JP3821947B2 - Wafer polishing apparatus and wafer polishing method - Google Patents

Wafer polishing apparatus and wafer polishing method Download PDF

Info

Publication number
JP3821947B2
JP3821947B2 JP10393498A JP10393498A JP3821947B2 JP 3821947 B2 JP3821947 B2 JP 3821947B2 JP 10393498 A JP10393498 A JP 10393498A JP 10393498 A JP10393498 A JP 10393498A JP 3821947 B2 JP3821947 B2 JP 3821947B2
Authority
JP
Japan
Prior art keywords
wafer
polishing
groove
density
polishing body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10393498A
Other languages
Japanese (ja)
Other versions
JPH11285963A (en
Inventor
敏弘 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP10393498A priority Critical patent/JP3821947B2/en
Publication of JPH11285963A publication Critical patent/JPH11285963A/en
Application granted granted Critical
Publication of JP3821947B2 publication Critical patent/JP3821947B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ウェーハ、特に半導体ウェーハ、単結晶シリコンウェーハ研磨用のウェーハ研磨装置及びウェーハ研磨方法に関する。
【0002】
【従来の技術】
一般に、ウェーハは円筒状のインゴットをスライス切断、面取りを行なった後、研磨(ラップ)定盤とアズカットウェーハを砥粒を含む研磨液を介して摺擦させながらラッピングを行ない、そして該ラッピングされたウェーハはエッチング処理された後、仕上げ加工工程に導かれる。
仕上加工工程においては、研磨(ポリッシング)布とウェーハ間にSiO系微粒子を弱アルカリ液中に懸濁させたポリッシング液を用い、いわゆる化学機械的研磨法により鏡面研磨される。
【0003】
この鏡面研磨では、ウェーハを保持する方法として、研磨用プレートにウェーハ片面をウェーハ接着用のワックスを用い貼り付けるワックス法があるが、かかるワックス法においては、接着層(ワックス層)の厚さの不均一性がそのまま、研磨後ウェーハの平面度、平行度等を反映するため、接着層厚を均一にすることが重要である。また、ウェーハ研磨後にウェーハからワックスを除去する必要があるため、工程が複雑になり、またワックスの塗付や除去に使用する薬液、及び廃液処理設備が必要となるので、加工コストが上がるという問題点があった。
【0004】
ワックスレス法は上記ワックス法の欠点を解消したもので、真空吸着による第1のワックスレス法と、多孔質の樹脂、例えばポリウレタン樹脂多孔質体からなるバッキングパッドを用いてウェーハを水貼りする第2のワックスレス法とが利用されているが、いずれも前記したウェーハに対するワックスの塗布、除去が不要になる長所がある。
【0005】
バッキングパッドを用いたワックスフリー研磨装置は、図4に示すように、研磨布2(ポリッシングパッド)を貼着した下側回転テーブル1と、下面側にキャリアプレート3、バッキングパッド6を介して、複数のウェーハ位置決め用穴(保持孔)11aにウェーハ10が保持されたウェーハ保持治具13が取り付けられた複数のポリッシングヘッド4と、前記研磨布2にスラリー(研磨懸濁液)を供給するスラリー管5からなり、ウェーハ10を回転テーブル1側の研磨布2に押し付けてウェーハの凹凸を平滑化する研磨装置である。
【0006】
そしてかかる装置に用いるウェーハ保持治具13は、キャリアプレート3上に1個以上のウェーハ位置決め用穴11aを有するテンプレート7を用い、位置決め用穴にバッキングパッド6が入り、固着させるように形成されている。またテンプレート7は、ガラスエポキシ樹脂、ポリカーボネートシート、ポリエステルシート等から形成されており、またバッキングパッド6は多孔質の樹脂、例えばポリウレタン樹脂多孔質体から形成されている。
【0007】
そしてポリッシングヘッド4は、研磨布2を貼着した下側回転テーブル1に対し自公転し、ウェーハ10はウェーハ保持治具13内で連れ回し回転可能に構成されている。ここで連れ回しとは、回転テーブル1上に他の回転軸を有するウェーハ保持治具13を置くとウェーハ保持治具の面内で遠心力分布が生じ、遠心力の差によりウェーハ保持治具が自転する現象のことである。
即ち、図4においては、回転テーブル1の回転中心に対し、複数のポリッシングヘッド4の回転中心を半径方向に変位した位置に配置し、両者を互いに矢印方向に回転させることにより、ウェーハ保持治具13及びウェーハ保持治具13の保持孔11aに嵌設させたウェーハ10は、矢印方向に回転し、結果としてウェーハ10は研磨布2に対し相対的に自転且つ公転しながら研磨される。
【0008】
又、図5は他の研磨装置の構成を示すもので、太陽歯車53と内歯車54とを組合せた回転方式を示し、かかる回転手段では同図に見るように、円盤状のウェーハ保持治具13はウェーハ保持孔11aを形成させ且つ外周に外周歯13aを設ける構成である。矢印A方向に回転する下側回転定盤51の中心に設けた太陽歯車53と該回転定盤51の外側に設けた内歯車54とに噛み合わせ、ウェーハ保持治具13を自転且つ公転させながらウェーハ10の回転を行なう。
この回転方式は、両面ポリッシングや両面ラッピング等の研磨で用いられ、上下の回転定盤にポリッシングの時は研磨布、ラッピングの時は研磨定盤(ラップ定盤)が用いられている。また、この回転方式で用いられるウェーハ保持治具13は、単にキャリアとも呼ばれる。この回転方式では、ウェーハ保持治具(キャリア)は、強制自転しているが、キャリア内のウェーハは遠心力の差、つまり連れ回りの現象と同じような作用で回転している。
【0009】
さて前記したワックスフリー研磨装置においてもワックス研磨装置と同様に、バッキングパッド層の厚さの不均一性がそのまま、研磨後ウェーハの平面度、平行度等を反映する。そこで研磨中にウェーハをウェーハ保持治具13内において自転させることにより、研磨後厚さを平均化させている。
したがってワックスフリー研磨においては、研磨中にウェーハを安定して自転させることが重要である。そのためバッキングパッドに凹凸を付けたり、又バッキングパッドとウェーハとの間に空気や潤滑剤等を介在させることが行なわれており、バッキングパッドとウェーハとの摩擦力を低減させている。
【0010】
しかしバッキングパッドとウェーハとの摩擦力は双方の表面粗さに影響され、それぞれの表面粗さが大きいほど摩擦力が増大してウェーハが自転しにくくなり、研磨後の平坦度が悪化する。特にウェーハ裏面にはPBS(Polyback Seal )やCVD(Chemical Vapor Deposition )などのポリシリコン層や酸化膜層が形成されたものがあり、それぞれ異なった粗さを有する。
両面研磨、両面ラッピング等でも、ウェーハを自転させることが好ましいことは同様である。
【0011】
【発明が解決しようとする課題】
かかるワックスフリー研磨装置において、研磨ヘッド及びキャリアプレートのみ回転し、ウェーハがテンプレート中で研磨中に自転しない状態の場合、バッキングパッド厚さの不均一性が平面度、平行度等を反映する。即ちワックス層の厚さが1μm であるのに対してバッキングパッド厚さは100〜300μmあり、バッキングパッド厚さの不均一性は10〜50μmに達し、平坦度への影響はワックス研磨よりも遥かに大きく、問題である。
【0012】
またウェーハが研磨中に自転する他の回転方式の研磨方法においては、ウェーハ保持治具と研磨(ポリッシング)ヘッドそれぞれの位置のバランスが悪いと、ウェーハ保持治具の自転が不安定となる。
以上のように平坦度の良いウェーハを製造するためには、強制的に自転させていないウェーハまたはウェーハ保持治具を安定して自転させる必要がある。
【0013】
さて、前記夫々の研磨装置に用いられている研磨布(ポリッシングパッド)は、例えば一次ポリッシングを行なう際に、ポリウレタン含浸ポリエステル不織布その他の不織布を用い、また例えば二次ポリッシングを行なう際に発泡ポリウレタン層(表層)とポリエステル層(裏層)の2層構造からなる多孔質の研磨布が実用化されている。
これらの研磨布は、ウェーハと研磨布との間に研磨剤を安定供給することにより、研磨能率を増加させる目的で、図2(B)に示すように研磨布2のウェーハ摺動面に、格子状に等間隔で、溝20dを設けた溝入研磨布を用いているものもある。(特開平9−201765号)
【0014】
本発明はかかる溝入研磨布の溝密度の工夫を施すことにより、ウェーハまたはウェーハ保持治具が安定して自転することにより、研磨ウェーハの平坦度が改善されるウェーハ研磨用ウェーハ研磨装置及びウェーハ研磨方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明は研磨布(ポリッシングパッド)の中心からの距離によって溝の密度を変化させる点、具体的には、研磨布の中心から遠ざかるほど溝密度を増加させる点を要旨とするものであるが、本願発明はワックスフリー研磨、両面研磨等でウェーハ自身が効率良く回転することが望まれる研磨方法に対して行なわれ、また研磨体はポリッシングパッドのみならず、ラッピング加工を行なう際の研磨定盤(ラップ定盤)についても同様な溝加工を行なうのがよい。
【0016】
即ち、請求項1記載の発明は、ウェーハとの間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なう研磨布を有するウェーハ研磨装置において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体の周速度が大きい部位の溝密度を、周速度が小さい部位の溝密度に対し増加させたことを特徴とする。
【0017】
請求項2記載の発明は、ウェーハとの間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なう研磨布を有するウェーハ研磨装置において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体周縁側部位の溝密度を、その内側に位置する溝密度に対し増加させたことを特徴とする。
前記研磨体に形成した格子状若しくは同心円の溝及び放射状の溝の密度をリング状に異ならすと共に、ウェーハ保持治具に保持された複数のウェーハに対して中心側に位置するウェーハが溝なし若しくは相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、且つ外側に位置するウェーハが相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、夫々溝間隔を設定すると本発明の効果が一層円滑に達成できる。
【0018】
請求項記載の発明は、前記した請求項1記載のウェーハ研磨方法に関するもので、ウェーハと研磨布からなる研磨体との間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なうウェーハ研磨方法において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体の周速度が大きい部位の溝密度を、周速度が小さい部位の溝密度に対し増加させた研磨体を用いてウェーハの研磨を行なうことを特徴とする。
【0019】
請求項記載の発明は、前記した請求項2記載のウェーハ研磨方法に関するもので、ウェーハと研磨布からなる研磨体との間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なうウェーハ研磨方法において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体周縁側部位の溝密度を、その内側に位置する溝密度に対し増加させた研磨体を用いてウェーハの研磨を行なうことを特徴とする。
【0020】
これらの発明も前記研磨体に形成した格子状若しくは同心円及び放射状の溝の密度をリ ング状に異ならすと共に、ウェーハ保持治具に保持された複数のウェーハに対して中心側に位置するウェーハが溝なし若しくは相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、且つ外側に位置するウェーハが相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、夫々溝間隔を設定するのがよく、更に、前記ウェーハ研磨方法が、バッキングパッドにワックスフリーで貼着したウェーハを研磨布に押し付けてウェーハの凹凸を平滑化するウェーハ研磨方法であるのがよい
【0021】
そして本発明はいずれも前記研磨のウェーハ摺動面に設けた格子状若しくは同心円且つ放射状の溝の溝密度を一定化させることなく、ウェーハの連れ回り方向に作用する摩擦力が大きくなるように前記溝の密度を変化させた研磨を用いてウェーハの研磨を行なうものである
【0022】
研磨の格子状若しくは同心円且つ放射状の溝がウェーハのエッジに対して斜め方向に当たるとウェーハを回転させる作用がある。
但しこの作用の方向は溝がエッジのいずれの部分に当たるかによって異なり、研磨布の外周側(相対速度の大きい側)に当たった溝は、連れ回り方向に作用し、研磨布の中心側(相対速度の小さい側)に当たった溝は、連れ回り方向と逆方向に作用する。
従って研磨布の外周側(相対速度の大きい側)部位の溝密度を、研磨布の中心側(相対速度の小さい側)の溝密度より密(増加)させることにより円滑な連れ回り回転が可能となる。
【0023】
従って請求項記載のように、前記研磨体に形成した格子状若しくは同心円且つ放射状の溝の密度をリング状に異ならすと共に、ウェーハ保持治具に保持された複数のウェーハに対して中心側に位置するウェーハが溝なし若しくは相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、且つ外側に位置するウェーハが相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、夫々溝間隔を設定したことにより、一層好ましいウェーハの連れ回り回転と平坦度化が達成される。
【0024】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態を例示的に詳しく説明する。但しこの実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は特に特定的な記載がないかぎりは、この発明の範囲をそれに限定する趣旨ではなく、単なる説明例にすぎない。
【0025】
図1は研磨布(ポリッシングパッド)2のウェーハ摺動面上に形成される溝密度を中心部位から周縁側に遠ざかるほど、増加させた格子状若しくは同心円且つ放射状の溝の溝形状の一例である。
(A)は格子状溝密度の一例で、中心部位21fは溝なし20f、その外側21bは疎な溝20b、最外側21aは密な溝20aに設定してある。
実際には、例えば直径1.4mの研磨布(ポリッシングパッド)に中心は溝なし、中心付近に近いリング円部は、40mm角の疎の密度の溝を設け、周辺では10mm角の密な溝を形成する。研磨布(ポリッシングパッド)の厚さは1〜1.5mmであり、溝は深さ0.5〜1mm、幅2〜3mmである。これらの溝は、研磨布(ポリッシングパッド)を切削することにより形成されるがプレスにより形成してもよい。
【0026】
(B)は前記(A)の垂直縦断面図で、矢印Aは研磨布2の回転方向、矢印Bはウェーハ10を回転自在に嵌合するウェーハ保持治具の回転方向、矢印Cは連れ回されるウェーハ10の回転方向を夫々示す。
【0027】
本図より明らかなように、ウェーハ保持治具に保持された中心側に位置するウェーハ10が溝なし部位20fと疎溝部位20bとの間を跨ぐように、外側に位置するウェーハ10が疎溝部位20bと密溝部位20aとの間を跨ぐように、夫々溝間隔を設定することにより、一層好ましいウェーハ10の連れ回し回転と平坦度化が達成される。
【0028】
図2は他の実施例にかかる研磨布を示し、溝は同心円状且つ放射状に形成すると共に、中心部位は溝なし20f、その外側は疎な溝20b、最外側は密な溝20aに設定してある。
又ウェーハ保持治具に保持された中心側に位置するウェーハ10が溝なし部位20fと疎溝部位20bとの間を跨ぐように、外側に位置するウェーハ10が疎溝部位20bと密溝部位20aとの間を跨ぐように、夫々溝間隔を設定してあることも前記した通りである。
【0029】
かかる実施形態によれば、研磨布2にこのような溝を形成することにより、ウェーハ10と研磨布2との間に介在するスラリーが溝20(20a,20b)に押し出される。従ってウェーハ10はハイドロプレーニング現象により研磨布2から浮き上がることなく研磨布2と接触するようになり、摩擦力が増大する。
この摩擦力はウェーハ全面に作用するが、研磨布2の外周側ほど溝20の密度を高くするとウェーハ10と研磨布2とが接触し易くなり、連れ回り方向に作用する摩擦力が大きくなってウェーハまたはウェーハ保持治具は連れ回りしやすくなる。
本発明の効果を連れ回り式の研磨装置で研磨を行なって、その確認をした。
【0030】
先ず実施例においては、研磨布(ポリッシングパッド)は不織布により形成され、具体的にはSuba600(ロデール・ニッタ株式会社製)を使用した。
直径1400mmの研磨布(ポリッシングパッド)2において、図2(A)に示すように、中心〜直径470mmは40mm角の溝20cを形成し、直径470〜1200mmは20mm角の溝20b、直径1200〜1400mmは10mm角の溝20aを形成した。溝はそれぞれ深さ0.7mm、幅3mmである。ウェーハ保持治具は8インチウェーハ5枚を仕込むことのできる、直径565mmのものである。ウェーハ10は裏面にPBSを形成したものを使用した。
これらを研磨荷重240g/cm 、定盤回転速度35rpm、研磨時間15minの条件で研磨した。
【0031】
(比較例)
研磨布は不織布により形成され、具体的にはSuba600(ロデール・ニッタ株式会社製)を使用し、実施例と同様に連れ回り式の研磨装置で研磨を行なった。
そして図2(B)に示すように、直径1400mmの研磨布において20mm角の構20dを均一な密度で形成した。溝20dはそれぞれ深さ0.7mm、幅3mmである。ウェーハ保持治具13はウェーハ5枚を仕込むことのできる、直径565mmのものである。ウェーハ10は裏面にPBS層を形成したものを使用した。
これらを実施例と同一の研磨荷重240g/cm 、定盤回転速度35rpm、研磨時間15minの条件で研磨した。
【0032】
実施例と比較例の平坦度を評価したところ、比較例では全平坦度(Total Thickness Variation:TTV)が3.5μm、実施例では全平坦度が1.0μmと大幅に改善していることが理解できる。
又図3にその平坦度形状を示す。この評価は静電容量式ウェーハ平坦度測定装置により行なった。
本図より明らかなように、(A)に示す実施例ではほぼ水平な形状が得られるのに対し、(B)に示す比較例では斜めに傾斜した形状しか得られなかった。即ち本発明の研磨体を用いて研磨することによりウェーハが効率良く回転し、回転対称な形で研磨され、ほぼ水平な形状で平坦度の良いウェーハが得られることが分かる。
【0033】
【発明の効果】
以上記載のごとく本発明によればウェーハまたはウェーハ保持治具が安定して自転することにより、研磨ウェーハの平坦度が改善される。なお、本発明は本実施例に限られるものではなく両面ポリッシングやラッピング等でも、キャリア内でウェーハが回転するため効果がある。また実施例では複数枚同時に処理するバッチ式の例を示したが、ポリッシングヘッドの回転中心とウェーハの回転中心を一到させた枚葉式ワックスフリー研磨でも同じ効果が得られる。更に、ウェーハ保持治具(研磨用プレート)にウェーハをワックスで貼り付けた方法でも、本発明の研磨体を用いることでウェーハ保持治具自体を効率良く回転させることができ、同様な効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施形態にかかる研磨布の溝形状を示し、(A)は格子状溝の一例で、(B)は前記(A)の垂直縦断面図、(C)は同心円と放射形状からなる溝の一例を示す。
【図2】 本発明の効果確認の実験に用いた研磨布の溝形状を示し、(A)は実施例、(B)は比較例である。
【図3】 実施例(A)と比較例(B)の平坦度形状を示す
【図4】 バッキングパッドを用いたワックスフリー研磨装置を示す。
【図5】 太陽歯車と内歯車とを組み合せたウェーハ回転方式の研磨装置を示す。
【符号の説明】
2 研磨布
10 ウェーハ
13 ウェーハ保持治具
20 溝
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wafer polishing apparatus and a wafer polishing method for polishing a wafer, particularly a semiconductor wafer and a single crystal silicon wafer.
[0002]
[Prior art]
In general, a wafer is sliced and chamfered from a cylindrical ingot, and then lapped while rubbing a polishing (lap) surface plate and an as-cut wafer with a polishing liquid containing abrasive grains, and the lapping The processed wafer is etched and then guided to a finishing process.
In the finishing process, mirror polishing is performed by a so-called chemical mechanical polishing method using a polishing solution in which SiO 2 fine particles are suspended in a weak alkaline solution between a polishing cloth and a wafer.
[0003]
In this mirror polishing, as a method of holding the wafer, there is a wax method in which one side of a wafer is attached to a polishing plate using a wax for wafer bonding. In such a wax method, the thickness of the adhesive layer (wax layer) is reduced. It is important to make the thickness of the adhesive layer uniform because the non-uniformity reflects the flatness, parallelism, etc. of the polished wafer as it is. In addition, since it is necessary to remove the wax from the wafer after polishing the wafer, the process becomes complicated, and chemical processing and waste liquid treatment equipment used for applying and removing the wax are necessary, which increases the processing cost. There was a point.
[0004]
The waxless method eliminates the disadvantages of the wax method described above. The waxless method is a first waxless method based on vacuum adsorption and a first method in which a wafer is attached with water using a backing pad made of a porous resin, for example, a polyurethane resin porous body. No. 2 waxless method is used, but all have the advantage that it is not necessary to apply and remove the wax to the wafer.
[0005]
As shown in FIG. 4, the wax-free polishing apparatus using the backing pad has a lower rotary table 1 with a polishing cloth 2 (polishing pad) attached, and a carrier plate 3 and a backing pad 6 on the lower surface side. A plurality of polishing heads 4 to which a wafer holding jig 13 holding a wafer 10 is attached to a plurality of wafer positioning holes (holding holes) 11a, and a slurry for supplying slurry (polishing suspension) to the polishing cloth 2 The polishing apparatus includes a tube 5 and presses the wafer 10 against the polishing cloth 2 on the turntable 1 side to smooth the unevenness of the wafer.
[0006]
The wafer holding jig 13 used in such an apparatus is formed so that the template 7 having one or more wafer positioning holes 11a on the carrier plate 3 is used, and the backing pad 6 is inserted into and fixed to the positioning holes. Yes. The template 7 is made of a glass epoxy resin, a polycarbonate sheet, a polyester sheet or the like, and the backing pad 6 is made of a porous resin, for example, a polyurethane resin porous body.
[0007]
The polishing head 4 rotates and revolves with respect to the lower rotary table 1 to which the polishing cloth 2 is adhered, and the wafer 10 is configured to rotate in the wafer holding jig 13. Here, the term “spinning” means that when a wafer holding jig 13 having another rotation axis is placed on the turntable 1, centrifugal force distribution is generated in the surface of the wafer holding jig, and the wafer holding jig is caused by a difference in centrifugal force. It is a phenomenon that rotates.
That is, in FIG. 4, with respect to the rotation center of the turntable 1, the rotation centers of the plurality of polishing heads 4 are arranged at positions displaced in the radial direction, and both are rotated in the direction of the arrows to thereby hold the wafer holding jig. 13 and the wafer 10 fitted in the holding hole 11a of the wafer holding jig 13 rotate in the direction of the arrow, and as a result, the wafer 10 is polished while rotating and revolving relatively with respect to the polishing pad 2.
[0008]
FIG. 5 shows the structure of another polishing apparatus, which shows a rotating system in which a sun gear 53 and an internal gear 54 are combined. As shown in FIG. Reference numeral 13 denotes a configuration in which a wafer holding hole 11a is formed and outer peripheral teeth 13a are provided on the outer periphery. While meshing with a sun gear 53 provided at the center of the lower rotary platen 51 rotating in the direction of arrow A and an internal gear 54 provided outside the rotary platen 51, the wafer holding jig 13 is rotated and revolved. The wafer 10 is rotated.
This rotation method is used for polishing such as double-side polishing and double-side lapping. A polishing cloth is used for polishing on the upper and lower rotary surface plates, and a polishing surface plate (lapping surface plate) is used for lapping. The wafer holding jig 13 used in this rotation method is also simply called a carrier. In this rotation method, the wafer holding jig (carrier) is forcibly rotated, but the wafer in the carrier is rotated by the same action as the centrifugal force difference, that is, the accompanying phenomenon.
[0009]
In the wax-free polishing apparatus described above, as in the wax polishing apparatus, the non-uniformity in the thickness of the backing pad layer directly reflects the flatness and parallelism of the polished wafer. Therefore, the thickness after polishing is averaged by rotating the wafer in the wafer holding jig 13 during polishing.
Therefore, in wax-free polishing, it is important to stably rotate the wafer during polishing. For this reason, unevenness is provided on the backing pad, and air or a lubricant is interposed between the backing pad and the wafer to reduce the frictional force between the backing pad and the wafer.
[0010]
However, the frictional force between the backing pad and the wafer is affected by the surface roughness of both, and as the surface roughness increases, the frictional force increases and the wafer becomes difficult to rotate, and the flatness after polishing deteriorates. In particular, there are wafers on which a polysilicon layer or an oxide film layer such as PBS (Polyback Seal) or CVD (Chemical Vapor Deposition) is formed on the back surface of the wafer, each having a different roughness.
It is the same that it is preferable to rotate the wafer also in double-side polishing, double-side lapping, and the like.
[0011]
[Problems to be solved by the invention]
In such a wax-free polishing apparatus, when only the polishing head and the carrier plate rotate and the wafer does not rotate during polishing in the template, the nonuniformity of the backing pad thickness reflects the flatness, parallelism, and the like. That is, while the thickness of the wax layer is 1 μm, the backing pad thickness is 100 to 300 μm, the non-uniformity of the backing pad thickness reaches 10 to 50 μm, and the influence on the flatness is far greater than that of wax polishing. It is a big problem.
[0012]
In another rotational polishing method in which the wafer rotates during polishing, if the balance between the positions of the wafer holding jig and the polishing (polishing) head is poor, the rotation of the wafer holding jig becomes unstable.
As described above, in order to manufacture a wafer with good flatness, it is necessary to stably rotate a wafer or a wafer holding jig that is not forced to rotate.
[0013]
The polishing cloth (polishing pad) used in each of the polishing apparatuses uses, for example, a polyurethane-impregnated polyester nonwoven fabric or other nonwoven fabric when performing primary polishing, and a foamed polyurethane layer when performing secondary polishing, for example. A porous abrasive cloth having a two-layer structure of (surface layer) and polyester layer (back layer) has been put into practical use.
For the purpose of increasing the polishing efficiency by stably supplying an abrasive between the wafer and the polishing cloth, these polishing cloths are disposed on the wafer sliding surface of the polishing cloth 2 as shown in FIG. Some use a grooved polishing cloth provided with grooves 20d at equal intervals in a lattice shape. (Japanese Patent Laid-Open No. 9-201765)
[0014]
The present invention provides a wafer polishing apparatus for wafer polishing and a wafer in which the flatness of the polished wafer is improved by devising the groove density of the grooved polishing cloth so that the wafer or the wafer holding jig is stably rotated. An object is to provide a polishing method .
[0015]
[Means for Solving the Problems]
The gist of the present invention is to change the groove density depending on the distance from the center of the polishing cloth (polishing pad), specifically, to increase the groove density as the distance from the center of the polishing cloth increases. The present invention is applied to a polishing method in which the wafer itself is desired to be efficiently rotated by wax-free polishing, double-side polishing, and the like, and the polishing body is not only a polishing pad but also a polishing surface plate for lapping processing ( It is preferable to perform the same groove processing on the lapping plate.
[0016]
That is, a first aspect of the present invention, the wafer polishing apparatus having a polishing cloth to perform the polishing of the wafer while sliding with the relative velocity difference between the wafer,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. The groove density formed on the moving surface is varied, and the groove density at a portion where the peripheral speed of the polishing body is high is increased with respect to the groove density at a portion where the peripheral speed is low.
[0017]
The invention according to claim 2 is a wafer polishing apparatus having a polishing cloth for polishing the wafer while sliding with a relative speed difference between the wafer and the wafer .
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. The groove density formed on the moving surface is made different, and the groove density at the peripheral part of the polishing body is increased with respect to the groove density located inside thereof.
The density of the lattice-like or concentric grooves and radial grooves formed in the polishing body is varied in a ring shape, and the wafer located on the center side with respect to the plurality of wafers held by the wafer holding jig has no grooves or A wafer located on the outside straddles between a relatively sparse groove part and a relatively dense groove part so as to straddle between a relatively sparse groove part and a relatively dense groove part. Thus, the effect of this invention can be achieved more smoothly if each groove | channel space | interval is set.
[0018]
Invention described in claim 4, it relates c Eha polishing method according to claim 1, wherein the said, is polished of the wafer while sliding with the relative speed difference between the polishing body consisting of the wafer and the polishing pad In the wafer polishing method,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. Wafer polishing is performed using a polishing body in which the groove density formed on the moving surface is made different and the groove density at a portion where the peripheral speed of the polishing body is high is increased with respect to the groove density at a portion where the peripheral speed is low. It is characterized by that.
[0019]
Invention described in claim 5, it relates c Eha polishing method according to claim 2, wherein the said, is polished of the wafer while sliding with the relative speed difference between the polishing body consisting of the wafer and the polishing pad In the wafer polishing method,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. The wafer is polished by using a polishing body in which the groove density formed on the moving surface is different and the groove density at the peripheral portion of the polishing body is increased with respect to the groove density located inside the polishing body. To do.
[0020]
Also these inventions were formed on the polishing body lattice shape or a concentric circle and the density of the radial grooves with be different in-ring shape, is wafer positioned on the center side with respect to a plurality of wafers held in the wafer holding jig No groove or a relatively sparse groove part and a relatively dense groove part between the relatively sparse groove part and the relatively dense groove part. so as to bridge between, good to set the respective groove spacing, further, the wafer polishing the wafer polishing method, to smooth the unevenness of the wafer by pressing the wafer adhered with wax pretend over the backing pad polishing cloth It should be a method.
[0021]
In any of the present inventions, the frictional force acting in the wafer follow-up direction is increased without stabilizing the lattice density of the lattice-like or concentric and radial grooves provided on the wafer sliding surface of the polishing body. and performs polishing of Kwai Ha using abrasive bodies of varying density of the grooves.
[0022]
Lattice-shaped or concentric and radial grooves of the polishing body has the effect of rotating the Kwai Ha strikes obliquely to the edge of the Kwai Ha.
However, the direction of this action depends on which part of the edge the groove hits, and the groove that hits the outer peripheral side (the side with the higher relative speed) of the polishing cloth acts in the follower direction, and the center side of the polishing cloth (relative The groove that hits the lower speed side acts in the direction opposite to the follow-up direction.
Therefore, smooth follow-up rotation is possible by making the groove density on the outer peripheral side (the side with the higher relative speed) of the polishing cloth denser (increase) than the groove density on the center side (the side with the lower relative speed) of the polishing cloth. Become.
[0023]
Thus as in claim 6 wherein, the center side the density of the lattice-shaped or concentric and radial grooves formed in the polishing body with be different in a ring shape, for a plurality of wafers held in the U Eha holding jig Situated in Kwai Ha so as to straddle between the relatively dense grooves site and no or relatively sparse groove portion groove and Kwai Ha is relatively sparse groove portion relative located outside so as to straddle between the dense grooves sites, by setting the respective groove spacing, more preferred co-rotation rotational and flatness of Kwai wafer is achieved.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.
[0025]
FIG. 1 shows an example of the groove shape of a lattice-like or concentric and radial groove that is increased as the density of the groove formed on the wafer sliding surface of the polishing cloth (polishing pad) 2 is further away from the central part to the peripheral side. .
(A) is an example of the lattice-like groove density, the central portion 21f is set to 20f without grooves, the outer side 21b is set to a sparse groove 20b, and the outermost side 21a is set to a dense groove 20a.
Actually, for example, a polishing cloth (polishing pad) having a diameter of 1.4 m has no groove at the center, a ring circle near the center is provided with a 40 mm square sparse density groove, and a 10 mm square dense groove at the periphery. Form. The thickness of the polishing cloth (polishing pad) is 1 to 1.5 mm, and the groove has a depth of 0.5 to 1 mm and a width of 2 to 3 mm. These grooves are formed by cutting a polishing cloth (polishing pad), but may be formed by pressing.
[0026]
(B) is a vertical longitudinal sectional view of (A), arrow A is the direction of rotation of the polishing pad 2, arrow B is the direction of rotation of the wafer holding jig for fitting the wafer 10 rotatably, and arrow C is the rotation. The rotation directions of the wafer 10 to be processed are shown.
[0027]
As is clear from this figure, the wafer 10 located on the outer side is sparsely grooved so that the wafer 10 located on the center side held by the wafer holding jig straddles between the grooveless portion 20f and the sparsely grooved portion 20b. By setting the groove interval so as to straddle between the part 20b and the dense groove part 20a, more preferable rotation and flatness of the wafer 10 can be achieved.
[0028]
FIG. 2 shows a polishing cloth according to another embodiment, wherein the grooves are formed concentrically and radially, the center portion is set to no groove 20f, the outer side is a sparse groove 20b, and the outermost side is set to a dense groove 20a. It is.
Further, the wafer 10 positioned on the outer side of the wafer 10 positioned on the center side held by the wafer holding jig straddles between the grooveless portion 20f and the sparse groove portion 20b, so that the sparse groove portion 20b and the dense groove portion 20a. As described above, the groove interval is set so as to straddle between the two.
[0029]
According to this embodiment, by forming such a groove in the polishing pad 2, the slurry interposed between the wafer 10 and the polishing pad 2 is pushed out into the groove 20 (20a, 20b). Therefore, the wafer 10 comes into contact with the polishing cloth 2 without being lifted from the polishing cloth 2 due to the hydroplaning phenomenon, and the frictional force increases.
This frictional force acts on the entire surface of the wafer. However, if the density of the grooves 20 is increased toward the outer peripheral side of the polishing cloth 2, the wafer 10 and the polishing cloth 2 are easily brought into contact with each other, and the frictional force acting in the follower direction increases. The wafer or the wafer holding jig is easily rotated.
The effect of the present invention was confirmed by performing polishing with a rotating polishing apparatus.
[0030]
First, in the examples, the polishing cloth (polishing pad) was formed of a non-woven fabric, and specifically, Suba600 (manufactured by Rodel Nitta Co., Ltd.) was used.
In the polishing cloth (polishing pad) 2 having a diameter of 1400 mm, as shown in FIG. 2A, the center to the diameter of 470 mm form a 40 mm square groove 20c, the diameter of 470 to 1200 mm is the 20 mm square groove 20b, and the diameter of 1200 to 1200. 1400 mm formed a 10 mm square groove 20a. Each of the grooves has a depth of 0.7 mm and a width of 3 mm. The wafer holding jig has a diameter of 565 mm and can charge five 8-inch wafers. The wafer 10 used was one having PBS formed on the back surface.
These were polished under the conditions of a polishing load of 240 g / cm 2 , a platen rotational speed of 35 rpm, and a polishing time of 15 minutes.
[0031]
(Comparative example)
The polishing cloth was formed of a non-woven fabric. Specifically, Suba600 (manufactured by Rodel Nitta Co., Ltd.) was used, and polishing was performed with a rotating type polishing apparatus in the same manner as in the example.
Then, as shown in FIG. 2B, a 20 mm square structure 20d was formed with a uniform density on a polishing cloth having a diameter of 1400 mm. Each of the grooves 20d has a depth of 0.7 mm and a width of 3 mm. The wafer holding jig 13 has a diameter of 565 mm and can be charged with five wafers. The wafer 10 used was a surface on which a PBS layer was formed.
These were polished under the same polishing load as in the example, 240 g / cm 2 , a platen rotational speed of 35 rpm, and a polishing time of 15 min.
[0032]
When the flatness of the example and the comparative example was evaluated, the total flatness (Total Thickness Variation: TTV) was 3.5 μm in the comparative example, and the total flatness was significantly improved to 1.0 μm in the example. Understandable.
FIG. 3 shows the flatness shape. This evaluation was performed using a capacitance type wafer flatness measuring apparatus.
As is clear from this figure, the embodiment shown in (A) can obtain a substantially horizontal shape, whereas the comparative example shown in (B) can only obtain a slanted shape. That is, it can be seen that by polishing using the polishing body of the present invention, the wafer is efficiently rotated, polished in a rotationally symmetric shape, and a wafer having a substantially horizontal shape and good flatness can be obtained.
[0033]
【The invention's effect】
As described above, according to the present invention, the flatness of the polished wafer is improved by the stable rotation of the wafer or the wafer holding jig. Note that the present invention is not limited to this embodiment, and double-side polishing and lapping are effective because the wafer rotates in the carrier. In the embodiment, a batch type example in which a plurality of sheets are processed simultaneously has been shown. However, the same effect can be obtained by single wafer wax-free polishing in which the center of rotation of the polishing head and the center of rotation of the wafer are aligned. Furthermore , even when the wafer is attached to the wafer holding jig (polishing plate) with wax, the wafer holding jig itself can be efficiently rotated by using the polishing body of the present invention, and the same effect can be obtained. It is done.
[Brief description of the drawings]
1A and 1B show a groove shape of a polishing cloth according to an embodiment of the present invention, in which FIG. 1A is an example of a lattice groove, FIG. 1B is a vertical longitudinal sectional view of FIG. 1A, and FIG. An example of the groove | channel which consists of radial shapes is shown.
FIG. 2 shows the groove shape of the polishing pad used in the experiment for confirming the effect of the present invention, in which (A) is an example and (B) is a comparative example.
FIG. 3 shows the flatness shape of Example (A) and Comparative Example (B). FIG. 4 shows a wax-free polishing apparatus using a backing pad.
FIG. 5 shows a wafer rotation type polishing apparatus in which a sun gear and an internal gear are combined.
[Explanation of symbols]
2 Polishing cloth 10 Wafer 13 Wafer holding jig 20 Groove

Claims (6)

ウェーハとの間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なう研磨布を有するウェーハ研磨装置において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体の周速度が大きい部位の溝密度を、周速度が小さい部位の溝密度に対し増加させたことを特徴とするウェーハ研磨装置
In a wafer polishing apparatus having a polishing cloth that polishes the wafer while sliding with a relative speed difference with the wafer,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. A wafer polishing apparatus characterized in that the groove density formed on the moving surface is made different so that the groove density at a portion where the peripheral speed of the polishing body is high is increased relative to the groove density at a portion where the peripheral speed is low.
ウェーハとの間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なう研磨布を有するウェーハ研磨装置において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体周縁側部位の溝密度を、その内側に位置する溝密度に対し増加させたことを特徴とするウェーハ研磨装置
In a wafer polishing apparatus having a polishing cloth that polishes the wafer while sliding with a relative speed difference with the wafer,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. A wafer polishing apparatus characterized in that the groove density formed on the moving surface is made different so that the groove density at the peripheral edge portion of the polishing body is increased with respect to the groove density located inside thereof.
前記研磨体に形成した格子状若しくは同心円の溝及び放射状の溝の密度をリング状に異ならすと共に、ウェーハ保持治具に保持された複数のウェーハに対して中心側に位置するウェーハが溝なし若しくは相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、且つ外側に位置するウェーハが相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、夫々溝間隔を設定したことを特徴とする請求項1若しくは2記載のウェーハ研磨装置。The density of the lattice-like or concentric grooves and radial grooves formed in the polishing body is varied in a ring shape, and the wafer located on the center side with respect to the plurality of wafers held by the wafer holding jig has no grooves or A wafer located on the outside straddles between a relatively sparse groove part and a relatively dense groove part so as to straddle between a relatively sparse groove part and a relatively dense groove part. The wafer polishing apparatus according to claim 1 or 2, wherein a groove interval is set as described above. ウェーハと研磨布からなる研磨体との間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なうウェーハ研磨方法において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体の周速度が大きい部位の溝密度を、周速度が小さい部位の溝密度に対し増加させた研磨体を用いてウェーハの研磨を行なうことを特徴とするウェーハ研磨方法。
In the wafer polishing method of polishing of the wafer while sliding with the relative speed difference between the wafer and polishing cloth or Ranaru polishing body,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. Wafer polishing is performed using a polishing body in which the groove density formed on the moving surface is made different and the groove density at a portion where the peripheral speed of the polishing body is high is increased with respect to the groove density at a portion where the peripheral speed is low. A wafer polishing method characterized by the above.
ウェーハと研磨布からなる研磨体との間で相対的速度差をもって摺動させながら該ウェーハの研磨を行なうウェーハ研磨方法において、
前記研磨布からなる研磨体のウェーハ摺動面に所定間隔毎に格子状若しくは同心円の溝及び放射状の溝を設けると共に、該研磨体の中心から遠ざかる方向に向けて前記ウェーハが摺動するウェーハ摺動面上に形成される溝密度を異ならせ、前記研磨体周縁側部位の溝密度を、その内側に位置する溝密度に対し増加させた研磨体を用いてウェーハの研磨を行なうことを特徴とするウェーハ研磨方法。
In the wafer polishing method of polishing the wafer while sliding with a relative speed difference between the wafer and a polishing body made of a polishing cloth,
A wafer slide on which the wafer slides in a direction away from the center of the polishing body is provided with a lattice-like or concentric groove and a radial groove at predetermined intervals on the wafer sliding surface of the polishing body made of the polishing cloth. The wafer is polished by using a polishing body in which the groove density formed on the moving surface is different and the groove density at the peripheral portion of the polishing body is increased with respect to the groove density located inside the polishing body. Wafer polishing method.
前記研磨体に形成した格子状若しくは同心円及び放射状の溝の密度をリング状に異ならすと共に、ウェーハ保持治具に保持された複数のウェーハに対して中心側に位置するウェーハが溝なし若しくは相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、且つ外側に位置するウェーハが相対的に疎な溝部位と相対的に密な溝部位との間を跨ぐように、夫々溝間隔を設定したことを特徴とする請求項4若しくは5記載のウェーハ研磨方法。 The density of the lattice-like or concentric circles and radial grooves formed on the polishing body is varied in a ring shape, and the wafer located on the center side with respect to the plurality of wafers held by the wafer holding jig is not grooved or relatively So as to straddle between a relatively sparse groove part and a relatively dense groove part, and so that a wafer located outside straddles between a relatively sparse groove part and a relatively dense groove part. 6. The wafer polishing method according to claim 4 , wherein a groove interval is set .
JP10393498A 1998-03-31 1998-03-31 Wafer polishing apparatus and wafer polishing method Expired - Fee Related JP3821947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10393498A JP3821947B2 (en) 1998-03-31 1998-03-31 Wafer polishing apparatus and wafer polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10393498A JP3821947B2 (en) 1998-03-31 1998-03-31 Wafer polishing apparatus and wafer polishing method

Publications (2)

Publication Number Publication Date
JPH11285963A JPH11285963A (en) 1999-10-19
JP3821947B2 true JP3821947B2 (en) 2006-09-13

Family

ID=14367277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10393498A Expired - Fee Related JP3821947B2 (en) 1998-03-31 1998-03-31 Wafer polishing apparatus and wafer polishing method

Country Status (1)

Country Link
JP (1) JP3821947B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273806B1 (en) * 1997-05-15 2001-08-14 Applied Materials, Inc. Polishing pad having a grooved pattern for use in a chemical mechanical polishing apparatus
WO2005030439A1 (en) * 2003-09-26 2005-04-07 Shin-Etsu Handotai Co., Ltd. Polishing cloth, polishing cloth processing method, and substrate manufacturing method using same
JP5311731B2 (en) * 2005-09-26 2013-10-09 Hoya株式会社 Manufacturing method of glass substrate for magnetic disk, manufacturing method of magnetic disk, and polishing cloth
JP2007201449A (en) * 2005-12-28 2007-08-09 Jsr Corp Chemical-mechanical polishing pad and chemical-mechanical polishing method
KR101232787B1 (en) * 2010-08-18 2013-02-13 주식회사 엘지화학 Polishing-Pad for polishing system
JP6283940B2 (en) * 2014-03-28 2018-02-28 富士紡ホールディングス株式会社 Polishing pad
CN106564004B (en) * 2016-11-17 2018-10-19 湖北鼎龙控股股份有限公司 A kind of polishing pad

Also Published As

Publication number Publication date
JPH11285963A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
JP3925580B2 (en) Wafer processing apparatus and processing method
JPH09150366A (en) Double face polishing device and method thereof
JPH09201765A (en) Packing pad, and method of plishing semiconductor wafer
JP3821947B2 (en) Wafer polishing apparatus and wafer polishing method
WO2005070619A1 (en) Method of grinding wafer and wafer
JPH10180624A (en) Device and method for lapping
JP2002217149A (en) Wafer polishing apparatus and method
KR20050050872A (en) Chemical mechanical polishing apparatus
JP2004087521A (en) One-side mirror surface wafer and its manufacturing method
JPH09262763A (en) Method and device for manufacturing backing pad
JP3779104B2 (en) Wafer polishing equipment
JPH09277163A (en) Polishing method and polishing device
JP2001345291A (en) Method for producing wafer having one mirror finished surface
KR101150849B1 (en) Wafer carrier and apparatus for polishing double side of wafer having the same
JP4781654B2 (en) Polishing cloth and wafer polishing equipment
JPH0236066A (en) Abrasive cloth and polishing device
JP3821944B2 (en) Wafer single wafer polishing method and apparatus
KR101440175B1 (en) Polishing Pad and Method for Manufacturing The Same
JP4241164B2 (en) Semiconductor wafer polishing machine
US8662961B2 (en) Polishing pad seasoning method, seasoning plate, and semiconductor polishing device
JP4982037B2 (en) Dressing plate for polishing cloth, dressing method for polishing cloth, and polishing method for workpiece
JP3820432B2 (en) Wafer polishing method
JP3681226B2 (en) Polishing apparatus and polishing method
WO2023095503A1 (en) Template assembly, polishing head, and polishing method of wafer
KR100886603B1 (en) Apparatus for polishing wafer and process for polishing wafer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040607

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040610

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060621

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees