JP4034559B2 - Distillation of (meth) acrylic acids - Google Patents

Distillation of (meth) acrylic acids Download PDF

Info

Publication number
JP4034559B2
JP4034559B2 JP2001377723A JP2001377723A JP4034559B2 JP 4034559 B2 JP4034559 B2 JP 4034559B2 JP 2001377723 A JP2001377723 A JP 2001377723A JP 2001377723 A JP2001377723 A JP 2001377723A JP 4034559 B2 JP4034559 B2 JP 4034559B2
Authority
JP
Japan
Prior art keywords
tower
distillation
acrylic acid
distillation column
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001377723A
Other languages
Japanese (ja)
Other versions
JP2003176253A (en
Inventor
修平 矢田
寧之 小川
公克 神野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001377723A priority Critical patent/JP4034559B2/en
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to CN02819827.1A priority patent/CN1260196C/en
Priority to ES02800786T priority patent/ES2293866T3/en
Priority to EA200500092A priority patent/EA006900B1/en
Priority to CNA2004100465503A priority patent/CN1550488A/en
Priority to CNA2004100465490A priority patent/CN1550487A/en
Priority to EA200500093A priority patent/EA006779B1/en
Priority to CNB2004100465486A priority patent/CN100424065C/en
Priority to BRBR122012016383-0A priority patent/BR122012016383B1/en
Priority to ES06025891T priority patent/ES2293870T1/en
Priority to EA200400403A priority patent/EA005869B1/en
Priority to ES06025893T priority patent/ES2292380T3/en
Priority to PCT/JP2002/010411 priority patent/WO2003031384A1/en
Priority to EP06025892A priority patent/EP1787973A1/en
Priority to CN200410046546.7A priority patent/CN1260197C/en
Priority to AU2002362718A priority patent/AU2002362718B2/en
Priority to BR0213157-9A priority patent/BR0213157A/en
Priority to ES06025892T priority patent/ES2293871T1/en
Priority to EP06025891A priority patent/EP1787972A3/en
Priority to EP02800786A priority patent/EP1440964B1/en
Priority to CN200410046547.1A priority patent/CN1260198C/en
Priority to EP06025893A priority patent/EP1787974B1/en
Priority to EA200500090A priority patent/EA007187B1/en
Publication of JP2003176253A publication Critical patent/JP2003176253A/en
Priority to US10/817,955 priority patent/US7396957B2/en
Priority to US11/526,730 priority patent/US7368601B2/en
Priority to US11/812,716 priority patent/US20070256921A1/en
Publication of JP4034559B2 publication Critical patent/JP4034559B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はアクリル酸、メタクリル酸又はそれらのエステル(以下、(メタ)アクリル酸類という)の蒸留方法に関する。詳しくは本発明はプロピレン又はイソブチレンの接触気相酸化によって得られるアクリル酸又はメタクリル酸(以下,(メタ)アクリル酸という)、或いはそれらのエステルを蒸留により、分離・濃縮・精製する際にしばしば発生するモノマーの重合を防止する方法に関する。
【0002】
【従来の技術】
(メタ)アクリル酸類を分離・精製する方法として蒸留法が一般的である。近年、蒸留の分離効率の向上、処理量の増強等を目的に高性能充填物が開発され、種々のプロセスにおける蒸留塔に採用され始めた。ところが(メタ)アクリル酸類は極めて重合しやすく、従来のトレイ型の蒸留塔においても、特に高性能充填塔においても、蒸留塔内での重合物の生成は大きな問題であった。
従来より(メタ)アクリル酸類の重合物の発生を防止する方法として、トレイ構造の改良(特開2000-300903号公報)、特殊な重合防止剤の使用(特開平7-53449号公報)などが提案されているが、未だ長期連続運転は難しく、運転停止を伴う定期的な点検と修理が必要であった。重合体は蒸留塔の運転初期から発生することが多く、一旦重合体が生成すると気液流に支障が生じ、更に重合体の生成が加速される現象がよく見られた。
【0003】
【発明が解決しようとする課題】
本発明の目的は、(メタ)アクリル酸類を分離・精製する際にしばしば発生するモノマーの重合を防止する方法を提供することにある。特に蒸留操作を開始もしくは再開するに当たって、蒸留塔内部を(メタ)アクリル酸類が重合しにくい雰囲気を形成する手段を提供することにある。
【0004】
【課題を解決するための手段】
本発明者等は、上記課題を解決するため鋭意検討を行った結果、一旦重合物が生成すると塔内が部分的に閉塞状態となり、気液の流動に支障を来たし、更なる重合体の生成を促進する原因になることを知得した。そして(メタ)アクリル酸類の蒸留開始の時点において重合を防止することが極めて重要であり、蒸留塔内壁面の温度を特定の高い状態に保持することにより前記目的が達成できることを見出し本発明を完成した。
【0005】
【発明の実施の形態】
本発明の要旨は、アクリル酸、メタクリル酸又はそれらのエステルを蒸留塔で蒸留する方法において、該蒸留塔が充填塔又は充填塔と多孔板塔との結合塔であって、かつ該蒸留塔本体に設置された外部加熱装置を用いて、又は該蒸留塔に加熱媒体を供給することにより、該蒸留塔内壁面を、予め、アクリル酸、メタクリル酸又はそれらのエステルの凝縮温度より1〜60℃高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始し、以後、アクリル酸、メタクリル酸又はそれらのエステルを重合防止剤と共に蒸留塔に供給することを特徴とするアクリル酸、メタクリル酸又はそれらのエステルの蒸留方法に存する。
【0006】
更に具体的に本発明は、プロピレン又はイソブチレンを気相接触酸化し、該酸化反応混合物を水吸収して得られたアクリル酸又はメタクリル酸の水溶液を共沸剤の存在下濃縮し、得られたアクリル酸又はメタクリル酸を蒸留塔で精製して高純度のアクリル酸又はメタクリル酸を製造する方法における該蒸留塔の運転停止及び運転開始を含む操作において、該蒸留塔が充填塔又は充填塔と多孔板塔との結合塔であって、かつ該蒸留塔本体に設置された外部加熱装置を用いて、又は該蒸留塔に加熱媒体を供給することにより、該蒸留塔内壁面を、予め、アクリル酸又はメタクリル酸の凝縮温度より1〜60℃高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始し、以後、アクリル酸又はメタクリル酸を重合防止剤と共に蒸留塔に供給することを特徴とするアクリル酸又はメタクリル酸の蒸留方法に存する。
更に具体的に本発明は、プロピレン又はイソブチレンを気相接触酸化し、該酸化反応混合物を水吸収して得られたアクリル酸又はメタクリル酸の水溶液を共沸剤の存在下濃縮し、得られたアクリル酸又はメタクリル酸を蒸留塔で精製した後にアルコールと反応させ、得られる反応物を蒸留塔で精製してアクリル酸又はメタクリル酸のエステルを製造する方法における該蒸留塔の運転停止及び運転開始を含む操作において、該蒸留塔が充填塔又は充填塔と多孔板塔との結合塔であって、かつ該蒸留塔本体に設置された外部加熱装置を用いて、又は該蒸留塔に加熱媒体を供給することにより、該蒸留塔内壁面を、予め、アクリル酸又はメタクリル酸のエステルの凝縮温度より1〜60℃高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始し、以後、アクリル酸又はメタクリル酸のエステルを重合防止剤と共に蒸留塔に供給することを特徴とするアクリル酸又はメタクリル酸のエステルの蒸留方法に存する。
【0007】
本発明において蒸留の対象となる混合物は、アクリル酸、メタクリル酸又はそれらのエステル、即ち(メタ)アクリル酸類である。これらはアクリルモノマーと通称されることもある。例えば、プロピレン又はイソブチレンをMo−Bi系複合酸化物触媒の存在下、気相接触酸化し、アクロレイン又はメタクロレインを生成し、更にMo−V系複合酸化物触媒の存在下、気相接触酸化して得られる(メタ)アクリル酸に適用される。この際、プロピレンを酸化して主としてアクロレインを生成する前段反応とアクロレインを酸化して主としてアクリル酸を生成する後段反応をそれぞれ別の反応器で行う2段反応でも、一つの反応器に前段反応を行う触媒と後段反応を行う触媒を同時に充填して反応を行う1段反応でも構わない。更には、(メタ)アクリル酸を原料としてそのエステルを製造する工程で得られる(メタ)アクリル酸のエステルがあげられる。
アクリル酸エステル類を例示すると、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸イソブチル、アクリル酸ターシャリーブチル、アクリル酸2−エチルヘキシル、アクリル酸2−ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸メトキシエチル等があげられ、メタクリル酸エステル類についても同様の化合物を例示することができる。
【0008】
これらの方法で製造される未精製のアクリルモノマーには、アクリルモノマーの2量体、3量体、4量体、これらのエステル化物、無水マレイン酸、ベンズアルデヒド、β―ヒドロキシプロピオン酸、β―ヒドロキシプロピオン酸エステル類、β―アルコキシプロピオン酸、β―アルコキシプロピオン酸エステル類等の高沸点不純物が含有され、蒸留塔に供給されるアクリルモノマーの含有量としては、通常2重量%以上、好ましくは5重量%以上、更に好ましくは10重量%以上のものが本発明において用いられる。アクリルモノマーは低濃度であるにもかかわらず、これら不純物、及び(あるいは)水と共に形成される混合組成物は、蒸留処理を実施する塔内の温度、圧力条件で極めて重合し易い。しかもそのような重合現象は蒸留操作の初期に生じやすいものである。従って本発明の適応範囲は広く、アクリルモノマーが少量含まれるプロセス液の処理においても極めて大きな効果を発揮する。
すなわち本発明にいう(メタ)アクリル酸類(アクリルモノマー)の蒸留とは、通常は高純度アクリルモノマーを取得する工程(精製工程)であるが、これに限定されるものではなく、アクリルモノマーを含有する混合物からアクリルモノマーに富む成分を回収する工程(分離・濃縮工程)にも適応されるのである。
【0009】
次に、図面を用いて(メタ)アクリル酸類を製造するプロセスを例示して説明する。
図1は、プロピレンを原料としてアクリル酸を製造するプロセスフロー図の一例である。図中の記号は下記の通りである。
A:アクリル酸捕集塔
B:脱水塔
C:軽沸分離塔(酢酸分離塔)
D:高沸分離塔(アクリル酸精製塔)
E:高沸分解反応器
【0010】
プロピレンおよび/またはアクロレインを分子状酸素含有ガスを用いて接触気相酸化して得たアクリル酸含有ガスは、ライン4を経てアクリル酸捕集塔Aに導入し、水と接触させアクリル酸水溶液を得る。
次にアクリル酸水溶液を脱水塔Bへ供給する。脱水塔では、共沸剤を供給し、塔頂から水及び共沸剤からなる共沸混合物を留出させ、塔底からは酢酸を含むアクリル酸を得る。脱水塔の塔頂から留出した水および共沸剤からなる共沸混合物は貯槽10に導入し、ここで主として共沸剤からなる有機相と主として水からなる水相とに分離する。有機相は脱水塔Bに循環する。一方、水相はライン7を経てアクリル酸捕集塔Aに循環させて、アクリル酸含有ガスと接触させる捕集水として用いることにより有効に活用することができる。必要に応じてライン8から水を補給する。
【0011】
脱水塔Bの塔底から、ライン11を経て抜き出した粗アクリル酸は、残存する酢酸を除去するために軽沸分離塔(酢酸分離塔)Cに導入する。ここで塔頂からライン12,13を経て酢酸を分離除去する。ライン13の酢酸はアクリル酸を含むので、一部もしくは全量がプロセスへ戻される場合がある。一方、塔底からライン14を経て実質的に酢酸を含まないアクリル酸を得る。このアクリル酸は相当に純度が高いのでそのままアクリル酸エステルの製造原料として使用することができる。場合によりライン15を経て製品とする。更に高純度のアクリル酸を得るためには、ライン16を経て高沸分離塔(アクリル酸精製塔)Dに導入して高沸点物をライン17より分離除去し、高純度アクリル酸をライン18,19を経て得ることが出来る。ライン17の高沸物は高沸分解反応器Eに導かれ、一部はアクリル酸としてライン20よりプロセスへ回収される。高沸物はライン21より分離除去される。
本プロセスにおいて、重合防止剤はライン1〜3いずれか1つ、又は複数のラインから供給される。
【0012】
図2は、プロピレンを原料としてアクリル酸を製造するプロセスフロー図の他の一例である。図1における脱水塔Bと軽沸分離塔(酢酸分離塔)Cを1塔の蒸留塔Fに纏めたプロセスであり、物質の流れは基本的に図1と同じである。
【0013】
図3は、プロピレンを原料としてアクリル酸を製造するプロセスフロー図の他の一例である。図中の記号は下記の通りである。
G:放散塔
D:高沸分離塔(アクリル酸精製塔)
H:高沸除去塔
K:溶剤回収塔
【0014】
プロピレンおよび/またはアクロレインを分子状酸素含有ガスを用いて接触気相酸化して得たアクリル酸含有ガスは、ライン4を経てアクリル酸捕集塔Aに導入し、溶剤と接触させアクリル酸含有溶液を得る。
次にアクリル酸含有溶液を放散塔Gへ供給する。放散塔Gでは、ライン10よりガス(アクリル酸捕集塔Aの塔頂より排出されるライン6のガス、或いは、ライン6のガス中の有機物を酸化して除去した後のガス等)を供給し、塔頂から水及び酢酸を留出させ、塔底からは溶剤を含むアクリル酸を得る。放散塔Gの塔頂から留出した水および酢酸はアクリル酸捕集塔Aに導入し、水と酢酸は最終的にアクリル酸捕集塔Aの塔頂より排出される。放散塔Gの塔底からライン11を経て、高純度のアクリル酸を得るために高沸分離塔(アクリル酸精製塔)Dに導入して高沸点物をライン14より分離除去し、高純度アクリル酸をライン13を経て得ることが出来る。ライン14の高沸物は具体的には無水マレイン酸、ベンズアルデヒド等であり、高沸除去塔Hに導かれ、これら高沸点物はライン16より排出される。塔底より溶剤はライン17を経て溶剤回収塔Kに導かれる。回収された溶剤は塔頂よりライン7を経てアクリル酸捕集塔Aに戻される。塔底よりライン18を経て更なる高沸物が分離除去される。重合防止剤はライン1及び/又はライン2から供給される。
【0015】
図4は、アクリル酸エステルを製造するプロセスフロー図の一例である。図中の記号と番号は下記の通りである。
L:エステル化反応器
M:アクリル酸分離塔
N:高沸分解反応器
Q:アルコール抽出塔
P:アルコール回収塔
R:軽沸分離塔
S:エステル精製塔
【0016】
ライン31からアクリル酸、ライン32からアルコール、ライン35から循環アクリル酸、ライン48から循環アルコールを、それぞれエステル化反応器Lに供給する。エステル化反応器Lには強酸性イオン交換樹脂などの触媒が充填される。ライン33を経て、生成エステル、未反応アクリル酸、未反応アルコール、及び生成水からなるエステル化反応混合物を抜き出し、アクリル酸分離塔Mに供給する。アクリル酸分離塔Mからライン34を経て未反応アクリル酸の実質的全量を含む塔底液を抜き出し、ライン35を経て循環液としてエステル化反応器Lへ供給する。
該塔底液の一部はライン36を経て高沸分解反応器Nに供給し、分解され得られた有価物はライン40を経てプロセスに循環される。循環されるプロセス内の場所は、プロセス条件によって異なる。重合物などの高沸点不純物はライン37を経て系外へ除去する。また、アクリル酸分離塔Mの塔頂からは、ライン38を経て生成エステル、未反応アルコール、及び生成水が留出する。流出物の一部は還流液としてアクリル酸分離塔Mに循環し、残りはライン39を経て抽出塔Qに供給される。
ライン41よりアルコール抽出の為の水が供給され、ライン42を経て回収されたアルコールを含む水はアルコール回収塔Pに供給される。回収されたアルコールはライン48を経てエステル化反応器に循環される。
【0017】
ライン43より粗アクリル酸エステルは軽沸分離塔Rへ供給される。ライン44よりアクリル酸エステルを含む軽沸物は抜き出され、プロセス内へ循環される。循環されるプロセス内の場所は、プロセス条件によって異なる。軽沸物を除去された粗アクリル酸エステルはライン45を経てアクリル酸エステル製品精製塔Sへ供給される。塔頂よりライン46を経て、高純度アクリル酸エステルを得る。塔底から若干の高沸物を含む液はライン47を経て抜き出され、プロセス内へ循環される。循環されるプロセス内の場所は、プロセス条件によって異なる。
【0018】
図5は、粗アクリルモノマーの蒸留塔及びその付帯設備の一例である。図中の番号は下記の通りである。
51:蒸留塔
52:充填物層、或いは蒸留塔トレイ、或いは充填物、蒸留塔トレイの併用
53:インヒビターエア供給ライン
54:塔頂ガス冷却用熱交換器
55:ベントガス冷却用熱交換器
56:環流槽
57:デストリビューター
58:リボイラー(加熱用熱交換器)
59:重合防止剤含有液体タンク
60:アクリルモノマー(原料)供給ライン
61:重合防止剤供給ライン
62:塔頂液抜出ライン
63:塔底液抜出ライン
64:ベントガス排出ライン
特にライン53及びライン61は、蒸留塔条件によって蒸留の種々の部分に1カ所以上設置される。
【0019】
本発明が適用される蒸留塔は、アクリルモノマーが気液平衡に関与する蒸留装置の全てであり、分離、濃縮、回収、精製などの操作を行うための装置を意味している。例えば、図1に示される、脱水塔B、軽沸分離塔(酢酸分離塔)C、高沸分離塔(アクリル酸精製塔)Dが該当する。同様に、図3に示される放散塔G、高沸分離塔(アクリル酸精製塔)D、高沸除去塔H、溶剤回収塔Kや図4に示されるアクリル酸分離塔M、アルコール回収塔P、軽沸分離塔R、エステル精製塔Sや図5に示される蒸留塔51がこれらに該当する。
【0020】
蒸留塔としては、多孔板塔、泡鐘塔、充填塔、あるいはこれらの組合せ型(例えば、多孔板塔と充填塔との組合せ。図5参照)などがあり、溢流堰やダウンカマーの有無は区別されず、いずれも本発明で使用できる。具体的なトレイとして、泡鐘トレイ、多孔板トレイ、バブルトレイ、スーパーフラッシュトレイ、マックスフラクストレイ、デュアルトレイ等があげられる。
充填物としては、円柱状、円筒状、サドル型、球状、立方体状、角錐体状など従来から使用されているもののほか、近年高性能充填物として特殊形状を有する規則的又は不規則的な充填物が市販されており、これらは本発明に好ましく用いられる。
【0021】
かかる市販品を例示すると、規則充填物として、例えば、スルーザーパッキング(スルザー・ブラザーズ社製)、住友スルーザーパッキング(住友重機械工業社製)、テクノパック(三井物産社)、エムシーパック(三菱化学エンジニアリング社製)などのガーゼ型規則充填物、メラパック(住友重機械工業社製)、テクノパック(三井物産社)、エムシーパック(三菱化学エンジニアリング社製)などのシート型規則充填物、フレキシグリッド(コーク社製)などのグリッド型規則充填物等があげられる。
また、不規則充填物には、ラシヒリング、ポーリング(BASF社製)、カスケードミニリング(マストランスファー社製)、IMTP(ノートン社製)、インタロックスサドル(ノートン社製)、テラレット(日鉄化工機社製)、フレキシリング(日揮社製)等がある。
【0022】
本発明において最も大きな特徴は、蒸留塔の運転開始に先立ち、予め、該蒸留塔内壁面を、アクリルモノマーの凝縮温度より高い温度に加熱しておくことにある。加熱の方法は特に限定されない。例えば、蒸留塔本体を加熱可能なトレースで覆い、これに電気、スチーム、温水などの熱源を供給する外部加熱方式が利用できる。また、加熱されたガス又は加熱された液体を蒸留塔内に供給する内部加熱方式を利用することもできる。加熱ガスは塔底又は原料供給段から供給することができる。加熱ガスとしては空気、窒素、二酸化炭素、アルゴンなど、1種又は2種混合して用いられる。加熱液体の場合は、蒸留塔頂からデストリビュータ(液分散器、液分散ノズル)を経由して噴霧または流下させればよい。加熱液体の流下と共に加熱ガスを塔底から上方に流すこともできる。
本発明を実施する前段工程として、プロピレン又はイソブチレンを気相接触酸化し、該酸化反応混合物を水吸収して得られた(メタ)アクリル酸の水溶液を共沸剤の存在下濃縮するプロセスが存在する場合は、当該共沸剤を加熱媒体として用いることができる。特別な不純物が混入しないので好適である。また、運転停止前に取得した当該蒸留塔の塔底液も加熱媒体として好適である。
【0023】
蒸留塔内壁面の加熱温度は、(メタ)アクリル酸類を含有する蒸留塔内ガスの定常運転条件における凝縮温度より高い温度であればよい。通常は該凝縮温度より1〜60℃、好ましくは3〜60℃、更に好ましくは3〜40℃高めに保持する。上記未満では局部的に凝縮する恐れがあり、凝縮はポリマーの発生原因となる。一方余り高温ではアクリルモノマーの重合を誘発したり、熱源として経済的に有利ではない。
ここにいう「(メタ)アクリル酸類を含有する蒸留塔内ガスの定常運転条件における凝縮温度より高い温度」とは、例えば、アクリル酸を塔頂成分として取得する蒸留塔にあっては、アクリル酸を含有する蒸留塔内ガスの凝縮温度より高い温度を意味し、同様にアクリル酸ブチルを塔頂成分として取得する蒸留塔にあっては、アクリル酸ブチルを含有する蒸留塔内ガスの凝縮温度より高い温度を意味する。アクリルモノマーが2種以上混在する場合の加熱温度は、凝縮温度が高い方の凝縮温度よりも高くすることが必要である。実際の運転にあたり、蒸留の対象となる原液は純粋なアクリルモノマーではなく、各種の高沸点不純物が含有されている場合が多いので、目的物の凝縮温度は、高温側に移動する傾向にある。よって、上記したように3〜60℃高めに保持することが好ましい。
加熱媒体を蒸留塔内に供給する内部加熱方式を利用する場合は、蒸留塔内壁面、棚段(トレイ)、充填物など全体として一様な温度に加熱することができるので、内壁面の温度を計測し、その温度が前記凝縮温度以上になるように管理すればよい。しかしながら外部加熱方式では、加熱の態様、加熱時間等によっては、内壁面に比べて充填物の温度が低くなることがある。この場合は、充填物の温度を前記凝縮温度よりも高く保持することが好ましい。
【0024】
本発明においては、蒸留塔内壁面を加熱した後、当該加熱された状態で蒸留塔の運転を開始することが重要である。蒸留塔の運転開始の態様としては、原料(粗アクリルモノマー)をリボイラーに供給し、引き続きリボイラーに熱源を供給すればよい。熱源の供給に前後して、原料供給段から原料を供給し、徐々に供給量を増加して定常状態に移行することができる。外部加熱方式で蒸留操作を開始した場合、定常状態に移行後の蒸留塔内壁面の加熱操作は特に制限されない。そのまま加熱を継続してもよく、加熱を中止し、リボイラーからの熱源供給のみに変更してもよい。
【0025】
本発明の蒸留操作は、連続蒸留でもバッチ蒸留でも適用可能である。蒸留の操作条件は、蒸留塔の形式、充填物の形状、粗アクリルモノマーに含有される不純物の種類や含有量などを勘案のうえ、適宜に決定されるもので、特に限定されない。通常は、塔頂温度20〜80℃、好ましくは40〜60℃、塔底温度60〜120℃、好ましくは65から110℃、塔頂圧力は0.7〜106kPa程度で実施する。
【0026】
粗アクリルモノマーは重合防止剤の存在下に蒸留するのが好ましい。ここに、重合防止剤とは、安定なラジカル物質、又はラジカルと付加して安定なラジカルを生成する、もしくは生成しやすい物質を総称するものである。場合によっては、目的に応じて、重合抑制剤、重合禁止剤、重合停止剤、重合速度低下剤などと呼称されることもあるが、本発明では重合防止剤と呼称する。
【0027】
かかる重合防止剤を例示すると、ハイドロキノン、メトキシハイドロキノン(メトキノン)などのフェノール化合物;第3ブチルニトロオキシド、2,2,6,6-テトラメチル−4−ヒドロキシピペリジル−1−オキシルなどのN−オキシル化合物;フェノチアジン、ビス−(α−メチルベンジル)フェノチアジンなどのフェノチアジン化合物;炭酸銅、アクリル酸銅、酢酸銅、ジメチルジチオカルバミン酸銅、ジブチルジチオカルバミン酸銅などの銅系化合物;酢酸マンガンなどのマンガン塩化合物;p−フェニレンジアミンなどのフェニレンジアミン類;N−ニトロソジフェニルアミンなどのニトロソ化合物;尿素などの尿素類;チオ尿素などのチオ尿素類があげられる。これらの化合物は単独でも、あるいは2種以上を組み合わせて使用することもできる。
【0028】
重合防止剤は原料となる粗アクリルモノマーに混合して蒸留塔に供給してもよく、それぞれ別々に塔に供給してもよく、また還流槽に供給し、蒸留塔頂からデストリビュータ(液分散器、液分散ノズル)を経由して噴霧または流下させてもよい。重合防止剤は通常、水又は有機溶媒の溶液もしくはスラリーとして使用される。有機溶媒としては、メタノール、エタノール、ブチルアルコールなどのアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、酢酸、プロピオン酸、アクリル酸、メタクリル酸などのカルボン酸、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、酢酸メチル、酢酸ブチル、アクリル酸メチル、アクリル酸ブチル、メタクリル酸メチル、メタクリル酸エチルなどが挙げられ、これらは混合物としても使用できる。例えば、水・トルエン混合物、水・(メタ)アクリル酸混合物、(メタ)アクリル酸の2量体、3量体を含有する粗(メタ)アクリル酸((メタ)アクリル酸蒸留塔の塔底液)が使用できる。また、これらの有機溶媒は、前記加熱媒体としても使用可能である。
【0029】
【実施例】
次に本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り下記の実施例に限定されるものではない。
【0030】
<実施例1>
図5に示すような、内径1100mm、長さ20000mm、内部にノートン社製不規則充填物(IMTP)を14m充填したステンレス鋼製(SUS316)の蒸留塔を用いて粗アクリル酸の蒸留を行った。該蒸留塔外周部にはスチーム配管がトレースラインとして設置され、その上に保温材(ケイ酸カルシウム)が施工されている。 蒸留に先立ち、120℃のスチームをトレース配管に供給した。約3時間後、蒸留塔の温度を測定すると、蒸留塔外壁面の温度は118℃、蒸留塔内壁面の温度は110℃、塔内充填物の温度は93℃を示した。
次に、粗アクリルモノマーとして、アクリル酸98.5重量%、マレイン酸0.3重量%、アクリル酸ダイマー0.3重量%を含む混合物を90℃で、1300kg/hrで供給した。また、重合防止剤含有液体タンク59よりアクリル酸にメトキノン8重量%、フェノチアジン1重量%を溶解した液をそれぞれ34kg/hrと31kg/hrで供給した。熱源を供給し、塔内圧力などを調整し、約5時間後、塔頂圧力2.9kPa、塔底圧力7.9kPa、塔頂温度53℃、塔底温度75℃で安定運転に入り、塔頂からは純度99.8重量%以上の高純度アクリル酸が得られたところで、運転を中止し、塔内残留液を抜き出した後、内部を点検した。塔内及び充填物の周囲には固形物(重合物)は見当たらなかった。
本実施例における塔頂圧力は2.9kPaであるから、アクリル酸を含有したガスの塔頂での凝縮温度は約53℃であり、蒸留開始に先立って予備加熱した蒸留塔内壁面温度110℃は、凝縮温度より塔頂では57℃高め、塔底では35℃高めであった。
【0031】
<比較例1>
実施例1において、蒸留開始前の塔内加熱を省略した以外は実施例1と同様にして蒸留を行った。蒸留開始時点において、蒸留塔外壁面、蒸留塔内壁面、塔内充填物の温度はいずれも25℃であった。
運転開始から塔底圧力が上昇し、5時間目に塔底圧力が12kPa、塔底温度が86℃になったため運転を打ち切った。運転停止後塔内を観察したところ、原料供給段より上の内壁面、および内壁面近傍の充填物内にアクリル酸重合物の付着が認められた。
【0032】
参考例
実施例1でノートン社製不規則充填物(IMTP)を多孔板(デュアルトレイ)21枚に変更した以外は実施例1と同様な操作を行った。すなわち、該トレース配管に120℃のスチームを供給した。蒸留塔の温度を測定すると、蒸留塔外壁面の温度は118℃、蒸留塔内壁面の温度は110℃、塔内多孔板の温度は89℃を示した。次いで、粗アクリルモノマーとして実施例1と同様組成の混合液を蒸留塔へ供給しつつ、塔内の温度、圧力などを調節した。約4時間後、塔頂圧力2.8kPa、塔底圧力9.1kPa、塔頂温度53℃、塔底温度78℃で安定運転に入り、塔頂からは純度99.8重量%以上の高純度アクリル酸が得られたところで、運転を中止し、塔内残留液を抜き出した後、内部を点検した。塔内及び充填物の周囲には固形物(重合物)は見当たらなかった。
【0033】
<比較例2>
参考例において、蒸留開始前の塔内加熱を省略した以外は参考例と同様にして蒸留を行った。蒸留開始時点において、蒸留塔外壁面及び蒸留塔内壁面の温度はいずれも25℃であった。運転開始から塔底圧力が上昇し、5時間目に塔底圧力が11kPa、塔底温度が84℃になったため運転を打ち切った。運転停止後塔内を観察したところ、原料供給段より上の内壁面、および多孔板の内壁面周辺にアクリル酸重合物の付着が認められた。
【0034】
実施例2
図5に示すような、内径1100mm、長さ26000mm、内部にノートン社製不規則充填物(IMTP)を813m充填したステンレス鋼(SUS304)製の蒸留塔を用いて粗アクリル酸エチルの蒸留を行った。該蒸留塔外周部には、スチーム配管がトレースラインとして設置され、その上に保温材(ケイ酸カルシウム)が施工されている。蒸留に先立ち、120℃のスチームをトレース配管に供給した。約3時間後、蒸留塔の温度を測定すると、蒸留塔外壁面の温度は118℃、蒸留塔内壁面の温度は110℃、塔内充填物の温度は92℃を示した。次に粗アクリルモノマーとして、アクリル酸エチル97.4重量%、水1.8重量%、アクリル酸0.4重量%、エタノール0.4重量%、酢酸エチル0.1重量%を含む混合物を6000kg/hrで供給した。また、重合防止剤含有液体タンク59よりエタノールにハイドロキノン5重量%を溶解した液を60kg/hrで供給した。熱源を供給し、塔内圧力などを調整し、約6時間後、塔頂圧力62.7kPa、塔底圧力69.3kPa、塔頂温度76℃、塔底温度84℃で安定運転に入り、塔底からは純度99.1重量%以上の粗アクリル酸エチルが得られたところで運転を中止し、塔内残留液を抜き出した後、内部を点検した。塔内および充填物の周囲には固形物(重合物)は見あたらなかった。本実施例において、アクリル酸エチルを含有したガスの塔頂での凝縮温度は76℃、塔底での凝縮温度は84℃であり、蒸留開始に先だって予備加熱した蒸留塔内壁面温度110℃は、凝縮温度より塔頂では34℃高め、塔底では26℃高めであった。
【0035】
<比較例3>
実施例2において、蒸留開始前の塔内加熱を省略した以外は実施例2と同様にして蒸留を行った。蒸留開始時点において、蒸留塔外壁面、蒸留塔内壁面、塔内充填物の温度はいずれも25℃であった。運転開始から塔底圧力が上昇し、6時間目には塔底圧力が73kPa、塔底温度が89℃になったため、運転を打ち切った。運転停止後塔内を観察したところ、原料供給段より上の内壁面、および内壁面近傍の充填物内にアクリル酸重合物とアクリル酸エチル重合物の付着が認められた。
【0036】
【発明の効果】
本発明によれば、(メタ)アクリル酸類の蒸留において、蒸留塔の運転開始前に、該蒸留塔内壁面を、予め、(メタ)アクリル酸類の凝縮温度より高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始するので、蒸発したアクリルモノマーが蒸留塔内壁面に凝縮することがなく、重合体生成の心配もない。蒸留塔の運転開始後は、(メタ)アクリル酸類は重合防止剤の存在下に蒸留されるので同様に重合体の生成はない。
【図面の簡単な説明】
【図1】プロピレンを原料としてアクリル酸を製造するプロセスフロー図の一例である。
【図2】プロピレンを原料としてアクリル酸を製造するプロセスフロー図の他の一例である。
【図3】プロピレンを原料としてアクリル酸を製造するプロセスフロー図の他の一例である。
【図4】アクリル酸エステルを製造するプロセスフロー図の一例である。
【図5】粗アクリルモノマーの蒸留塔及びその付帯設備の一例である。
【符号の説明】
A:アクリル酸捕集塔
B:脱水塔
C:軽沸分離塔(酢酸分離塔)
D:高沸分離塔(アクリル酸精製塔)
E:高沸分解反応器
F:脱水塔Bと軽沸分離塔(酢酸分離塔)Cを1塔にまとめた蒸留塔
G:放散塔
H:高沸除去塔
K:溶剤回収塔
L:エステル化反応器
M:アクリル酸分離塔
N:高沸分解反応器
Q:アルコール抽出塔
P:アルコール回収塔
R:軽沸分離塔
S:エステル精製塔
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a distillation method for acrylic acid, methacrylic acid or esters thereof (hereinafter referred to as (meth) acrylic acids). Specifically, the present invention often occurs when the acrylic acid or methacrylic acid (hereinafter referred to as (meth) acrylic acid) obtained by catalytic gas phase oxidation of propylene or isobutylene, or an ester thereof is separated, concentrated and purified by distillation. The present invention relates to a method for preventing polymerization of monomers.
[0002]
[Prior art]
A distillation method is generally used as a method for separating and purifying (meth) acrylic acids. In recent years, high-performance packings have been developed for the purpose of improving the separation efficiency of distillation and increasing the throughput, and have begun to be used in distillation columns in various processes. However, (meth) acrylic acids are extremely easily polymerized, and the formation of a polymer in the distillation column has been a big problem in both conventional tray-type distillation columns and particularly high performance packed columns.
Conventional methods for preventing the occurrence of (meth) acrylic acid polymers include improving the tray structure (Japanese Patent Laid-Open No. 2000-300903) and using a special polymerization inhibitor (Japanese Patent Laid-Open No. 7-53449). Although it has been proposed, long-term continuous operation is still difficult, and periodic inspections and repairs that require shutdown are necessary. In many cases, the polymer is generated from the initial stage of operation of the distillation column. Once the polymer is formed, the gas-liquid flow is disturbed, and the phenomenon that the generation of the polymer is accelerated is often observed.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for preventing polymerization of a monomer often generated when (meth) acrylic acids are separated and purified. In particular, when starting or resuming the distillation operation, the object is to provide means for forming an atmosphere in which (meth) acrylic acids are difficult to polymerize inside the distillation column.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that once the polymer is formed, the inside of the tower is partially blocked, hindering the flow of gas and liquid, and generating further polymer. I learned that it would be a cause to promote. And, it is extremely important to prevent polymerization at the start of distillation of (meth) acrylic acids, and the present invention was completed by finding that the object can be achieved by maintaining the temperature of the inner wall of the distillation column at a specific high state. did.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The gist of the present invention is a method of distilling acrylic acid, methacrylic acid or esters thereof in a distillation column. The distillation tower is a packed tower or a combined tower of a packed tower and a perforated plate tower, and By using an external heating device installed in the distillation column main body or by supplying a heating medium to the distillation column, the inner wall surface of the distillation column is previously determined from the condensation temperature of acrylic acid, methacrylic acid or esters thereof. Heating to a temperature of 1 to 60 ° C., starting the distillation column in the heated state, and thereafter supplying acrylic acid, methacrylic acid or their esters together with a polymerization inhibitor to the distillation column It exists in the distillation method of acrylic acid, methacrylic acid, or those esters.
[0006]
More specifically, the present invention was obtained by concentrating an aqueous solution of acrylic acid or methacrylic acid obtained by subjecting propylene or isobutylene to vapor phase catalytic oxidation and absorbing the oxidation reaction mixture with water in the presence of an azeotropic agent. In the operation including the stop and start of operation of the distillation tower in the method of producing acrylic acid or methacrylic acid of high purity by purifying acrylic acid or methacrylic acid in the distillation tower, The distillation tower is a packed tower or a combined tower of a packed tower and a perforated plate tower, and By using an external heating device installed in the distillation column main body or by supplying a heating medium to the distillation column, the inner wall surface of the distillation column is previously 1-60 ° C. from the condensation temperature of acrylic acid or methacrylic acid. A method for distillation of acrylic acid or methacrylic acid, comprising heating to a high temperature, starting operation of the distillation tower in the heated state, and then supplying acrylic acid or methacrylic acid together with a polymerization inhibitor to the distillation tower Exist.
More specifically, the present invention was obtained by concentrating an aqueous solution of acrylic acid or methacrylic acid obtained by subjecting propylene or isobutylene to vapor phase catalytic oxidation and absorbing the oxidation reaction mixture with water in the presence of an azeotropic agent. Acrylic acid or methacrylic acid is purified with a distillation tower and then reacted with alcohol, and the resulting reaction product is purified with a distillation tower to produce an ester of acrylic acid or methacrylic acid. In operation including The distillation tower is a packed tower or a combined tower of a packed tower and a perforated plate tower, and By using an external heating device installed in the distillation column main body or by supplying a heating medium to the distillation column, the inner wall surface of the distillation column is previously set to 1 to 1 from the condensation temperature of an ester of acrylic acid or methacrylic acid. Acrylic acid or methacrylic acid, characterized by heating to a temperature of 60 ° C. and starting operation of the distillation tower in the heated state, and thereafter supplying an ester of acrylic acid or methacrylic acid together with a polymerization inhibitor to the distillation tower Lies in a method for distillation of esters of acids.
[0007]
In the present invention, the mixture to be distilled is acrylic acid, methacrylic acid or esters thereof, that is, (meth) acrylic acids. These are sometimes called acrylic monomers. For example, propylene or isobutylene is vapor-phase catalytically oxidized in the presence of a Mo-Bi composite oxide catalyst to produce acrolein or methacrolein, and further vapor-phase catalytic oxidation is performed in the presence of a Mo-V composite oxide catalyst. It is applied to (meth) acrylic acid obtained. At this time, even in the two-stage reaction in which the first stage reaction in which propylene is oxidized to mainly produce acrolein and the second stage reaction in which acrolein is oxidized to mainly produce acrylic acid are performed in separate reactors, the first stage reaction is performed in one reactor. A one-stage reaction in which a reaction is performed by simultaneously charging a catalyst to be performed and a catalyst to be subjected to a subsequent reaction may be used. Furthermore, the ester of (meth) acrylic acid obtained by the process which manufactures the ester from (meth) acrylic acid as a raw material is mention | raise | lifted.
Examples of acrylic esters include methyl acrylate, ethyl acrylate, butyl acrylate, isobutyl acrylate, tertiary butyl acrylate, 2-ethylhexyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, Examples thereof include methoxyethyl acrylate, and similar compounds can be exemplified for methacrylic acid esters.
[0008]
The unpurified acrylic monomers produced by these methods include dimers, trimers and tetramers of acrylic monomers, esterified products thereof, maleic anhydride, benzaldehyde, β-hydroxypropionic acid, β-hydroxy. High-boiling impurities such as propionic acid esters, β-alkoxypropionic acid, β-alkoxypropionic acid esters, etc. are contained, and the content of the acrylic monomer supplied to the distillation column is usually 2% by weight or more, preferably 5 More than 10% by weight, more preferably 10% by weight or more is used in the present invention. Despite the low concentration of the acrylic monomer, the mixed composition formed together with these impurities and / or water is very easily polymerized under the temperature and pressure conditions in the column for carrying out the distillation treatment. Moreover, such a polymerization phenomenon tends to occur at the beginning of the distillation operation. Therefore, the applicable range of the present invention is wide, and it exerts a very great effect even in processing a process liquid containing a small amount of acrylic monomer.
That is, distillation of (meth) acrylic acid (acrylic monomer) referred to in the present invention is usually a step (purification step) for obtaining a high-purity acrylic monomer, but is not limited to this and contains an acrylic monomer. It is also applied to a process (separation / concentration process) for recovering a component rich in acrylic monomer from the mixture.
[0009]
Next, a process for producing (meth) acrylic acids will be described with reference to the drawings.
FIG. 1 is an example of a process flow diagram for producing acrylic acid using propylene as a raw material. The symbols in the figure are as follows.
A: Acrylic acid collection tower
B: Dehydration tower
C: Light boiling separation tower (acetic acid separation tower)
D: High boiling separation tower (acrylic acid purification tower)
E: High boiling cracking reactor
[0010]
Acrylic acid-containing gas obtained by catalytic vapor phase oxidation of propylene and / or acrolein using molecular oxygen-containing gas is introduced into acrylic acid collection tower A via line 4 and brought into contact with water to bring aqueous acrylic acid solution into contact with water. obtain.
Next, the aqueous acrylic acid solution is supplied to the dehydration tower B. In the dehydrating tower, an azeotropic agent is supplied, an azeotropic mixture composed of water and an azeotropic agent is distilled from the top of the tower, and acrylic acid containing acetic acid is obtained from the bottom of the tower. The azeotropic mixture composed of water and azeotropic agent distilled from the top of the dehydrating tower is introduced into the storage tank 10 where it is separated into an organic phase mainly composed of azeotropic agent and an aqueous phase mainly composed of water. The organic phase is circulated to the dehydration tower B. On the other hand, the aqueous phase can be effectively utilized by being circulated to the acrylic acid collection tower A via the line 7 and used as collected water to be brought into contact with the acrylic acid-containing gas. Supply water from line 8 as needed.
[0011]
The crude acrylic acid extracted from the bottom of the dehydration tower B via the line 11 is introduced into a light boiling separation tower (acetic acid separation tower) C in order to remove the remaining acetic acid. Here, acetic acid is separated and removed from the top of the column via lines 12 and 13. Since acetic acid in line 13 contains acrylic acid, some or all of it may be returned to the process. On the other hand, acrylic acid substantially free of acetic acid is obtained from the tower bottom via line 14. Since this acrylic acid has a considerably high purity, it can be used as it is as a raw material for producing an acrylic ester. In some cases, the product is made through the line 15. In order to obtain higher-purity acrylic acid, it is introduced into a high-boiling separation tower (acrylic acid purification tower) D via line 16 and high-boiling substances are separated and removed from line 17. 19 can be obtained. The high boiling matter in the line 17 is led to the high boiling cracking reactor E, and a part thereof is recovered as acrylic acid from the line 20 to the process. High boilers are separated and removed from line 21.
In this process, the polymerization inhibitor is supplied from any one or a plurality of lines 1 to 3.
[0012]
FIG. 2 is another example of a process flow diagram for producing acrylic acid using propylene as a raw material. This is a process in which the dehydration tower B and the light boiling separation tower (acetic acid separation tower) C in FIG. 1 are combined into a single distillation tower F, and the flow of the substance is basically the same as in FIG.
[0013]
FIG. 3 is another example of a process flow diagram for producing acrylic acid using propylene as a raw material. The symbols in the figure are as follows.
G: Stripping tower
D: High boiling separation tower (acrylic acid purification tower)
H: High boiling removal tower
K: Solvent recovery tower
[0014]
Acrylic acid-containing gas obtained by catalytic gas phase oxidation of propylene and / or acrolein using molecular oxygen-containing gas is introduced into acrylic acid collection tower A via line 4 and brought into contact with a solvent to bring acrylic acid-containing solution. Get.
Next, the acrylic acid-containing solution is supplied to the stripping tower G. In the stripping tower G, a gas (a gas in the line 6 discharged from the top of the acrylic acid collection tower A or a gas after oxidizing and removing organic substances in the gas in the line 6) is supplied from the line 10. Then, water and acetic acid are distilled off from the top of the column, and acrylic acid containing a solvent is obtained from the bottom of the column. Water and acetic acid distilled from the top of the stripping tower G are introduced into the acrylic acid collection tower A, and water and acetic acid are finally discharged from the top of the acrylic acid collection tower A. In order to obtain high-purity acrylic acid from the bottom of the stripping tower G through the line 11, it is introduced into a high-boiling separation tower (acrylic acid purification tower) D and high-boiling substances are separated and removed from the line 14 to obtain high-purity acrylic. The acid can be obtained via line 13. The high-boiling substances in the line 14 are specifically maleic anhydride, benzaldehyde, etc., and are led to the high-boiling removal tower H, and these high-boiling substances are discharged from the line 16. From the bottom of the column, the solvent is led to the solvent recovery column K via the line 17. The recovered solvent is returned to the acrylic acid collection tower A through the line 7 from the top of the tower. Further high boilers are separated and removed from the bottom of the column via line 18. The polymerization inhibitor is supplied from line 1 and / or line 2.
[0015]
FIG. 4 is an example of a process flow diagram for producing an acrylate ester. The symbols and numbers in the figure are as follows.
L: Esterification reactor
M: acrylic acid separation tower
N: High boiling decomposition reactor
Q: Alcohol extraction tower
P: Alcohol recovery tower
R: Light boiling separator
S: Ester purification tower
[0016]
Acrylic acid from line 31, alcohol from line 32, circulating acrylic acid from line 35, and circulating alcohol from line 48 are supplied to esterification reactor L, respectively. The esterification reactor L is filled with a catalyst such as a strongly acidic ion exchange resin. Via the line 33, an esterification reaction mixture composed of the produced ester, unreacted acrylic acid, unreacted alcohol, and produced water is extracted and supplied to the acrylic acid separation column M. From the acrylic acid separation column M, a column bottom liquid containing substantially the entire amount of unreacted acrylic acid is withdrawn via a line 34, and supplied to an esterification reactor L as a circulating liquid via a line 35.
A part of the bottom liquid is supplied to a high boiling cracking reactor N via a line 36, and valuables obtained by the decomposition are circulated to the process via a line 40. The location within the process being cycled depends on the process conditions. High boiling point impurities such as polymers are removed from the system via line 37. In addition, from the top of the acrylic acid separation tower M, the produced ester, unreacted alcohol, and produced water are distilled through a line 38. A part of the effluent is circulated to the acrylic acid separation column M as a reflux liquid, and the rest is supplied to the extraction column Q via a line 39.
Water for alcohol extraction is supplied from the line 41, and water containing alcohol recovered via the line 42 is supplied to the alcohol recovery tower P. The recovered alcohol is circulated through line 48 to the esterification reactor.
[0017]
The crude acrylic acid ester is supplied to the light boiling separation column R from the line 43. Light boilers containing acrylic esters are extracted from line 44 and circulated into the process. The location within the process being cycled depends on the process conditions. The crude acrylic acid ester from which the light boiling substances have been removed is supplied to the acrylic acid ester product purification tower S via a line 45. A high purity acrylic acid ester is obtained from the top of the column via line 46. A liquid containing some high boilers is withdrawn from the bottom of the column via line 47 and circulated into the process. The location within the process being cycled depends on the process conditions.
[0018]
FIG. 5 is an example of a crude acrylic monomer distillation tower and its associated equipment. The numbers in the figure are as follows.
51: Distillation tower
52: Combined use of packed bed or distillation column tray, or packing and distillation column tray
53: Inhibitor air supply line
54: Heat exchanger for tower top gas cooling
55: Heat exchanger for cooling vent gas
56: Circulation tank
57: Destributor
58: Reboiler (heat exchanger for heating)
59: Liquid tank containing polymerization inhibitor
60: Acrylic monomer (raw material) supply line
61: Polymerization inhibitor supply line
62: Tower top liquid extraction line
63: Tower bottom liquid extraction line
64: Vent gas discharge line
In particular, the line 53 and the line 61 are installed at one or more places in various portions of the distillation depending on the distillation column conditions.
[0019]
The distillation column to which the present invention is applied means all distillation apparatuses in which acrylic monomers are involved in gas-liquid equilibrium, and means an apparatus for performing operations such as separation, concentration, recovery, and purification. For example, dehydration tower B, light boiling separation tower (acetic acid separation tower) C, and high boiling separation tower (acrylic acid purification tower) D shown in FIG. Similarly, the stripping tower G, the high boiling separation tower (acrylic acid purification tower) D, the high boiling removal tower H, the solvent recovery tower K shown in FIG. 3, the acrylic acid separation tower M, and the alcohol recovery tower P shown in FIG. The light boiling separation column R, the ester purification column S, and the distillation column 51 shown in FIG. 5 correspond to these.
[0020]
Distillation towers include perforated plate towers, bubble bell towers, packed towers, or a combination of these (for example, a combination of perforated plate towers and packed towers, see Fig. 5), with or without overflow weirs and downcomers. Are not distinguished and both can be used in the present invention. Specific examples of the tray include a bubble bell tray, a perforated plate tray, a bubble tray, a super flash tray, a max flux tray, and a dual tray.
In addition to those used in the past such as columnar, cylindrical, saddle, spherical, cubic, and pyramidal, the packing is regularly or irregularly packed with a special shape as a high-performance packing in recent years. The thing is marketed and these are preferably used for this invention.
[0021]
Examples of such commercially available products include, as regular packing, for example, Sulzer Packing (manufactured by Sulzer Brothers), Sumitomo Sulzer Packing (manufactured by Sumitomo Heavy Industries), Techno Pack (Mitsui & Co.), MC Pack (Mitsubishi) Gauze-type regular packing such as Chemical Engineering Co., Ltd., Merapack (Sumitomo Heavy Industries, Ltd.), Techno Pack (Mitsui & Co.), MC Pack (Mitsubishi Chemical Engineering Co., Ltd.) Examples thereof include grid type regular packing such as (manufactured by Coke).
For irregular packing, Raschig rings, polling (manufactured by BASF), cascade mini rings (manufactured by Mass Transfer), IMTP (manufactured by Norton), interlock saddles (manufactured by Norton), terralet (Nippon Chemical Industries) And Flexiring (manufactured by JGC Corporation).
[0022]
The most important feature of the present invention is that the inner wall of the distillation column is heated in advance to a temperature higher than the condensation temperature of the acrylic monomer prior to the start of operation of the distillation column. The method for heating is not particularly limited. For example, an external heating method can be used in which the distillation column body is covered with a heatable trace and a heat source such as electricity, steam or hot water is supplied thereto. Further, an internal heating method in which heated gas or heated liquid is supplied into the distillation column can also be used. The heated gas can be supplied from the tower bottom or the raw material supply stage. As the heating gas, one kind or a mixture of two kinds such as air, nitrogen, carbon dioxide and argon is used. In the case of a heated liquid, it may be sprayed or flowed down from the top of the distillation column via a distributor (liquid distributor, liquid dispersion nozzle). The heated gas can be allowed to flow upward from the bottom of the tower along with the flow of the heated liquid.
As a previous step for carrying out the present invention, there is a process of concentrating an aqueous solution of (meth) acrylic acid obtained by subjecting propylene or isobutylene to gas phase catalytic oxidation and absorbing the oxidation reaction mixture with water in the presence of an azeotropic agent. In this case, the azeotropic agent can be used as a heating medium. It is preferable because no special impurities are mixed. Moreover, the bottom liquid of the said distillation column acquired before the operation stop is also suitable as a heating medium.
[0023]
The heating temperature of the inner wall of the distillation column may be higher than the condensation temperature in the steady operation conditions of the gas in the distillation column containing (meth) acrylic acids. Usually, it is kept 1-60 ° C, preferably 3-60 ° C, more preferably 3-40 ° C higher than the condensation temperature. If it is less than the above, there is a possibility of local condensation, and the condensation causes generation of a polymer. On the other hand, if the temperature is too high, polymerization of the acrylic monomer is induced and it is not economically advantageous as a heat source.
The “temperature higher than the condensation temperature in the steady operation condition of the gas in the distillation column containing (meth) acrylic acid” as used herein refers to, for example, acrylic acid in a distillation column that acquires acrylic acid as a top component. Means a temperature higher than the condensation temperature of the gas in the distillation column containing butyl acrylate. Similarly, in a distillation column for obtaining butyl acrylate as a column top component, the condensation temperature of the gas in the distillation column containing butyl acrylate Means high temperature. The heating temperature in the case where two or more kinds of acrylic monomers are mixed needs to be higher than the condensation temperature having the higher condensation temperature. In actual operation, since the stock solution to be distilled is not a pure acrylic monomer and often contains various high-boiling impurities, the condensation temperature of the target product tends to move to the high temperature side. Therefore, as described above, it is preferable to keep the temperature 3 to 60 ° C higher.
When using an internal heating system that supplies the heating medium into the distillation column, the inner wall surface, trays, packing, etc. can be heated to a uniform temperature as a whole. And the temperature may be controlled so as to be equal to or higher than the condensation temperature. However, in the external heating method, the temperature of the filling may be lower than the inner wall surface depending on the heating mode, the heating time, and the like. In this case, it is preferable to keep the temperature of the packing higher than the condensation temperature.
[0024]
In the present invention, after heating the inner wall surface of the distillation column, it is important to start the operation of the distillation column in the heated state. As a mode of starting operation of the distillation column, the raw material (crude acrylic monomer) may be supplied to the reboiler and then the heat source may be supplied to the reboiler. The raw material can be supplied from the raw material supply stage before and after the supply of the heat source, and the supply amount can be gradually increased to shift to a steady state. When the distillation operation is started by the external heating method, the heating operation of the inner wall surface of the distillation tower after shifting to the steady state is not particularly limited. The heating may be continued as it is, or the heating may be stopped and the heat source supplied from the reboiler alone may be changed.
[0025]
The distillation operation of the present invention can be applied to either continuous distillation or batch distillation. The operation conditions for distillation are not particularly limited, and are determined appropriately in consideration of the type of distillation column, the shape of the packing, the type and content of impurities contained in the crude acrylic monomer, and the like. Usually, the column top temperature is 20 to 80 ° C., preferably 40 to 60 ° C., the column bottom temperature 60 to 120 ° C., preferably 65 to 110 ° C., and the column top pressure is about 0.7 to 106 kPa.
[0026]
The crude acrylic monomer is preferably distilled in the presence of a polymerization inhibitor. Here, the polymerization inhibitor is a generic term for a stable radical substance, or a substance that is added to a radical to generate a stable radical or is easily generated. Depending on the purpose, it may be called a polymerization inhibitor, a polymerization inhibitor, a polymerization terminator, a polymerization rate reducing agent, etc. depending on the purpose, but in the present invention, it is called a polymerization inhibitor.
[0027]
Examples of such polymerization inhibitors include phenol compounds such as hydroquinone and methoxyhydroquinone (methoquinone); N-oxyls such as tert-butyl nitroxide and 2,2,6,6-tetramethyl-4-hydroxypiperidyl-1-oxyl. Compounds; phenothiazine compounds such as phenothiazine and bis- (α-methylbenzyl) phenothiazine; copper compounds such as copper carbonate, copper acrylate, copper acetate, copper dimethyldithiocarbamate, copper dibutyldithiocarbamate; manganese salt compounds such as manganese acetate Phenylenediamines such as p-phenylenediamine; nitroso compounds such as N-nitrosodiphenylamine; ureas such as urea; thioureas such as thiourea. These compounds can be used alone or in combination of two or more.
[0028]
The polymerization inhibitor may be mixed with the raw acrylic monomer and supplied to the distillation column, or may be separately supplied to the column, or may be separately supplied to the reflux tank, and supplied from the top of the distillation column to the distributor (liquid dispersion). Or a liquid dispersion nozzle). The polymerization inhibitor is usually used as a solution or slurry of water or an organic solvent. Examples of organic solvents include alcohols such as methanol, ethanol, and butyl alcohol; ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; carboxylic acids such as acetic acid, propionic acid, acrylic acid, and methacrylic acid; and benzene, toluene, and xylene. Aromatic hydrocarbons, methyl acetate, butyl acetate, methyl acrylate, butyl acrylate, methyl methacrylate, ethyl methacrylate and the like can be mentioned, and these can also be used as a mixture. For example, water / toluene mixture, water / (meth) acrylic acid mixture, crude (meth) acrylic acid ((meth) acrylic acid distillation column bottom liquid containing dimer and trimer of (meth) acrylic acid) ) Can be used. These organic solvents can also be used as the heating medium.
[0029]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to the following Example, unless the summary is exceeded.
[0030]
<Example 1>
The crude acrylic acid was distilled using a distillation column made of stainless steel (SUS316) having an inner diameter of 1100 mm and a length of 20000 mm as shown in FIG. . Steam piping is installed as a trace line on the outer periphery of the distillation tower, and a heat insulating material (calcium silicate) is applied thereon. Prior to distillation, 120 ° C. steam was supplied to the trace piping. When the temperature of the distillation column was measured after about 3 hours, the temperature of the outer wall surface of the distillation column was 118 ° C., the temperature of the inner wall surface of the distillation column was 110 ° C., and the temperature of the packing in the column was 93 ° C.
Next, as a crude acrylic monomer, a mixture containing 98.5% by weight of acrylic acid, 0.3% by weight of maleic acid, and 0.3% by weight of acrylic acid dimer was supplied at 90 ° C. at 1300 kg / hr. Further, from the polymerization inhibitor-containing liquid tank 59, liquids in which 8% by weight of methoquinone and 1% by weight of phenothiazine were dissolved in acrylic acid were supplied at 34 kg / hr and 31 kg / hr, respectively. Supply a heat source, adjust the pressure in the tower, etc., and after about 5 hours, start stable operation at a tower top pressure of 2.9 kPa, a tower bottom pressure of 7.9 kPa, a tower top temperature of 53 ° C. and a tower bottom temperature of 75 ° C. When high purity acrylic acid having a purity of 99.8% by weight or more was obtained from the top, the operation was stopped, the residual liquid in the tower was taken out, and the inside was inspected. No solid matter (polymer) was found in the column or around the packing.
Since the tower top pressure in this example is 2.9 kPa, the condensation temperature at the tower top of the gas containing acrylic acid is about 53 ° C., and the inner wall temperature of the distillation tower preheated before the start of distillation is 110 ° C. Was 57 ° C. above the condensation temperature and 35 ° C. above the column bottom.
[0031]
<Comparative Example 1>
In Example 1, distillation was performed in the same manner as in Example 1 except that heating in the tower before the start of distillation was omitted. At the start of distillation, the temperatures of the outer wall surface of the distillation column, the inner wall surface of the distillation column, and the packing in the column were all 25 ° C.
The tower bottom pressure increased from the start of operation, and the tower bottom pressure reached 12 kPa and the tower bottom temperature reached 86 ° C. at 5 hours. When the inside of the tower was observed after the operation was stopped, adhesion of acrylic acid polymer was observed on the inner wall surface above the raw material supply stage and in the packing near the inner wall surface.
[0032]
< Reference example >
The same operation as in Example 1 was performed except that the irregular packing (IMTP) manufactured by Norton was changed to 21 perforated plates (dual tray) in Example 1. That is, steam at 120 ° C. was supplied to the trace pipe. When the temperature of the distillation column was measured, the temperature of the outer wall surface of the distillation column was 118 ° C., the temperature of the inner wall surface of the distillation column was 110 ° C., and the temperature of the inner perforated plate was 89 ° C. Subsequently, the temperature, pressure, etc. in the tower were adjusted while supplying a mixed liquid having the same composition as in Example 1 to the distillation tower as a crude acrylic monomer. After about 4 hours, stable operation was started at a tower top pressure of 2.8 kPa, a tower bottom pressure of 9.1 kPa, a tower top temperature of 53 ° C., and a tower bottom temperature of 78 ° C., and a high purity of 99.8% by weight or more from the tower top. When acrylic acid was obtained, the operation was stopped, the residual liquid in the tower was extracted, and the inside was inspected. No solid matter (polymer) was found in the column or around the packing.
[0033]
<Comparative example 2>
Reference example Except that the heating in the tower before the start of distillation was omitted Reference example Distillation was carried out in the same manner as above. At the start of distillation, the temperatures of the outer wall surface of the distillation column and the inner wall surface of the distillation column were both 25 ° C. The tower bottom pressure increased from the start of operation, and the tower bottom pressure was 11 kPa and the tower bottom temperature was 84 ° C. at 5 hours, so the operation was terminated. When the inside of the tower was observed after the operation was stopped, adhesion of acrylic acid polymer was observed on the inner wall surface above the raw material supply stage and the inner wall surface of the perforated plate.
[0034]
< Example 2 >
Distillation of crude ethyl acrylate was carried out using a distillation column made of stainless steel (SUS304) having an inner diameter of 1100 mm and a length of 26000 mm as shown in FIG. 5 and filled with 813 m of an irregular packing (IMTP) made by Norton. It was. A steam pipe is installed as a trace line on the outer periphery of the distillation tower, and a heat insulating material (calcium silicate) is applied thereon. Prior to distillation, 120 ° C. steam was supplied to the trace piping. After about 3 hours, when the temperature of the distillation column was measured, the temperature of the outer wall of the distillation column was 118 ° C, the temperature of the inner wall of the distillation column was 110 ° C, Filling The temperature of was 92 ° C. Next, 6000 kg of a mixture containing 97.4% by weight of ethyl acrylate, 1.8% by weight of water, 0.4% by weight of acrylic acid, 0.4% by weight of ethanol and 0.1% by weight of ethyl acetate as crude acrylic monomers. / Hr. Further, a liquid in which 5% by weight of hydroquinone was dissolved in ethanol was supplied from the polymerization inhibitor-containing liquid tank 59 at 60 kg / hr. Supplying a heat source, adjusting the pressure in the tower, etc., about 6 hours later, stable operation was started at a tower top pressure of 62.7 kPa, a tower bottom pressure of 69.3 kPa, a tower top temperature of 76 ° C., and a tower bottom temperature of 84 ° C. When crude ethyl acrylate having a purity of 99.1% by weight or more was obtained from the bottom, the operation was stopped, the residual liquid in the tower was extracted, and the inside was inspected. No solid matter (polymer) was found in the column or around the packing. In this example, the condensation temperature at the top of the gas containing ethyl acrylate was 76 ° C., the condensation temperature at the bottom of the column was 84 ° C., and the temperature of the inner wall of the distillation column 110 ° C. preheated prior to the start of distillation was The temperature was 34 ° C. higher at the top of the column than the condensation temperature, and 26 ° C. higher at the bottom.
[0035]
<Comparative Example 3>
Example 2 Except that the heating in the tower before the start of distillation was omitted Example 2 Distillation was carried out in the same manner as above. At the start of distillation, the temperatures of the outer wall surface of the distillation column, the inner wall surface of the distillation column, and the packing in the column were all 25 ° C. The tower bottom pressure increased from the start of operation, and the tower bottom pressure became 73 kPa and the tower bottom temperature reached 89 ° C. at 6 hours. When the inside of the tower was observed after the operation was stopped, adhesion of acrylic acid polymer and ethyl acrylate polymer was observed on the inner wall surface above the raw material supply stage and in the packing near the inner wall surface.
[0036]
【The invention's effect】
According to the present invention, in the distillation of (meth) acrylic acids, before the operation of the distillation tower, the inner wall surface of the distillation tower is heated in advance to a temperature higher than the condensation temperature of (meth) acrylic acids. In this state, the operation of the distillation tower is started, so that the evaporated acrylic monomer does not condense on the inner wall surface of the distillation tower, and there is no fear of polymer formation. After the start of operation of the distillation column, (meth) acrylic acids are distilled in the presence of a polymerization inhibitor, and thus no polymer is produced.
[Brief description of the drawings]
FIG. 1 is an example of a process flow diagram for producing acrylic acid using propylene as a raw material.
FIG. 2 is another example of a process flow diagram for producing acrylic acid using propylene as a raw material.
FIG. 3 is another example of a process flow diagram for producing acrylic acid using propylene as a raw material.
FIG. 4 is an example of a process flow diagram for producing an acrylate ester.
FIG. 5 is an example of a crude acrylic monomer distillation column and its associated equipment.
[Explanation of symbols]
A: Acrylic acid collection tower
B: Dehydration tower
C: Light boiling separation tower (acetic acid separation tower)
D: High boiling separation tower (acrylic acid purification tower)
E: High boiling cracking reactor
F: Distillation tower in which dehydration tower B and light boiling separation tower (acetic acid separation tower) C are combined into one tower
G: Stripping tower
H: High boiling removal tower
K: Solvent recovery tower
L: Esterification reactor
M: acrylic acid separation tower
N: High boiling decomposition reactor
Q: Alcohol extraction tower
P: Alcohol recovery tower
R: Light boiling separator
S: Ester purification tower

Claims (3)

アクリル酸、メタクリル酸又はそれらのエステルを蒸留塔で蒸留する方法において、該蒸留塔が充填塔又は充填塔と多孔板塔との結合塔であって、かつ該蒸留塔本体に設置された外部加熱装置を用いて、又は該蒸留塔に加熱媒体を供給することにより、該蒸留塔内壁面を、予め、アクリル酸、メタクリル酸又はそれらのエステルの凝縮温度より1〜60℃高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始し、以後、アクリル酸、メタクリル酸又はそれらのエステルを重合防止剤と共に蒸留塔に供給することを特徴とするアクリル酸、メタクリル酸又はそれらのエステルの蒸留方法。In a method of distilling acrylic acid, methacrylic acid or esters thereof in a distillation tower, the distillation tower is a packed tower or a combined tower of a packed tower and a perforated plate tower, and external heating installed in the distillation tower body By using a device or by supplying a heating medium to the distillation column, the inner wall surface of the distillation column is heated in advance to a temperature 1 to 60 ° C. higher than the condensation temperature of acrylic acid, methacrylic acid or esters thereof, The operation of the distillation column is started in the heated state, and thereafter, acrylic acid, methacrylic acid or esters thereof are supplied to the distillation column together with a polymerization inhibitor. Distillation method. プロピレン又はイソブチレンを気相接触酸化し、該酸化反応混合物を水吸収して得られたアクリル酸又はメタクリル酸の水溶液を共沸剤の存在下濃縮し、得られたアクリル酸又はメタクリル酸を蒸留塔で精製して高純度のアクリル酸又はメタクリル酸を製造する方法における該蒸留塔の運転停止及び運転開始を含む操作において、該蒸留塔が充填塔又は充填塔と多孔板塔との結合塔であって、かつ該蒸留塔本体に設置された外部加熱装置を用いて、又は該蒸留塔に加熱媒体を供給することにより、該蒸留塔内壁面を、予め、アクリル酸又はメタクリル酸の凝縮温度より1〜60℃高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始し、以後、アクリル酸又はメタクリル酸を重合防止剤と共に蒸留塔に供給することを特徴とするアクリル酸又はメタクリル酸の蒸留方法。The aqueous solution of acrylic acid or methacrylic acid obtained by vapor-phase catalytic oxidation of propylene or isobutylene and absorbing the oxidation reaction mixture with water is concentrated in the presence of an azeotropic agent, and the resulting acrylic acid or methacrylic acid is distilled into a distillation column. The operation of the distillation column in the method for producing high-purity acrylic acid or methacrylic acid by the purification of the distillation column is a packed column or a combined column and a perforated plate column. In addition, by using an external heating device installed in the distillation column main body or by supplying a heating medium to the distillation column, the inner wall surface of the distillation column is previously set to 1 from the condensation temperature of acrylic acid or methacrylic acid. The acrylic tower is heated to a high temperature of ˜60 ° C., and the operation of the distillation tower is started in the heated state. Thereafter, acrylic acid or methacrylic acid is supplied to the distillation tower together with the polymerization inhibitor. Distillation process of acid or methacrylic acid. プロピレン又はイソブチレンを気相接触酸化し、該酸化反応混合物を水吸収して得られたアクリル酸又はメタクリル酸の水溶液を共沸剤の存在下濃縮し、得られたアクリル酸又はメタクリル酸を蒸留塔で精製した後にアルコールと反応させ、得られる反応物を蒸留塔で精製してアクリル酸又はメタクリル酸のエステルを製造する方法における該蒸留塔の運転停止及び運転開始を含む操作において、該蒸留塔が充填塔又は充填塔と多孔板塔との結合塔であって、かつ該蒸留塔本体に設置された外部加熱装置を用いて、又は該蒸留塔に加熱媒体を供給することにより、該蒸留塔内壁面を、予め、アクリル酸又はメタクリル酸のエステルの凝縮温度より1〜60℃高い温度に加熱し、該加熱された状態で蒸留塔の運転を開始し、以後、アクリル酸又はメタクリル酸のエステルを重合防止剤と共に蒸留塔に供給することを特徴とするアクリル酸又はメタクリル酸のエステルの蒸留方法。The aqueous solution of acrylic acid or methacrylic acid obtained by vapor-phase catalytic oxidation of propylene or isobutylene and absorbing the oxidation reaction mixture with water is concentrated in the presence of an azeotropic agent, and the resulting acrylic acid or methacrylic acid is distilled into a distillation column. in reacted with an alcohol after purification, in the operation of the reaction product obtained is purified by a distillation column comprising a shutdown and start-of the distillation column in a method for producing esters of acrylic acid or methacrylic acid, the distillation column is A packed column or a coupled column of a packed column and a perforated plate column, and using an external heating device installed in the distillation column main body or by supplying a heating medium to the distillation column, The wall surface is heated in advance to a temperature 1 to 60 ° C. higher than the condensation temperature of the ester of acrylic acid or methacrylic acid, and the operation of the distillation tower is started in the heated state. Distillation process of esters of acrylic acid or methacrylic acid and supplying the distillation column esters of methacrylic acid with a polymerization inhibitor.
JP2001377723A 2001-10-09 2001-12-11 Distillation of (meth) acrylic acids Expired - Lifetime JP4034559B2 (en)

Priority Applications (26)

Application Number Priority Date Filing Date Title
JP2001377723A JP4034559B2 (en) 2001-12-11 2001-12-11 Distillation of (meth) acrylic acids
BR0213157-9A BR0213157A (en) 2001-10-09 2002-10-07 Process for the production of (meth) acrylic acids and process for their distillation
ES02800786T ES2293866T3 (en) 2001-10-09 2002-10-07 PROCESS TO PRODUCE ACRYLIC COMPOUNDS (MET) AND DISTILLATION METHOD.
CNA2004100465503A CN1550488A (en) 2001-10-09 2002-10-07 Method for washing and removing easy polymerizing compounds
CNA2004100465490A CN1550487A (en) 2001-10-09 2002-10-07 Method for distilling (meth)acrylic acid
EA200500093A EA006779B1 (en) 2001-10-09 2002-10-07 Process for producing (met) acrylic acids and process for distilling the same
CNB2004100465486A CN100424065C (en) 2001-10-09 2002-10-07 Process for production of (meth)acrylic compounds
BRBR122012016383-0A BR122012016383B1 (en) 2001-10-09 2002-10-07 Processes for the production of purified (meth) acrylic acids by distillation of these
ES06025891T ES2293870T1 (en) 2001-10-09 2002-10-07 METHOD FOR WASHING A DISTILLATION COLUMN USED FOR PURIFICATION OF MET ACIDS (ACRYLIC).
EA200400403A EA005869B1 (en) 2001-10-09 2002-10-07 Process for production of (meth)acrylic compounds and method of distillation
ES06025893T ES2292380T3 (en) 2001-10-09 2002-10-07 PROCEDURE FOR WASHING A DISTILLATION COLUMN USED FOR PURIFICATION OF ACRYLIC ACIDS (MET).
PCT/JP2002/010411 WO2003031384A1 (en) 2001-10-09 2002-10-07 Process for production of (meth)acrylic compounds and method of distillation
EP06025892A EP1787973A1 (en) 2001-10-09 2002-10-07 Process for inhibiting the polymerization of (meth)acrylic acids during their distillation
CN200410046546.7A CN1260197C (en) 2001-10-09 2002-10-07 Method for distilling (meth)acrylic acid
CN02819827.1A CN1260196C (en) 2001-10-09 2002-10-07 Process for producing (meth)acrylic acids and process for distilling the same
EA200500092A EA006900B1 (en) 2001-10-09 2002-10-07 Process for producing (meth) acrylic acids and process for distilling the same
ES06025892T ES2293871T1 (en) 2001-10-09 2002-10-07 PROCEDURE TO INHIBIT THE POLYMERIZATION OF ACRYLIC ACIDS (MET) DURING DISTILLATION.
EP06025891A EP1787972A3 (en) 2001-10-09 2002-10-07 Process for washing a distillation column used for the purification of (meth)acrylic acids
EP02800786A EP1440964B1 (en) 2001-10-09 2002-10-07 Process for production of (meth)acrylic compounds and method of distillation
CN200410046547.1A CN1260198C (en) 2001-10-09 2002-10-07 Method for stopping running of distillation tower
EP06025893A EP1787974B1 (en) 2001-10-09 2002-10-07 Process for washing a distillation column used for the purification of (meth)acrylic acids
EA200500090A EA007187B1 (en) 2001-10-09 2002-10-07 Process for production of (meth)acrylic compounds and methods of distillation
AU2002362718A AU2002362718B2 (en) 2001-10-09 2002-10-07 Process for production of (meth)acrylic compounds and method of distillation
US10/817,955 US7396957B2 (en) 2001-10-09 2004-04-06 Process for producing (meth)acrylic acids and process for distilling the same
US11/526,730 US7368601B2 (en) 2001-10-09 2006-09-26 Process for producing (meth)acrylic acids and process for distilling the same
US11/812,716 US20070256921A1 (en) 2001-10-09 2007-06-21 Process for producing (meth) acrylic acids and process for distilling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001377723A JP4034559B2 (en) 2001-12-11 2001-12-11 Distillation of (meth) acrylic acids

Publications (2)

Publication Number Publication Date
JP2003176253A JP2003176253A (en) 2003-06-24
JP4034559B2 true JP4034559B2 (en) 2008-01-16

Family

ID=19185623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001377723A Expired - Lifetime JP4034559B2 (en) 2001-10-09 2001-12-11 Distillation of (meth) acrylic acids

Country Status (1)

Country Link
JP (1) JP4034559B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7393976B2 (en) * 2003-11-26 2008-07-01 Rohm And Haas Company Process for manufacturing reduced water content (meth)acrylic acid
JP2005336110A (en) * 2004-05-27 2005-12-08 Mitsubishi Chemicals Corp Method for producing (meth)acrylic acid and (meth)acrylic acid ester
EP1856020B1 (en) * 2005-03-01 2015-07-08 Basf Se Method for the elimination of methacrylic acid from a liquid phase containing acrylic acid as a main component and target product and methacrylic acid as a secondary component
CN106892838A (en) * 2015-12-17 2017-06-27 英尼奥斯欧洲股份公司 Recovery tower is controlled

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4832513B1 (en) * 1967-05-23 1973-10-06
JP2000344688A (en) * 1999-06-04 2000-12-12 Mitsubishi Chemicals Corp Purification of readily polymerizable compound
JP2001213839A (en) * 2000-02-03 2001-08-07 Nippon Shokubai Co Ltd Method for producing (meth)acrylic acid
JP4430788B2 (en) * 2000-06-02 2010-03-10 株式会社日本触媒 Distillation tower startup method

Also Published As

Publication number Publication date
JP2003176253A (en) 2003-06-24

Similar Documents

Publication Publication Date Title
EP1484309B1 (en) Method for production of acrylic acid
US7368601B2 (en) Process for producing (meth)acrylic acids and process for distilling the same
JP2000290221A (en) Purification of (meth)acrylic acid
CN107235836B (en) Improved process for producing (meth) acrylic acid
JP2001226320A (en) Method for collecting acrylic acid and method for purifying acrylic acid
JP3971974B2 (en) Method for producing (meth) acrylic acids
ZA200500279B (en) Process for producing (meth)acrylic acid and (meth)acrylic esters
JP3992643B2 (en) Method for distillation of (meth) acrylic acid and / or its ester
JP4034559B2 (en) Distillation of (meth) acrylic acids
KR101091736B1 (en) Method for production of aqueous (meth)acrylic acid
JP2003113138A (en) Method for distilling (meth)acrylic acid
JP3971923B2 (en) Method for producing (meth) acrylic acids
JP2003267917A (en) Method for stopping operation of distillation column
WO2005082827A1 (en) Method of handling hihgly viscous substance
JP2014144943A (en) Method for stopping the driving of distillation tower
ZA200409151B (en) Process for producing (meth)acrolein or (meth)acrylic acid
JP2008266159A (en) Method for purifying butyl acrylate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4034559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term