JP4033388B2 - Method for operating an electrolyte circulating battery - Google Patents

Method for operating an electrolyte circulating battery Download PDF

Info

Publication number
JP4033388B2
JP4033388B2 JP2002284349A JP2002284349A JP4033388B2 JP 4033388 B2 JP4033388 B2 JP 4033388B2 JP 2002284349 A JP2002284349 A JP 2002284349A JP 2002284349 A JP2002284349 A JP 2002284349A JP 4033388 B2 JP4033388 B2 JP 4033388B2
Authority
JP
Japan
Prior art keywords
electrolyte
filter
organic matter
filtering means
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002284349A
Other languages
Japanese (ja)
Other versions
JP2004119311A (en
Inventor
忠拓 貝吹
理 大浜
信幸 徳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2002284349A priority Critical patent/JP4033388B2/en
Publication of JP2004119311A publication Critical patent/JP2004119311A/en
Application granted granted Critical
Publication of JP4033388B2 publication Critical patent/JP4033388B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セルに電解液を供給・排出する電解液循環型電池の運転方法に関するものである。特に、セル抵抗の増大を抑制することが可能な電解液循環型電池の運転方法に関するものである。
【0002】
【従来の技術】
電解液循環型電池として、近年、レドックスフロー電池が知られている。このレドックスフロー電池は、従来、負荷平準化や瞬停対策用として利用されている。図3はレドックスフロー電池の動作原理を示す説明図である。この電池は、イオン交換膜からなる隔膜103で正極セル100Aと負極セル100Bとに分離されたセル100を具える。正極セル100Aと負極セル100Bの各々には正極電極104と負極電極105とを内蔵している。正極セル100Aには正極電解液を供給・排出するための正極用タンク101が導管106、107を介して接続されている。負極セル100Bにも負極電解液を導入・排出する負極用タンク102が同様に導管109、110を介して接続されている。各電解液にはバナジウムイオンなど原子価が変化するイオンの水溶液を用い、ポンプ108、111で循環させ、正負極電極104、105におけるイオンの価数変化反応に伴って充放電を行う。例えば、バナジウムイオンを含む電解液を用いた場合、セル内で充放電時に生じる反応は次のとおりである。
正極:V4+→V5++e-(充電) V4+←V5++e-(放電)
負極:V3++e-→V2+(充電) V3++e-←V2+(放電)
【0003】
このようなレドックスフロー電池は、電極にごみなどの異物が付着することで電池効率が徐々に低下する。そこで、電池効率を回復させる方法として、例えば、特許文献1に記載の技術や、特許文献2に記載の技術がある。
【0004】
特許文献1には、電極にごみなどの異物が付着して電極が目詰まりし、セルの内部抵抗が増加することで低下した電池効率を改善するために、運転時と逆方向から蒸留水などの洗浄液を送り込み、ごみなどの異物を除去する技術が開示されている。
【0005】
特許文献2には、電極表面にバナジウムの酸化物などが析出して電極面積が減少することで低下した電池効率を改善するために、電極表面をアルカリ洗浄して、析出物を溶解除去する技術が開示されている。
【0006】
【特許文献1】
特開平10-308232号公報
【特許文献2】
特開2000-200615号公報
【0007】
【発明が解決しようとする課題】
しかし、上記従来の技術では、電極表面に付着した有機物を除去することができないという問題がある。
本発明者らは、電池効率が低下する原因として、種々検討した結果、レドックスフロー電池の構成材料に用いられている有機化合物が分解・溶出して電解液中に混入し、これら有機物が電極に付着することで電極の性能が低下する、即ちセル抵抗が増大する可能性が高いことを見出した。
【0008】
そこで、本発明の主目的は、セル抵抗が増大するのを抑制することができる電解液循環型電池の運転方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、電解液中に含有される有機物を有機物の吸着能を有するろ過手段により除去することで上記目的を達成する。
即ち、本発明運転方法は、セルに電解液を循環させる電解液循環型電池の運転方法であって、有機物の吸着能を有するろ過手段に電解液を通過させて電解液中に含まれる有機物を除去することを特徴とする。
【0010】
従来、電池効率が低下する原因として、電極にごみなどが付着することや電極表面にバナジウムの酸化物・硫酸塩などが析出することが知られており、これらごみや析出物を蒸留水やアルカリなどで除去することが行われている。しかし、本発明者らは、電極に異物や析出物以外に有機物が付着して、電極の性能を低下させる可能性があることを見出した。レドックスフロー電池は、例えば、配管、電解液のタンク、セルフレーム、隔膜など、その構成材料に有機化合物が多く用いられている。そして、電解液として硫酸バナジウム溶液がよく用いられており、電解液中に上記有機物からの分解物・溶出物が混入し、その状態で電解液がセル内を流通することで、電極に有機物が付着すると推測される。そして、電解液が循環することで長期に亘り有機物の分解・溶出が続けられると考えられる。また、電池を設置工事中に環境中から混入したり、人由来、機械・工具由来の有機物が混入する可能性もある。
【0011】
ここで、特許文献1に記載される蒸留水や希硫酸などの洗浄液や、特許文献2に記載されるアルカリ洗浄では、有機物の洗浄液への溶解度が極めて小さく、有機物を効果的に分解除去することは困難である。そこで、本発明は、電極に付着した有機物を洗浄除去するのではなく、電極に有機物などが付着しにくいように電解液中に含まれる有機物などをろ過手段で除去するものである。
【0012】
本発明は、ろ過手段を通過させることで電解液中の有機物をろ過手段に吸着させ、有機物がほぼ除去された又は低減された状態で電解液を循環させる。そのため、電極に電解液中の有機物などが付着することを抑制することができる。
【0013】
電解液は、運転中、ろ過手段に連続的に通過させて循環させてもよいし、セル抵抗が増大しない程度に断続的に通過させて循環させてもよく、ろ過手段を通過させる場合とろ過手段を通過させない場合とを交互に繰り返したりしてもよい。例えば、一定時間ごとに一定時間ろ過手段を通過させたり、電解液中の有機物量を測定しておき、有機物量が一定値以上になったら一定時間ろ過手段を通過させることが挙げられる。このとき、電解液中の有機物量の測定は、後述するモニタ用のろ過手段を用いて行うと、効率的である。
【0014】
ろ過手段に電解液を連続的に通過させる場合や一定時間ごとに通過させる場合、ろ過手段に吸着された有機物量を測定し、その量が一定値以上のとき、ろ過手段の吸着能を改善させるためにろ過手段を清浄することが好ましい。ろ過手段に吸着した有機物量が一定値以上のとき、電解液中の有機物の含有量が多くなっており、有機物が電極に過度に付着してセル抵抗を増大させる可能性が高いため、ろ過手段の吸着能を回復させておく。このような有機物量の閾値としては、ろ過手段に用いるろ材(g)に対する有機物量(mg)が100mg/g以上が適当である。ろ過手段の清浄化は、ろ過手段自体を交換したり、ろ過手段を有機溶剤などで洗浄することで行うとよい。また、清浄化は、定期点検時など電解液の循環を停止している間(電池運転を停止している間)などに行ってもよいし、電池を運転している間に行う場合は、仮設フィルタを設置して行うとよい。ろ過手段として電極よりも吸着能が高いものを用いた場合、電極に付着している有機物量は、ろ過手段に吸着された有機物量よりも小さい。例えば、ろ過手段として、活性炭フィルタを用いた場合、電極に付着している有機物量は、フィルタに吸着された量の1/100以下程度であり、電極への付着量がこの程度であれば、セル抵抗の増大度合いも小さいことが後述する試験例から確認されている。このようにろ過手段に吸着された有機物量を測定し、その量が一定値以上の場合、ろ過手段を清浄にして用いることで、電解液中の有機物含有量が一定値未満となるように管理することができる。
【0015】
ろ過手段に吸着された有機物量の測定は、有機物吸着用のろ過手段を解体することで行ってもよいが、有機物量を測定するモニタ用のろ過手段を有機物吸着用のろ過手段と別途設けて、モニタ用のろ過手段を用いて行うことが好ましい。このとき、電解液中の有機物を吸着除去する有機物吸着用のろ過手段は、大スケールのものとし、モニタ用のろ過手段は、有機物の除去を主目的としないため、小スケールのものとしてもよい。そして、モニタ用のろ過手段に吸着された有機物量を測定し、その量が一定値以上の場合、有機物吸着用のろ過手段を清浄にすることが好ましい。一方、モニタ用のろ過手段は、上記と同様に電池運転を停止している間に清浄化してもよいし、交換してもよい。なお、モニタ用のろ過手段の交換は比較的短い時間で行うことができるため、電池を運転している際にモニタ用のろ過手段を交換する場合は、有機物吸着用のろ過手段を通過させないで電解液を循環させてもよい。このような構成により、上記と同様に、電解液中の有機物含有量が一定値未満となるように管理することができる。
【0016】
本発明においてろ過手段は、有機物を付着させることができるものであれば特に問わないが、電極の有機物に対する吸着能よりも大きな吸着能を有するものを具えることが好ましい。例えば、種々の有機物に対して吸着力に優れると共に、安価で手に入り易い活性炭フィルタが挙げられる。活性炭フィルタは、ろ材に粉末活性炭を用いたもの、粉状活性炭を固形成形したカートリッジタイプのもの、繊維状活性炭で構成されたカートリッジタイプのものなど市販されているものを用いるとよい。
【0017】
ろ過手段に吸着させた有機物量の測定は、ガスクロマトグラフ質量分析法、ガスクロマトグラフ分析法などのクロマトグラフによるが好適である。その他、高速液体クロマトグラフィー、滴定法、吸光度法などの種々の方法が適用できる。より具体的には、ろ過手段を溶剤に通液してろ過手段に吸着された有機物を溶出し、この溶剤を濃縮乾燥した後、有機成分を試料に用いてクロマトグラフにより分析することが挙げられる。
【0018】
上記本発明運転方法では、電解液の流路、例えば、セルに電解液を導入する導入側及びセルから電解液を排出する排出側の少なくとも一方に電解液中に含まれる有機物を除去するろ過手段を具える電池を用いることが好ましい。電池のより具体的な構成として、例えば、電解液のタンクとセルとを接続する導管に別途配管を設けてろ過手段を設置することが挙げられる。そして、各導管、配管にはバルブを設けておき、バルブの開閉により、ろ過手段を通過させる流路と、通過させない流路とを具えてもよい。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。
図1は、本発明の電解液循環型電池の運転方法が適用される電解液循環型電池の模式図である。電池の基本構成は、図3に示すレドックスフロー電池と同様であり、同一符号は同一物を示す。図1は、電解液の流路(電解液の導管106、107、109、110)を中心に示しており、変換器などは省略している。上記電池は、セル100に電解液を導入する導入側導管106、109に配管2を別途設け、この配管2を介して有機物の吸着能を有するフィルタ(ろ過手段)1を具える。配管2には、バルブ3、4、5、6を設けており、電解液をフィルタ1に通過させる際は、導管106、109に具えるバルブ10、11を閉じバルブ3〜6を開けるとよい。フィルタ1の交換や洗浄などにより、電解液をフィルタ1に通過させない場合は、バルブ10、11を開け、バルブ3〜6を閉じるとよい。
【0020】
上記電池は、電解液をフィルタ1に通過させて電解液中の有機物をフィルタ1に吸着させて電解液中の有機物量を減少させる。このようにフィルタ1を通過させることで有機物量を減少させた電解液をセル100に循環するため、有機物などが電極に付着することを抑制する。従って、上記電池は、電極への有機物の付着によるセル抵抗の増加を抑えることができる。
【0021】
(試験例)
図1に示す電解液の流路に有機物の吸着能を有するフィルタを具えたレドックスフロー電池を複数作製し、充放電試験を行った後、フィルタの付着物を測定した。試験の手順を以下に示す。
【0022】
各レドックスフロー電池において、図1に示すバルブ10、11を閉じ、バルブ3〜6を開けて、電解液を一定時間フィルタ1に通過させながら充放電を行い、電解液中に含まれる有機物をフィルタに吸着させる。そして、フィルタ1の吸着物を下記の条件でガスクロマトグラフ質量分析した。
【0023】
本試験において、各レドックスフロー電池は、いずれも100cm×80cmのセルを25枚積層したのものを用いた。電解液は、硫酸バナジウム溶液、電極は炭素繊維製のものを用いた。フィルタは、一般に市販されている粒状活性炭フィルタ(商品名:YCC-2L、日本フィルター社製)を用いた。
【0024】
(充放電条件)
充放電方法:定電流
電流密度 :70(mA/cm)
充電終了電圧:1.55(V)
放電終了電圧:1.00(V)
温度 :25℃
【0025】
(分析方法)
サンプリング条件:300℃×5分加熱
使用装置 :Agilent社製 GC6890
カラム :HP-5MS(内径0.25mm、膜厚0.25μm、長さ30m)
カラム昇温 :50℃→25℃/min→320℃(5min)
検出器 :Agilent社製 MSD5973N(230℃)
試料注入口温度 :280℃
質量範囲 :33〜500A.M.U
試料量 :15mg
【0026】
分析量は、得られたクロマトグラフの総ピーク面積和をn-デカン1.0μgピーク強度で換算して求めた。各レドックスフロー電池において、フィルタに吸着された有機物量を表1に示す。
【0027】
【表1】

Figure 0004033388
【0028】
このとき、電極に付着している有機物量は、電極とフィルタとの比表面積(約1000m2/g)を勘案して、フィルタに吸着された有機物量の1/100程度と推定される。そこで、各レドックスフロー電池に具えるフィルタに吸着された有機物量の1/100を付着させた電極(3cm×3cm)を用いて、小型の電池を作製し、上記と同様の充放電条件で充放電を行い、セル抵抗を評価した。なお、この試験で作製した小型の電池は、電極の大きさを変化させた以外は、上記各レドックスフロー電池と同様の仕様とした。
【0029】
セル抵抗を表1に示す。表1に示すように、フィルタの有機物量が100mg/g以上でセル抵抗の増加が顕著になることがわかる。従って、電解液をフィルタに通過させて、電解液中の有機物をフィルタに吸着させて除去し、特に、フィルタに吸着された有機物の分析量が100mg/g未満となるように維持することが好ましいことがわかる。また、有機物の分析量が100mg/g以上となる前に、フィルタの吸着能を低下させないようにフィルタを適宜清浄にしたり、交換したりすることで、セル抵抗をより低く保つことができると推測される。
【0030】
一方、試料No.4〜6のようにフィルタに吸着された有機物の分析量が100mg/g以上となった場合は、洗浄などによりフィルタの吸着能を回復させてから再び電解液を通過させると、電解液中の有機物を除去し、セル抵抗が増大することを抑制できると推測される。
【0031】
上記の試験例では、有機物吸着用のフィルタ(フィルタ1)のみを具えた電池を説明したが、図2に示すようにフィルタ1とは別に電解液中の有機物量を測定するためのモニタ用の小フィルタ7を設けて電池を用いてもよい。図2に示す電池は、電解液の供給側導管106、109に設けたフィルタ1と別個に小フィルタ7を設けている。このような電池において、小フィルタ7に吸着された有機物量が100mg/g以上となったら、フィルタ1を適宜交換、洗浄などして、有機物の吸着能を回復させることが好ましい。このとき、小フィルタ1も、有機物の吸着能が低下しないように適宜交換、洗浄するとよい。
【0032】
【発明の効果】
以上説明したように、本発明によれば、電解液をろ過手段に通過させることで、電解液に含有される有機物を効果的に除去することができ、電極に有機物が付着するのを抑制することができるという優れた効果を奏し得る。そのため、本発明は、セル抵抗が増大することを抑えることができ、電池効率の低下を防止することが可能である。
【図面の簡単な説明】
【図1】 導管にフィルタを具え、本発明の電解液循環型電池の運転方法が適用される電解液循環型電池の模式図である。
【図2】 導管に有機物吸着用のフィルタと、モニタ用のフィルタとを具え、本発明の電解液循環型電池の運転方法が適用される電解液循環型電池の模式図である。
【図3】レドックスフロー電池の動作原理を示す説明図である。
【符号の説明】
1 フィルタ 2 配管 3〜6、10、11 バルブ
100 セル 100A 正極セル 100B 負極セル 101 正極用タンク
102 負極用タンク 103 隔膜 104 正極電極 104 正負極電極
105 負極電極 106 導管 108 ポンプ 109 導管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the operation how the flowing electrolyte battery for supplying and discharging the electrolyte solution in the cell. In particular, it relates to the operation how the flowing electrolyte battery capable of suppressing the increase in the cell resistance.
[0002]
[Prior art]
In recent years, redox flow batteries are known as electrolyte circulation type batteries. This redox flow battery has been conventionally used for load leveling and instantaneous power failure countermeasures. FIG. 3 is an explanatory diagram showing the operating principle of the redox flow battery. This battery includes a cell 100 separated into a positive electrode cell 100A and a negative electrode cell 100B by a diaphragm 103 made of an ion exchange membrane. Each of the positive electrode cell 100A and the negative electrode cell 100B incorporates a positive electrode 104 and a negative electrode 105. A positive electrode tank 101 for supplying and discharging a positive electrode electrolyte is connected to the positive electrode cell 100A via conduits 106 and 107. Similarly, a negative electrode tank 102 for introducing and discharging a negative electrode electrolyte is also connected to the negative electrode cell 100B via conduits 109 and 110. An aqueous solution of ions such as vanadium ions whose valence changes is used for each electrolytic solution, which is circulated by pumps 108 and 111, and is charged and discharged in accordance with the valence change reaction of the positive and negative electrodes 104 and 105. For example, when an electrolytic solution containing vanadium ions is used, the reaction that occurs during charging and discharging in the cell is as follows.
The positive electrode: V 4+ → V 5+ + e - ( charging) V 4+ ← V 5+ + e - ( discharge)
The negative electrode: V 3+ + e - → V 2+ ( charging) V 3+ + e - ← V 2+ ( discharge)
[0003]
In such a redox flow battery, the efficiency of the battery gradually decreases due to foreign matters such as dust adhering to the electrode. Thus, as a method for recovering battery efficiency, for example, there are a technique described in Patent Document 1 and a technique described in Patent Document 2.
[0004]
In Patent Document 1, in order to improve the battery efficiency, which is reduced because foreign matters such as dust adhere to the electrode and the electrode is clogged and the internal resistance of the cell increases, distilled water or the like is used from the opposite direction to that in operation. A technique is disclosed in which a cleaning liquid is fed and foreign matters such as dust are removed.
[0005]
Patent Document 2 discloses a technique in which the electrode surface is washed with an alkali to dissolve and remove the deposit in order to improve the battery efficiency, which is reduced by the deposition of vanadium oxide or the like on the electrode surface to reduce the electrode area. Is disclosed.
[0006]
[Patent Document 1]
JP 10-308232 A [Patent Document 2]
Japanese Patent Laid-Open No. 2000-200615
[Problems to be solved by the invention]
However, the above conventional technique has a problem in that organic substances attached to the electrode surface cannot be removed.
As a result of various investigations as a cause of the decrease in battery efficiency, the present inventors have decomposed and eluted organic compounds used in the constituent materials of the redox flow battery and mixed them into the electrolyte solution, and these organic substances are contained in the electrode. It has been found that there is a high possibility that the electrode performance deteriorates due to adhesion, that is, the cell resistance increases.
[0008]
Therefore, the main object of the present invention is to provide a driving how the flowing electrolyte battery can be inhibited from cell resistance increases.
[0009]
[Means for Solving the Problems]
The present invention achieves the above object by removing organic substances contained in the electrolytic solution by a filtering means having an adsorption ability of organic substances.
That is, the operation method of the present invention is an operation method of an electrolytic solution circulation type battery in which an electrolytic solution is circulated in a cell, and the organic matter contained in the electrolytic solution is passed by passing the electrolytic solution through a filtering means having an adsorption ability of organic matter. It is characterized by removing.
[0010]
Conventionally, it has been known that the battery efficiency is reduced because dust or the like adheres to the electrode, and vanadium oxide / sulfate is deposited on the electrode surface. It is done to remove. However, the present inventors have found that there is a possibility that organic substances adhere to the electrode in addition to foreign matters and precipitates, thereby reducing the performance of the electrode. Redox flow batteries often use organic compounds as constituent materials such as pipes, electrolyte tanks, cell frames, and diaphragms. A vanadium sulfate solution is often used as the electrolytic solution. Decomposition products and elution products from the organic matter are mixed in the electrolytic solution, and the electrolytic solution circulates in the cell in this state. Presumed to adhere. And it is thought that decomposition | disassembly and elution of organic substance are continued over a long term because electrolyte solution circulates. In addition, the battery may be mixed from the environment during installation work, or organic substances derived from humans, machines / tools may be mixed in.
[0011]
Here, in the cleaning liquid such as distilled water and dilute sulfuric acid described in Patent Document 1 and the alkali cleaning described in Patent Document 2, the solubility of the organic substance in the cleaning liquid is extremely small, and the organic substance is effectively decomposed and removed. It is difficult. Therefore, the present invention does not wash and remove the organic matter adhering to the electrode, but removes the organic matter contained in the electrolytic solution by a filtering means so that the organic matter or the like does not easily adhere to the electrode.
[0012]
In the present invention, the organic substance in the electrolytic solution is adsorbed by the filtering means by passing through the filtering means, and the electrolytic solution is circulated in a state where the organic substances are substantially removed or reduced. Therefore, it can suppress that the organic substance etc. in electrolyte solution adhere to an electrode.
[0013]
During operation, the electrolytic solution may be continuously passed through the filtering means and circulated, or may be intermittently passed and circulated to such an extent that the cell resistance does not increase. The case where the means is not passed may be alternately repeated. For example, it is possible to pass the filtering means for a fixed time every fixed time, or measure the amount of organic substance in the electrolyte solution, and pass the filtering means for a fixed time when the organic substance amount becomes a certain value or more. At this time, the measurement of the amount of organic substances in the electrolytic solution is efficient when performed using a filtering means for monitoring described later.
[0014]
When passing the electrolyte continuously through the filtration means or at regular intervals, measure the amount of organic matter adsorbed on the filtration means, and improve the adsorption capacity of the filtration means when the amount exceeds a certain value. Therefore, it is preferable to clean the filtering means. When the amount of organic matter adsorbed on the filtration means is above a certain value, the content of organic matter in the electrolyte is increased, and it is highly possible that the organic matter adheres excessively to the electrode and increases cell resistance. Recover the adsorption capacity. As such a threshold value of the organic matter amount, an organic matter amount (mg) with respect to the filter medium (g) used for the filtering means is suitably 100 mg / g or more. The filtering means may be cleaned by exchanging the filtering means itself or by washing the filtering means with an organic solvent or the like. In addition, cleaning may be performed while the circulation of the electrolyte is stopped (during the periodic inspection) (while the battery operation is stopped), etc. It is better to install a temporary filter. When a filtering means having a higher adsorption capacity than the electrode is used, the amount of organic matter adhering to the electrode is smaller than the amount of organic matter adsorbed to the filtering means. For example, when an activated carbon filter is used as a filtering means, the amount of organic matter adhering to the electrode is about 1/100 or less of the amount adsorbed to the filter, and if the amount adhering to the electrode is about this level, It is confirmed from the test examples described later that the degree of increase in cell resistance is small. In this way, the amount of organic matter adsorbed on the filtering means is measured, and when the amount is above a certain value, the filtering means is used by cleaning it so that the organic matter content in the electrolyte is less than the certain value. can do.
[0015]
The measurement of the amount of organic matter adsorbed on the filtering means may be performed by disassembling the filtering means for organic matter adsorption, but a filtering means for monitoring for measuring the amount of organic matter is provided separately from the filtering means for organic matter adsorption. It is preferable to use a filtering means for monitoring. At this time, the filtration means for adsorbing organic substances for adsorbing and removing organic substances in the electrolytic solution is a large scale, and the filtering means for monitoring is not intended to remove organic substances, so it may be of a small scale. . Then, the amount of organic matter adsorbed on the filtering means for monitoring is measured, and when the amount is a certain value or more, it is preferable to clean the filtering means for adsorbing organic matter. On the other hand, the filtering means for monitoring may be cleaned or replaced while the battery operation is stopped as described above. Since the filter means for monitoring can be replaced in a relatively short time, when replacing the filter means for monitoring when the battery is operating, do not pass the filter means for adsorbing organic matter. The electrolytic solution may be circulated. With such a configuration, the organic matter content in the electrolytic solution can be managed to be less than a certain value, as described above.
[0016]
In the present invention, the filtering means is not particularly limited as long as it can adhere an organic substance, but it is preferable to include a filter having an adsorption capacity larger than that of the electrode with respect to the organic substance. For example, an activated carbon filter that is excellent in adsorptive power with respect to various organic substances and that is inexpensive and easily available can be mentioned. As the activated carbon filter, a commercially available filter such as one using powdered activated carbon as a filter medium, a cartridge type obtained by solid-molding powdered activated carbon, or a cartridge type constituted by fibrous activated carbon may be used.
[0017]
The amount of the organic substance adsorbed on the filtering means is preferably measured by a chromatograph such as gas chromatograph mass spectrometry or gas chromatograph analysis. In addition, various methods such as high performance liquid chromatography, titration method, and absorbance method can be applied. More specifically, the filtering means is passed through a solvent to elute the organic matter adsorbed on the filtering means, the solvent is concentrated and dried, and then the organic component is used as a sample and analyzed by chromatography. .
[0018]
In the operation method of the present invention, the filtering means for removing the organic substances contained in the electrolyte at least one of the electrolyte flow path, for example, the introduction side for introducing the electrolyte into the cell and the discharge side for discharging the electrolyte from the cell. It is preferable to use a battery comprising As a more specific configuration of the battery, for example, a separate pipe may be provided in a conduit connecting the electrolytic solution tank and the cell, and the filtering means may be installed. Each conduit and piping may be provided with a valve, and by opening and closing the valve, a flow path through which the filtering means is allowed to pass and a flow path not allowed to pass through may be provided.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below.
FIG. 1 is a schematic view of an electrolyte circulation type battery to which an operation method of the electrolyte circulation type battery of the present invention is applied . The basic configuration of the battery is the same as that of the redox flow battery shown in FIG. 3, and the same reference numerals denote the same items. FIG. 1 mainly shows an electrolyte solution flow path (electrolyte conduits 106, 107, 109, 110), and a converter and the like are omitted. In the battery, a pipe 2 is separately provided in introduction-side conduits 106 and 109 for introducing an electrolytic solution into the cell 100, and a filter (filtering means) 1 having an organic substance adsorption ability is provided through the pipe 2. The pipe 2 is provided with valves 3, 4, 5, and 6. When the electrolyte is passed through the filter 1, the valves 10 and 11 included in the conduits 106 and 109 may be closed and the valves 3 to 6 may be opened. . When the electrolytic solution is not allowed to pass through the filter 1 due to replacement or cleaning of the filter 1, the valves 10 and 11 may be opened and the valves 3 to 6 may be closed.
[0020]
In the battery, the electrolytic solution is passed through the filter 1 to adsorb the organic matter in the electrolytic solution to the filter 1 to reduce the amount of organic matter in the electrolytic solution. In this way, since the electrolytic solution in which the amount of organic matter is reduced by passing through the filter 1 is circulated to the cell 100, the organic matter and the like are prevented from adhering to the electrode. Therefore, the battery can suppress the increase in the cell resistance by organic substances adhering to the electrodes.
[0021]
(Test example)
A plurality of redox flow batteries provided with a filter having an organic substance adsorption ability in the electrolyte solution flow path shown in FIG. 1 were prepared and subjected to a charge / discharge test. The test procedure is shown below.
[0022]
In each redox flow battery, the valves 10 and 11 shown in FIG. 1 are closed, the valves 3 to 6 are opened, and charging / discharging is performed while allowing the electrolyte to pass through the filter 1 for a certain period of time, thereby filtering organic substances contained in the electrolyte. Adsorb to. Then, the adsorbate of the filter 1 was subjected to gas chromatograph mass spectrometry under the following conditions.
[0023]
In this test, each redox flow battery was a stack of 25 100 cm × 80 cm cells. The electrolyte used was a vanadium sulfate solution, and the electrode was made of carbon fiber. As the filter, a commercially available granular activated carbon filter (trade name: YCC-2L, manufactured by Nippon Filter Co., Ltd.) was used.
[0024]
(Charge / discharge conditions)
Charging / discharging method: constant current current density: 70 (mA / cm 2 )
Charging end voltage: 1.55 (V)
Discharge end voltage: 1.00 (V)
Temperature: 25 ° C
[0025]
(Analysis method)
Sampling conditions: 300 ° C x 5 minutes Heating device: Agilent GC6890
Column: HP-5MS (inner diameter 0.25mm, film thickness 0.25μm, length 30m)
Column temperature rise: 50 ℃ → 25 ℃ / min → 320 ℃ (5min)
Detector: MSD5973N (230 ° C) manufactured by Agilent
Sample inlet temperature: 280 ℃
Mass range: 33-500A.MU
Sample amount: 15mg
[0026]
The amount of analysis was obtained by converting the total peak area sum of the obtained chromatograph with n-decane 1.0 μg peak intensity. Table 1 shows the amount of organic matter adsorbed on the filter in each redox flow battery.
[0027]
[Table 1]
Figure 0004033388
[0028]
At this time, the amount of organic matter adhering to the electrode is estimated to be about 1/100 of the amount of organic matter adsorbed on the filter in consideration of the specific surface area (about 1000 m 2 / g) between the electrode and the filter. Therefore, a small battery was fabricated using an electrode (3 cm x 3 cm) to which 1/100 of the amount of organic matter adsorbed by the filter included in each redox flow battery was adhered, and charging / discharging conditions were the same as described above. Discharge was performed and cell resistance was evaluated. The small battery produced in this test had the same specifications as the above redox flow batteries except that the size of the electrode was changed.
[0029]
Table 1 shows the cell resistance. As shown in Table 1, it can be seen that the increase in cell resistance becomes significant when the organic content of the filter is 100 mg / g or more. Accordingly, it is preferable to pass the electrolytic solution through the filter and remove the organic matter in the electrolytic solution by adsorbing the filter, and particularly to maintain the analysis amount of the organic matter adsorbed on the filter to be less than 100 mg / g. I understand that. In addition, it is assumed that the cell resistance can be kept lower by appropriately cleaning or replacing the filter so that the adsorption capacity of the filter does not decrease before the analysis amount of organic matter reaches 100 mg / g or more. Is done.
[0030]
On the other hand, when the analysis amount of the organic matter adsorbed on the filter is 100 mg / g or more as in sample Nos. 4 to 6, the electrolyte is allowed to pass again after the filter adsorbing capacity is recovered by washing or the like. It is presumed that organic substances in the electrolytic solution can be removed and increase in cell resistance can be suppressed.
[0031]
In the above test example, a battery including only an organic matter adsorption filter (filter 1) has been described. However, as shown in FIG. 2, a monitor for measuring the amount of organic matter in the electrolyte separately from the filter 1 is used. A battery may be used by providing the small filter 7. The battery shown in FIG. 2 is provided with a small filter 7 separately from the filter 1 provided in the electrolyte supply side conduits 106 and 109. In such a battery, when the amount of organic matter adsorbed on the small filter 7 becomes 100 mg / g or more, it is preferable to replace the filter 1 as appropriate and wash it to recover the adsorption ability of the organic matter. At this time, the small filter 1 is also preferably replaced and washed as appropriate so that the adsorption ability of the organic matter does not decrease.
[0032]
【The invention's effect】
As described above, according to the present invention, the organic substance contained in the electrolytic solution can be effectively removed by passing the electrolytic solution through the filtering means, and the organic substance is prevented from adhering to the electrode. It is possible to achieve an excellent effect of being able to. Therefore, the present invention can suppress an increase in cell resistance and can prevent a decrease in battery efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an electrolyte circulation type battery that includes a filter in a conduit and to which the operation method of the electrolyte circulation type battery of the present invention is applied .
FIG. 2 is a schematic diagram of an electrolyte circulation type battery that includes an organic substance adsorption filter and a monitor filter in a conduit and to which the operation method of the electrolyte circulation type battery of the present invention is applied .
FIG. 3 is an explanatory diagram showing the operating principle of a redox flow battery.
[Explanation of symbols]
1 Filter 2 Piping 3 to 6, 10, 11 Valve
100 cell 100A positive electrode cell 100B negative electrode cell 101 positive electrode tank
102 Tank for negative electrode 103 Diaphragm 104 Positive electrode 104 Positive and negative electrode
105 Negative electrode 106 Conduit 108 Pump 109 Conduit

Claims (1)

セルに電解液を循環させる電解液循環型電池の運転方法であって、
セルに導入され、セルから排出される電解液の流路に、
有機物の吸着能を有するろ過手段を設けて、
このろ過手段に電解液を通過させて電解液中に溶出している有機物を除去するとともに、ろ過手段に吸着された有機物量を測定して、有機物量が100mg/g以上のときろ過手段を清浄にすることにより、電解液中の有機物の含有量を一定値未満となるように管理することを特徴とする電解液循環型電池の運転方法。
An operation method of an electrolyte circulation type battery for circulating an electrolyte in a cell,
In the flow path of the electrolyte introduced into the cell and discharged from the cell,
Provide a filtering means with the ability to adsorb organic matter,
The electrolytic solution is passed through this filtering means to remove organic substances eluted in the electrolytic solution, and the amount of organic matter adsorbed on the filtering means is measured. When the organic matter amount is 100 mg / g or more, the filtering means is cleaned. it allows flowing electrolyte battery operating method characterized by managing the content of organic substances in the electrolyte solution to be less than a certain value to.
JP2002284349A 2002-09-27 2002-09-27 Method for operating an electrolyte circulating battery Expired - Fee Related JP4033388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284349A JP4033388B2 (en) 2002-09-27 2002-09-27 Method for operating an electrolyte circulating battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002284349A JP4033388B2 (en) 2002-09-27 2002-09-27 Method for operating an electrolyte circulating battery

Publications (2)

Publication Number Publication Date
JP2004119311A JP2004119311A (en) 2004-04-15
JP4033388B2 true JP4033388B2 (en) 2008-01-16

Family

ID=32277936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284349A Expired - Fee Related JP4033388B2 (en) 2002-09-27 2002-09-27 Method for operating an electrolyte circulating battery

Country Status (1)

Country Link
JP (1) JP4033388B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5426065B2 (en) * 2005-06-30 2014-02-26 住友電気工業株式会社 Redox flow battery
JP5768997B2 (en) * 2011-02-07 2015-08-26 住友電気工業株式会社 Electrolyte battery
US9531028B2 (en) 2011-06-27 2016-12-27 Sumitomo Electric Industries, Ltd. Redox flow battery
JP5769070B2 (en) * 2011-06-27 2015-08-26 住友電気工業株式会社 Redox flow battery
JP2014216203A (en) 2013-04-25 2014-11-17 住友電気工業株式会社 Electrolyte for redox flow battery and redox flow battery
JP5433100B2 (en) * 2013-07-11 2014-03-05 住友電気工業株式会社 Electrolytic solution for redox flow battery, redox flow battery, and operating method of redox flow battery
EP3316375B1 (en) 2015-06-23 2020-03-18 Panasonic Intellectual Property Management Co., Ltd. Redox flow cell
CN111448700A (en) * 2017-12-14 2020-07-24 昭和电工株式会社 Battery main body unit of redox flow battery, redox flow battery using same, and operation method of redox flow battery
KR101955893B1 (en) * 2018-11-16 2019-03-08 주식회사 에이치투 Method for removing precipitation of redox flow battery and redox flow battery including the method
CN116689395B (en) * 2023-08-07 2023-10-17 纬景储能科技有限公司 Cleaning device of flow battery and flow battery

Also Published As

Publication number Publication date
JP2004119311A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4033388B2 (en) Method for operating an electrolyte circulating battery
US20080198531A1 (en) Capacitive deionization system for water treatment
CN103561841B (en) Activity regenerating method and the water treatment facilities of use the method for deionization module
EP3778497B1 (en) Water treatment device and water treatment method
EP2620216B1 (en) Porous ion exchanger, water treatment device, hot water supply apparatus, and method of producing porous ion exchanger
CN106044965B (en) Device and method for recovering heavy metals in electroplating wastewater
CN201206108Y (en) Electro-adsorption desalination system for sewage advanced treatment
CN210945231U (en) Domestic sewage collects and biological treatment device
CN102336481A (en) Process for reclaiming copper and nickel from electroplating rinse waste water and implementing zero discharge of waste water
CN112479319B (en) Method and device for separating and recovering dye
JP5433100B2 (en) Electrolytic solution for redox flow battery, redox flow battery, and operating method of redox flow battery
CN102362009B (en) Metal recovery method and device
JP2004111182A (en) Re-activation method of electrode for redox flow battery
CN102689937A (en) Regenerable filter unit for removing metal, regenerable filter system including same, and method of operating regenerable filter system
JP5426065B2 (en) Redox flow battery
JP3425060B2 (en) Electrolyte flow battery with internal resistance recovery mechanism
CN101844075A (en) Electrochemical active carbon regeneration device and using method thereof
CN208161151U (en) A kind of anticlogging apparatus for treating sewage of novel filter-type
CN206985913U (en) New water purifier complete set of equipments based on ozone Inner electrolysis and CDI GC-MSs
RU2182033C2 (en) Reclaimable unit and plant for purification of liquid media
CN210764773U (en) Device for treating heavy metal pollution of water body
JP2004079229A (en) Method of reactivating redox flow battery electrode
CN207342335U (en) A kind of paint film filtering machine special-purpose based on balancing charge and exchanger resin absorption
CN214880575U (en) Capacitor deionization circulating water treatment system
Kim et al. Electrosorption and separation of $ Co^{2+} $ and $ Sr^{2+} $ ions from decontaminated liquid wastes

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees