JP4033332B2 - Stepping motor - Google Patents

Stepping motor Download PDF

Info

Publication number
JP4033332B2
JP4033332B2 JP2002018106A JP2002018106A JP4033332B2 JP 4033332 B2 JP4033332 B2 JP 4033332B2 JP 2002018106 A JP2002018106 A JP 2002018106A JP 2002018106 A JP2002018106 A JP 2002018106A JP 4033332 B2 JP4033332 B2 JP 4033332B2
Authority
JP
Japan
Prior art keywords
magnetic pole
outer magnetic
stator
motor
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002018106A
Other languages
Japanese (ja)
Other versions
JP2003224956A (en
Inventor
孝夫 厚木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Electronics Inc
Original Assignee
Canon Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Electronics Inc filed Critical Canon Electronics Inc
Priority to JP2002018106A priority Critical patent/JP4033332B2/en
Publication of JP2003224956A publication Critical patent/JP2003224956A/en
Application granted granted Critical
Publication of JP4033332B2 publication Critical patent/JP4033332B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、小型円筒形状のモータに関する。
【0002】
【従来の技術】
従来、この種のステッピングモータとして、図3に示すものがある。この構造のモータは、特開平10−075558号公報に開示されている。
【0003】
図3において、10は非磁性材料からなる円筒形状の連結リングであり、この連結リング10の内側には溝10a、10b、10c、10dが設けられ、溝10a、10bに第1のステータ18の外側磁極18a、18bを嵌合し、溝10c、10dに第2のステータ19の外側磁極19a、19bを嵌合し、これら嵌合部分を接着剤により固定して、連結リングに第1のステータ及び第2のステータが取り付けられ、ステータの位置決めを行う機能とモータ本体の連結リングの変形による同軸を確保する機能とを備えているものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来例では、外側磁極ステータの外周と連結リングの内周面が嵌合する構成となるため以下の様な欠点があった。外側磁極ステータがモータ外径よりも連結リングの厚み分だけ小さくならざるを得ないため、モータ外径いっぱいまで外側磁極ステータの径を大きくしたモータよりもトルクが劣る。
また、櫛刃状を成す外側磁極ステータが連結リングとの嵌合時に内側に曲がり易くマグネットとの干渉を引き起こすことがある。
【0005】
従って、本発明の目的は、第1に、外側磁極ステータの外径をモータ外径と同等にして、従来構造の同一外径モータよりも大きなトルクを得ることである。
【0006】
本発明の目的は、第2に、櫛刃状を成す外側磁極ステータを結合部材に嵌合する際、櫛刃状を成す外側磁極ステータの内側への曲がり変形を防止することである。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明は、第1の外側磁極と第2の外側磁極とを嵌合する結合部材が、内周に極薄非磁性金属板を円筒状にインサート成形した位置決め部材で構成されていることを特徴とする。
【0008】
上記構成において、内周に円筒状にインサート成形された極薄金属板は櫛刃状を成す外側磁極ステータの内側への曲がり変形を防止するように働き、尚かつ円筒状にインサート成形された極薄金属板は、強固に成型部材で支持されているので、モータの同軸を出すために作用する。また、櫛刃状を成す外側磁極ステータと嵌合するように溝形状を成形された結合部材は、第1の外側磁極と第2の外側磁極との位置決めを行うように作用する。
【0009】
【発明の実施の形態】
(実施例1)
図1は本発明の実施例のモータの分解斜視図である。図1において、1は第1のステータ及び第2のステータを位置決め結合するための結合部材である。結合部材1は、内周に極薄非磁性金属板1aをインサート成形したものであり、成形部材1bは、櫛刃状を成す外側磁極ステータ相互の位置を出すための位置決め溝が成形されている。さらに、成形部材1bの溝の底面は極薄非磁性金属板1aにより形成されている。5及び6は、軟磁性材料からなる第1のステータ及び第2のステータであり、第1のステータ及び第2のステータの位相は、18°ずらして配置される。結合部材1はこれらの第1の外側磁極と第2の外側磁極との同軸度と位相の位置決めを行う位置決め部材として機能する。
【0010】
上記構成において、結合部材1に永久磁石回転子3、回転軸4、第1のステータ5及び第2のステータ6を組み込む。この時、第1のステータ5及び第2のステータ6の櫛刃状を成す外側磁極ステータは、結合部材1の成形部材1bの形成する溝に沿って相互の位相が位置決めされるとともに、第1のステータ5及び第2のステータ6の櫛刃状を成す外側磁極ステータの内周面とインサート成形された極薄非磁性金属板1aの外周面が嵌合されてステータ相互の同軸性を出すようになっているモータである。このような構成を取ることにより、ステータの外周がモータの外径と同一にすることが出来るため、ステータの内側に内蔵される永久磁石回転子3の外径も大きくすることが出来る。そのため、モータ外径が同一の従来構造のモータより大きなトルクを発生する事が可能となる。
【0011】
また、従来構造では、連結リングの内周面と外側磁極ステータの外周面が嵌合するため、櫛刃状を成す外側磁極ステータの先端が組立時に内側に曲がりやすく、永久磁石回転子3と接触する恐れがあるため、外側磁極ステータ内面と永久磁石回転子3の外周面の間隙を小さくすることが出来なかった。
【0012】
しかし、本実施例では成型部材1bにインサート成型された極薄非磁性金属板1aの外周面と外側磁極ステータの内周面が嵌合するため櫛刃状を成す外側磁極ステータの先端は内側に曲がる事がないため、外側磁極ステータ内面と永久磁石回転子3の外周面の間隙を小さくすることが出来る。
【0013】
そのため、本発明では、外側磁極ステータと永久磁石回転子3の外周面との間に極薄金属板1aが存在するにも関わらず、従来構造のモータと同等の外側磁極ステータ内面と永久磁石回転子3の外周面の間隙とすることが出来る。
【0014】
(実施例2)
実施例2は、実施例1において結合部材1にインサート成型された極薄非磁性金属板1aの外周面とそこに嵌合される第1のステータ5及び第2のステータ6の櫛刃状を成す外側磁極ステータの内周面を圧入公差として、第1のステータ5及び第2のステータ6のステータ相互の同軸性を向上させたモータである。
【0015】
実施例1と同様に、成型部材1bにインサート成型された極薄非磁性金属板1aの外周面と外側磁極ステータの内周面が嵌合するため圧入を行っても、櫛刃状を成す外側磁極ステータの先端は内側に曲がる事なく、外側磁極ステータの内面が結合部材1にインサート成型された極薄非磁性金属板1aの外周面に沿って正確に円筒形状を構成する様になるため、各々の外側磁極ステータの内面と永久磁石回転子3の外周面との間隙のバラツキが従来構造よりも少なくなる。そのため、より滑らかな回転が得られる。
【0016】
また、従来構造では、櫛刃状を成す外側磁極ステータの先端が仮に内側に曲がることなく組み込まれたとしても、ステータを形成する軟磁性板の厚みのバラツキが各々の外側磁極ステータの内面と永久磁石回転子3の外周面との間隙のバラツキとして発生するため本発明の様な効果は得られない。
【0017】
(実施例3)
実施例3は、実施例1或いは2において、結合部材1にインサート成型された極薄非磁性金属板1aの外周面とそこに嵌合される第1のステータ5及び第2のステータ6の櫛刃状を成す外側磁極ステータの内周面を接着して締結を行ったモータである。
【0018】
結合部材1にインサート成型された極薄非磁性金属板1aと軟磁性板からなる櫛刃状を成す外側磁極ステータは、金属同士の接着となるため安定した強度が得られる。また、図2に示すような嵌合関係に結合部材1と第1のステータ及び第2のステータがあり、結合部材1にインサート成型された極薄非磁性金属板1aが永久磁石回転子3を覆うようにあるため、従来構造で問題となっていた接着材の内面へのはみ出しが構造上起こらないといった効果がある。
【0019】
さらに、軟磁性板からなる櫛刃状を成す外側磁極ステータはその磁気的な特性を満足させるために磁気焼鈍が施されているため非常に柔らかく変形しやすいのだが、結合部材1と接着することにより、接着樹脂が硬化し変形強度が飛躍的に向上する。その結果、結合部材1と一体になり剛性の高いモータとなる効果がある。
【0020】
また、櫛刃状を成す外側磁極ステータが強固に接着固定されているため、モータを回転させるために発生する櫛刃状を成す外側磁極ステータの励磁振動が極めて小さくなり、回転音が非常に小さいモータを提供することが出来る。
【0021】
(実施例4)
実施例4は、実施例1から3において、結合部材1が極薄非磁性金属板1aをメタルインジェクションモールドインサート成形で、成形されるものである。その結果、成形部材1bの材質が非磁性金属となる。このような結合部材1を用いたモータが第4の実施例である。成形部材1bが、非磁性金属となることにより、結合部材1の機械的強度が向上するだけでなく、熱伝導性が向上し放熱性の良いモータとなる効果がある。
【0022】
また、結合部材1に成形された櫛刃状を成す外側磁極ステータ相互の位置を出すための位置決め溝とその溝に嵌合した櫛刃状を成す外側磁極ステータとの合わせ目を突き合わせ溶接することが可能となる。溶接による締結を行うことによりより高温下でも使用可能なモータを提供できる効果がある。
【0023】
そして、本発明の構造により非磁性金属からなる成形部材1bと櫛刃状を成す外側磁極ステータをレーザ溶接或いは、プラズマスポット溶接する際に極薄非磁性金属板1aが永久磁石回転子3への溶接スパッタの飛散を防止する効果がある。
【0024】
【発明の効果】
以上説明したように、本発明によれば、以下の効果がある。
従来構造の同一外径のモータより大きなトルクを発生出来る。
櫛刃状を成す外側磁極ステータのモータ内側への倒れ込みの発生しない構造を提供することが出来る。
従来構造よりも外側磁極ステータの内面と永久磁石回転子の外周面との間隙のバラツキが少なく滑らかな回転が出来るモータを提供することが出来る。
結合部材1と外側磁極ステータを接着するとき、従来構造の様に永久磁石回転子のある内側に接着材のはみ出しのないモータ構造を提供することが出来る。
結合部材1の極薄金属板1aと軟磁性板からなる櫛刃状を成す外側磁極ステータは、金属同士の接着となるため極めて安定した接着強度が得られる。
結合部材1と外側磁極ステータを接着する事により、剛性の高いモータを提供出来る。
結合部材1と外側磁極ステータを接着する事により、回転音が非常に小さなモータを提供することが出来る。
結合部材1の成形部材1bをメタルインジェクションモールド成形により非磁性金属とすることにより、放熱性良いモータを提供することが出来る。
結合部材1の成形部材1bをメタルインジェクションモールド成形により非磁性金属として、外側磁極ステータをレーザ溶接或いは、プラズマスポット溶接する際に極薄非磁性金属板1aが永久磁石回転子3への溶接スパッタの飛散を防止する効果があるため、容易に溶接構造の高温下でも使用可能なモータを提供出来る。
【図面の簡単な説明】
【図1】図1は本発明のモータとして機能するための部品すべてを示した分解斜視図である。
【図2】図2は本発明のモータの第1ステータ及び第2ステータと位置決め部材との嵌合関係を示した図である。
【図3】図3は従来例のステッピングモータの構造を模式的に示す図である。
【符号の説明】
1・・・ 結合部材
1a・・・ インサート成形された極薄金属板
1b・・・ インサート成形部材
2・・・ 巻き線
3・・・ 永久磁石回転子
4・・・ 回転軸
5・・・ 第1のステータ
6・・・ 第2のステータ
10・・・ 連結リング
18・・・ 第1のステータ
19・・・ 第2のステータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a small cylindrical motor.
[0002]
[Prior art]
Conventionally, this type of stepping motor is shown in FIG. A motor having this structure is disclosed in JP-A-10-075558.
[0003]
In FIG. 3, reference numeral 10 denotes a cylindrical connecting ring made of a non-magnetic material. Grooves 10a, 10b, 10c and 10d are provided inside the connecting ring 10, and the first stator 18 is provided in the grooves 10a and 10b. The outer magnetic poles 18a and 18b are fitted, the outer magnetic poles 19a and 19b of the second stator 19 are fitted into the grooves 10c and 10d, and these fitting portions are fixed with an adhesive, and the first stator is attached to the connecting ring. The second stator is attached and has a function of positioning the stator and a function of securing a coaxial by deformation of the connecting ring of the motor body.
[0004]
[Problems to be solved by the invention]
However, the conventional example has the following drawbacks because the outer periphery of the outer magnetic pole stator and the inner peripheral surface of the connecting ring are fitted. Since the outer magnetic pole stator must be smaller than the outer diameter of the motor by the thickness of the connecting ring, the torque is inferior to that of the motor with the outer magnetic pole stator having a larger diameter to the full outer diameter of the motor.
Further, the outer magnetic pole stator having a comb blade shape is likely to bend inward when fitted to the connecting ring, and may cause interference with the magnet.
[0005]
Accordingly, the first object of the present invention is to make the outer diameter of the outer magnetic pole stator equal to the motor outer diameter and obtain a torque larger than that of the same outer diameter motor of the conventional structure.
[0006]
Secondly, an object of the present invention is to prevent the outer magnetic pole stator having a comb blade shape from being bent inward when the outer magnetic pole stator having a comb blade shape is fitted to the coupling member.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a positioning member in which a coupling member for fitting a first outer magnetic pole and a second outer magnetic pole is formed by insert-molding an ultrathin nonmagnetic metal plate into a cylindrical shape on the inner periphery. It is configured.
[0008]
In the above configuration, the ultra-thin metal plate insert-molded in a cylindrical shape on the inner periphery works to prevent bending deformation to the inside of the outer magnetic pole stator having a comb blade shape, and the pole is insert-molded in the cylindrical shape. Since the thin metal plate is firmly supported by the molded member, it acts to bring out the coaxial of the motor. Further, the coupling member having a groove shape so as to be fitted to the outer magnetic pole stator having a comb blade shape acts so as to position the first outer magnetic pole and the second outer magnetic pole.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 1 is an exploded perspective view of a motor according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a coupling member for positioning and coupling the first stator and the second stator. The coupling member 1 is formed by insert-molding an ultrathin nonmagnetic metal plate 1a on the inner periphery, and the molding member 1b is formed with positioning grooves for positioning the positions of the outer magnetic pole stators that form a comb blade shape. . Furthermore, the bottom surface of the groove of the molded member 1b is formed by an ultrathin nonmagnetic metal plate 1a. Reference numerals 5 and 6 denote a first stator and a second stator made of a soft magnetic material, and the phases of the first stator and the second stator are shifted by 18 °. The coupling member 1 functions as a positioning member for positioning the coaxiality and phase between the first outer magnetic pole and the second outer magnetic pole.
[0010]
In the above configuration, the permanent magnet rotor 3, the rotating shaft 4, the first stator 5, and the second stator 6 are incorporated into the coupling member 1. At this time, the outer magnetic pole stator having a comb blade shape of the first stator 5 and the second stator 6 is positioned with respect to each other along the groove formed by the molding member 1b of the coupling member 1, and the first The inner peripheral surface of the outer magnetic pole stator that forms the comb blade shape of the stator 5 and the second stator 6 and the outer peripheral surface of the insert-molded ultrathin nonmagnetic metal plate 1a are fitted so that the stators are coaxial. It is a motor. By adopting such a configuration, since the outer periphery of the stator can be made the same as the outer diameter of the motor, the outer diameter of the permanent magnet rotor 3 incorporated inside the stator can also be increased. Therefore, it is possible to generate a larger torque than a motor having a conventional structure having the same motor outer diameter.
[0011]
Further, in the conventional structure, since the inner peripheral surface of the connecting ring and the outer peripheral surface of the outer magnetic pole stator are fitted, the tip of the outer magnetic pole stator having a comb blade shape is easily bent inward at the time of assembly, and is in contact with the permanent magnet rotor 3. Therefore, the gap between the inner surface of the outer magnetic pole stator and the outer peripheral surface of the permanent magnet rotor 3 cannot be reduced.
[0012]
However, in this embodiment, since the outer peripheral surface of the ultrathin nonmagnetic metal plate 1a insert-molded on the molded member 1b and the inner peripheral surface of the outer magnetic pole stator are fitted, the tip of the outer magnetic pole stator having a comb blade shape is inward. Since there is no bending, the gap between the inner surface of the outer magnetic pole stator and the outer peripheral surface of the permanent magnet rotor 3 can be reduced.
[0013]
Therefore, in the present invention, despite the presence of the ultrathin metal plate 1a between the outer magnetic pole stator and the outer peripheral surface of the permanent magnet rotor 3, the inner surface of the outer magnetic pole stator and the permanent magnet rotation equivalent to those of the conventional motor are provided. It can be set as the gap of the outer peripheral surface of the child 3.
[0014]
(Example 2)
In the second embodiment, the outer peripheral surface of the ultrathin nonmagnetic metal plate 1a insert-molded in the coupling member 1 in the first embodiment and the comb blade shape of the first stator 5 and the second stator 6 fitted thereto are used. This is a motor in which the inner peripheral surface of the outer magnetic pole stator formed has a press-fit tolerance and the co-axiality between the first stator 5 and the second stator 6 is improved.
[0015]
As in the first embodiment, the outer peripheral surface of the comb member is formed even if press-fitting is performed because the outer peripheral surface of the ultrathin nonmagnetic metal plate 1a insert-molded on the molded member 1b and the inner peripheral surface of the outer magnetic pole stator are fitted. Since the tip of the magnetic pole stator does not bend inwardly, the inner surface of the outer magnetic pole stator is accurately formed into a cylindrical shape along the outer peripheral surface of the ultrathin nonmagnetic metal plate 1a insert-molded in the coupling member 1. The variation in the gap between the inner surface of each outer magnetic pole stator and the outer peripheral surface of the permanent magnet rotor 3 is smaller than in the conventional structure. Therefore, a smoother rotation can be obtained.
[0016]
Further, in the conventional structure, even if the tip of the outer magnetic pole stator having a comb blade shape is incorporated without bending inwardly, the variation in the thickness of the soft magnetic plate forming the stator becomes permanent with the inner surface of each outer magnetic pole stator. Since this occurs as a variation in the gap with the outer peripheral surface of the magnet rotor 3, the effect of the present invention cannot be obtained.
[0017]
(Example 3)
In the third embodiment, the comb of the first stator 5 and the second stator 6 fitted to the outer peripheral surface of the ultrathin nonmagnetic metal plate 1a insert-molded in the coupling member 1 in the first or second embodiment is used. This is a motor that is fastened by bonding the inner peripheral surface of an outer magnetic pole stator having a blade shape.
[0018]
The outer magnetic pole stator having a comb-blade shape composed of the ultra-thin non-magnetic metal plate 1a insert-molded on the coupling member 1 and the soft magnetic plate is bonded to each other, so that a stable strength can be obtained. In addition, the coupling member 1, the first stator, and the second stator are in a fitting relationship as shown in FIG. 2, and the ultrathin nonmagnetic metal plate 1 a insert-molded on the coupling member 1 serves as the permanent magnet rotor 3. Since it covers, there is an effect that the protrusion to the inner surface of the adhesive, which has been a problem in the conventional structure, does not occur structurally.
[0019]
Furthermore, the outer magnetic pole stator having a comb-blade shape made of a soft magnetic plate is very soft and easily deformed because it is subjected to magnetic annealing in order to satisfy its magnetic characteristics. As a result, the adhesive resin is cured and the deformation strength is dramatically improved. As a result, there is an effect that the motor is integrated with the coupling member 1 and has a high rigidity.
[0020]
In addition, since the outer magnetic pole stator having a comb blade shape is firmly bonded and fixed, the excitation vibration of the outer magnetic pole stator having a comb blade shape generated to rotate the motor is extremely small, and the rotational noise is very small. A motor can be provided.
[0021]
Example 4
In the fourth embodiment, the coupling member 1 is formed from the ultrathin non-magnetic metal plate 1a by metal injection mold insert molding in the first to third embodiments. As a result, the material of the molded member 1b is a nonmagnetic metal. A motor using such a coupling member 1 is the fourth embodiment. When the molded member 1b is made of a nonmagnetic metal, not only the mechanical strength of the coupling member 1 is improved, but also there is an effect that the thermal conductivity is improved and the motor has a good heat dissipation.
[0022]
Also, the joint between the positioning groove for forming the position of the outer magnetic pole stator having the comb blade shape formed on the coupling member 1 and the outer magnetic pole stator having the comb blade shape fitted in the groove is butt-welded. Is possible. By performing the fastening by welding, it is possible to provide a motor that can be used even at higher temperatures.
[0023]
The ultra-thin nonmagnetic metal plate 1a is applied to the permanent magnet rotor 3 when laser welding or plasma spot welding is performed on the forming member 1b made of nonmagnetic metal and the outer magnetic pole stator having a comb blade shape by the structure of the present invention. It has the effect of preventing welding spatter from scattering.
[0024]
【The invention's effect】
As described above, the present invention has the following effects.
A larger torque can be generated than a motor having the same outer diameter of the conventional structure.
It is possible to provide a structure in which the outer magnetic pole stator having the comb blade shape does not fall into the motor.
It is possible to provide a motor capable of smooth rotation with less variation in the gap between the inner surface of the outer magnetic pole stator and the outer peripheral surface of the permanent magnet rotor than in the conventional structure.
When bonding the coupling member 1 and the outer magnetic pole stator, a motor structure can be provided in which no adhesive protrudes inside the permanent magnet rotor as in the conventional structure.
Since the outer magnetic pole stator having a comb blade shape composed of the ultrathin metal plate 1a and the soft magnetic plate of the coupling member 1 is bonded to each other, extremely stable adhesive strength can be obtained.
A highly rigid motor can be provided by bonding the coupling member 1 and the outer magnetic pole stator.
By bonding the coupling member 1 and the outer magnetic pole stator, it is possible to provide a motor with extremely low rotational noise.
By making the molding member 1b of the coupling member 1 into a nonmagnetic metal by metal injection molding, a motor with good heat dissipation can be provided.
When the molding member 1b of the coupling member 1 is made of a nonmagnetic metal by metal injection molding and the outer magnetic pole stator is laser welded or plasma spot welded, the ultrathin nonmagnetic metal plate 1a is weld sputtered onto the permanent magnet rotor 3. Since it has the effect of preventing scattering, it is possible to provide a motor that can be used easily even at high temperatures in a welded structure.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing all components for functioning as a motor of the present invention.
FIG. 2 is a view showing a fitting relationship between a first stator and a second stator and a positioning member of the motor of the present invention.
FIG. 3 is a diagram schematically showing the structure of a conventional stepping motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Coupling member 1a ... Insert-molded ultra-thin metal plate 1b ... Insert molding member 2 ... Winding 3 ... Permanent magnet rotor 4 ... Rotating shaft 5 ... First 1 stator 6 ... second stator 10 ... connection ring 18 ... first stator 19 ... second stator

Claims (3)

円筒形状に形成されると共に、周方向にn分割して異なる極に交互に着磁されたロータを備え、該ロータの軸方向に第1のコイルと前記ロータと第2のコイルとを順に配置し、第1コイルにより励磁される第1の外側磁極及び第1の内側磁極を前記ロータの一端側の外周面及び内周面に対向させてロータの一端側を挟み込むと共に、第2コイルにより励磁される第2の外側磁極及び第2の内側磁極を前記ロータの他端の外周面及び内周面に対向させてロータの他端を挟み込むようにし、かつ、前記第1外側磁極と第2外側磁極の内周面で嵌合し同軸を確保すると同時に第1の外側磁極と第2の外側磁極との位置決めを行い連結する結合部材を備えたモータにおいて、第1の外側磁極と第2の外側磁極とを嵌合する結合部材が、内周に0.1mm以下の極薄非磁性金属板をインサート成形した位置決め部材で構成されていることを特徴とするモータ。The rotor is formed in a cylindrical shape and is divided into n pieces in the circumferential direction and alternately magnetized to different poles, and the first coil, the rotor, and the second coil are sequentially arranged in the axial direction of the rotor The first outer magnetic pole and the first inner magnetic pole excited by the first coil are opposed to the outer peripheral surface and the inner peripheral surface of one end side of the rotor so as to sandwich one end side of the rotor and excited by the second coil. The second outer magnetic pole and the second inner magnetic pole to be opposed to the outer peripheral surface and the inner peripheral surface of the other end of the rotor so as to sandwich the other end of the rotor, and the first outer magnetic pole and the second outer magnetic pole In a motor having a coupling member that fits on the inner peripheral surface of a magnetic pole to ensure coaxiality and at the same time positions and connects the first outer magnetic pole and the second outer magnetic pole, the first outer magnetic pole and the second outer magnetic pole The coupling member that fits the magnetic pole is 0.1 m on the inner circumference. Motor, characterized by being composed of the following ultrathin nonmagnetic metal plate with a positioning member that is insert-molded. 請求項1記載のモータにおいて、第1の外側磁極と第2の外側磁極との位置決め精度を上げるために結合部材に第1の外側磁極と第2の外側磁極を圧入することを特徴とするモータ。2. The motor according to claim 1, wherein the first outer magnetic pole and the second outer magnetic pole are press-fitted into the coupling member in order to increase the positioning accuracy between the first outer magnetic pole and the second outer magnetic pole. . 請求項1及び2記載のモータにおいて、第1の外側磁極と第2の外側磁極とを結合部材に接着することを特徴とするモータ。3. The motor according to claim 1, wherein the first outer magnetic pole and the second outer magnetic pole are bonded to the coupling member.
JP2002018106A 2002-01-28 2002-01-28 Stepping motor Expired - Fee Related JP4033332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002018106A JP4033332B2 (en) 2002-01-28 2002-01-28 Stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002018106A JP4033332B2 (en) 2002-01-28 2002-01-28 Stepping motor

Publications (2)

Publication Number Publication Date
JP2003224956A JP2003224956A (en) 2003-08-08
JP4033332B2 true JP4033332B2 (en) 2008-01-16

Family

ID=27742914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002018106A Expired - Fee Related JP4033332B2 (en) 2002-01-28 2002-01-28 Stepping motor

Country Status (1)

Country Link
JP (1) JP4033332B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5188159B2 (en) * 2007-11-26 2013-04-24 キヤノン株式会社 Drive device

Also Published As

Publication number Publication date
JP2003224956A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
JP6640621B2 (en) Motor rotor and brushless motor
JP6584331B2 (en) Single-phase brushless motor and method for manufacturing single-phase brushless motor
JP2019009986A (en) Brushless motor and stator therefor
JP7293680B2 (en) motor and blower
WO2020230507A1 (en) Rotor and motor provided with same
JP2004248471A (en) Stator piece and motor stator using the same
JP4298311B2 (en) motor
JP2010022088A (en) Magnet rotation type rotary electric machine
JP2013132127A (en) Stator of rotary electric machine
US11677285B2 (en) Outer rotor type motor capable of improving withstand load performance in relation to external load and lifespan
JP6824348B2 (en) Manufacturing method of single-phase brushless motor, single-phase brushless motor, vacuum cleaner equipped with single-phase brushless motor, and manufacturing method of vacuum cleaner
JP4033332B2 (en) Stepping motor
JP2018085818A (en) Stepping motor
JPH09215289A (en) Motor structure
JP7153461B2 (en) motor
JP5141861B2 (en) Stepping motor
JP2007236148A (en) Motor
JPH07107725A (en) Brushless motor
JP2002027726A (en) Stepping motor
JP4771278B2 (en) Permanent magnet type motor and method for manufacturing the same
JP7318556B2 (en) rotor
JPH11252890A (en) Stepping motor with lead screw
JP2023049370A (en) electric motor
JP2023046761A (en) Rotor, electric motor, and assembly method of rotor
JP2018046660A (en) Motor unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071018

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees