JP4034560B2 - Polishing method of semiconductor wafer - Google Patents

Polishing method of semiconductor wafer Download PDF

Info

Publication number
JP4034560B2
JP4034560B2 JP2001380996A JP2001380996A JP4034560B2 JP 4034560 B2 JP4034560 B2 JP 4034560B2 JP 2001380996 A JP2001380996 A JP 2001380996A JP 2001380996 A JP2001380996 A JP 2001380996A JP 4034560 B2 JP4034560 B2 JP 4034560B2
Authority
JP
Japan
Prior art keywords
polishing
semiconductor wafer
concentric
eccentric
polished
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001380996A
Other languages
Japanese (ja)
Other versions
JP2003188119A (en
Inventor
俊 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2001380996A priority Critical patent/JP4034560B2/en
Publication of JP2003188119A publication Critical patent/JP2003188119A/en
Application granted granted Critical
Publication of JP4034560B2 publication Critical patent/JP4034560B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエーハの研磨方法に関する。
【0002】
【従来の技術】
IC、LSI等の半導体チップが表面に複数形成された半導体ウエーハは、裏面が研削され、厚さ100μm以下好ましくは50μm以下に形成され、携帯電話、ノートパソコン、スマートカード等の電気機器の軽量化、小型化を可能にしている。しかしながら、IC、LSI等の半導体チップは100μm以下に薄く研削されると、その表面の研削歪み層によって抗折強度(破壊強度)が著しく低下する。この研削歪み層は、研削された面から深さ1μm程の領域に残留している。そこで、この研削歪み層を除去するために、硝酸及びフッ酸を含むエッチング液によるエッチング除去、あるいはフッ酸及び酸素をプラズマ化してのドライエッチング除去が遂行されている。
【0003】
【発明が解決しようとする課題】
しかしながら、この化学的なエッチングによる半導体ウエーハの研削歪み層の除去においては、大がかりな設備が必要であり、また産業廃棄物としてエッチング処理液や処理ガスが大量に生成される、等の問題を有している。
【0004】
本発明は上記事実に鑑みてなされたもので、その技術的課題は、大がかりな設備を設けることなく、また産業廃棄物として処理すべき物質を大量に生成することなく、半導体ウエーハの研削歪み層を除去することができる方法を提供することである。
【0005】
【課題を解決するための手段】
本発明者は、鋭意検討及び実験の結果、半導体ウエーハの研削歪み層を、研磨層を有する研磨砥石により均一に除去することができる半導体ウエーハの研磨方法を開発した。
【0006】
すなわち、本発明によれば、上記技術的課題を解決する半導体ウエーハの研削歪み層を除去する方法として、半導体ウエーハの研削歪み層を研磨により除去する方法であって、ターンテーブルに配設された複数個のチャックテーブルに保持され回転する円板形状の半導体ウエーハの被研磨面それぞれを、ターンテーブルを間欠回転させて同心研磨工程及び偏心研磨工程に位置付け、半導体ウエーハよりも大径でありフエルトに砥粒を含浸させて形成されている研磨層を有する研磨砥石を、半導体ウエーハの回転中心と同一の回転中心において回転させ研磨する上記の同心研磨工程と、研磨層の回転中心を研磨層の外周縁が半導体ウエーハの回転中心を通る位置に位置付けて研磨する上記の偏心研磨工程とを遂行し、研磨代を0.5μm〜2.0μmとし、同心研磨工程又は偏心研磨工程により先ず研磨された半導体ウエーハの研磨面に対し、研磨面に形成された最大研磨深さと同一の研磨代により残りの研磨工程を遂行する、ことを特徴とする半導体ウエーハの研磨方法が提供される。
【0007】
そして、同心研磨工程と偏心研磨工程との組み合わせにより、研削歪み層を均一に除去する。したがってこの方法によれば、化学的エッチングのように大がかりな設備を設けることなく、また産業廃棄物として処理すべき物質を大量に生成することなしに研削歪み層を除去することができる。
【0009】
【発明の実施の形態】
以下、本発明の好適実施形態について、添付図面を参照して、さらに詳細に説明する。
【0010】
図1は、半導体ウエーハの被研磨面である、研削された裏面を研磨するための研磨装置の一実施形態を示している。全体を番号2で示す研磨装置は、装置ハウジング4の一端に立設された直立壁6に、鉛直方向に延びる一対の案内レール8、8を介して研磨ユニット10を、また同様に延びる一対の案内レール12、12を介して研磨ユニット14を備えている。装置ハウジング4の上面には、所定の間隔で配設された4個のチャックテーブル16を有するターンテーブル18を備えている。チャックテーブル16の各々は、上面に半導体ウエーハを吸着保持するための円形状の多孔質のセラミック板からなる載置面を有し、回転駆動を自在に備えられている。ターンテーブル18は、矢印Tで示す反時計方向に間欠的に回転駆動を自在にして備えられている。この間欠回転によりチャックテーブル16は、同心研磨工程が遂行される研磨ユニット10の設置位置である位置G1、偏心研磨工程が遂行される研磨ユニット14の設置位置である位置G2に移動され位置付けられる。
【0011】
そして本発明に係る半導体ウエーハの研磨方法は、上述の同心研磨工程と偏心研磨工程とにより遂行され、本実施の形態においては同心研磨工程が先に遂行され、その後に偏心研磨工程が遂行される。
【0012】
研削ユニット10は、鉛直方向に延びる軸線11を中心に電動モータにより回転駆動される回転軸の下端に円板形状の研磨砥石20を備えている。研磨ユニット14も同様に、鉛直方向に延びる軸線15を中心に電動モータにより回転駆動される回転軸の下端に研磨砥石20を備えている。研磨ユニット10と研磨ユニット14とは同一に形成されているが、各々は直立壁6に対する位置がターンテーブル18方向において寸法Lずらされて取付けられている。この寸法Lの違いにより、研磨ユニット10は同心研磨工程が遂行される位置G1においてチャックテーブル16の回転中心と研磨ユニット10の軸線11とを一致させて配設され、研磨ユニット14は偏心研磨工程が遂行される位置G2においてチャックテーブル16の回転中心と研磨ユニット14の軸線15とを偏心させて配設されている(寸法L、同心研磨工程、偏心研磨工程、偏心位置、等の関係については後に詳述する)。
【0013】
研磨砥石20について、図2及び図2を倒立状態で示した図3を参照して説明する。研磨砥石20は、研磨ユニット10及び14それぞれの回転軸の下端のフランジに取付けられる支持板22、及び支持板22に接合された研磨層24を備えている。支持板22はアルミニウムのごとき適宜の金属で形成され、円板形状であって平坦な円形支持面である下面を有している。支持板22はその上面から下方に延びる盲ねじ孔22aを周方向に間隔をおいて複数個(図示の場合は4個)備え、回転軸のフランジに盲ねじ孔22aに止めねじ(図示していない)を螺合させ取付けられている。研磨層24も円板形状であり、その外径は支持板22の外径寸法と実質上同一である。研磨層24の円板形状は、円板形状の半導体ウエーハよりも大径に形成されている。
【0014】
本発明者による検討及び実験によれば、本発明に係る研磨方法により半導体ウエーハの研削歪み層を研磨するための研磨層24としては、フエルトに砥粒を含浸させボンド剤により固めて形成したフエルト砥石を用いるのが好都合である。フエルトとしては、周知の、羊毛、ポリエステル、ナイロンのごとき合成繊維、綿、麻のごとき天然繊維、等が用いられる。砥粒としては、0.01μm〜100μmの粒径を有する、周知のシリカ、ダイヤモンド、等の材料が用いられる。砥粒はフエルトに含浸され、フェノール樹脂系接着剤によってフエルト中に結合される。この研磨層24は、支持板22の下面にエポキシ樹脂系接着剤のごとき適宜の接着剤によって接合されている。
【0015】
上述の同心研磨工程を遂行する研磨ユニット10及び偏心研磨工程を遂行する研磨ユニット14の配設位置関係について、研磨砥石の側から半導体ウエーハの方向を見て示した説明図である図4を参照して説明する。
(1)G1で示した同心研磨工程位置においては、二点鎖線で示す研磨層24(研磨ユニット10)はその軸線11を、実線で示す半導体ウエーハW(チャックテーブル16)の回転中心17と一致させて配設される。
(2)G2で示した偏心研磨工程位置においては、二点鎖線で示す研磨層24(研磨ユニット14)はその軸線15を、半導体ウエーハW(チャックテーブル16)の回転中心17に対し、研磨層24の外周縁が半導体ウエーハWの回転中心17を通る位置に、前述の寸法L偏心されて配設されている。
【0016】
本発明者の検討及び実験によれば、半導体ウエーハの研削歪み層を研磨するには、上記のごとく研磨層24と半導体ウエーハWの関係を位置付けて、半導体ウエーハW(チャックテーブル16)の回転方向(矢印Vで示す)に対し研磨層24(研磨砥石20)を逆方向に回転(矢印Sで示す)させると共に、チャックテーブルテーブル16の回転速度を100RPM〜300RPMに、研磨砥石20の回転速度を4000RPM〜7000RPMにするとよい。
【0017】
再び図1を参照を参照して、研磨装置2におけるの半導体ウエーハWの流れについて説明する。研磨前の半導体ウエーハはカセット26内に収容されている。カセット26内の半導体ウエーハは、搬出入手段28により中心位置合わせテーブル30に搬送され中心位置合わせが行われる。次いで半導体ウエーハは、旋回アームを有する搬送手段32により吸着され受け取り位置Qに位置付けられたチャックテーブル16に搬送され載置面に吸引保持され、ターンテーブル18の矢印Tで示す方向への間欠回転によって同心研磨工程を遂行するための研磨ユニット10の配設位置G1に位置付けられる。この時ターンテーブル18上の4個のチャックテーブル16は、同心研磨工程位置G1のチャックテーブル16は偏心研磨工程を遂行するための研磨ユニット14の配設位置G2に、位置G2にあったチャックテーブル16は受け渡し位置Rに、それぞれ位置付けられる。受け渡し位置Rに位置付けられた研磨済みの半導体ウエーハWは、チャックテーブル16の載置面の吸引保持が解除されると共に、旋回アームを有する搬送手段34により吸着され、スピンナー洗浄手段36に搬送され、洗浄及び乾燥の後、前記搬出入手段28によりカセット38に収容される。
【0018】
次に、研磨ユニット10による同心研磨工程及び研磨ユニット14による偏心研磨工程それぞれにおける半導体ウエーハWの研磨状態について、図4と共に研磨状態を誇張して示した図5を参照して説明する。
【0019】
(1)同心研磨工程、図5(a):
同心研磨工程においては、円板形状の半導体ウエーハWは、同心で回転される円板形状の研磨層24との周方向の速度差が回転中心17から外縁になるにつれ大きくなることにより、外縁側が研磨され易くなり、外縁部に最大研磨深さδを有した凸面形状に研磨される。この最大研磨深さδは、半導体ウエーハWの研磨して除く研削歪み層の厚さに応じて0.5μm〜2.0μmに規定される。
【0020】
(2)偏心研磨工程、図5(b):
偏心研磨工程においては、同心研磨工程において研磨された半導体ウエーハWの状態(二点鎖線で示す)に対して、その最大研磨深さδと同一の大きさの研磨代δで研磨される。偏心研磨工程においては、半導体ウエーハWの回転中心17の部分を研磨層24の外周縁が通ることから、半導体ウエーハWは回転中心17の側が研磨され易くなり、中心部の凹んだ凹面形状に研磨される。
【0021】
(3)研磨終了、図5(c):
かくして、同心研磨工程及び偏心研磨工程が遂行された半導体ウエーハWには、図5(c)に示すごとく研削歪み層が取り除かれた略均一で平坦な研磨面が形成される。
【0022】
上述したとおりの、半導体ウエーハの研磨方法の作用について説明する。
【0023】
(1)設備、産業廃棄物:
半導体ウエーハの研削面の研削歪み層の除去を、研磨砥石により機械的に行うことにより、従来の化学的エッチングにより除去する場合のように、大がかりな設備を設けることがない、また産業廃棄物として処理すべき物質を大量に生成することがない。さらに、半導体ウエーハの裏面を研削する周知の研削装置の、研削砥石に代えて研磨砥石を取付け、その回転軸線の位置を変えることにより、本発明の研磨方法を遂行するための研磨装置を容易に用意することができる。
【0024】
(2)歪み層除去面:
本発明の研磨方法により研磨された半導体ウエーハのは、同心研磨工程により回転中心部が山なりの凸面状に研磨された後に偏心研磨工程において回転中心部がお盆状に凹んだ凹面状に研磨されるので、凸と凹とによって均一に研削歪み層が除去された高品質の研磨面が形成される。
【0025】
以上、本発明を実施の形態に基づいて詳細に説明したが、本発明は上記の実施の形態に限定されるものではなく、例えば下記のように、本発明の範囲内においてさまざまな変形あるいは修正ができるものである。
【0028】
発明の実施の形態においては、同心研磨工程を遂行した後に偏心研磨工程を遂行したが、この研磨工程の順番は逆であってもよい。
【0029】
【発明の効果】
本発明に従って構成された半導体ウエーハの研磨方法によれば、半導体ウエーハの研削された裏面から、化学的エッチングによる方法のごとき、大がかりな設備を設けることなく、また産業廃棄物として処理すべき物質を大量に生成することなく、研削歪み層を除去することができる。
【図面の簡単な説明】
【図1】本発明に係る半導体ウエーハの研磨方法を遂行するための研磨装置の一実施形態を示す斜視図。
【図2】本発明に係る半導体ウエーハの研磨方法において使用される研磨砥石の、好適実施形態の斜視図。
【図3】図2の研磨砥石を倒立状態で示した斜視図。
【図4】本発明に係る同心研磨工程と偏心研磨工程について、研磨砥石の側から下方の研磨される半導体ウエーハを見てその位置関係を示した説明図。
【図5】本発明に係る半導体ウエーハの研磨方法により研磨された半導体ウエーハの断面を誇張し拡大図示した説明図。図が煩雑になるのを避けて断面ハッチングは省略されている。
(a)は、同心研磨工程を遂行した状態。
(b)は、同心研磨工程遂行後に偏心研磨工程を遂行した状態。
(c)は、偏心研磨工程終了後の、研磨を終えた状態。
【符号の説明】
2:研磨装置
10:研磨ユニット
11:軸線
14:研磨ユニット
15:軸線
16:チャックテーブル
18:ターンテーブル
20:研磨砥石
24:研磨層
W:半導体ウエーハ
G1:同心研磨工程位置
G2:偏心研磨工程位置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for polishing a semiconductor wafer.
[0002]
[Prior art]
A semiconductor wafer having a plurality of semiconductor chips such as IC and LSI formed on the front surface is ground to have a thickness of 100 μm or less, preferably 50 μm or less, thereby reducing the weight of electric devices such as mobile phones, notebook computers and smart cards. , Enabling miniaturization. However, when a semiconductor chip such as an IC or LSI is ground thinly to 100 μm or less, the bending strength (breaking strength) is remarkably lowered by the grinding strain layer on the surface thereof. This ground strain layer remains in a region about 1 μm deep from the ground surface. Therefore, in order to remove the grinding strain layer, etching removal using an etching solution containing nitric acid and hydrofluoric acid, or dry etching removal using hydrofluoric acid and oxygen as plasma is performed.
[0003]
[Problems to be solved by the invention]
However, the removal of the grinding strain layer of the semiconductor wafer by this chemical etching requires a large-scale facility, and there are problems such as a large amount of etching processing liquid and processing gas being generated as industrial waste. is doing.
[0004]
The present invention has been made in view of the above-mentioned facts, and its technical problem is to provide a grinding strain layer of a semiconductor wafer without providing a large-scale facility and without generating a large amount of a material to be treated as industrial waste. It is to provide a method that can be removed.
[0005]
[Means for Solving the Problems]
As a result of intensive studies and experiments, the present inventor has developed a method for polishing a semiconductor wafer that can uniformly remove the grinding strain layer of the semiconductor wafer with a polishing grindstone having a polishing layer.
[0006]
That is, according to the present invention, as a method of removing the grinding strain layer of the semiconductor wafer that solves the above technical problem, the grinding strain layer of the semiconductor wafer is removed by polishing, which is disposed on the turntable. Each surface to be polished of a disk-shaped semiconductor wafer held and rotated by a plurality of chuck tables is positioned in a concentric polishing process and an eccentric polishing process by intermittently rotating the turntable, and has a diameter larger than that of the semiconductor wafer. the abrasive grinding wheel having an abrasive layer formed by impregnating the abrasive grains, and the concentric polishing step of polishing is rotated in the rotation center and the same center of rotation of the semiconductor wafer, the rotation center of the polishing layer of the polishing layer The above-mentioned eccentric polishing step of polishing with the outer peripheral edge positioned at a position passing through the rotation center of the semiconductor wafer is performed, and the polishing margin is 0.5 μm to 2. and [mu] m, with respect to the polishing surface of the first polished semiconductor wafer by concentric polishing process or eccentric polishing process performs the remaining polishing step by the maximum grinding depth formed same polishing allowance on the polished surface, that A semiconductor wafer polishing method is provided.
[0007]
Then, the grinding strain layer is uniformly removed by a combination of the concentric polishing step and the eccentric polishing step. Therefore, according to this method, it is possible to remove the grinding strain layer without providing a large-scale facility like chemical etching and without generating a large amount of a material to be treated as industrial waste.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the accompanying drawings.
[0010]
FIG. 1 shows an embodiment of a polishing apparatus for polishing a ground back surface, which is a surface to be polished of a semiconductor wafer. The polishing apparatus generally indicated by numeral 2 has a pair of polishing units 10 and a pair extending in the same manner on a vertical wall 6 standing on one end of the apparatus housing 4 via a pair of guide rails 8 and 8 extending in the vertical direction. A polishing unit 14 is provided via the guide rails 12 and 12. A turntable 18 having four chuck tables 16 arranged at a predetermined interval is provided on the upper surface of the apparatus housing 4. Each of the chuck tables 16 has a mounting surface made of a circular porous ceramic plate for adsorbing and holding a semiconductor wafer on the upper surface, and is rotatably provided. The turntable 18 is provided so as to be freely rotatable in a counterclockwise direction indicated by an arrow T. Due to the intermittent rotation, the chuck table 16 is moved and positioned to a position G1 that is an installation position of the polishing unit 10 where the concentric polishing process is performed and a position G2 that is an installation position of the polishing unit 14 where the eccentric polishing process is performed.
[0011]
The method for polishing a semiconductor wafer according to the present invention is performed by the above-described concentric polishing step and eccentric polishing step. In this embodiment, the concentric polishing step is performed first, and then the eccentric polishing step is performed. .
[0012]
The grinding unit 10 includes a disc-shaped polishing stone 20 at the lower end of a rotating shaft that is driven to rotate by an electric motor around an axis 11 extending in the vertical direction. Similarly, the polishing unit 14 includes a polishing grindstone 20 at the lower end of a rotating shaft that is driven to rotate by an electric motor about an axis 15 extending in the vertical direction. Although the polishing unit 10 and the polishing unit 14 is formed on the same, each is mounted offset dimension L position relative the upright wall 6 is in the turntable 18 direction. This difference in dimension L, the polishing unit 10 is disposed to one Itasa the axis 11 of the rotation center and the polishing unit 10 of the chuck table 16 at a position G1 where concentric polishing process is performed, the polishing unit 14 is eccentric polishing At the position G2 where the process is performed, the center of rotation of the chuck table 16 and the axis 15 of the polishing unit 14 are eccentrically arranged (relationship between dimension L, concentric polishing process, eccentric polishing process, eccentric position, etc.) Will be detailed later).
[0013]
The grinding wheel 20 will be described with reference to FIG. 2 and FIG. 3 which shows FIG. 2 in an inverted state. The polishing grindstone 20 includes a support plate 22 attached to the flanges at the lower ends of the respective rotating shafts of the polishing units 10 and 14, and a polishing layer 24 joined to the support plate 22. The support plate 22 is made of an appropriate metal such as aluminum and has a disk-like bottom surface that is a flat circular support surface. The support plate 22 includes a plurality of blind screw holes 22a extending downward from the upper surface thereof (four in the illustrated case) at intervals in the circumferential direction, and a set screw (not shown) is attached to the blind screw hole 22a on the flange of the rotary shaft. Not) are screwed together. The polishing layer 24 is also disk-shaped, and its outer diameter is substantially the same as the outer diameter of the support plate 22. The disc shape of the polishing layer 24 is formed to have a larger diameter than the disc-shaped semiconductor wafer.
[0014]
According to the examination and experiment by the present inventors, the polishing layer 24 for polishing the grinding strain layer of the semiconductor wafer by the polishing method according to the present invention is a felt formed by impregnating a felt with abrasive grains and solidifying it with a bonding agent. It is convenient to use a grindstone. As the felt, well-known synthetic fibers such as wool, polyester and nylon, natural fibers such as cotton and hemp are used. As the abrasive, a known material such as silica or diamond having a particle diameter of 0.01 μm to 100 μm is used. The abrasive is impregnated into the felt and bonded into the felt with a phenolic resin adhesive. The polishing layer 24 is bonded to the lower surface of the support plate 22 with an appropriate adhesive such as an epoxy resin adhesive.
[0015]
FIG. 4 is an explanatory view showing the arrangement positional relationship of the polishing unit 10 that performs the above-described concentric polishing process and the polishing unit 14 that performs the eccentric polishing process as seen from the direction of the semiconductor wafer from the polishing wheel side. To explain.
(1) At the concentric polishing step position indicated by G1, the polishing layer 24 (polishing unit 10) indicated by a two-dot chain line has its axis 11 aligned with the rotation center 17 of the semiconductor wafer W (chuck table 16) indicated by a solid line. Arranged.
(2) At the eccentric polishing step position indicated by G2, the polishing layer 24 (polishing unit 14) indicated by a two-dot chain line has its axis 15 with respect to the rotation center 17 of the semiconductor wafer W (chuck table 16). The outer peripheral edge 24 is arranged at a position passing through the rotation center 17 of the semiconductor wafer W and is eccentric with the dimension L described above.
[0016]
According to the examination and experiment of the present inventors, in order to polish the grinding strain layer of the semiconductor wafer, the relationship between the polishing layer 24 and the semiconductor wafer W is positioned as described above, and the rotation direction of the semiconductor wafer W (chuck table 16). The polishing layer 24 (polishing grindstone 20) is rotated in the opposite direction (indicated by arrow V) (indicated by arrow S), the rotation speed of the chuck table 16 is set to 100 RPM to 300 RPM, and the rotation speed of the polishing grindstone 20 is increased. It may be set to 4000 RPM to 7000 RPM.
[0017]
With reference to FIG. 1 again, the flow of the semiconductor wafer W in the polishing apparatus 2 will be described. The semiconductor wafer before polishing is accommodated in the cassette 26. The semiconductor wafer in the cassette 26 is conveyed to the center alignment table 30 by the loading / unloading means 28 and center alignment is performed. Next, the semiconductor wafer is attracted by the conveying means 32 having the swivel arm, conveyed to the chuck table 16 positioned at the receiving position Q, sucked and held on the mounting surface, and intermittently rotated in the direction indicated by the arrow T of the turntable 18. It is positioned at the disposition position G1 of the polishing unit 10 for performing the concentric polishing process. At this time, the four chuck tables 16 on the turntable 18 are located at the position G2 where the chuck table 16 at the concentric polishing process position G1 is located at the position G2 where the polishing unit 14 for performing the eccentric polishing process is located. 16 are positioned at the delivery position R, respectively. The polished semiconductor wafer W positioned at the delivery position R is released from the suction and holding of the mounting surface of the chuck table 16 and is adsorbed by the conveying means 34 having a turning arm and conveyed to the spinner cleaning means 36. After cleaning and drying, the cassette is accommodated in the cassette 38 by the carry-in / out means 28.
[0018]
Next, the polishing state of the semiconductor wafer W in each of the concentric polishing step by the polishing unit 10 and the eccentric polishing step by the polishing unit 14 will be described with reference to FIG. 5 that exaggerated the polishing state together with FIG.
[0019]
(1) Concentric polishing process, FIG. 5 (a):
In the concentric polishing process, the disk-shaped semiconductor wafer W is increased in the circumferential direction with the disk-shaped polishing layer 24 rotated concentrically as the outer edge moves from the rotation center 17 to the outer edge side. Is easily polished and is polished into a convex shape having a maximum polishing depth δ at the outer edge. This maximum polishing depth δ is defined as 0.5 μm to 2.0 μm according to the thickness of the grinding strain layer removed by polishing of the semiconductor wafer W.
[0020]
(2) Eccentric polishing process, FIG. 5 (b):
In the eccentric polishing process with respect to the state of the polished semiconductor wafer W (indicated by the two-dot chain line) in concentric polishing process is polished at its maximum grinding depth [delta] and the same size of the grinding allowance [delta]. In the eccentric polishing step, since the outer peripheral edge of the polishing layer 24 passes through the portion of the rotation center 17 of the semiconductor wafer W, the semiconductor wafer W is easily polished on the side of the rotation center 17 and polished into a concave shape with a recessed central portion. Is done.
[0021]
(3) End of polishing, FIG. 5 (c):
Thus, on the semiconductor wafer W that has been subjected to the concentric polishing step and the eccentric polishing step, a substantially uniform and flat polishing surface from which the grinding strain layer has been removed is formed as shown in FIG.
[0022]
The operation of the semiconductor wafer polishing method as described above will be described.
[0023]
(1) Equipment and industrial waste:
The removal of the grinding distortion layer on the grinding surface of the semiconductor wafer is mechanically performed with a polishing wheel, so that no large-scale equipment is provided as in the case of removal by conventional chemical etching, and as industrial waste Does not produce a large amount of material to be processed. Further, in a known grinding apparatus for grinding the back surface of a semiconductor wafer, a polishing grindstone is attached in place of the grinding grindstone, and the position of the rotation axis is changed, whereby the polishing apparatus for performing the polishing method of the present invention can be easily performed. Can be prepared.
[0024]
(2) Strain layer removal surface:
The surface of the semiconductor wafer polished by the polishing method of the present invention is polished into a concave shape in which the rotation center portion is concaved into a basin shape in the eccentric polishing step after the rotation center portion is polished into a convex shape having a mountain shape by the concentric polishing process. Therefore, a high-quality polished surface from which the grinding distortion layer is uniformly removed is formed by the projections and depressions.
[0025]
As described above, the present invention has been described in detail based on the embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications or corrections may be made within the scope of the present invention, for example, as described below. It is something that can be done.
[0028]
In the embodiment of the present invention, the eccentric polishing process is performed after the concentric polishing process, but the order of the polishing processes may be reversed.
[0029]
【The invention's effect】
According to the method for polishing a semiconductor wafer configured according to the present invention, a material to be treated as industrial waste can be obtained from a ground back surface of a semiconductor wafer without providing large-scale equipment, such as a method by chemical etching. The grinding strain layer can be removed without producing a large amount.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an embodiment of a polishing apparatus for performing a method for polishing a semiconductor wafer according to the present invention.
FIG. 2 is a perspective view of a preferred embodiment of a polishing grindstone used in a semiconductor wafer polishing method according to the present invention.
3 is a perspective view showing the grinding wheel of FIG. 2 in an inverted state.
FIG. 4 is an explanatory view showing the positional relationship of a concentric polishing process and an eccentric polishing process according to the present invention as viewed from the side of the polishing wheel viewed from below the semiconductor wafer to be polished.
FIG. 5 is an explanatory view showing an enlarged and exaggerated cross section of a semiconductor wafer polished by the semiconductor wafer polishing method according to the present invention. The cross-section hatching is omitted to avoid the figure from becoming complicated.
(A) is the state which performed the concentric grinding | polishing process.
(B) is the state which performed the eccentric polishing process after performing the concentric polishing process.
(C) is a state after polishing after the end of the eccentric polishing step.
[Explanation of symbols]
2: Polishing apparatus 10: Polishing unit 11: Axis 14: Polishing unit 15: Axis 16: Chuck table 18: Turntable 20: Polishing wheel 24: Polishing layer W: Semiconductor wafer G1: Concentric polishing process position G2: Eccentric polishing process position

Claims (1)

半導体ウエーハの研削歪み層を研磨により除去する方法であって、
ターンテーブルに配設された複数個のチャックテーブルに保持され回転する円板形状の半導体ウエーハの被研磨面それぞれを、ターンテーブルを間欠回転させて同心研磨工程及び偏心研磨工程に位置付け、
半導体ウエーハよりも大径でありフエルトに砥粒を含浸させて形成されている研磨層を有する研磨砥石を、半導体ウエーハの回転中心と同一の回転中心において回転させ研磨する上記の同心研磨工程と、研磨層の回転中心を研磨層の外周縁が半導体ウエーハの回転中心を通る位置に位置付けて研磨する上記の偏心研磨工程とを遂行し、
研磨代を0.5μm〜2.0μmとし、同心研磨工程又は偏心研磨工程により先ず研磨された半導体ウエーハの研磨面に対し、研磨面に形成された最大研磨深さと同一の研磨代により残りの研磨工程を遂行する、ことを特徴とする半導体ウエーハの研磨方法。
A method for removing a grinding strain layer of a semiconductor wafer by polishing,
Each surface to be polished of a disk-shaped semiconductor wafer held and rotated by a plurality of chuck tables disposed on the turntable is positioned in a concentric polishing step and an eccentric polishing step by intermittently rotating the turntable.
The abrasive grinding wheel having an abrasive layer formed by impregnating the abrasive grains are larger in diameter felt than the semiconductor wafer, and the concentric polishing step of polishing is rotated in the rotation center and the same center of rotation of the semiconductor wafer Performing the above-described eccentric polishing step in which the polishing center is polished at a position where the outer peripheral edge of the polishing layer passes through the rotation center of the semiconductor wafer.
The stock removal and 0.5Myuemu~2.0Myuemu, to the polishing surface of the first polished semiconductor wafer by concentric polishing process or eccentric polishing step, the remaining by the maximum grinding depth and the same polishing allowance formed in the polishing surface A method for polishing a semiconductor wafer, comprising performing the polishing step.
JP2001380996A 2001-12-14 2001-12-14 Polishing method of semiconductor wafer Expired - Lifetime JP4034560B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001380996A JP4034560B2 (en) 2001-12-14 2001-12-14 Polishing method of semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001380996A JP4034560B2 (en) 2001-12-14 2001-12-14 Polishing method of semiconductor wafer

Publications (2)

Publication Number Publication Date
JP2003188119A JP2003188119A (en) 2003-07-04
JP4034560B2 true JP4034560B2 (en) 2008-01-16

Family

ID=27591817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001380996A Expired - Lifetime JP4034560B2 (en) 2001-12-14 2001-12-14 Polishing method of semiconductor wafer

Country Status (1)

Country Link
JP (1) JP4034560B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878738B2 (en) * 2004-04-30 2012-02-15 株式会社ディスコ Semiconductor device processing method
KR100917566B1 (en) * 2008-01-02 2009-09-16 주식회사 실트론 Apparatus for polishing wafer
JP6045926B2 (en) * 2013-01-29 2016-12-14 株式会社ディスコ Grinding and polishing equipment
JP6407728B2 (en) * 2013-02-07 2018-10-17 株式会社タンケンシールセーコウ Manufacturing method of mechanical seal
CN116276629B (en) * 2023-05-19 2023-11-07 连云港浩尔晶电子有限公司 Multi-station quartz wafer grinding device and application method thereof

Also Published As

Publication number Publication date
JP2003188119A (en) 2003-07-04

Similar Documents

Publication Publication Date Title
JP2002305168A (en) Polishing method, polishing machine and method for manufacturing semiconductor device
US7413501B2 (en) Method for concave grinding of wafer and unevenness-absorbing pad
WO2021065102A1 (en) Grinding device and grinding head
US6113467A (en) Polishing machine and polishing method
JP3663348B2 (en) Polishing apparatus and polishing method
JP4034560B2 (en) Polishing method of semiconductor wafer
KR19980070998A (en) Polishing apparatus, polishing member and polishing method
JP4594545B2 (en) Polishing apparatus and grinding / polishing machine including the same
JP2000343440A (en) Abrasive wheel and manufacture of abrasive wheel
JP2005166861A (en) Wafer polishing method
EP0954408A1 (en) Polishing apparatus
JP3821947B2 (en) Wafer polishing apparatus and wafer polishing method
JP4546659B2 (en) Polishing tool
JP2004335668A (en) Polishing equipment
JP3692970B2 (en) Polishing pad
JP3011168B2 (en) Semiconductor substrate polishing equipment
JP2004050313A (en) Abrasive wheel and grinding method
JP4754870B2 (en) Polishing equipment
JP2003188118A (en) Polishing device for semiconductor wafer
KR100826590B1 (en) Apparatus for chemical mechanical polishing
JP4580118B2 (en) Polishing method and grinding / polishing method
JP2004319930A (en) Cleaning/drying device for substrate
JP7301472B2 (en) Wafer processing method
JP2879038B1 (en) Finish processing method for silicon semiconductor wafer outer peripheral part
KR101286009B1 (en) Apparatus and method for polishing wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4034560

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term