素子と第2受光素子との結合効率を算出する第3工程と、(1)前記第1パルス幅より短い第2パルス幅を有し、一定周期をもって段階状に波高値が増大する第2電流パルス列信号を入力して前記半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第2パルス光を、前記第2受光素子により受光し、光電変換して第3検出パルス信号を得て、(3)前記第3検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第3サンプル時刻における前記第2電流パルス列信号の波高値に対する前記第3検出パルス信号の波高値の変化を示す第3入出力特性を検出する第4工程と、前記第3入出力特性の各値を前記結合効率で除して較正し、その較正した第3入出力特性を前記半導体レーザ素子の入出力特性とする第5工程と、を有することを特徴とする半導体レーザ素子の入出力特性検出方法である。 The invention according to claim 1 is: (1) driving a semiconductor laser element by inputting a first current pulse train signal having a first pulse width and increasing a peak value stepwise with a constant period; The first pulse light emitted from the semiconductor laser element is received by a first light receiving element having a light receiving surface capable of receiving all of the light flux, and photoelectrically converted to obtain a first detection pulse signal, (3) the first A first input / output characteristic indicating a change in a peak value of the first detection pulse signal with respect to a peak value of the first current pulse train signal at a first sample time set at a predetermined time from the rising point of one pulse of the one detection pulse signal. (4) a first step of calculating a first input / output differential characteristic that is a differential characteristic of the first input / output characteristic; and (1) receiving the first pulsed light smaller than the first light receiving element. Second light receiving element having a surface (2) The first current pulse train signal at the second sample time set at a predetermined time from the rising edge of one pulse of the second detection pulse signal. Detecting a second input / output characteristic indicating a change in the peak value of the second detection pulse signal with respect to a peak value of the second detection pulse; and (3) calculating a second input / output differential characteristic that is a differential characteristic of the second input / output characteristic. And a third step of dividing the second input / output differential characteristic by the first input / output differential characteristic to calculate the coupling efficiency between the semiconductor laser element and the second light receiving element, and (1) the first A second current pulse train signal having a second pulse width shorter than the pulse width and whose peak value increases stepwise with a constant period is input to drive the semiconductor laser element, and (2) emitted from the semiconductor laser element Second pulsed light The light is received by the second light receiving element, photoelectrically converted to obtain a third detection pulse signal, and (3) the third sampling time set at a predetermined time from the rising edge of one pulse of the third detection pulse signal. A fourth step of detecting a third input / output characteristic indicating a change in the peak value of the third detection pulse signal with respect to a peak value of the second current pulse train signal; and dividing each value of the third input / output characteristic by the coupling efficiency. And a fifth step of setting the calibrated third input / output characteristic as the input / output characteristic of the semiconductor laser element, and detecting the input / output characteristic of the semiconductor laser element.

請求項2にかかる発明は、前記第2工程において、前記第2検出パルス信号の1パルスの立ち上がり時点から前記第2サンプル時刻と異なる所定時刻に第4サンプル時刻を設定し、第4サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第2検出パルス信号の波高値の変化を示す第4入出力特性と、その微分特性である第4入出力微分特性を検出し、前記第3工程において、(1)前記第2入出力特性と前記第4入出力特性が一致しかつ直線性を有している電流区間を演算区間に設定し、(2)前記演算区間における前記第1入出力微分特性の平均値と、前記第2入出力微分特性及び前記第4入出力微分特性の平均値と、をそれぞれ算出し、(3)前記第2入出力微分特性及び前記第4入出力微分特性の平均値を前記第1入出力微分特性の平均値で除することで、前記結合効率を算出することを特徴とする請求項1に記載の半導体レーザ素子の入出力特性検出方法である。
請求項3にかかる発明は、請求項1又は2に記載の半導体レーザ素子の入出力特性検出方法において、前記第2サンプル時刻は、1パルスの立ち上がり時点からの時刻が、前記第サンプル時刻と等しい時刻、あるいは前記第サンプル時刻より短い時刻、に設定されていることを特徴とするものである。
According to a second aspect of the present invention, in the second step, the fourth sample time is set at a predetermined time different from the second sample time from the rising edge of one pulse of the second detection pulse signal, and the fourth sample time A fourth input / output characteristic indicating a change in a peak value of the second detection pulse signal with respect to a peak value of the first current pulse train signal and a fourth input / output differential characteristic which is a differential characteristic thereof are detected; (1) A current section in which the second input / output characteristic and the fourth input / output characteristic coincide with each other and has linearity is set as a calculation section, and (2) the first input / output differentiation in the calculation section An average value of the characteristic, and an average value of the second input / output differential characteristic and the fourth input / output differential characteristic, respectively; (3) the second input / output differential characteristic and the fourth input / output differential characteristic; The average value is the first By dividing the average value of the output differential characteristic, an input-output characteristic detecting method for a semiconductor laser device according to claim 1, characterized in that to calculate the coupling efficiency.
According to a third aspect of the present invention, in the input / output characteristic detection method for a semiconductor laser device according to the first or second aspect, the second sample time is the time from the rising edge of one pulse, and the third sample time. The time is set equal to or shorter than the third sample time.

請求項4にかかる発明は、請求項1〜3のいずれか1項に記載の半導体レーザ素子の入出力特性検出方法において、前記第1サンプル時刻は、前記第1検出パルス信号の立ち下がり前近傍のパルス波形が安定する時刻に設定することを特徴とするものである。 According to a fourth aspect of the present invention, in the semiconductor laser device input / output characteristic detection method according to any one of the first to third aspects, the first sample time is in the vicinity of the first detection pulse signal before falling. The time is set at the time when the pulse waveform becomes stable.

請求項5にかかる発明は、請求項2〜4のいずれか1項に記載の半導体レーザ素子の入出力特性検出方法において、前記第サンプル時刻は、前記第2検出パルス信号の立ち下がり前近傍のパルス波形が安定する時刻に設定することを特徴とするものである。 The invention according to claim 5 is the semiconductor laser device input / output characteristic detection method according to any one of claims 2 to 4 , wherein the fourth sample time is in the vicinity of the second detection pulse signal before falling. The time is set at the time when the pulse waveform becomes stable.

請求項6にかかる発明は、上記の半導体レーザ素子の入出力特性検出方法を実施するものであって、(1)第1パルス幅を有し、一定周期をもって段階状に波高値が増大する第1電流パルス列信号を入力して半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第1パルス光を、その全光束を受光可能な受光面を有する第1受光素子により受光し、光電変換して第1検出パルス信号を得て、(3)前記第1検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第1サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第1検出パルス信号の波高値の変化を示す第1入出力特性を検出し、(4)前記第1入出力特性の微分特性である第1入出力微分特性を演算する第1演算部と、(1)前記第1パルス光を、前記第1受光素子より小さい受光面を有する第2受光素子により受光し、光電変換して第2検出パルス信号を得て、(2)前記第2検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第2サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第2検出パルス信号の波高値の変化を示す第2入出力特性を検出し(3)前記第2入出力特性の微分特性である第2入出力微分特性を演算する第2演算部と、前記第2入出力微分特性を前記第1入出力微分特性で除して、前記半導体レーザ素子と第2受光素子との結合効率を算出する第3演算部と、(1)前記第1パルス幅より短い第2パルス幅を有し、一定周期をもって段階状に波高値が増大する第2電流パルス列信号を入力して前記半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第2パルス光を、前記第2受光素子により受光し、光電変換して第3検出パルス信号を得て、(3)前記第3検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第3サンプル時刻における前記第2電流パルス列信号の波高値に対する前記第3検出パルス信号の波高値の変化を示す第3入出力特性を検出する第4演算部と、前記第3入出力特性の各値を前記結合効率で除して較正し、その較正した第3入出力特性を前記半導体レーザ素子の入出力特性とする第5演算部と、を有することを特徴とする半導体レーザ素子の入出力特性検出装置である。 According to a sixth aspect of the present invention, there is provided an input / output characteristic detection method for a semiconductor laser device, comprising: (1) a first pulse width having a peak value that increases stepwise with a constant period; (1) The first pulse light emitted from the semiconductor laser element is received by the first light receiving element having a light receiving surface capable of receiving all the luminous fluxes. The first detection pulse signal is obtained by photoelectric conversion, and (3) the peak value of the first current pulse train signal at the first sample time set at a predetermined time from the rising point of one pulse of the first detection pulse signal. Detecting a first input / output characteristic indicating a change in peak value of the first detection pulse signal with respect to the first input / output characteristic, and (4) calculating a first input / output differential characteristic that is a differential characteristic of the first input / output characteristic And (1) said The first pulse light is received by a second light receiving element having a light receiving surface smaller than the first light receiving element, photoelectrically converted to obtain a second detection pulse signal, and (2) one pulse of the second detection pulse signal (2) detecting a second input / output characteristic indicating a change in a peak value of the second detection pulse signal with respect to a peak value of the first current pulse train signal at a second sample time set at a predetermined time from the rising point of (3) A second operation unit for calculating a second input / output differential characteristic which is a differential characteristic of the second input / output characteristic; and dividing the second input / output differential characteristic by the first input / output differential characteristic; A third arithmetic unit for calculating a coupling efficiency with the second light receiving element; and (1) a second current pulse train having a second pulse width shorter than the first pulse width and increasing the peak value stepwise with a constant period. Input a signal and (2) the second pulse light emitted from the semiconductor laser element is received by the second light receiving element and photoelectrically converted to obtain a third detection pulse signal; A third input / output characteristic indicating a change in the peak value of the third detection pulse signal with respect to the peak value of the second current pulse train signal at a third sample time set at a predetermined time from the rising edge of one pulse of the three detection pulse signals. And a fourth arithmetic unit for detecting the third input / output characteristic by dividing each value of the third input / output characteristic by the coupling efficiency, and using the calibrated third input / output characteristic as the input / output characteristic of the semiconductor laser device. an input-output characteristic detecting apparatus for a semiconductor laser device, characterized by chromatic and calculating unit.

本発明によれば、受光面積の大きい受光素子が有する応答速度の問題と、受光面積の小さい受光素子が有する低結合効率の問題とを解消して、短パルス駆動における半導体レーザ素子の入出力特性を正確に測定することができる。   According to the present invention, the input / output characteristics of a semiconductor laser device in short pulse driving can be solved by solving the problem of response speed of a light receiving element having a large light receiving area and the problem of low coupling efficiency having a light receiving element having a small light receiving area. Can be measured accurately.

以下、本発明の第1の実施形態について図面を参照して説明する。   Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.

図1は本実施形態にかかる半導体レーザ素子の検査装置10のブロック回路図であり、図2は電流パルス列信号発生回路20における各種の電気信号を示すグラフ、図3、4は光検出回路50、70における各種信号を示すグラフ、図5、6は同装置10において測定された光出力特性を示すグラフである。   FIG. 1 is a block circuit diagram of a semiconductor laser device inspection apparatus 10 according to the present embodiment, FIG. 2 is a graph showing various electrical signals in a current pulse train signal generation circuit 20, and FIGS. FIG. 5 and FIG. 6 are graphs showing light output characteristics measured by the apparatus 10.

本実施形態における半導体レーザ素子の検査装置10は、検査対象である半導体レーザ素子1に一定周期をもって段階状に波高値が増大する3〜20ns程度の短パルス幅で、ONデューティ比が50%程度の電流パルス列信号を入力した短パルス駆動状態において、該半導体レーザ素子1の駆動電流の波高値と放射されるパルス光を受光素子により変換して得られた検出パルス信号の波高値とをそれぞれ検出して、駆動電流の波高値の変化に対するパルス光の波高値の変化を検出する入出力特性検出装置であって、図1に示すように、半導体レーザ素子1に入力される電流パルス列信号を発生する駆動回路20と、電流パルス列信号を受けて作動した半導体レーザ素子1より抽出した駆動電流を検出する電流検出回路30と、電流パルス列信号を受けて半導体レーザ素子1から発振されるパルス光を検出する光検出回路50、70と、これら各回路20、30、50、70を予め定められた操作プログラムに従って制御するとともに各検出回路30、50、70から検出結果の入力を受けてパルス駆動における入出力特性を演算するメインプロセッサ12とより構成される。   The semiconductor laser device inspection apparatus 10 according to the present embodiment has a short pulse width of about 3 to 20 ns in which the crest value increases stepwise with a constant period in the semiconductor laser device 1 to be inspected, and the ON duty ratio is about 50%. In the short pulse driving state in which the current pulse train signal is input, the peak value of the driving current of the semiconductor laser element 1 and the peak value of the detection pulse signal obtained by converting the emitted pulsed light by the light receiving element are detected. An input / output characteristic detection device that detects a change in the peak value of pulsed light with respect to a change in the peak value of the drive current, and generates a current pulse train signal input to the semiconductor laser device 1 as shown in FIG. A driving circuit 20 that detects the driving current extracted from the semiconductor laser element 1 that has been operated in response to the current pulse train signal, and a current pulse train The light detection circuits 50 and 70 for detecting the pulsed light oscillated from the semiconductor laser element 1 in response to the signal, and the respective circuits 20, 30, 50 and 70 are controlled in accordance with a predetermined operation program and the detection circuits 30 , 50, 70, and a main processor 12 that receives input of detection results and calculates input / output characteristics in pulse driving.

駆動回路20は、階段波形電圧発生回路22およびパルス電流発生回路24を備えており、メインプロセッサ12から電圧発生指令の入力を受けた階段波形電圧発生回路22は、図2(a)に示すように、一定周期τc(例えばτc=1ms)をもって0Vから所定の最大値(例えば、10V)まで階段状に波高値が増大する基準電圧信号Vrefを発生し、これをパルス電流発生回路24に入力する。   The drive circuit 20 includes a staircase waveform voltage generation circuit 22 and a pulse current generation circuit 24. The staircase waveform voltage generation circuit 22 that has received an input of a voltage generation command from the main processor 12 is as shown in FIG. In addition, a reference voltage signal Vref whose peak value increases stepwise from 0 V to a predetermined maximum value (eg, 10 V) with a constant period τc (eg, τc = 1 ms) is generated and input to the pulse current generation circuit 24. .

基準電圧信号Vrefの入力を受けたパルス電流発生回路24では、電圧−電流変換回路26によって基準電圧信号Vrefを電流信号に変換し、変換されたこの電流信号は、高速スイッチングトランジスタ等を用いて構成されたスイッチ手段28をON/OFF制御することで、図2(b)に示すような、任意のパルス幅PwとONデューティ比を有し、波高値が所定の最大値まで増大する電流パルス列信号に成形される。   In the pulse current generation circuit 24 that receives the input of the reference voltage signal Vref, the voltage-current conversion circuit 26 converts the reference voltage signal Vref into a current signal, and the converted current signal is configured using a high-speed switching transistor or the like. By performing ON / OFF control of the switch means 28, a current pulse train signal that has an arbitrary pulse width Pw and an ON duty ratio and whose peak value increases to a predetermined maximum value as shown in FIG. To be molded.

このスイッチ手段28は、メインプロセッサ12からパルス幅設定指令を受けて作動した不図示のパルス発生器から送出されるON/OFF切り換え動作タイミングパルスによって制御され、これにより、駆動回路20より任意のパルス幅Pw及びONデューティ比を有する電流信号が出力されるようになっている。   The switch means 28 is controlled by an ON / OFF switching operation timing pulse sent from a pulse generator (not shown) that operates in response to a pulse width setting command from the main processor 12. A current signal having a width Pw and an ON duty ratio is output.

なお、上記の駆動回路20において、階段波形電圧発生回路22とパルス電流発生回路24の間に比較回路を介在させ、階段波形電圧発生回路22から入力される基準電圧信号Vrefと電流検出回路30から入力される半導体レーザ素子1の駆動電流の波高値との偏差に基づいて、半導体レーザ素子1の駆動電流の波高値が所定値となるようにパルス電流発生回路24へ出力する基準電圧信号Vrefをフィードバック制御してもよい。   In the above drive circuit 20, a comparison circuit is interposed between the staircase waveform voltage generation circuit 22 and the pulse current generation circuit 24, and the reference voltage signal Vref input from the staircase waveform voltage generation circuit 22 and the current detection circuit 30. Based on the deviation from the peak value of the driving current of the semiconductor laser element 1 that is input, the reference voltage signal Vref output to the pulse current generating circuit 24 is output so that the peak value of the driving current of the semiconductor laser element 1 becomes a predetermined value. Feedback control may be performed.

電流パルス列信号発生回路20において発生された電流パルス列信号は、検査対象である半導体レーザ素子1に入力されることで、半導体レーザ素子1は駆動電流である電流パルス列信号の波高値及びパルス幅Pwに応じた光強度及びパルス幅を有するパルス光を放射する。   The current pulse train signal generated in the current pulse train signal generation circuit 20 is input to the semiconductor laser element 1 to be inspected, so that the semiconductor laser element 1 has the peak value and the pulse width Pw of the current pulse train signal that is the drive current. Pulse light having a corresponding light intensity and pulse width is emitted.

半導体レーザ素子1から放射されるパルス光は、受光素子フォトダイオード60、62によって検出パルス信号に変換された後、光検出回路50、70に入力されることで、パルス光の波高値を検出するようになっている。   The pulsed light emitted from the semiconductor laser element 1 is converted into a detection pulse signal by the light receiving element photodiodes 60 and 62 and then input to the photodetection circuits 50 and 70 to detect the peak value of the pulsed light. It is like that.

詳細には、半導体レーザ素子1の近傍には、例えばSiフォトダイオードからなる第1受光素子60及び第2受光素子62が配置されており、第1受光素子60及び第2受光素子62から選択した一方の受光素子によって半導体レーザ素子1から放射されるパルス光を受光するようになっている。   More specifically, a first light receiving element 60 and a second light receiving element 62 made of, for example, a Si photodiode are disposed in the vicinity of the semiconductor laser element 1, and are selected from the first light receiving element 60 and the second light receiving element 62. One light receiving element receives pulsed light emitted from the semiconductor laser element 1.

第1受光素子60は、半導体レーザ素子1から放射されるパルス光の全光束を受光することができる受光面積、例えば、10mm×10mm程度の受光面積を有しており、受光したパルス光を検出パルス信号に光電変換し、これを第1光検出回路50に入力する。第2受光素子62は、第1受光素子60より小さい受光面積、例えば、φ0.8mm程度の受光面積を有し、パルス幅が3ns〜20ns程度の短パルス駆動時に半導体レーザ素子1から出力されるパルス光に対して十分な応答速度を備えており、受光したパルス光を検出パルス信号に光電変換し、これを第2光検出回路70に入力する。   The first light receiving element 60 has a light receiving area capable of receiving the entire luminous flux of the pulsed light emitted from the semiconductor laser element 1, for example, a light receiving area of about 10 mm × 10 mm, and detects the received pulsed light. A photoelectric conversion into a pulse signal is performed, and this is input to the first photodetection circuit 50. The second light receiving element 62 has a light receiving area smaller than that of the first light receiving element 60, for example, a light receiving area of about φ0.8 mm, and is output from the semiconductor laser element 1 during short pulse driving with a pulse width of about 3 ns to 20 ns. It has a sufficient response speed with respect to the pulsed light, photoelectrically converts the received pulsed light into a detection pulse signal, and inputs this to the second light detection circuit 70.

第1受光素子60からの検出パルス信号が入力された光計測回路50は、増幅器52、A/D変換器54、ラッチ回路56とを備え、検出パルス信号を増幅器52及びA/D変換器54を介して増幅及びデジタル変換し、これを複数段(本実施形態では2段)のラッチICからなるラッチ回路56に入力することで、各ラッチICに入力された検出パルス信号の波高値を測定するようになっている。   The optical measurement circuit 50 to which the detection pulse signal from the first light receiving element 60 is input includes an amplifier 52, an A / D converter 54, and a latch circuit 56. The detection pulse signal is supplied to the amplifier 52 and the A / D converter 54. Is amplified and digitally converted, and this is input to a latch circuit 56 comprising a plurality of stages (in this embodiment, two stages) of latch ICs, whereby the peak value of the detection pulse signal input to each latch IC is measured. It is supposed to be.

より具体的には、A/D変換器54に入力された1パルス分の検出パルス信号は、図3に示すように、A/D変換器54の変換クロックの立ち上がりエッジでデジタル信号に都度変換され、A/D変換器54の後段に配置されたラッチ回路56の2段のラッチICのそれぞれに入力される。   More specifically, the detection pulse signal for one pulse input to the A / D converter 54 is converted into a digital signal each time at the rising edge of the conversion clock of the A / D converter 54 as shown in FIG. And input to each of the two-stage latch ICs of the latch circuit 56 arranged at the subsequent stage of the A / D converter 54.

また、ラッチ回路56を構成する2段のラッチICには、メインプロセッサ12からのラッチ指令を受けたタイミング回路40より、第1検出パルス信号の1パルス中においてパルスの立ち上がり時点T0から任意の2つの時刻Tsに設定されたラッチタイミング信号が、それぞれ1個ずつ入力される。これにより、1パルス中においてパルスの立ち上がり時点T0から任意の2つの時刻における駆動電流の波高値を測定することができるようになっている。つまり、1パルス中に設定された上記の時刻Tsは、1パルス中において駆動電流の波高値を検出するサンプル時刻となる。そして、測定された2つのサンプル時刻における駆動電流の波高値は、電流検出回路30から出力され、メインプロセッサ12に転送されるようになっている。   In addition, the two-stage latch IC constituting the latch circuit 56 has an arbitrary 2 from the rise time T0 of the pulse in one pulse of the first detection pulse signal from the timing circuit 40 that has received the latch command from the main processor 12. One latch timing signal set at each time Ts is input. As a result, the peak value of the drive current at any two times from the pulse rising time T0 can be measured in one pulse. That is, the time Ts set during one pulse is a sample time for detecting the peak value of the drive current during one pulse. The measured peak values of the drive current at the two sample times are output from the current detection circuit 30 and transferred to the main processor 12.

なお、A/D変換器54において、駆動電流が入力されてからデジタル変換結果が出力されるまでに、変換クロックで数クロック(例えば、6〜8クロック)に相当する期間の変換タイムラグが生じる場合があり、かかる場合、図3におけるラッチタイミング信号は、該変換タイムラグに相当する期間だけ遅延させた時刻に設定することがある。   Note that, in the A / D converter 54, a conversion time lag of a period corresponding to several clocks (for example, 6 to 8 clocks) occurs between the input of the drive current and the output of the digital conversion result. In such a case, the latch timing signal in FIG. 3 may be set to a time delayed by a period corresponding to the conversion time lag.

また、第2受光素子62からの検出パルス信号が入力された光計測回路70は、上記の第1光検出回路50と同様の構成及び動作をするものであって、増幅器72、A/D変換器74、ラッチ回路76とを備え、タイミング回路40より、第2受光素子62からの検出パルス信号の1パルス中においてパルスの立ち上がり時点T0から任意の2つのサンプル時刻に設定されたラッチタイミング信号が入力されることで、パルスの立ち上がり時点T0から任意の2つの時刻における検出パルス信号の波高値を測定し、これをパルス光の波高値としてメインプロセッサ12に転送するようになっている。   The optical measurement circuit 70 to which the detection pulse signal from the second light receiving element 62 is input has the same configuration and operation as the first photodetection circuit 50, and includes an amplifier 72, A / D conversion. And a latch timing signal set at any two sample times from the pulse rising time T0 in one pulse of the detection pulse signal from the second light receiving element 62. By being input, the peak value of the detection pulse signal at any two times from the pulse rising time T0 is measured and transferred to the main processor 12 as the peak value of the pulsed light.

半導体レーザ素子1を流通する駆動電流の波高値は、上記の光検出回路50、70と同様の構成及び動作をする電流検出回路30により検出される。   The peak value of the drive current flowing through the semiconductor laser element 1 is detected by the current detection circuit 30 having the same configuration and operation as the above-described photodetection circuits 50 and 70.

この電流検出回路30は、増幅器32、A/D変換器34、ラッチ回路36とを備え、駆動電流を増幅器32及びA/D変換器34を介して増幅及びデジタル変換して、2段のラッチICからなるラッチ回路36に出力する。このラッチ回路36には、タイミング回路40より、駆動電流の1パルス中においてパルスの立ち上がり時点T0から任意の2つのサンプル時刻に設定されたラッチタイミング信号が入力されることで、パルスの立ち上がり時点T0から任意の2つの時刻における駆動電流の波高値を測定し、これをメインプロセッサ12に転送するようになっている。   The current detection circuit 30 includes an amplifier 32, an A / D converter 34, and a latch circuit 36, and amplifies and digitally converts the drive current via the amplifier 32 and the A / D converter 34 to latch in two stages. It outputs to the latch circuit 36 which consists of IC. The latch circuit 36 receives from the timing circuit 40 a latch timing signal set at any two sample times from the pulse rise time T0 in one pulse of the drive current, whereby the pulse rise time T0. The peak value of the drive current at any two times is measured and transferred to the main processor 12.

そして、上記の電流パルス列信号発生回路20から出力される電流パルス列信号の波高値の異なる全ての電流パルスについて、第1受光素子60及び第2受光素子62から選択した一方の受光素子によって所定のサンプル時刻におけるパルス光の波高値を測定するとともに、このサンプル時刻と同一の時刻における半導体レーザ素子1の駆動電流を測定する。   Then, for all current pulses having different peak values of the current pulse train signal output from the current pulse train signal generation circuit 20, a predetermined sample is obtained by one of the light receiving elements selected from the first light receiving element 60 and the second light receiving element 62. While measuring the peak value of the pulsed light at the time, the drive current of the semiconductor laser device 1 at the same time as the sample time is measured.

これにより、第1受光素子60及び第2受光素子62から選択した一方の受光素子によって、任意のパルス幅Pw及びONデューティ比を有する電流パルス列信号を入力したパルス駆動状態における、1パルス中の任意の2つの時刻に設定したサンプル時刻での半導体レーザ素子1の駆動電流Iに対する光出力Pの特性である入出力特性と、その微分特性(ΔP/ΔI)をそれぞれ測定するようになっている。   Thus, any one of the pulses in the pulse driving state in which the current pulse train signal having an arbitrary pulse width Pw and ON duty ratio is input by one of the first light receiving elements 60 and the second light receiving element 62 is selected. The input / output characteristics, which are the characteristics of the optical output P with respect to the drive current I of the semiconductor laser device 1 at the sample times set at the two times, and the differential characteristics (ΔP / ΔI) are respectively measured.

このような検査装置10において、半導体レーザ素子1の実使用条件に相当するパルス幅が3ns〜20ns程度、ONデューティ比が50%程度の短パルス駆動時における入出力特性を次のよう検出する。   In such an inspection apparatus 10, input / output characteristics at the time of short pulse driving in which the pulse width corresponding to the actual use condition of the semiconductor laser element 1 is about 3 ns to 20 ns and the ON duty ratio is about 50% are detected as follows.

すなわち、上記の短パルス駆動時のパルス幅に比べ長いパルス幅、例えば、20ns〜100ns程度のパルス幅を有し、ONデューティ比が発熱を無視できる1〜10%程度の電流パルス列信号を入力し、半導体レーザ素子1から第1パルス光が放射するパルス駆動状態において、図4(a)に示すように、1パルス中にパルスの立ち上がり時点T0から所定の時刻に設定された第1サンプル時刻T1での入出力特性とその微分特性を第1受光素子60によって測定することで、図5(a)、(b)において符号C1、D1でそれぞれ示す入出力特性とその微分特性が得られる。その際、受光する第1受光素子60の応答性能に起因して検出パルス信号の立ち上がり部分がブロードとなっており正確な波高値を測定できないため、1パルス中において設定するサンプル時刻T1は、検出パルス信号の立ち下がり前近傍のパルス波形が安定する時刻に設定することが好ましい。 That is, a current pulse train signal having a pulse width longer than the pulse width at the time of the short pulse driving described above, for example, a pulse width of about 20 ns to 100 ns and an ON duty ratio of about 1 to 10% that can ignore heat generation is input. In the pulse driving state in which the first pulsed light is emitted from the semiconductor laser element 1, as shown in FIG. 4A, the first sample time T1 set at a predetermined time from the pulse rising time T0 during one pulse. By measuring the input / output characteristics and the differential characteristics thereof with the first light receiving element 60, the input / output characteristics and their differential characteristics respectively indicated by reference numerals C1 and D1 in FIGS. 5A and 5B are obtained. At this time, the rising portion of the detection pulse signal is broad due to the response performance of the first light receiving element 60 that receives light, and an accurate peak value cannot be measured. Therefore, the sample time T1 set in one pulse is detected. It is preferable to set the time when the pulse waveform in the vicinity before the falling edge of the pulse signal is stabilized.

次いで、上記同様の20ns〜100ns程度の長いパルス幅を有しONデューティ比が1〜10%程度の電流パルス列信号を入力し、半導体レーザ素子1から第1パルス光が放射するパルス駆動状態において、図4(b)に示すように、1パルス中にパルスの立ち上がり時点T0から異なる時刻に設定された第2サンプル時刻T2及び第サンプル時刻T(だたし、T2<Tとする)での入出力特性とその微分特性を第2受光素子62によって測定する。これにより測定されたサンプル時刻T2における入出力特性とその微分特性を図5(a)、(b)において符号C2、D2でそれぞれ示し、また、サンプル時刻Tにおける入出力特性とその微分特性を符号、Dでそれぞれ示す。 Next, a current pulse train signal having a long pulse width of about 20 ns to 100 ns and an ON duty ratio of about 1 to 10% is input as described above, and in the pulse driving state in which the first pulse light is emitted from the semiconductor laser element 1, as shown in FIG. 4 (b), the second sample time T2, and the fourth sample time T 4, which is set to a different time from the rise time T0 of the pulse in one pulse (to have it, and T2 <T 4) The second light receiving element 62 measures the input / output characteristics and differential characteristics thereof. FIG output characteristics and its differential characteristics in sample time T2 to thereby measured 5 (a), respectively by the reference numeral C2, D2 (b), the addition, the input-output characteristic at sampling time T 4 and the differential characteristic Reference numerals C 4 and D 4 denote them, respectively.

なお、第2サンプル時刻T2は、後述する第サンプル時刻Tと立ち上がり時刻T0からの時刻が等しい時刻に、あるいは第サンプル時刻Tより立ち上がり時刻T0からの時間が短い時刻に、設定されることが好ましく、また、第サンプル時刻Tは、パルス波形が安定している検出パルス信号の立ち下がり前近傍の時刻に設定することが好ましい。 Note that the second sample time T2 is the third sample time T 3 and time are equal time from the rising time T0, or the third sample time T 3 is shorter than the time from the rise time T0 time to be described later, it is set Rukoto preferably, also the fourth sample time T 4, it is preferable that the pulse waveform is set to fall before the vicinity of the time of the detection pulse signal is stable.

次いで、第1受光素子60によって測定したサンプル時刻T1での入出力特性C1とその微分特性D1、及び第2受光素子62によって測定したサンプル時刻T2、Tでの入出力特性C2、Cとその微分特性D2、Dに基づいて、メインプロセッサ12が半導体レーザ素子1と第2受光素子との結合効率CEを算出する。 Then, the input-output characteristics C1 at sample time T1 measured by the first light receiving element 60 and the input-output characteristic C2, C 4 at sample time T2, T 4 that measured by differential characteristic D1, and the second light receiving element 62 based on the differential characteristic D2, D 4, to calculate the coupling efficiency CE of the main processor 12 and the semiconductor laser element 1 and the second light receiving element.

詳細には、図5(a)に示すように、第2受光素子62によって測定したサンプル時刻T2、Tでの入出力特性C2、Cが一致しかつ直線性を有している駆動電流区間を演算区間に設定する。ここで、入出力特性C2、Cが一致しかつ直線性を有している駆動電流区間とは、入出力特性C2、Cが完全に一致しかつ完全な直線性を有している場合のみならず、例えば、両時刻T2、Tにおける入出力微分特性(ΔP/ΔI)の微分値(すなわち、光出力Pの2次微分値ΔP/ΔI)が所定範囲内にある場合など、入出力特性C2、Cが一致しかつ直線性を有している判断される駆動電流区間をいい、本実施形態では駆動電流値IaからIbまでの区間を演算区間に設定する。 In particular, FIG. 5 (a), the second light receiving element output characteristic C2 at sample time T2, T 4 measured by 62, C 4 are matched and drive current having a linear Set the interval as the calculation interval. Here, the drive current section output characteristics C2, C 4 has a consistent and linearity, when input-output characteristic C2, C 4 has a perfectly matched and complete linearity not only, for example, if the differential value of the input-output differential characteristic in both time T2, T 4 (ΔP / ΔI ) ( i.e., the second derivative of the light output P Δ 2 P / ΔI 2) is within a predetermined range etc., it refers to a driving current interval output characteristics C2, C 4 are matched and judges has linearity, in the present embodiment to set the interval to Ib from the drive current Ia to the arithmetic section.

そして、この演算区間において、第1受光素子60によって測定したサンプル時刻T1での入出力微分特性D1の平均値SE1と、第2受光素子62によって測定したサンプル時刻T2、Tでの入出力微分特性D2、Dの平均値SE2と、を算出し、第2受光素子62による入出力微分特性D2、Dの平均値SE2を第1受光素子60による入出力微分特性D1の平均値SE1で除することで、半導体レーザ素子1と第2受光素子との結合効率CEを算出する。 Then, in the operation section, and the average value SE1 of the input and output differential characteristic D1 at sample time T1 measured by the first light receiving element 60, output differential at sample time T2, T 4 measured by the second light receiving element 62 and the average value SE2 characteristics D2, D 4, calculates an average value SE1 of the input and output differential characteristic D1 of the average value SE2 of the input and output differential characteristic D2, D 4 by the second light receiving element 62 by the first light receiving element 60 By dividing, the coupling efficiency CE between the semiconductor laser element 1 and the second light receiving element is calculated.

次いで、半導体レーザ素子1の実使用条件に相当する3ns〜20ns程度のパルス幅を有する電流パルス列信号を入力し、半導体レーザ素子1から第2パルス光が放射する短パルス駆動状態において、図4(c)に示すように、1パルス中にパルスの立ち上がり時点T0から所定の時刻に設定された第サンプル時刻Tでの入出力特性を第2受光素子62によって測定することで、図6において符号で示す入出力特性が得られる。 Next, a current pulse train signal having a pulse width of about 3 ns to 20 ns corresponding to the actual use condition of the semiconductor laser element 1 is input, and in the short pulse driving state in which the second pulse light is emitted from the semiconductor laser element 1, FIG. as shown in c), by measuring the output characteristic of the third sample time T 3 set by the rise time T0 of the pulse at a predetermined time during one pulse by the second light receiving element 62, 6 input-output characteristic indicated by symbol C 3 is obtained.

次いで、メインプロセッサ12は、第2受光素子62によって測定したサンプル時刻Tでの入出力特性Cの入力を受け、この入出力特性Cを上記の結合効率CEで除することで、図6において符号C5で示すような較正された入出力特性が得られる。 Then, the main processor 12 receives the input-output input characteristic C 3 at sample time T 3 measured by the second light receiving element 62, the input-output characteristic C 3 by dividing the coupling efficiency CE described above, FIG. In FIG. 6, a calibrated input / output characteristic as indicated by reference numeral C5 is obtained.

以上のように本発明では、短パルス駆動における半導体レーザ素子1の入出力特性を検出するにあたり、半導体レーザ素子1から出力されるパルス光を受光面積の小さく応答性能の高い第2受光素子62によって測定することで、短パルス駆動であっても受光素子の応答性能に起因した測定誤差を解消することができる。   As described above, in the present invention, when detecting the input / output characteristics of the semiconductor laser element 1 in short pulse driving, the pulsed light output from the semiconductor laser element 1 is received by the second light receiving element 62 having a small light receiving area and high response performance. By measuring, the measurement error caused by the response performance of the light receiving element can be eliminated even with short pulse driving.

また、比較的長いパルス幅のパルス駆動状態において、半導体レーザ素子1から放射されるパルス光の全光束を受光する第1受光素子60と該第1受光素子60より小さい受光面積を有する第2受光素子62の両受光素子60、62によって入出力特性およびその微分特性を測定し、これらの測定結果から算出される第2受光素子62の結合効率CEに基づいて第2受光素子62が測定した短パルス駆動における半導体レーザ素子1の入出力特性を較正することで、受光面積の小さい第2受光素子62であっても、正確な入出力特性を検出することができる。   Further, in a pulse driving state having a relatively long pulse width, the first light receiving element 60 that receives the entire light flux of the pulsed light emitted from the semiconductor laser element 1 and the second light receiving area that has a smaller light receiving area than the first light receiving element 60. The input / output characteristics and the differential characteristics thereof are measured by the two light receiving elements 60, 62 of the element 62, and the second light receiving element 62 measured based on the coupling efficiency CE of the second light receiving element 62 calculated from these measurement results. By calibrating the input / output characteristics of the semiconductor laser element 1 in pulse driving, accurate input / output characteristics can be detected even with the second light receiving element 62 having a small light receiving area.

また、第2サンプル時刻T2を第サンプル時刻Tと同一時刻あるいは第サンプル時刻Tより短い時刻に設定し、第サンプル時刻Tを第2検出パルス信号のパルス波形が安定する時刻に設定しているため、第2サンプル時刻T2と第サンプル時刻Tの波高値を比較することで、第2受光素子62が上記の短パルス駆動時に出力されるパルス光を検出するのに十分な応答性能を有しているか否か確認することができる。すなわち、第2サンプル時刻T2と第サンプル時刻Tの波高値が等しく、両時刻T2、Tにおける入出力特性カーブC2、Cが一致すると判断される場合、1パルスの立ち上がり時点T0から第2サンプル時刻T2経過した時点において既に第2検出パルス信号のパルス波形が安定しているため、第2サンプル時刻T2と同一あるいはそれより遅い時刻に設定された第サンプル時刻Tでも第2検出パルス信号のパルス波形が安定しているとして、第2受光素子62が短パルス駆動時に出力されるパルス光を検出するのに十分な応答性能を有していることを確認することができる。 Further, the second sample time T2 is set to the third sample time T 3 the same time or the third sample time shorter time than T 3, the time when the fourth sample time T 4 is a pulse waveform of the second detection pulse signal stabilizes due to the set, it is compared with the second sample time T2 the peak value of the fourth sample time T 4, to the second light receiving element 62 detects the pulsed light output during the short pulse drive of the It can be confirmed whether or not the response performance is sufficient. In other words, equal to the second sample time T2 fourth peak value sample time T 4, if the input and output characteristic curve C2, C 4 in both time T2, T 4 is determined to match, the rise time T0 of one pulse since the pulse waveform of the already second detection pulse signal at the time the second sample time T2 elapsed is stable, even in the third sample time T 3 set in the second sample time T2 the same as or slower time than the second Assuming that the pulse waveform of the detection pulse signal is stable, it can be confirmed that the second light receiving element 62 has sufficient response performance to detect the pulsed light output during short pulse driving.

なお、被検査素子から出力される光線の広がり角度や光軸の傾き角度に生じるばらつきが大きい場合があり、かかる場合、被検査素子ごとに第1受光素子60と第2受光素子62を切り換えて、都度、結合効率CEを算出してもよく、これにより、被検査素子ごとに結合効率CEを算出し、第2受光素子62が測定する入出力特性を正確に較正することができる。   Note that there may be large variations in the spread angle of the light beam output from the device under test and the tilt angle of the optical axis. In such a case, the first light receiving device 60 and the second light receiving device 62 are switched for each device under test. The coupling efficiency CE may be calculated each time, whereby the coupling efficiency CE is calculated for each element to be inspected, and the input / output characteristics measured by the second light receiving element 62 can be accurately calibrated.

また、量産工程における同一製造ロットの被検査素子など、出力される光線の広がり角度や光軸の傾き角度に生じるばらつきが小さい場合には、所定期間ごとに代表して1または複数の被検査素子の結合効率CEを算出し、算出された結合効率CEに基づいてその所定期間内において第2受光素子62が測定する入出力特性を較正するようにしてもよく、これにより、結合効率CEを算出する工程を削減し、タクトタイムを短縮することができる。   Further, when the variation in the spread angle of the output light beam or the tilt angle of the optical axis is small, such as the device to be inspected in the same production lot in the mass production process, one or a plurality of devices to be inspected on behalf of every predetermined period The coupling efficiency CE may be calculated, and the input / output characteristics measured by the second light receiving element 62 within the predetermined period may be calibrated based on the calculated coupling efficiency CE, thereby calculating the coupling efficiency CE. Therefore, the tact time can be shortened.

本発明の第1の実施形態にかかる半導体レーザ素子の入出力特性検出装置のブロック回路図である。1 is a block circuit diagram of an input / output characteristic detection apparatus for a semiconductor laser device according to a first embodiment of the present invention. 同入出力特性検出装置の電流パルス列信号発生回路における各種信号を示すグラフである。It is a graph which shows the various signals in the current pulse train signal generation circuit of the input / output characteristic detection apparatus. 同入出力特性検出装置の光検出回路における各種信号を示すグラフである。It is a graph which shows the various signals in the photon detection circuit of the input-output characteristic detection apparatus. (a)〜(c)は、光検出回路において光電変換された検出パルス信号を示すグラフである。(A)-(c) is a graph which shows the detection pulse signal photoelectrically converted in the photon detection circuit. 同入出力特性検出装置によって測定結果を示すグラフであって、(a)が入出力特性、(b)が入出力微分特性を示す。It is a graph which shows a measurement result by the input-output characteristic detection apparatus, (a) shows an input-output characteristic, (b) shows an input-output differential characteristic. 同入出力特性検出装置によって検出された入出力特性を示すグラフである。It is a graph which shows the input / output characteristic detected by the input / output characteristic detection apparatus.

符号の説明Explanation of symbols

10…検査装置
12…メインプロセッサ
20…駆動回路
30…電流検出回路
50…第1光検出回路
60…第1受光素子
62…第2受光素子
70…第2光検出回路
DESCRIPTION OF SYMBOLS 10 ... Inspection apparatus 12 ... Main processor 20 ... Drive circuit 30 ... Current detection circuit 50 ... 1st light detection circuit 60 ... 1st light receiving element 62 ... 2nd light receiving element 70 ... 2nd light detection circuit

Claims (6)

(1)第1パルス幅を有し、一定周期をもって段階状に波高値が増大する第1電流パルス列信号を入力して半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第1パルス光を、その全光束を受光可能な受光面を有する第1受光素子により受光し、光電変換して第1検出パルス信号を得て、(3)前記第1検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第1サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第1検出パルス信号の波高値の変化を示す第1入出力特性を検出し、(4)前記第1入出力特性の微分特性である第1入出力微分特性を演算する第1工程と、(1) A first current pulse train signal having a first pulse width and a peak value increasing stepwise with a constant period is input to drive the semiconductor laser element, and (2) the first pulse emitted from the semiconductor laser element One pulse light is received by a first light receiving element having a light receiving surface capable of receiving all of the light fluxes, photoelectrically converted to obtain a first detection pulse signal, and (3) one pulse of the first detection pulse signal Detecting a first input / output characteristic indicating a change in a peak value of the first detection pulse signal with respect to a peak value of the first current pulse train signal at a first sample time set at a predetermined time from a rising time; (4) A first step of calculating a first input / output differential characteristic that is a differential characteristic of the first input / output characteristic;
(1)前記第1パルス光を、前記第1受光素子より小さい受光面を有する第2受光素子により受光し、光電変換して第2検出パルス信号を得て、(2)前記第2検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第2サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第2検出パルス信号の波高値の変化を示す第2入出力特性を検出し(3)前記第2入出力特性の微分特性である第2入出力微分特性を演算する第2工程と、  (1) The first pulse light is received by a second light receiving element having a light receiving surface smaller than the first light receiving element, photoelectrically converted to obtain a second detection pulse signal, and (2) the second detection pulse. A second input / output characteristic indicating a change in a peak value of the second detection pulse signal with respect to a peak value of the first current pulse train signal at a second sample time set at a predetermined time from a rising edge of one pulse of the signal; (3) a second step of calculating a second input / output differential characteristic that is a differential characteristic of the second input / output characteristic;
前記第2入出力微分特性を前記第1入出力微分特性で除して、前記半導体レーザ素子と第2受光素子との結合効率を算出する第3工程と、  A third step of calculating the coupling efficiency between the semiconductor laser element and the second light receiving element by dividing the second input / output differential characteristic by the first input / output differential characteristic;
(1)前記第1パルス幅より短い第2パルス幅を有し、一定周期をもって段階状に波高値が増大する第2電流パルス列信号を入力して前記半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第2パルス光を、前記第2受光素子により受光し、光電変換して第3検出パルス信号を得て、(3)前記第3検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第3サンプル時刻における前記第2電流パルス列信号の波高値に対する前記第3検出パルス信号の波高値の変化を示す第3入出力特性を検出する第4工程と、  (1) driving a semiconductor laser element by inputting a second current pulse train signal having a second pulse width shorter than the first pulse width and increasing the peak value stepwise with a constant period; Second pulse light radiated from the semiconductor laser element is received by the second light receiving element, photoelectrically converted to obtain a third detection pulse signal, and (3) a rising point of one pulse of the third detection pulse signal A fourth step of detecting a third input / output characteristic indicating a change in the peak value of the third detection pulse signal with respect to the peak value of the second current pulse train signal at a third sample time set at a predetermined time from
前記第3入出力特性の各値を前記結合効率で除して較正し、その較正した第3入出力特性を前記半導体レーザ素子の入出力特性とする第5工程と、  A fifth step of calibrating by dividing each value of the third input / output characteristic by the coupling efficiency, and setting the calibrated third input / output characteristic as the input / output characteristic of the semiconductor laser device;
を有することを特徴とする半導体レーザ素子の入出力特性検出方法。  A method for detecting input / output characteristics of a semiconductor laser device, comprising:
前記第2工程において、前記第2検出パルス信号の1パルスの立ち上がり時点から前記第2サンプル時刻と異なる所定時刻に第4サンプル時刻を設定し、第4サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第2検出パルス信号の波高値の変化を示す第4入出力特性と、その微分特性である第4入出力微分特性を検出し、  In the second step, a fourth sample time is set at a predetermined time different from the second sample time from the rising edge of one pulse of the second detection pulse signal, and the wave of the first current pulse train signal at the fourth sample time is set. Detecting a fourth input / output characteristic indicating a change in peak value of the second detection pulse signal with respect to a high value and a fourth input / output differential characteristic which is a differential characteristic thereof;
前記第3工程において、(1)前記第2入出力特性と前記第4入出力特性が一致しかつ直線性を有している電流区間を演算区間に設定し、(2)前記演算区間における前記第1入出力微分特性の平均値と、前記第2入出力微分特性及び前記第4入出力微分特性の平均値と、をそれぞれ算出し、(3)前記第2入出力微分特性及び前記第4入出力微分特性の平均値を前記第1入出力微分特性の平均値で除することで、前記結合効率を算出する  In the third step, (1) a current section in which the second input / output characteristic coincides with the fourth input / output characteristic and has linearity is set as a calculation section, and (2) the current section in the calculation section is set. An average value of the first input / output differential characteristic, and an average value of the second input / output differential characteristic and the fourth input / output differential characteristic are calculated, respectively. (3) the second input / output differential characteristic and the fourth The coupling efficiency is calculated by dividing the average value of the input / output differential characteristics by the average value of the first input / output differential characteristics.
ことを特徴とする請求項1に記載の半導体レーザ素子の入出力特性検出方法。  The input / output characteristic detection method for a semiconductor laser device according to claim 1.
前記第2サンプル時刻は、1パルスの立ち上がり時点からの時刻が、前記第サンプル時刻と等しい時刻、あるいは前記第サンプル時刻より短い時刻、に設定されていることを特徴とする請求項1又は2に記載の半導体レーザ素子の入出力特性検出方法。 The second sample time is the time from the rise time of one pulse, the third sample time is equal time, or the third sample time shorter time, according to claim 1, characterized in that it is set to or 3. A method for detecting input / output characteristics of a semiconductor laser device according to 2. 前記第1サンプル時刻は、前記第1検出パルス信号の立ち下がり前近傍のパルス波形が安定する時刻に設定することを特徴とする請求項1〜3のいずれか1項に記載の半導体レーザ素子の入出力特性検出方法。 4. The semiconductor laser device according to claim 1, wherein the first sampling time is set to a time at which a pulse waveform in the vicinity of the first detection pulse signal before the falling is stabilized. 5. I / O characteristics detection method. 前記第サンプル時刻は、前記第2検出パルス信号の立ち下がり前近傍のパルス波形が安定する時刻に設定することを特徴とする請求項2〜4のいずれか1項に記載の半導体レーザ素子の入出力特性検出方法。 5. The semiconductor laser device according to claim 2, wherein the fourth sample time is set to a time at which a pulse waveform in the vicinity of the second detection pulse signal before the falling is stabilized. 6. I / O characteristics detection method. (1)第1パルス幅を有し、一定周期をもって段階状に波高値が増大する第1電流パルス列信号を入力して半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第1パルス光を、その全光束を受光可能な受光面を有する第1受光素子により受光し、光電変換して第1検出パルス信号を得て、(3)前記第1検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第1サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第1検出パルス信号の波高値の変化を示す第1入出力特性を検出し、(4)前記第1入出力特性の微分特性である第1入出力微分特性を演算する第1演算部と、  (1) A first current pulse train signal having a first pulse width and a peak value increasing stepwise with a constant period is input to drive the semiconductor laser element, and (2) the first pulse emitted from the semiconductor laser element One pulse light is received by a first light receiving element having a light receiving surface capable of receiving all of the light fluxes, photoelectrically converted to obtain a first detection pulse signal, and (3) one pulse of the first detection pulse signal Detecting a first input / output characteristic indicating a change in a peak value of the first detection pulse signal with respect to a peak value of the first current pulse train signal at a first sample time set at a predetermined time from a rising time; (4) A first calculation unit that calculates a first input / output differential characteristic that is a differential characteristic of the first input / output characteristic;
(1)前記第1パルス光を、前記第1受光素子より小さい受光面を有する第2受光素子により受光し、光電変換して第2検出パルス信号を得て、(2)前記第2検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第2サンプル時刻における前記第1電流パルス列信号の波高値に対する前記第2検出パルス信号の波高値の変化を示す第2入出力特性を検出し(3)前記第2入出力特性の微分特性である第2入出力微分特性を演算する第2演算部と、  (1) The first pulse light is received by a second light receiving element having a light receiving surface smaller than the first light receiving element, photoelectrically converted to obtain a second detection pulse signal, and (2) the second detection pulse. A second input / output characteristic indicating a change in a peak value of the second detection pulse signal with respect to a peak value of the first current pulse train signal at a second sample time set at a predetermined time from a rising edge of one pulse of the signal; (3) a second calculation unit that calculates a second input / output differential characteristic that is a differential characteristic of the second input / output characteristic;
前記第2入出力微分特性を前記第1入出力微分特性で除して、前記半導体レーザ素子と第2受光素子との結合効率を算出する第3演算部と、  A third arithmetic unit that calculates the coupling efficiency between the semiconductor laser element and the second light receiving element by dividing the second input / output differential characteristic by the first input / output differential characteristic;
(1)前記第1パルス幅より短い第2パルス幅を有し、一定周期をもって段階状に波高値が増大する第2電流パルス列信号を入力して前記半導体レーザ素子を駆動し、(2)該半導体レーザ素子から放射される第2パルス光を、前記第2受光素子により受光し、光電変換して第3検出パルス信号を得て、(3)前記第3検出パルス信号の1パルスの立ち上がり時点から所定時刻に設定された第3サンプル時刻における前記第2電流パルス列信号の波高値に対する前記第3検出パルス信号の波高値の変化を示す第3入出力特性を検出する第4演算部と、  (1) driving a semiconductor laser element by inputting a second current pulse train signal having a second pulse width shorter than the first pulse width and increasing the peak value stepwise with a constant period; Second pulse light radiated from the semiconductor laser element is received by the second light receiving element, photoelectrically converted to obtain a third detection pulse signal, and (3) a rising point of one pulse of the third detection pulse signal A fourth arithmetic unit for detecting a third input / output characteristic indicating a change in the peak value of the third detection pulse signal with respect to the peak value of the second current pulse train signal at a third sample time set at a predetermined time from
前記第3入出力特性の各値を前記結合効率で除して較正し、その較正した第3入出力特性を前記半導体レーザ素子の入出力特性とする第5演算部と、  A fifth arithmetic unit that calibrates each value of the third input / output characteristic by dividing by the coupling efficiency, and uses the calibrated third input / output characteristic as the input / output characteristic of the semiconductor laser element;
を有することを特徴とする半導体レーザ素子の入出力特性検出装置。  A device for detecting input / output characteristics of a semiconductor laser device, comprising:
JP2006024953A 2006-02-01 2006-02-01 Method and apparatus for detecting input / output characteristics of semiconductor laser element Expired - Fee Related JP4034805B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006024953A JP4034805B2 (en) 2006-02-01 2006-02-01 Method and apparatus for detecting input / output characteristics of semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006024953A JP4034805B2 (en) 2006-02-01 2006-02-01 Method and apparatus for detecting input / output characteristics of semiconductor laser element

Publications (2)

Publication Number Publication Date
JP2007207999A JP2007207999A (en) 2007-08-16
JP4034805B2 true JP4034805B2 (en) 2008-01-16

Family

ID=38487193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006024953A Expired - Fee Related JP4034805B2 (en) 2006-02-01 2006-02-01 Method and apparatus for detecting input / output characteristics of semiconductor laser element

Country Status (1)

Country Link
JP (1) JP4034805B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220376465A1 (en) * 2020-01-09 2022-11-24 Mitsubishi Electric Corporation Inspection method for semiconductor laser device and inspection device for semiconductor laser device

Also Published As

Publication number Publication date
JP2007207999A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP6045963B2 (en) Optical distance measuring device
JP4308812B2 (en) Light emitting element driving device
TWI505588B (en) Laser diode automatic stabilized optical power pulse driving device
Pehkonen et al. Receiver channel with resonance-based timing detection for a laser range finder
Kurtti et al. Laser radar receiver channel with timing detector based on front end unipolar-to-bipolar pulse shaping
JP2018040656A (en) Distance measuring device
JP2024098050A (en) Light receiving device and electronic device
JP4034805B2 (en) Method and apparatus for detecting input / output characteristics of semiconductor laser element
JP7079753B2 (en) Photodetector, electronic device and photodetection method
JP2006229224A (en) Method for determining laser threshold of laser diode
JP2013152182A (en) Brillouin optical time domain reflectometer
JP2007207995A (en) Semiconductor measuring device and method therefor
JP2006310665A (en) Signal-detecting device for semiconductor laser element and input/output characteristics detecting device using the same
JP4807368B2 (en) Photocurrent / voltage converter
US10048114B2 (en) Device for measuring the vibrational amplitude of a capillary tube of a wire bonder
JP2007212157A (en) Optical range finder
JP7488799B2 (en) Light detection device, electronic device, and light detection method
JP2002324909A (en) Photoelectric conversion circuit and laser range finder
JP2008107319A (en) Optical pulse generator and tester
JP2002221468A (en) Characteristics measuring device for semiconductor laser unit
JP2018044838A (en) Distance measuring device
JP2005037267A (en) Output monitoring method and device of pulsed laser system
JPH11192570A (en) Device and method of laser beam machining
KR101253343B1 (en) Apparatus for measuring laser intensity and laser machining system using it
JPH11297171A (en) Optical beam sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070605

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees