JP4032622B2 - Semiconductor element and semiconductor device and converter using the same - Google Patents

Semiconductor element and semiconductor device and converter using the same Download PDF

Info

Publication number
JP4032622B2
JP4032622B2 JP2000274991A JP2000274991A JP4032622B2 JP 4032622 B2 JP4032622 B2 JP 4032622B2 JP 2000274991 A JP2000274991 A JP 2000274991A JP 2000274991 A JP2000274991 A JP 2000274991A JP 4032622 B2 JP4032622 B2 JP 4032622B2
Authority
JP
Japan
Prior art keywords
control
semiconductor
control wiring
wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000274991A
Other languages
Japanese (ja)
Other versions
JP2002083964A (en
Inventor
長谷川  満
弘則 児玉
秀男 小林
正浩 長洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2000274991A priority Critical patent/JP4032622B2/en
Publication of JP2002083964A publication Critical patent/JP2002083964A/en
Application granted granted Critical
Publication of JP4032622B2 publication Critical patent/JP4032622B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7803Vertical DMOS transistors, i.e. VDMOS transistors structurally associated with at least one other device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0638Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Power Conversion In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子に係り、特に均一なスイッチング動作に優れた半導体素子及びこれを用いた半導体装置並びに電力変換器に関する。
【0002】
【従来の技術】
近年、省エネルギー等の推進のため、半導体パワーデバイスのインバータ装置等への適用が進められている。特に高い耐電圧性能を有する半導体素子の開発も進められており、最近では絶縁ゲート型バイポーラトランジスタ(以降IGBTと記す)やMOSFET等の半導体素子が広く用いられている。また、半導体装置の電流容量を向上させる場合には、上記の半導体素子を複数、並列接続して所望の大きな電流容量を得ることが行われている。
【0003】
上記のように複数の半導体素子を並列に接続する場合に、半導体素子間で特性にバラツキがあると素子の均一動作が難しく、素子の破壊が生じる。これらの問題に対して、日本国特許第02608451号公報では、制御端子に外付けチップ抵抗を接続して、半導体素子の均一動作を図る方法が開示されている。さらに、各々の制御電極同士も並列接続されるが、スイッチング動作時には配線のインダクタンスによって過渡的に制御電流振動が生じ、素子の誤動作や、最悪の場合は素子の破壊が生じる。これを抑制する目的で素子の制御電極と外部端子との間に外付けチップ抵抗を接続することが行われている。
【0004】
【発明が解決しようとする課題】
上記の場合、半導体装置の大容量化を図ろうとする場合、並列接続される半導体素子数が増えると、各半導体素子に接続される外付けチップ抵抗の数も増大するため、製造プロセスの複雑化やコストが上昇するという問題があった。
【0005】
本発明は、上記問題点を考慮してなされたものであり、複数半導体素子の並列接続時に於けるスイッチング動作を安定化し、かつ、半導体素子内部での不均一動作を抑えた、高信頼な半導体素子及びこれを用いた半導体装置と電力変換器を提供することにある。
【0006】
【課題を解決するための手段】
本発明による半導体素子においては、外付けチップ抵抗と同等の効果を有するゲート抵抗を、半導体素子に内蔵させる。
【0007】
より具体的には、半導体基板の一方の主表面上に、半導体素子の通電動作に関与する半導体能動領域と、半導体基板から絶縁されて半導体能動領域を制御する制御配線と、制御配線と電気的に接続され、かつ外部制御端子と接続するために設けられた制御電極が設けられる。さらに、制御配線と制御電極との接続間に電気抵抗領域を有し、かつ電気抵抗領域と制御配線の接続位置を基準とした場合の電気抵抗領域側の抵抗値が、制御配線側の最大の配線抵抗値よりも大きくなる構造とする。
【0008】
さらに、電気抵抗領域の一端が制御電極に接続され、他の一端が低抵抗配線を介して複数の制御配線端部と接続される構造とすることが、半導体内部の均一動作という点でより好ましい。
【0009】
本発明によれば、半導体素子内部にゲート抵抗を内蔵させることで、半導体素子間の不均一動作を抑制することが出来る。また、半導体素子内部の動作も均一性が向上する。
【0010】
【発明の実施の形態】
以下、図面を用いて本発明を詳細に説明する。ただし、本発明は下記実施例に限定されるものではない。
【0011】
図2は本発明を実施したプレーナ型IGBTの一部断面及び表面鳥瞰図である。シリコンで形成されたn型半導体基板1の一方の表面にはp導電型半導体層11及びn型半導体層12が形成されている。このn型半導体基板1の表面には、隣り合ったp型半導体層11の間に挟まれる形で、シリコン酸化物(SiO2)で形成されたゲート酸化膜21及び多結晶シリコンで形成された制御配線膜22が形成される。このゲート酸化膜21及び制御配線膜22の全面を被うように、りんガラス(PSG)で層間絶縁膜23が形成される。さらにこれらを被い、p導電型半導体層11及びn型半導体層12の露出面に接触した形で、Siを1〜3wt%含有するAl合金により構成されるエミッタ電極膜30を形成する。ここで、エミッタ電極膜に接続されて半導体素子の通電動作に寄与する部分を、半導体能動領域と呼ぶ。
【0012】
また、これらの領域を取り囲むように環状のp+ 型半導体層13及びn+ 型半導体層14が形成される。n型半導体基板1の表面には、p+ 型半導体層13及びn+ 型半導体層14の間に隣接してSiO2 によるフィールド酸化膜24が形成される。さらにフィールド酸化膜24の間でp+ 型半導体層13及びn+ 型半導体層14に接するように、Siを1〜3wt%含有するAl合金で金属層31が形成される。これらの領域は特にターミネーション領域と呼ぶ。
【0013】
また、制御配線膜22を被う層間絶縁膜23の一部に開口部を設け、隣接するエミッタ電極膜とは絶縁されて制御配線膜22の露出部に接続するように、Siを1〜3wt%含有するAl合金で制御配線電極膜32が形成される。この制御配線電極膜32が接続された部分の制御配線膜22は、それ以外の部分に比べて配線抵抗が低くなることから、半導体能動領域内に所定の間隔で形成して、半導体能動領域全体の単位素子への信号の伝達が均等になる。なお、半導体領域の動作を制御するための制御配線は、制御配線膜22と制御配線電極膜32との複合構造であっても良い。また、制御配線膜22と外部端子との接続を行うために、隣接するエミッタ電極膜とは絶縁されて、Siを1〜3wt%含有するAl合金で制御電極33が形成される。さらに、制御電極33と制御配線膜22との間には、多結晶シリコンで形成された電気抵抗領域40が接続される。また、n型半導体基板1の他方の表面には、p導電型半導体層2を有しており、このp導電型半導体層2の露出した表面には裏面電極膜3が接続して形成されている。ここで、本実施例では電気抵抗領域40を個別に設けて形成しているが、例えば制御配線電極膜32を接続しない制御配線膜22の一部を利用してもかまわない。なお本実施例において、電気抵抗領域40と制御配線膜22との接続位置を基準位置とした場合に、制御電極33までの電気抵抗値が、制御配線膜22の配線抵抗値の最大値より大きくなるように、電気抵抗領域40を設けている。ここで配線抵抗値とは、基準位置と、アクティブ領域のある位置との間における、制御配線膜22の電気抵抗値である。
【0014】
このように、電気抵抗領域を半導体素子に作り込むことで、外付け部品の実装工数の増加が無く、外付けチップ抵抗部品も不要となるため、並列動作に優れた半導体素子を低コストで得ることができる。電気抵抗領域の材質として多結晶シリコンを用いる場合、電気抵抗領域の幅や厚みなどの形状を調節すれば所望の抵抗値を得ることができる。この他、TiSi2,MoSi2,WSi2 等のシリサイド系材料や、RuO2,SnO2,Ta−N,Ta−Si等のセラミックス材料を用いることももちろん可能である。さらには、半導体基体中に不純物を拡散して形成した半導体層を電気抵抗領域として用いることもできる。
【0015】
図3には本発明を実施した半導体素子の平面図を示す。図3(a)は制御電極33を半導体素子のコーナー部分に配置し、制御配線膜22との間に電気抵抗領域40を設けた場合の平面図である。図3(b)は制御電極33を半導体素子のある一辺の中央部に配置した場合の平面図である。図3(c)は制御電極33を中央に配置した場合の平面図である。この時、制御電極に入力されたゲート信号は各電気抵抗領域を通って制御配線によりチップ全体へ分配され、半導体能動領域に伝えられる。
【0016】
図1は本発明を実施したプレーナ型IGBTの断面・鳥瞰図であり、電気抵抗領域40と制御配線膜22とが接続される複数の箇所同士を、Siを1〜3wt%含有するAl合金により構成される低抵抗配線41で一体に接続したものである。この場合ゲート信号は、電気抵抗領域40から各制御配線膜22に伝わる際に低抵抗配線41で一旦均一化されるため、各半導体能動領域の動作もより均一化することができる。
【0017】
図1の等価回路を図4(a),図4(b)に、図2の等価回路を図4(c)に示す。rg1,rg2,rg3,rg4はそれぞれ電気抵抗領域を表す。また、igbt1,igbt2,igbt3,igbt4は、同一チップ内にあってそれぞれ主としてrg1,rg2,rg3,rg4を通るゲート信号により制御される単位素子の集まりを表す。図2のように低抵抗配線41が無い場合、例えば製造条件の変動などでrg1が規定の抵抗値から変化した場合には、rg1が接続されるigbt1ではほかのigbt2,igbt3,igbt4と比べて動作にばらつきが生じることがある。一方、図1のように低抵抗配線41を設けた場合、図4(a)のように高電気抵抗領域rg1,rg2,rg3,rg4は図1に示した低抵抗配線41により一旦並列接続された後、それぞれのigbt1,igbt2,igbt3,igbt4に分配して接続される。この場合、例えばrg1の抵抗値が規定からずれていたとしてもigbt1の動作だけがずれることはなく、各igbtには合成抵抗Rgが接続されたものとして動作する(図4(b))ため、半導体素子内部での動作不均一を抑制することができる。
【0018】
図5には本発明を実施した半導体素子の平面図を示す。図5(a)は制御電極33を半導体素子のコーナー部分に配置し、制御配線膜22との間に電気抵抗領域40を設けた場合の平面図である。図5(b)は制御電極33を半導体素子のある一辺の中央部に配置した場合の平面図である。図5(c)は制御電極を中央に配置した場合の平面図である。また、図5(d)のように低抵抗配線41と制御電極33の間の全体に電気抵抗領域40を設けた場合でも、一旦低抵抗配線41でゲート信号が均一化される。さらに、図5(e)のように電気抵抗領域40が一つだけの場合でも、低抵抗配線41によってゲート信号が均一化され、これに接続される複数の制御配線膜22にも均等に信号が伝えられ、不均一動作が改善できる。なお、低抵抗配線の電気抵抗配線と制御電極との間の電気抵抗値より小さくする。
【0019】
次に電気抵抗領域の配置に関しての実施例について説明する。図3に示すように、半導体素子の半導体能動領域や制御電極,制御配線の配置はその形状あるいは電気的にみて、ある対称性を持たせるのが一般的である。これは半導体素子製造用のホトマスク設計を容易にするほか、複数の半導体素子を一枚のウエハから効率よく得るためには必然的にチップ形状が正方形或いは長方形となるため、この半導体素子内部を均一動作させるためには、外形に沿った対称構造とすることが好ましいためである。電気抵抗領域の配置に関しては、例えば半導体能動領域配置の対称軸に対して、電気抵抗領域も同様に対称配置とすることが、半導体素子内部の均一動作に有効で好ましい。これにより制御電極から半導体能動領域の最遠部分までの距離を揃えること等で半導体素子内部の均一動作を図ることができる。図3(a)は斜め方向に対称軸がある場合の配置例を示した。図3(b)は横方向に対称軸がある場合の配置例、図3(c)は縦横に対称軸がある場合の配置例を示している。
【0020】
なお、電気抵抗領域は対称軸を中心にして相対する位置にそれぞれ配置することが、素子内部の均一動作に有効であり、よって、高電気抵抗領域の数は対称軸の数に応じて2,4,6・・・と、2の倍数だけ配置することがより好ましい。
【0021】
図6は本発明の他の実施例を示したもので、特に制御電極周辺の構造について述べる。本実施例は電気抵抗領域の形状に関するものである。電気抵抗領域40に所望の抵抗値を持たせるため、細長い形状にする場合がある。しかし、例えば制御電極33から放射状に接続した場合には半導体能動領域内に深く入り込むことになる等、構造が複雑となる。そこでこの細長い抵抗体を、図6(a)のように長手方向が制御電極33の外周形状に沿うように配置することで、電気抵抗領域40を制御電極33の近傍に集約できるため、半導体能動領域の構造も簡略化されて、設計が容易となる利点がある。また、前述のように電気抵抗領域の対称性を考慮して、図6(b)のように、電気抵抗領域40の長手方向の中央部と制御電極33とを導体により電気的に接続することも好ましい。
【0022】
次に複数の半導体素子を並列に接続する実施例について説明する。本実施例は電気抵抗領域の抵抗値設計に関するものである。図7は2つのIBGTチップ(点線内)が並列接続される場合で、それぞれの制御電極及びエミッタ電極同士が短絡されている場合の等価回路を示している。Rgは半導体素子に内蔵される電気抵抗領域の抵抗値、Cieは半導体素子のゲート・エミッタ間入力容量、Lはそれぞれの半導体素子間のエミッタ配線のインダクタンスである。一般に抵抗R,キャパシタC,インダクタLの直列回路では
2<4L/C …(1)
という関係が成り立つ場合には電流の振動が生じる。ここではゲート電流の振動を引き起こすことになり、これが半導体素子の誤動作や、破壊につながる。このゲート電流振動の防止策としては、
2>4L/C …(2)
の関係を満たすようにして、電流振動が生じないようにする必要がある。
【0023】
図7の回路の場合、式(2)のR=2・Rg,C=Cie/2、とおいて、
(2・Rg)2>4L/(Cie/2) …(3)
Rg2>2(L/Cie) …(4)
従って、この(4)を満たすRg値を有する電気抵抗領域を各々の半導体素子内部の制御電極と制御配線との接続間に設けることにより、複数チップ間でのゲート電流振動を起こさず、高信頼で良好な特性を有する半導体素子を低コストで得ることが可能となる。
【0024】
上記各実施例によれば半導体素子に電気抵抗領域を内蔵することで、外付けチップ抵抗は不要とすることができる。しかし、図8のように外付けチップ抵抗Rgeと電気抵抗領域Rgを同時に接続して各半導体素子のゲート抵抗値を同等に揃えて、動作の均一化を図ることも有効である。この時、例えばトリミング等が可能な外付け抵抗体を設けて抵抗値の微調整を行えば、より動作の均一性が向上した半導体装置を得ることができる。
【0025】
なお、ここまでの実施例では半導体素子としてIGBTを中心に述べてきたが、本発明は他のMOS制御型半導体素子等について適用した場合にも同様の効果を得ることができ、IGBTに制限されるものではない。
【0026】
次に、図9には本発明により得られた複数の半導体素子を、平型半導体装置に組み込み、この平型半導体装置を主変換素子として電力変換器に応用した場合の例を、1ブリッジ分の構成回路図で示す。主変換素子となるIGBT51とダイオード52が逆並列に配置され、これらがn個直列に接続された構成となっている。図中の各IGBT51とダイオード52は、本発明によるそれぞれ多数の半導体素子を並列実装した平型半導体装置を示している。なお、図9のような逆導通型IGBT平型半導体装置の場合には図中のIGBT51とダイオード52がまとめて一つのパッケージに収められた形となる。これにスナバ回路53、及び限流回路が設けてある。
【0027】
図10は、図9の3相ブリッジを4多重した自励式変換器の構成を示したものである。本発明の半導体装置は、複数個をその主電極板外側と面接触する形で水冷電極を挟んで直列接続するスタック構造と呼ぶ形に実装され、スタック全体を一括で加圧する。また、平型半導体装置のみでなくモジュール型と呼ばれる実装形態による半導体装置としてももちろん可能である。モジュール型半導体装置の場合には上記装置間は直列接続より、むしろ並列接続の方が好ましい。
【0028】
本発明の半導体装置は、上記の例に限らず広く各種変換器に用いられる。特に平型半導体装置は、電力系統に用いられる自励式大容量変換器の他、ミル用変換器として用いられる大容量変換器等に適しており、また、可変速揚水発電,ビル内変電所設備,電鉄用変電設備,ナトリウム硫黄(NaS)電池システム,車両等の変換器にも用いることができる。一方、モジュール型半導体装置は車両,電鉄用地上設備,鉄鋼などの産業用大型変換器や、中・小型容量の変換器を用いる家電機器,自動車などあらゆる分野で広く用いることができる。
【0029】
【発明の効果】
本発明によれば、均一動作性が向上した半導体素子を得ることができる。
【図面の簡単な説明】
【図1】本発明の第2の実施例の部分鳥瞰図。
【図2】本発明の第1の実施例の部分鳥瞰図。
【図3】本発明の第1の実施例の平面図。
【図4】本発明の第1の実施例及び第2の実施例の等価回路図。
【図5】本発明の第2の実施例の平面図。
【図6】本発明の第3の実施例の平面図。
【図7】二つの半導体素子を並列接続したときの等価回路図。
【図8】本発明の実施例における二つの半導体素子を並列接続したときの等価回路図。
【図9】本発明の第5の実施例の等価回路図。
【図10】本発明の半導体装置を用いた1ブリッジ分の構成回路図。
【符号の説明】
1…n型半導体基板、2…p導電型半導体層、3…裏面電極膜、11…p導電型半導体層、12…n型半導体層、13…p+型半導体層、14…n+型半導体層、21…ゲート酸化膜、22…制御配線膜、23…層間絶縁膜、24…フィールド酸化膜、30…エミッタ電極膜、31…金属層、32…制御配線電極膜、33…制御電極、40…電気抵抗領域、41…低抵抗配線、51…IGBT、52…ダイオード、53…スナバ回路、60…半導体能動領域、61…ターミネーション領域。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element, and more particularly to a semiconductor element excellent in uniform switching operation, a semiconductor device using the same, and a power converter.
[0002]
[Prior art]
In recent years, application of semiconductor power devices to inverter devices and the like has been promoted in order to promote energy saving and the like. In particular, development of semiconductor devices having high withstand voltage performance has been promoted, and recently, semiconductor devices such as insulated gate bipolar transistors (hereinafter referred to as IGBT) and MOSFETs are widely used. Further, in order to improve the current capacity of a semiconductor device, a desired large current capacity is obtained by connecting a plurality of the above semiconductor elements in parallel.
[0003]
When a plurality of semiconductor elements are connected in parallel as described above, if there is a variation in characteristics between the semiconductor elements, uniform operation of the elements is difficult, and element destruction occurs. In response to these problems, Japanese Patent No. 02608451 discloses a method in which an external chip resistor is connected to a control terminal to achieve uniform operation of a semiconductor element. Further, although the control electrodes are connected in parallel, the control current oscillation is transiently generated by the inductance of the wiring during the switching operation, and the malfunction of the element or the destruction of the element in the worst case occurs. In order to suppress this, an external chip resistor is connected between the control electrode of the element and the external terminal.
[0004]
[Problems to be solved by the invention]
In the above case, when increasing the capacity of a semiconductor device, the number of external chip resistors connected to each semiconductor element increases as the number of semiconductor elements connected in parallel increases, which complicates the manufacturing process. There was a problem that the cost increased.
[0005]
The present invention has been made in consideration of the above-mentioned problems, and is a highly reliable semiconductor that stabilizes the switching operation at the time of parallel connection of a plurality of semiconductor elements and suppresses non-uniform operation inside the semiconductor elements. It is an object to provide an element, a semiconductor device using the element, and a power converter.
[0006]
[Means for Solving the Problems]
In the semiconductor device according to the present invention, a gate resistor having the same effect as the external chip resistor is built in the semiconductor device.
[0007]
More specifically, on one main surface of the semiconductor substrate, a semiconductor active region involved in the energization operation of the semiconductor element, a control wiring that is insulated from the semiconductor substrate and controls the semiconductor active region, and the control wiring and the electrical And a control electrode provided for connecting to an external control terminal. Further, the resistance value on the electric resistance region side when the electric resistance region is provided between the control wiring and the control electrode and the connection position between the electric resistance region and the control wiring is used as a reference is the maximum on the control wiring side. The structure is larger than the wiring resistance value.
[0008]
Furthermore, it is more preferable in terms of uniform operation inside the semiconductor to have a structure in which one end of the electric resistance region is connected to the control electrode and the other end is connected to a plurality of control wiring end portions via low resistance wiring. .
[0009]
According to the present invention, by incorporating a gate resistor inside a semiconductor element, nonuniform operation between the semiconductor elements can be suppressed. Also, the uniformity of the operation inside the semiconductor element is improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following examples.
[0011]
FIG. 2 is a partial cross-sectional view and a bird's eye view of a planar IGBT implementing the present invention. A p-conductivity type semiconductor layer 11 and an n-type semiconductor layer 12 are formed on one surface of an n-type semiconductor substrate 1 made of silicon. On the surface of the n-type semiconductor substrate 1, a gate oxide film 21 made of silicon oxide (SiO 2 ) and polycrystalline silicon are sandwiched between adjacent p-type semiconductor layers 11. A control wiring film 22 is formed. An interlayer insulating film 23 is formed of phosphorus glass (PSG) so as to cover the entire surface of the gate oxide film 21 and the control wiring film 22. Further, an emitter electrode film 30 made of an Al alloy containing 1 to 3 wt% of Si is formed so as to be in contact with the exposed surfaces of the p-conductivity type semiconductor layer 11 and the n-type semiconductor layer 12. Here, a portion connected to the emitter electrode film and contributing to the energization operation of the semiconductor element is referred to as a semiconductor active region.
[0012]
An annular p + type semiconductor layer 13 and an n + type semiconductor layer 14 are formed so as to surround these regions. On the surface of the n-type semiconductor substrate 1, a field oxide film 24 made of SiO 2 is formed adjacently between the p + -type semiconductor layer 13 and the n + -type semiconductor layer 14. Further, metal layer 31 is formed of an Al alloy containing 1 to 3 wt% of Si so as to be in contact with p + type semiconductor layer 13 and n + type semiconductor layer 14 between field oxide films 24. These areas are particularly called termination areas.
[0013]
Further, an opening is provided in a part of the interlayer insulating film 23 covering the control wiring film 22, and Si is 1 to 3 wt so as to be insulated from the adjacent emitter electrode film and connected to the exposed part of the control wiring film 22. The control wiring electrode film 32 is formed of an Al alloy containing%. The portion of the control wiring film 22 to which the control wiring electrode film 32 is connected has a lower wiring resistance than that of the other portions. Therefore, the control wiring film 22 is formed in the semiconductor active region at a predetermined interval, and the entire semiconductor active region is formed. The transmission of signals to the unit elements becomes even. The control wiring for controlling the operation of the semiconductor region may have a composite structure of the control wiring film 22 and the control wiring electrode film 32. Further, in order to connect the control wiring film 22 and the external terminal, the adjacent emitter electrode film is insulated and the control electrode 33 is formed of an Al alloy containing 1 to 3 wt% of Si. Further, an electrical resistance region 40 made of polycrystalline silicon is connected between the control electrode 33 and the control wiring film 22. Further, the other surface of the n-type semiconductor substrate 1 has a p-conductivity-type semiconductor layer 2, and a back electrode film 3 is formed on the exposed surface of the p-conductivity-type semiconductor layer 2. Yes. Here, in this embodiment, the electric resistance regions 40 are individually provided and formed. However, for example, a part of the control wiring film 22 not connected to the control wiring electrode film 32 may be used. In this embodiment, when the connection position between the electric resistance region 40 and the control wiring film 22 is set as a reference position, the electric resistance value up to the control electrode 33 is larger than the maximum wiring resistance value of the control wiring film 22. The electric resistance region 40 is provided so as to be. Here, the wiring resistance value is an electric resistance value of the control wiring film 22 between the reference position and a position where the active region is present.
[0014]
In this way, by creating the electrical resistance region in the semiconductor element, there is no increase in the number of mounting steps for external parts, and no external chip resistance parts are required, so that a semiconductor element excellent in parallel operation can be obtained at low cost. be able to. When polycrystalline silicon is used as the material of the electric resistance region, a desired resistance value can be obtained by adjusting the shape such as the width and thickness of the electric resistance region. In addition, silicide-based materials and the like TiSi 2, MoSi 2, WSi 2 , it is also possible to use a RuO 2, SnO 2, Ta- N, ceramic material such as Ta-Si. Furthermore, a semiconductor layer formed by diffusing impurities in a semiconductor substrate can be used as the electric resistance region.
[0015]
FIG. 3 shows a plan view of a semiconductor device embodying the present invention. FIG. 3A is a plan view in the case where the control electrode 33 is disposed at the corner portion of the semiconductor element and the electric resistance region 40 is provided between the control wiring film 22 and the control electrode 33. FIG. 3B is a plan view in the case where the control electrode 33 is arranged at the center of one side of the semiconductor element. FIG. 3C is a plan view when the control electrode 33 is arranged at the center. At this time, the gate signal input to the control electrode is distributed to the entire chip by the control wiring through each electric resistance region and transmitted to the semiconductor active region.
[0016]
FIG. 1 is a cross-sectional / bird's-eye view of a planar IGBT embodying the present invention, and a plurality of locations where an electric resistance region 40 and a control wiring film 22 are connected are composed of an Al alloy containing 1 to 3 wt% of Si. The low resistance wiring 41 is integrally connected. In this case, when the gate signal is transmitted from the electric resistance region 40 to each control wiring film 22, the gate signal is once made uniform by the low resistance wiring 41, so that the operation of each semiconductor active region can be made more uniform.
[0017]
The equivalent circuit of FIG. 1 is shown in FIGS. 4 (a) and 4 (b), and the equivalent circuit of FIG. 2 is shown in FIG. 4 (c). rg1, rg2, rg3, and rg4 each represent an electric resistance region. Further, igbt1, igbt2, igbt3, and igbt4 represent a group of unit elements that are mainly controlled by gate signals passing through rg1, rg2, rg3, and rg4 in the same chip. When there is no low resistance wiring 41 as shown in FIG. 2, for example, when rg1 changes from a prescribed resistance value due to a change in manufacturing conditions, the igbt1 to which rg1 is connected is compared with the other igbt2, igbt3, and igbt4. There may be variations in operation. On the other hand, when the low resistance wiring 41 is provided as shown in FIG. 1, the high electrical resistance regions rg1, rg2, rg3, and rg4 are once connected in parallel by the low resistance wiring 41 shown in FIG. After that, they are distributed and connected to the respective igbt1, igbt2, igbt3, and igbt4. In this case, for example, even if the resistance value of rg1 deviates from the specified value, only the operation of igbt1 does not deviate, and each igbt operates as if the combined resistor Rg is connected (FIG. 4B). It is possible to suppress nonuniform operation within the semiconductor element.
[0018]
FIG. 5 shows a plan view of a semiconductor device embodying the present invention. FIG. 5A is a plan view in the case where the control electrode 33 is disposed at the corner portion of the semiconductor element and the electric resistance region 40 is provided between the control wiring film 22 and the control electrode 33. FIG. 5B is a plan view in the case where the control electrode 33 is arranged at the center of one side of the semiconductor element. FIG. 5C is a plan view when the control electrode is arranged at the center. Further, even when the electrical resistance region 40 is provided between the low resistance wiring 41 and the control electrode 33 as shown in FIG. 5D, the gate signal is once made uniform by the low resistance wiring 41. Further, even when there is only one electric resistance region 40 as shown in FIG. 5 (e), the gate signal is made uniform by the low resistance wiring 41, and the signal is equally distributed to the plurality of control wiring films 22 connected thereto. Can be transmitted and non-uniform operation can be improved. Incidentally, smaller than the electric resistance between the electrical resistance wire of low resistance wiring and the control electrode.
[0019]
Next, an embodiment regarding the arrangement of the electric resistance region will be described. As shown in FIG. 3, the arrangement of the semiconductor active region, the control electrode, and the control wiring of the semiconductor element generally has a certain symmetry in view of its shape or electrical. In addition to facilitating the design of a photomask for manufacturing semiconductor elements, the chip shape is necessarily square or rectangular in order to efficiently obtain multiple semiconductor elements from a single wafer. This is because it is preferable to have a symmetrical structure along the outer shape in order to operate. With respect to the arrangement of the electric resistance regions, for example, the electric resistance regions are preferably arranged symmetrically with respect to the symmetry axis of the semiconductor active region arrangement, which is effective and preferable for uniform operation inside the semiconductor element. Thereby, uniform operation inside the semiconductor element can be achieved by equalizing the distance from the control electrode to the farthest part of the semiconductor active region. FIG. 3A shows an arrangement example in the case where there is an axis of symmetry in the oblique direction. FIG. 3B shows an arrangement example in the case where the symmetry axis is in the horizontal direction, and FIG. 3C shows an arrangement example in the case where the symmetry axis is in the vertical and horizontal directions.
[0020]
In addition, it is effective for the uniform operation inside the element that the electric resistance regions are arranged at opposite positions around the symmetry axis. Therefore, the number of the high electric resistance regions is 2 depending on the number of the symmetry axes. 4, 6... And a multiple of 2 are more preferable.
[0021]
FIG. 6 shows another embodiment of the present invention. In particular, the structure around the control electrode will be described. The present embodiment relates to the shape of the electric resistance region. In order to give the electric resistance region 40 a desired resistance value, it may be formed in an elongated shape. However, for example, when connected radially from the control electrode 33, the structure becomes complicated, such as deeply entering the semiconductor active region. Therefore, by arranging this elongated resistor so that the longitudinal direction thereof follows the outer peripheral shape of the control electrode 33 as shown in FIG. 6A, the electric resistance region 40 can be concentrated in the vicinity of the control electrode 33. There is an advantage that the structure of the region is simplified and the design becomes easy. Further, in consideration of the symmetry of the electric resistance region as described above, the central portion in the longitudinal direction of the electric resistance region 40 and the control electrode 33 are electrically connected by a conductor as shown in FIG. 6B. Is also preferable.
[0022]
Next, an embodiment in which a plurality of semiconductor elements are connected in parallel will be described. The present embodiment relates to the resistance value design of the electric resistance region. FIG. 7 shows an equivalent circuit in the case where two IBGT chips (inside the dotted line) are connected in parallel, and the respective control electrodes and emitter electrodes are short-circuited. Rg is a resistance value of an electric resistance region built in the semiconductor element, Cie is an input capacitance between the gate and the emitter of the semiconductor element, and L is an inductance of the emitter wiring between the respective semiconductor elements. In general, in a series circuit of a resistor R, a capacitor C, and an inductor L, R 2 <4L / C (1)
When the above relationship is established, current oscillation occurs. Here, oscillation of the gate current is caused, which leads to malfunction or destruction of the semiconductor element. To prevent this gate current oscillation,
R 2 > 4L / C (2)
It is necessary to satisfy the above relationship so that current oscillation does not occur.
[0023]
In the case of the circuit of FIG. 7, R = 2 · Rg, C = Cie / 2 in the equation (2),
(2.Rg) 2> 4L / (Cie / 2) (3)
Rg 2 > 2 (L / Cie) (4)
Therefore, by providing an electric resistance region having an Rg value satisfying this (4) between the connection between the control electrode and the control wiring in each semiconductor element, the gate current does not oscillate between a plurality of chips and high reliability is achieved. Thus, a semiconductor element having good characteristics can be obtained at low cost.
[0024]
According to each of the above embodiments, an external chip resistor can be made unnecessary by incorporating an electric resistance region in the semiconductor element. However, as shown in FIG. 8, it is also effective to connect the external chip resistor Rge and the electric resistance region Rg at the same time so that the gate resistance values of the respective semiconductor elements are made equal to achieve uniform operation. At this time, for example, if an external resistor capable of trimming is provided and the resistance value is finely adjusted, a semiconductor device with more improved operation uniformity can be obtained.
[0025]
In the embodiments so far, IGBTs have been mainly described as semiconductor elements. However, the present invention can obtain the same effect when applied to other MOS control type semiconductor elements, and is limited to IGBTs. It is not something.
[0026]
Next, FIG. 9 shows an example in which a plurality of semiconductor elements obtained by the present invention are incorporated in a flat semiconductor device, and this flat semiconductor device is applied to a power converter as a main conversion element. This is shown in a circuit diagram of FIG. The IGBT 51 and the diode 52 serving as the main conversion elements are arranged in antiparallel, and n of them are connected in series. Each IGBT 51 and diode 52 in the figure represents a flat semiconductor device in which a large number of semiconductor elements according to the present invention are mounted in parallel. In the case of the reverse conducting IGBT flat semiconductor device as shown in FIG. 9, the IGBT 51 and the diode 52 in the drawing are collectively contained in one package. This is provided with a snubber circuit 53 and a current limiting circuit.
[0027]
FIG. 10 shows a configuration of a self-excited converter in which the three-phase bridge of FIG. 9 is multiplexed four times. The semiconductor device of the present invention is mounted in a form called a stack structure in which a plurality of semiconductor devices are connected in series with a water-cooled electrode sandwiched between them in surface contact with the outside of the main electrode plate, and pressurizes the entire stack at once. Of course, it is possible not only as a flat type semiconductor device but also as a semiconductor device with a mounting form called a module type. In the case of a module type semiconductor device, it is preferable to connect the devices in parallel rather than in series.
[0028]
The semiconductor device of the present invention is not limited to the above example and is widely used in various converters. In particular, flat semiconductor devices are suitable for self-excited large-capacity converters used in power systems, large-capacity converters used as converters for mills, etc. It can also be used for transformers for electric railways, sodium sulfur (NaS) battery systems, and converters for vehicles. On the other hand, the module type semiconductor device can be widely used in various fields such as vehicles, ground equipment for electric railways, industrial large converters such as steel, home appliances using medium / small capacity converters, and automobiles.
[0029]
【The invention's effect】
According to the present invention, a semiconductor device with improved uniform operability can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial bird's-eye view of a second embodiment of the present invention.
FIG. 2 is a partial bird's-eye view of the first embodiment of the present invention.
FIG. 3 is a plan view of the first embodiment of the present invention.
FIG. 4 is an equivalent circuit diagram of the first and second embodiments of the present invention.
FIG. 5 is a plan view of a second embodiment of the present invention.
FIG. 6 is a plan view of a third embodiment of the present invention.
FIG. 7 is an equivalent circuit diagram when two semiconductor elements are connected in parallel.
FIG. 8 is an equivalent circuit diagram when two semiconductor elements in the embodiment of the present invention are connected in parallel.
FIG. 9 is an equivalent circuit diagram of a fifth embodiment of the present invention.
FIG. 10 is a configuration circuit diagram for one bridge using the semiconductor device of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... n-type semiconductor substrate, 2 ... p conductive type semiconductor layer, 3 ... Back electrode film, 11 ... p conductive type semiconductor layer, 12 ... n type semiconductor layer, 13 ... p + type semiconductor layer, 14 ... n + type semiconductor Layers 21... Gate oxide film 22. Control wiring film 23. Interlayer insulating film 24. Field oxide film 30. Emitter electrode film 31 Metal layer 32 Control wiring electrode film 33 Control electrode 40 DESCRIPTION OF SYMBOLS ... Electrical resistance area | region 41 ... Low resistance wiring, 51 ... IGBT, 52 ... Diode, 53 ... Snubber circuit, 60 ... Semiconductor active area | region, 61 ... Termination area | region.

Claims (6)

半導体基板の一方の主表面上に、
通電動作に関与する半導体能動領域と、
半導体基板から絶縁されて、前記半導体能動領域を制御するための制御配線膜、及び、前記制御配線膜の少なくとも一部に接続され、前記制御配線膜の配線抵抗を低くするための制御配線電極膜とで構成される制御配線と、
前記制御配線と電気的に接続され、外部制御端子と接続するために設けられた制御電極と、
前記制御配線と前記制御電極との間に電気的に接続される電気抵抗領域と、を有し、
前記電気抵抗領域が、前記電気抵抗領域と前記制御配線膜の接続位置を基準位置とした場合に、基準位置から前記制御電極までの電気抵抗値が、前記制御配線膜の最大の配線抵抗値よりも大きくなるように設けられていることを特徴とする半導体素子。
On one main surface of the semiconductor substrate,
A semiconductor active region involved in energization operation;
A control wiring film that is insulated from the semiconductor substrate and controls the semiconductor active region, and a control wiring electrode film that is connected to at least a part of the control wiring film and reduces the wiring resistance of the control wiring film And control wiring composed of
A control electrode electrically connected to the control wiring and provided to connect to an external control terminal;
An electrical resistance region electrically connected between the control wiring and the control electrode,
When the electrical resistance region has a connection position between the electrical resistance region and the control wiring film as a reference position, the electrical resistance value from the reference position to the control electrode is greater than the maximum wiring resistance value of the control wiring film. the semiconductor device characterized in that is also provided to the magnitude Kunar so.
半導体基板の一方の主表面上に、
通電動作に関与する半導体能動領域と、
半導体基板から絶縁されて、前記半導体能動領域を制御するための制御配線膜、及び、前記制御配線膜の少なくとも一部に接続され、当該制御配線膜の配線抵抗を低くするための制御配線電極膜と、
前記制御配線膜と電気的に接続され、かつ外部制御端子と接続するために設けられた制御電極と、
前記制御配線膜と前記制御電極の間に電気的に接続される電気抵抗領域と、を有し、
さらに前記電気抵抗領域と前記制御配線膜とが接続される複数の箇所同士を低抵抗配線で一体に接続した半導体素子。
On one main surface of the semiconductor substrate,
A semiconductor active region involved in energization operation;
A control wiring film that is insulated from the semiconductor substrate and controls the semiconductor active region, and a control wiring electrode film that is connected to at least a part of the control wiring film and reduces the wiring resistance of the control wiring film When,
A control electrode electrically connected to the control wiring film and provided to connect to an external control terminal;
An electrical resistance region electrically connected between the control wiring film and the control electrode,
Furthermore, a semiconductor element in which a plurality of locations where the electrical resistance region and the control wiring film are connected are integrally connected by a low resistance wiring.
半導体基板の一方の主表面上に、
通電動作に関与する半導体能動領域と、
半導体基板から絶縁されて、前記半導体能動領域を制御するための制御配線膜、及び、前記制御配線膜の少なくとも一部に接続され、当該制御配線膜の配線抵抗を低くするための制御配線電極膜と、
前記制御配線膜と電気的に接続され、かつ外部制御端子と接続するために設けられた制御電極と、
前記制御配線膜と前記制御電極の間に電気的に接続される複数の電気抵抗領域と、
前記制御配線膜と前記複数の電気抵抗領域との間において、前記複数の電気抵抗領域を接続する低抵抗配線と、を有する半導体素子。
On one main surface of the semiconductor substrate,
A semiconductor active region involved in energization operation;
A control wiring film that is insulated from the semiconductor substrate and controls the semiconductor active region, and a control wiring electrode film that is connected to at least a part of the control wiring film and reduces the wiring resistance of the control wiring film When,
A control electrode electrically connected to the control wiring film and provided to connect to an external control terminal;
A plurality of electrical resistance regions electrically connected between the control wiring film and the control electrode;
A low resistance wiring connecting the plurality of electrical resistance regions between the control wiring film and the plurality of electrical resistance regions.
前記半導体基板の一方の主表面上に形成された、前記半導体能動領域と、前記制御配線と、
前記制御電極とが、
平面的に見て、少なくとも一つの対称軸を有する形状に配置されており、かつ前記電気抵抗領域が、前記対称軸に対して対称となる形状に配置されている請求項1乃至3のいずれか1項に記載の半導体素子。
The semiconductor active region formed on one main surface of the semiconductor substrate, the control wiring,
The control electrode;
4. The device according to claim 1, wherein the electrical resistance region is disposed in a shape that is symmetrical with respect to the symmetry axis, when viewed in a plan view. 2. The semiconductor element according to item 1.
請求項1乃至4のいずれか1項に記載の半導体素子を複数個、外部配線を用いて並列接続し、
前記電気抵抗領域の抵抗値をRg、前記半導体能動領域のゲート・エミッタ間入力容量をCie、それぞれの隣接する二つの半導体素子のエミッタ電極間の配線インダクタンスをLとした場合に、
Rg2>2(L/Cie)
を満たす半導体装置。
A plurality of semiconductor elements according to any one of claims 1 to 4 are connected in parallel using external wiring,
When the resistance value of the electrical resistance region is Rg, the gate-emitter input capacitance of the semiconductor active region is Cie, and the wiring inductance between the emitter electrodes of two adjacent semiconductor elements is L,
Rg 2 > 2 (L / Cie)
A semiconductor device that satisfies the requirements.
請求項1乃至4のいずれか1項の半導体素子または請求項5の半導体装置を主変換素子として用いた電力変換器。  A power converter using the semiconductor element according to claim 1 or the semiconductor device according to claim 5 as a main conversion element.
JP2000274991A 2000-09-06 2000-09-06 Semiconductor element and semiconductor device and converter using the same Expired - Fee Related JP4032622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000274991A JP4032622B2 (en) 2000-09-06 2000-09-06 Semiconductor element and semiconductor device and converter using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000274991A JP4032622B2 (en) 2000-09-06 2000-09-06 Semiconductor element and semiconductor device and converter using the same

Publications (2)

Publication Number Publication Date
JP2002083964A JP2002083964A (en) 2002-03-22
JP4032622B2 true JP4032622B2 (en) 2008-01-16

Family

ID=18760680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000274991A Expired - Fee Related JP4032622B2 (en) 2000-09-06 2000-09-06 Semiconductor element and semiconductor device and converter using the same

Country Status (1)

Country Link
JP (1) JP4032622B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138274B2 (en) 2007-05-25 2013-02-06 三菱電機株式会社 Semiconductor device
JP5262565B2 (en) * 2008-10-20 2013-08-14 三菱電機株式会社 Insulated gate type transistor chip
CN102842606B (en) * 2012-08-24 2016-04-20 中国电力科学研究院 A kind of variable grid internal resistance of igbt chip and method for designing thereof
JP2013062523A (en) * 2012-11-13 2013-04-04 Mitsubishi Electric Corp Semiconductor device
JP6533613B2 (en) * 2013-08-28 2019-06-19 ローム株式会社 Semiconductor device
EP3076431B1 (en) * 2013-11-28 2020-07-08 Rohm Co., Ltd. Semiconductor device
CN104022093B (en) * 2014-06-17 2016-09-28 江苏中科君芯科技有限公司 A kind of integrated variable gate resistance grid structure
US10566324B2 (en) * 2017-05-18 2020-02-18 General Electric Company Integrated gate resistors for semiconductor power conversion devices
JP6958499B2 (en) * 2018-07-09 2021-11-02 三菱電機株式会社 Semiconductor devices and power converters
JP7295047B2 (en) * 2020-01-22 2023-06-20 株式会社東芝 semiconductor equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687505B2 (en) * 1987-12-22 1994-11-02 日本電気株式会社 Field effect transistor for high power
JP2760515B2 (en) * 1988-08-01 1998-06-04 株式会社東芝 Vertical MOSFET
JP3243902B2 (en) * 1993-09-17 2002-01-07 株式会社日立製作所 Semiconductor device
JP3311166B2 (en) * 1994-10-18 2002-08-05 株式会社東芝 Insulated gate semiconductor device
JP3251802B2 (en) * 1995-03-08 2002-01-28 株式会社日立製作所 Series multiplex power converter
JP2000209845A (en) * 1999-01-07 2000-07-28 Toshiba Corp Semiconductor switch for electrical power and power converter

Also Published As

Publication number Publication date
JP2002083964A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP4955078B2 (en) Semiconductor device
US7808070B2 (en) Power semiconductor component
US10727213B2 (en) Power semiconductor module and power semiconductor device
US6529062B2 (en) Power module
WO2015029159A1 (en) Semiconductor device
JP4032622B2 (en) Semiconductor element and semiconductor device and converter using the same
JP4484400B2 (en) Semiconductor device
EP1909329B1 (en) Semiconductor device
JP4706551B2 (en) Power semiconductor element and power module
US11201099B2 (en) Semiconductor device and method of manufacturing the same
JP2000058820A (en) Power semiconductor element and power module
CN110176446B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP7463483B2 (en) Semiconductor Device
US6445013B1 (en) Gate commutated turn-off semiconductor device
JPH07254699A (en) Insulated gate semiconductor device and power converter using the same
JP2003046058A (en) Semiconductor device
JP4479365B2 (en) Semiconductor device
JP7139799B2 (en) semiconductor equipment
US10964630B2 (en) Semiconductor device having a conductor plate and semiconductor elements
JP2004311901A (en) Semiconductor device
JP3000809B2 (en) Semiconductor device
CN117238897B (en) IGBT device structure and preparation method thereof
WO2024079813A1 (en) Semiconductor device
JPH0878619A (en) Semiconductor device for electric power
CN109994445B (en) Semiconductor element and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040830

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees