JP4030493B2 - Calcium aluminate laminate and method for producing the same - Google Patents

Calcium aluminate laminate and method for producing the same Download PDF

Info

Publication number
JP4030493B2
JP4030493B2 JP2003365966A JP2003365966A JP4030493B2 JP 4030493 B2 JP4030493 B2 JP 4030493B2 JP 2003365966 A JP2003365966 A JP 2003365966A JP 2003365966 A JP2003365966 A JP 2003365966A JP 4030493 B2 JP4030493 B2 JP 4030493B2
Authority
JP
Japan
Prior art keywords
calcium aluminate
film
oxygen
powder
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003365966A
Other languages
Japanese (ja)
Other versions
JP2005126299A (en
Inventor
卓 川崎
和弘 伊藤
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003365966A priority Critical patent/JP4030493B2/en
Publication of JP2005126299A publication Critical patent/JP2005126299A/en
Application granted granted Critical
Publication of JP4030493B2 publication Critical patent/JP4030493B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、酸化触媒、イオン伝導体などの用途展開が期待されている、活性酸素種であるO やOの酸素ラジカルを高濃度に含むカルシウムアルミネート膜およびその積層体に関する。 The present invention is an oxidation catalyst, applications expand, such as an ion conductor is expected, O 2 is active oxygen species - and O - oxygen radicals regarding calcium aluminate film and laminates thereof containing a high concentration of.

やOの酸素ラジカルは、活性酸素の1種であり、有機物や無機物の酸化過程で重要な役割を果たすことが知られている。酸化物化合物の固体表面上に吸着したO については、広範な研究が行われている(非特許文献1参照)。
J.H.Lunsford、Catal.Rev.8,135,1973、M.Che and A.J.Tench,Adv.Catal,32,1,1983。
O 2 - or O - oxygen radicals is one of the active oxygen has been known to play an important role in the oxidation process of organic substances and inorganic substances. Extensive research has been conducted on O 2 adsorbed on the solid surface of an oxide compound (see Non-Patent Document 1).
J. et al. H. Lunsford, Catal. Rev. 8, 135, 1973, M.M. Che and A.A. J. et al. Tench, Adv. Catal, 32, 1, 1983.

前記の研究では、γ線などの高エネルギーの放射線を酸化物化合物表面に照射することでO を作成している。 In the above research, O 2 is produced by irradiating the surface of the oxide compound with high-energy radiation such as γ rays.

を構成アニオンとする結晶はRO(R=アルカリ金属)が知られているが、これらの化合物はいずれも300℃以下の低温で容易に分解してしまうため、酸化触媒、イオン伝導体などの用途には使用できない。 RO 2 (R = alkali metal) is known as a crystal having O 2 as a constituent anion. However, since these compounds are easily decomposed at a low temperature of 300 ° C. or lower, an oxidation catalyst, ion conduction It cannot be used for purposes such as body.

1970年にH.B.Bartlらは、12CaO・7Al(以下、C12という)結晶においては、2分子を含む単位胞にある66個の酸素のうち、2個はネットワークに含まれず、結晶の中に存在するケージ内の空間に「フリー酸素」として存在すると主張している(非特許文献2参照)。
H.B.Bartl and T.Scheller,Neues Jarhrb.Mineral.,Monatsh.1970,547。
In 1970, H.C. B. Bartl et al., In 12CaO · 7Al 2 O 3 (hereinafter referred to as C 12 A 7 ) crystal, 2 out of 66 oxygen atoms in a unit cell containing 2 molecules are not included in the network, It claims to exist as “free oxygen” in the existing space in the cage (see Non-Patent Document 2).
H. B. Bartl and T.W. Scheller, Neues Jarhrb. Mineral. , Monash. 1970, 547.

また、細野らは、CaCOとAlまたはAl(OH)を原料として空気中で1200℃の温度で固相反応により合成したC12結晶中に1×1019/cm程度のO が包接されていることを電子スピン共鳴の測定から発見し、フリー酸素の一部がO の形でゲージ内に存在するというモデルを提案している(非特許文献3参照)。
H.Hosono and Y.Abe,Inorg.Chem.26、1193,1997。
Moreover, Hosono et al. 1 × 10 19 / cm 3 in a C 12 A 7 crystal synthesized by a solid phase reaction in air at a temperature of 1200 ° C. using CaCO 3 and Al 2 O 3 or Al (OH) 3 as raw materials. the degree of O 2 - that is inclusion found from the measurement of electron spin resonance, part of the free oxygen O 2 - form (non-patent literature have proposed a model that exists in the gauge of 3).
H. Hosono and Y. Abe, Inorg. Chem. 26, 1193, 1997.

12は、融点1415℃の安定な酸化物であり、包接されるO の量を増加させ、可逆的な取り込み、放出が可能となれば、酸化触媒、イオン伝導体などとしての用途が開けるものと期待できる。 C 12 A 7 is a stable oxide having a melting point of 1415 ° C. If the amount of O 2 − included is increased and reversible uptake and release are possible, it can be used as an oxidation catalyst, ion conductor, etc. Can be expected to open up applications.

細野らは更に、前記O を包接するC12について検討を行い、CaCO、Ca(OH)又はCaOと、Al又はAl(OH)とを原料に用い、酸素分圧10Pa以上、水蒸気分圧10Pa以下の乾燥酸化雰囲気下、1200℃以上1415℃未満に焼成し、固相反応させることで、活性酸素種であるO 及びOを1020/cm以上の高濃度で包接するC12を得ている(特許文献1参照)。
特開2002―3218公報。
Further, Hosono et al. Examined C 12 A 7 which includes the O 2 , and used CaCO 3 , Ca (OH) 2 or CaO and Al 2 O 3 or Al (OH) 3 as raw materials, and oxygen. In a dry oxidation atmosphere with a partial pressure of 10 4 Pa or more and a water vapor partial pressure of 10 2 Pa or less, firing is performed at 1200 ° C. or more and less than 1415 ° C., and a solid-phase reaction is performed, thereby reducing O 2 and O which are active oxygen species to 10 C 12 A 7 is obtained that is included at a high concentration of 20 / cm 3 or more (see Patent Document 1).
Japanese Patent Laid-Open No. 2002-3218.

しかし、細野らの見いだした高濃度に活性酸素種を含有するC12を産業上利用する場合に更に解決するべき課題がある。 However, there is a problem to be further solved when C 12 A 7 containing active oxygen species at a high concentration found by Hosono et al. Is used industrially.

すなわち、高濃度の酸素ラジカルを含有するC12を、酸化触媒、イオン伝導体等の用途に適用する場合、当該用途に応じた機能を充分発揮させるためには、それぞれの用途に適合した様々な形態とする必要がある。 That is, when C 12 A 7 containing a high concentration of oxygen radicals is applied to uses such as an oxidation catalyst and an ionic conductor, it is suitable for each use in order to fully exhibit the function corresponding to the use. Various forms are required.

12を粉末形態で使用する場合以外は、形態の付与はC12を焼結させることによってなされるのが一般的である。焼結体は、原料となるC12粉末またはカルシウム化合物とアルミニウム化合物との混合粉末を、金型等を用いて所定の形状に成形した後に焼成することによって、製造することができる。しかし、大面積の板状品等の大型品を製造する際には大規模な成形機や焼成炉が必要になるため、高価なものとなってしまう。 Except when C 12 A 7 is used in powder form, the form is generally imparted by sintering C 12 A 7 . The sintered body can be produced by firing a C 12 A 7 powder or a mixed powder of a calcium compound and an aluminum compound as a raw material into a predetermined shape using a mold or the like and then firing. However, when a large-sized product such as a plate-shaped product with a large area is manufactured, a large-scale molding machine and a firing furnace are required, which is expensive.

この対策として、大面積化が比較的容易なC12の膜を、膜への酸素供給が可能な酸素イオン伝導性を有する基体上に形成させることが考えられる。膜形成の具体的な方法として、スパッタ法やレーザーアブレイシブ法などの物理気相蒸着(PVD)法、ゾルゲル法、化学気相蒸着(CVD)法、溶射法あるいは塗布法等が挙げられるが、それぞれに問題点があった。 As a countermeasure against this, it is conceivable to form a C 12 A 7 film that is relatively easy to increase in area on a substrate having oxygen ion conductivity capable of supplying oxygen to the film. Specific methods of film formation include physical vapor deposition (PVD) methods such as sputtering and laser ablation methods, sol-gel methods, chemical vapor deposition (CVD) methods, thermal spraying methods, and coating methods. , Each had problems.

すなわち、PVD法やゾルゲル法で得られるC12膜は非晶質であり、そのままでは酸素ラジカルを包接することができない。酸素ラジカルを高濃度に包接できる結晶質のC12とするためには、成膜後さらに1000℃以上の高温で熱処理して結晶化させる必要がある。しかし、C12は非晶質が結晶化する際に大きな体積膨張を伴うため、膜が剥離してしまう問題がある。 That is, the C 12 A 7 film obtained by the PVD method or the sol-gel method is amorphous and cannot include oxygen radicals as it is. In order to obtain crystalline C 12 A 7 which can include oxygen radicals at a high concentration, it is necessary to further crystallize by heat treatment at a high temperature of 1000 ° C. or higher after film formation. However, since C 12 A 7 is accompanied by a large volume expansion when the amorphous material is crystallized, there is a problem that the film peels off.

CVD法によれば結晶質のカルシウムアルミネート膜を直接成膜することが可能であるが、C12以外のカルシウムアルミネートが生成しやすいため、結晶質のC12だけを含む膜を得ることは極めて困難である。 Although it is possible to directly form a crystalline calcium aluminate film by the CVD method, since a calcium aluminate other than C 12 A 7 is likely to be formed, a film containing only crystalline C 12 A 7 Is extremely difficult to obtain.

溶射法においては、原料粉末として結晶質のC12粉末を用い、これを溶射ガンと呼ばれる部位に搬送した後プラズマやフレームによって高温に加熱して少なくとも粉末表面を溶融し、溶射ガンの先端から連続的に噴射して基体表面に付着させた後、凝固させることによって膜が形成される。 In the thermal spraying method, a crystalline C 12 A 7 powder is used as a raw material powder, which is conveyed to a part called a thermal spray gun and heated to a high temperature by plasma or a flame to melt at least the powder surface, and the tip of the thermal spray gun The film is formed by continuously injecting and adhering to the substrate surface and then solidifying.

溶射法で得られるカルシウムアルミネート膜は、PVD法やゾルゲル法で得られる膜とは異なり、大部分が結晶質C12になる。しかし、原料粉末が溶融した時点で、少量の非晶質C12が生成して溶射膜中に残存する。C12の使用法として、含有する酸素ラジカルを効率的に外部へ取り出すために高温に加熱する場合があるが、このときC12膜中に非晶質が残存すると、加熱時に結晶化して急激に体積が変化して、膜が基体から剥離してしまう問題が生じる。 Unlike the film obtained by the PVD method or the sol-gel method, the calcium aluminate film obtained by the thermal spraying method becomes mostly crystalline C 12 A 7 . However, when the raw material powder is melted, a small amount of amorphous C 12 A 7 is generated and remains in the sprayed film. C 12 A 7 may be heated to a high temperature in order to efficiently extract the contained oxygen radicals to the outside. If amorphous remains in the C 12 A 7 film at this time, crystals will be generated during heating. As a result, the volume suddenly changes and the film peels off from the substrate.

一方塗布法においては、結晶質のカルシウムアルミネート粉末を含んでなるスラリーを塗布後、加熱して塗膜を焼き付けることによって、非晶質のカルシウムアルミネートを含まない膜を得ることが可能である。但し、基体として一般的に用いられる酸素イオン伝導性を有するイットリア(Y)安定化酸化ジルコニウム(YSZ)や酸化カルシウム安定化酸化ジルコニウムが、焼き付けの際にカルシウムアルミネート粉末と反応してしまいジルコン酸カルシウム(CaZrO)等が生成するため、結晶質のC12だけを含む膜を得ることは極めて困難である。 On the other hand, in the coating method, it is possible to obtain a film containing no amorphous calcium aluminate by applying a slurry containing crystalline calcium aluminate powder and then baking the coating film by heating. . However, yttria (Y 2 O 3 ) -stabilized zirconium oxide (YSZ) or calcium oxide-stabilized zirconium oxide having oxygen ion conductivity generally used as a substrate reacts with calcium aluminate powder during baking. As a result, calcium zirconate (CaZrO 3 ) and the like are produced, and it is extremely difficult to obtain a film containing only crystalline C 12 A 7 .

本発明者らは、C12膜と基体からなる積層体の有する前記の問題点が、特定材質の基体を用いて結晶質C12粉末を基体表面に塗布した後、所定の雰囲気及び温度で加熱、焼成してC12膜を形成させたときに解決でき、しかも酸素イオンラジカルを高濃度で含有し、かつ酸素イオン伝導性を有する積層体が容易に再現性高く得られること見出し、本発明に至ったものである。 The inventors of the present invention are concerned with the above-mentioned problem of the laminate composed of the C 12 A 7 film and the base material, after applying crystalline C 12 A 7 powder to the surface of the base material using a base material of a specific material, and then a predetermined atmosphere. And a layered product that can be solved by heating and baking at a temperature to form a C 12 A 7 film, and that contains oxygen ion radicals in a high concentration and has oxygen ion conductivity, can be easily obtained with high reproducibility. That is, this has led to the present invention.

即ち、本発明は、酸化マグネシウムで安定化又は部分安定化した酸化ジルコニウム焼結体表面に、結晶質の酸素ラジカル含有の12CaO・7Al からなる膜を設けていることを特徴とするカルシウムアルミネート積層体である。 That is, the present invention is characterized in that a film made of 12CaO · 7Al 2 O 3 containing crystalline oxygen radicals is provided on the surface of a sintered zirconium oxide stabilized or partially stabilized with magnesium oxide. It is an aluminate laminate.

また、本発明は、酸化マグネシウムで安定化又は部分安定化した酸化ジルコニウム焼結体表面に、結晶質の12CaO・7Al 粉末を含んでなるスラリーを塗布し、これを酸素分圧10Pa以上、水蒸気分圧10Pa以下の雰囲気下、1300℃以上1400℃以下の温度範囲で加熱することを特徴とするカルシウムアルミネート積層体の製造方法である。
Further, in the present invention, a slurry containing crystalline 12CaO · 7Al 2 O 3 powder is applied to the surface of a sintered zirconium oxide stabilized or partially stabilized with magnesium oxide, and this is applied to an oxygen partial pressure of 10 4. A method for producing a calcium aluminate laminate, comprising heating in a temperature range of 1300 ° C. or higher and 1400 ° C. or lower in an atmosphere of Pa or higher and a water vapor partial pressure of 10 2 Pa or lower.

本発明のカルシウムアルミネート積層体は、酸化マグネシウムを含有する酸化ジルコニウム焼結体表面に、結晶質の酸素ラジカル含有カルシウムアルミネートからなる膜を設けているので、加熱によってカルシウムアルミネート膜と基体とが反応し、その結果カルシウムアルミネート膜が剥離してしまうという問題点が改良され、結晶質のカルシウムアルミネート膜を有する複合体が得ら、酸素マイナスイオンの安定供給が達成できることから、例えば酸化触媒、イオン伝導体用途などに好適であり、産業上有用である。また、本発明のカルシウムアルミネート積層体の製造方法は、前記特徴のあるカルシウムアルミネート積層体が、安価に安定して得ることができるし、塗布法を採用しているので、大面積の酸素ラジカル含有のカルシウムアルミネート積層体が得られるし、曲面を有するカルシウムアルミネート積層体も容易に得られる特徴がある。 In the calcium aluminate laminate of the present invention, a film made of crystalline oxygen radical-containing calcium aluminate is provided on the surface of a zirconium oxide sintered body containing magnesium oxide. As a result, the problem that the calcium aluminate film peels off is improved, and a composite having a crystalline calcium aluminate film is obtained, so that stable supply of oxygen negative ions can be achieved. It is suitable for applications such as catalysts and ion conductors, and is industrially useful. In addition, the method for producing a calcium aluminate laminate according to the present invention enables the calcium aluminate laminate having the above characteristics to be stably obtained at a low cost and employs a coating method. A radical-containing calcium aluminate laminate can be obtained, and a calcium aluminate laminate having a curved surface can be easily obtained.

本発明は、本発明者が酸素ラジカル含有カルシウムアルミネート膜の積層体を得る方法を実験的に種々検討した結果、基体に酸化マグネシウムを含有する酸化ジルコニウム焼結体を用い、結晶質カルシウムアルミネート粉末を原料粉末として、これを含むスラリーを作製し、このスラリーを前記基体上に塗布後、酸素分圧10Pa以上、水蒸気分圧10Pa以下の乾燥酸化雰囲気下、1300℃以上1400℃以下の温度で加熱することによって、基体上に高濃度の酸素ラジカルを含有する結晶質のカルシウムアルミネート膜が焼き付けられた積層体を得ることができ、しかも、焼き付けの際にカルシウムアルミネート粉末と反応することがなく、従来技術の前記問題が一気に解消できることを見出したことに基づいている。 As a result of the present inventors experimentally examining various methods for obtaining a laminated body of oxygen radical-containing calcium aluminate films, the present inventors have used a zirconium oxide sintered body containing magnesium oxide as a substrate, and obtained crystalline calcium aluminate. A slurry containing the powder as a raw material powder is prepared, and this slurry is applied onto the substrate, and then, in a dry oxidation atmosphere having an oxygen partial pressure of 10 4 Pa or more and a water vapor partial pressure of 10 2 Pa or less, 1300 ° C. or more and 1400 ° C. By heating at the following temperature, it is possible to obtain a laminate in which a crystalline calcium aluminate film containing a high concentration of oxygen radicals is baked on the substrate, and at the time of baking, a calcium aluminate powder and It is based on the finding that the above-mentioned problems of the prior art can be solved at once without reacting.

本発明におけるカルシウムアルミネートとは、主たる元素がCa、Al、酸素(O)で構成され、さらに主たる鉱物相が結晶性の12CaO・7Al(C12)である。カルシウムアルミネートには、他に、3CaO・Al(CA)、CaO・Al(CA)、CaO・2Al(CA)、CaO・6Al(CA)などの鉱物相を含有できる。 The calcium aluminate in the present invention is 12CaO.7Al 2 O 3 (C 12 A 7 ) in which main elements are composed of Ca, Al, and oxygen (O), and the main mineral phase is crystalline. The calcium aluminate, other, 3CaO · Al 2 O 3 ( C 3 A), CaO · Al 2 O 3 (CA), CaO · 2Al 2 O 3 (CA 2), CaO · 6Al 2 O 3 (CA 6 ) and other mineral phases can be contained.

カルシウムアルミネートの主たる成分をC12にするためには、原料中に含まれるCaとAlのモル比を、0.77:1 〜 0.96:1とすれば良い。CaとAlのモル比が上記以外の範囲では、C12以外のカルシウムアルミネートであるCAやCAの生成量が多くなり、酸素ラジカルを包接する性質が損なわれる。このため前記範囲が好ましく選択される。 In order to set the main component of calcium aluminate to C 12 A 7 , the molar ratio of Ca and Al contained in the raw material may be 0.77: 1 to 0.96: 1. When the molar ratio of Ca and Al is in a range other than the above, the amount of C 3 A and CA, which are calcium aluminates other than C 12 A 7 , increases, and the property of including oxygen radicals is impaired. For this reason, the said range is selected preferably.

本発明に用いられるカルシウムアルミネート粉末は、前述の配合となるように、いろいろな原料から得ることができる。その原料として用いられるCa源の物質としては、例えば石灰石(CaCO)、消石灰(Ca(OH))または生石灰(CaO)などがあげられる。またAl源の物質としてはアルミナ(Al)、水酸化アルミニウム(Al(OH))、ボーキサイトまたはアルミ残灰などがあげられる。これらのうち、入手が容易であり安全性が高い事から、特にCaCO及びAlを好適に使用することができる。 The calcium aluminate powder used in the present invention can be obtained from various raw materials so as to have the aforementioned composition. Examples of the Ca source material used as the raw material include limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), and quick lime (CaO). Examples of the Al source material include alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), bauxite, and aluminum residual ash. Of these, CaCO 3 and Al 2 O 3 can be particularly preferably used because they are easily available and highly safe.

前記の原料を混合後、雰囲気、温度を制御した条件下で直接固相反応させることによって、主たる成分がC12からなるカルシウムアルミネートが得られる。雰囲気と温度を制御した条件の具体例は、例えば大気中、1200℃以上1415℃未満の温度である。 After mixing the above raw materials, a calcium aluminate whose main component is C 12 A 7 is obtained by direct solid-phase reaction under controlled conditions of atmosphere and temperature. A specific example of the conditions for controlling the atmosphere and temperature is, for example, a temperature of 1200 ° C. or higher and lower than 1415 ° C. in the air.

前記操作で得たカルシウムアルミネートは通常塊状であるが、必要に応じ粉砕を行って粉末に調製される。この際、粉砕機としては、スタンプミル、トップグラインダー、ジョークラッシャー、ロールクラッシャー等の粗粉砕機や、粉砕ボール等の粉砕メディアを用いて粉砕するボールミル、振動ミル、アトリッションミル等の微粉砕機を用いることができる。但し、カルシウムアルミネートが水分と反応するのを防ぐため、粉砕は通常乾式で行われ、平均粒径1〜5μm、比表面積1〜10m/g程度のスラリー化に適した粒度にまで粉砕される。 The calcium aluminate obtained by the above operation is usually a lump, but is pulverized as necessary to prepare a powder. At this time, as a pulverizer, a coarse pulverizer such as a stamp mill, a top grinder, a jaw crusher, a roll crusher, a fine pulverizer such as a ball mill, a vibration mill, an attrition mill, etc. A machine can be used. However, in order to prevent calcium aluminate from reacting with moisture, the pulverization is usually carried out by a dry method, and pulverized to a particle size suitable for slurrying with an average particle size of 1 to 5 μm and a specific surface area of 1 to 10 m 2 / g. The

カルシウムアルミネートは水と反応するため、スラリー化の際の溶媒として水を用いることはできず、代わりにメタノール、エタノール、イソプロパノール、n−ブタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ジオキサン、テトラヒドロフラン等のエーテル類、メチルセロソルブ、ブチルセロソルブ等のセロソルブ類、n−へキサン、シクロヘキサン等の炭化水素類、クロロホルム、塩化メチレン等の塩素化炭化水素類、トルエン、キシレン等の芳香族類等の有機溶媒を用いることができる。これらのうちアルコール類、とりわけエタノールを好適に用いることができる。 Since calcium aluminate reacts with water, water cannot be used as a solvent during slurrying. Instead, alcohols such as methanol, ethanol, isopropanol, n-butanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone Ketones such as methyl acetate, esters such as ethyl acetate and butyl acetate, ethers such as dioxane and tetrahydrofuran, cellosolves such as methyl cellosolve and butyl cellosolve, hydrocarbons such as n-hexane and cyclohexane, chloroform and chloride Organic solvents such as chlorinated hydrocarbons such as methylene and aromatics such as toluene and xylene can be used. Of these, alcohols, particularly ethanol, can be preferably used.

また、塗布後の塗膜に強度を付与するために、必要に応じて、ニトロセルロース、ポリアクリル酸エステル、ポリビニルブチラール、ポリメタクリル酸エステル、あるいはエチルセルロース等の結合剤が用いられる。これらのうち、とりわけポリビニルブチラールを好適に用いることができる。これらの結合剤は通常予め有機溶剤に溶解させて使用することができる。 Moreover, in order to give intensity | strength to the coating film after application | coating, binders, such as nitrocellulose, polyacrylic acid ester, polyvinyl butyral, polymethacrylic acid ester, or ethylcellulose, are used as needed. Among these, polyvinyl butyral can be preferably used. These binders can usually be used by dissolving in an organic solvent in advance.

本発明に於いて、カルシウムアルミネート粉末は前記操作を経ていることから、PVD法若しくはゾルゲル法で得られるものとは異なり、カルシウムアルミネート粉末は結晶質である。また、CVD法や従来の塗布法で得られる膜とは異なり、C12の含有量が極めて高い特徴がある。このため、本発明の方法で得られたカルシウムアルミネート積層体において、C12膜が高濃度の酸素ラジカルを含有することができ、しかも使用時に酸素ラジカルを効率的に外部へ取り出すことができる特徴を有すると共に、高温に加熱する場合においても膜が基体から剥離してしまう問題が生じ難い特徴がある。 In the present invention, since the calcium aluminate powder has undergone the above-described operation, the calcium aluminate powder is crystalline unlike that obtained by the PVD method or the sol-gel method. Further, unlike a film obtained by a CVD method or a conventional coating method, the content of C 12 A 7 is extremely high. For this reason, in the calcium aluminate laminate obtained by the method of the present invention, the C 12 A 7 film can contain a high concentration of oxygen radicals, and the oxygen radicals can be efficiently extracted outside during use. In addition to having the characteristics that can be achieved, there is a characteristic that the problem that the film peels off from the substrate even when heated to a high temperature is difficult to occur.

本発明に於いては、基体として酸化マグネシウムを含有する酸化ジルコニウムからなる焼結体を用いることを特徴としているが、当該知見は本発明者が実験的に得た知見であり、酸化マグネシウムを含有する酸化ジルコニウムの焼結体を基材に用いる時に、基材とカルシウムアルミネートとの反応が防止されるのかについては不明な点が多い。特に、前記酸化マグネシウムを含有する酸化ジルコニウムからなる焼結体に関しては、酸化マグネシウムが酸化ジルコニウム中に固溶している、いわゆる安定化酸化ジルコニウム或いは部分安定化酸化ジルコニウムが市販されており、入手しやすいことから好ましく選択される。 In the present invention, it is characterized by using a sintered body made of zirconium oxide containing magnesium oxide as a substrate, but this knowledge is a knowledge experimentally obtained by the present inventor and contains magnesium oxide. When the sintered body of zirconium oxide to be used is used as a base material, there are many unclear points as to whether the reaction between the base material and calcium aluminate is prevented. In particular, regarding the sintered body made of zirconium oxide containing magnesium oxide, so-called stabilized zirconium oxide or partially stabilized zirconium oxide in which magnesium oxide is dissolved in zirconium oxide is commercially available. It is preferably selected because it is easy.

また、本発明においては、基材は必要に応じ、膜との密着性を向上させるため表面粗化の前処理が施される場合がある。本発明者の実験的検討結果に拠れば、JIS B 0601:2001に規定される表面粗さの指標である最大高さ(Rz)で、5〜15μmのとき膜と基材との密着性が高く、好ましい。 In the present invention, the base material may be subjected to surface roughening pretreatment as needed to improve the adhesion to the film. According to the results of the experimental study by the present inventor, the maximum height (Rz), which is an index of surface roughness specified in JIS B 0601: 2001, is 5 to 15 μm, and the adhesion between the film and the substrate is high. High and preferable.

以下、実施例及び比較例をあげて、さらに本発明を説明する。 Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples.

(実施例1)炭酸カルシウム(CaCO)粉末と、アルミナ(γ−Al)粉末を、CaとAlのモル比が0.86:1になるように混合した後、大気中、1300℃で3時間焼成して白色焼成物を得た。冷却後X線回折測定を行い、この焼成物がC12であることを確認した。 (Example 1) Calcium carbonate (CaCO 3 ) powder and alumina (γ-Al 2 O 3 ) powder were mixed so that the molar ratio of Ca to Al was 0.86: 1. A white fired product was obtained by firing at 0 ° C. for 3 hours. After cooling, X-ray diffraction measurement was performed, and it was confirmed that this fired product was C 12 A 7 .

さらに前記焼成物を酸素分圧4×10Pa、水蒸気分圧10Paの乾燥酸化雰囲気下、1250℃で2時間焼成した。焼成物を冷却後、室温及び77KでのESRスペクトルを測定し、それぞれの吸収バンドの強度からO イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ5×1020cm−3であった。 Further, the fired product was fired at 1250 ° C. for 2 hours in a dry oxidizing atmosphere having an oxygen partial pressure of 4 × 10 4 Pa and a water vapor partial pressure of 10 2 Pa. Ion radicals and O - - After cooling, the fired product, O 2 from ESR spectrum was measured, the intensity of each of the absorption band at room temperature and at 77K were determined the concentration of ions radicals, each 5 × 10 20 cm -3 there were.

この焼成物をスタンプミルで1時間粉砕した後、目開き1mmの篩を用いて篩い落として粗砕物500gを調製し、これを直径10mmのジルコニア(ZrO)製粉砕ボール1500g及びエタノール1リットル(約795g)を、2リットルのポリエチレン製容器に充填し、ボールミルで一分間当たり72回の回転数で15時間連続粉砕した。得られた粉末をろ過、乾燥、解砕した後、X線回折測定を行い、C12であることを確認した。またESRスペクトルを測定から求めたO イオンラジカル及びOイオンラジカルの濃度は、それぞれ5×1020cm−3であった。さらにこの粉末の平均粒径及び比表面積を、レーザー回折・散乱法及びBET1点法にて測定したところ、それぞれ3.7μm及び2.0m/gであった。 After grinding the baked product for one hour in a stamp mill, a mesh opening dropped sieve with 1mm sieve to prepare a crushed product 500 g, this diameter 10mm zirconia (ZrO 2) manufactured by grinding balls 1500g and 1 liter of ethanol ( About 795 g) was filled in a 2 liter polyethylene container and continuously pulverized with a ball mill at 72 rotations per minute for 15 hours. The obtained powder was filtered, dried, and crushed, and then X-ray diffraction measurement was performed to confirm that it was C 12 A 7 . The O 2 to obtain the ESR spectrum from the measured - ion radicals and O - concentration of ions radicals were respectively 5 × 10 20 cm -3. Further the average particle size and specific surface area of this powder was measured by a laser diffraction scattering method and BET1 point method, were respectively 3.7μm and 2.0 m 2 / g.

この粉末を、エタノールとポリビニルブチラール100:0.5(質量比)の混合溶媒に分散させてスラリー化した後、表面を#80のAlブラスト材でサンドブラスト処理した長さ60mm、幅25mm、厚さ2mmの酸化マグネシウム部分安定化酸化ジルコニウム(品川ファインセラミックス製SZM−H)焼結体からなる基体の表面に、刷毛を用いて塗布した後、酸素分圧8×10Pa、水蒸気分圧0.5×10Paの乾燥酸化雰囲気下、1350℃で2時間加熱して膜を焼き付け、積層化を行った。尚、触針式表面粗さ測定器を用いて測定した前記基体のサンドブラスト後の最大高さは、9.4μmであった。
This powder was dispersed in a mixed solvent of ethanol and polyvinyl butyral 100: 0.5 (mass ratio ) to make a slurry, and then the surface was sandblasted with # 80 Al 2 O 3 blasting material 60 mm long and 25 mm wide. After applying to the surface of a substrate made of a 2 mm thick magnesium oxide partially stabilized zirconium oxide (SZM-H made by Shinagawa Fine Ceramics) sintered body using a brush, oxygen partial pressure 8 × 10 4 Pa, water vapor content The film was baked by heating at 1350 ° C. for 2 hours in a dry oxidation atmosphere with a pressure of 0.5 × 10 2 Pa to perform lamination. The maximum height after sandblasting of the substrate measured using a stylus type surface roughness measuring instrument was 9.4 μm.

得られた積層体の膜は、走査型電子顕微鏡(SEM)によって厚さ約150μmで基材に隙間無く密着していることを確認した。またX線回折図において非晶質特有の幅広いベースラインの盛り上がり(ハロー)が全く認められず、非晶質を含まない結晶質のC12であると判断された。さらに膜を基材から剥ぎ取った後、ESRスペクトルを測定し、O イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ4×1020cm−3であった。 It was confirmed by a scanning electron microscope (SEM) that the obtained film of the laminate had a thickness of about 150 μm and was in close contact with the substrate without any gap. In addition, in the X-ray diffraction diagram, a wide range of bulge (halo) peculiar to amorphous was not recognized at all, and it was judged to be crystalline C 12 A 7 containing no amorphous. After further peeled film from the substrate, the ESR spectrum was measured, O 2 - ion radical and O - was determined the concentration of ions radicals were respectively 4 × 10 20 cm -3.

(実施例2)炭酸カルシウム(CaO)粉末と、アルミナ(γ−Al)粉末を、CaとAlのモル比が0.82:1になるように混合した後、大気中、1300℃で5時間焼成して白色焼成物を得た。冷却後X線回折測定を行い、この焼成物がC12であることを確認した。 (Example 2) Calcium carbonate (CaO) powder and alumina (γ-Al 2 O 3 ) powder were mixed so that the molar ratio of Ca to Al was 0.82: 1. For 5 hours to obtain a white fired product. After cooling, X-ray diffraction measurement was performed, and it was confirmed that this fired product was C 12 A 7 .

この焼成物をスタンプミルで2時間粉砕した後、目開き1mmの篩を用いて篩い落として粗砕物500gを調製し、これを直径10mmのジルコニア(ZrO)製粉砕ボール1500g及びエタノール1リットル(約795g)を、2リットルのポリエチレン製容器に充填し、ボールミルで一分間当たり72回の回転数で20時間連続粉砕した。得られた粉末をろ過、乾燥、解砕した後、X線回折測定を行い、C12であることを確認した。またESRスペクトル測定から求めたO イオンラジカル及びOイオンラジカルの濃度は、いずれも1×1019cm−3未満であった。さらにこの粉末の平均粒径及び比表面積を、レーザー回折・散乱法及びBET1点法にて測定したところ、それぞれ2.9μm及び2.6m/gであった。 After grinding the fired product 2 hours a stamp mill, a mesh opening dropped sieve with 1mm sieve to prepare a crushed product 500 g, this diameter 10mm zirconia (ZrO 2) manufactured by grinding balls 1500g and 1 liter of ethanol ( About 795 g) was filled in a 2 liter polyethylene container and continuously pulverized with a ball mill at 72 rotations per minute for 20 hours. The obtained powder was filtered, dried, and crushed, and then X-ray diffraction measurement was performed to confirm that it was C 12 A 7 . The O 2 obtained from ESR spectroscopy - ion radicals and O - concentration of ions radicals were both less than 1 × 10 19 cm -3. Furthermore, when the average particle diameter and specific surface area of this powder were measured by the laser diffraction / scattering method and the BET one-point method, they were 2.9 μm and 2.6 m 2 / g, respectively.

この粉末を、実施例1と同様にしてスラリー化した後、表面を#54のAlブラスト材でサンドブラスト処理した長さ42mm、幅40mm、厚さ3mmの酸化マグネシウム部分安定化酸化ジルコニウム(品川ファインセラミックス製SZM−M)からなる焼結体の基体の表面に、噴霧器を用いて塗布した後、酸素分1×10Pa、水蒸気分圧0.1×10Paの乾燥酸化雰囲気下、1380℃で2時間加熱して膜を焼き付け、積層化を行った。 This powder was slurried in the same manner as in Example 1, and then the surface was sandblasted with # 54 Al 2 O 3 blasting material. The magnesium oxide partially stabilized zirconium oxide (length: 42 mm, width: 40 mm, thickness: 3 mm) After applying to the surface of the sintered body substrate made of SZM-M made by Shinagawa Fine Ceramics) using a sprayer, in a dry oxidizing atmosphere having an oxygen content of 1 × 10 5 Pa and a water vapor partial pressure of 0.1 × 10 2 Pa The film was baked by heating at 1380 ° C. for 2 hours to laminate.

得られた積層体の膜は、走査型電子顕微鏡(SEM)によって厚さ約40μmで基材に隙間無く密着していることを確認した。またX線回折測定によって非晶質を全く含まない結晶質のC12であると判断された。さらに膜を基材から剥ぎ取った後、ESRスペクトルを測定し、O イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ3×1020cm−3であった。 It was confirmed by a scanning electron microscope (SEM) that the obtained film of the laminate had a thickness of about 40 μm and adhered to the substrate without any gap. Further, it was determined to be crystalline C 12 A 7 containing no amorphous substance by X-ray diffraction measurement. After further stripped the membrane from the substrate, the ESR spectrum was measured, O 2 - ion radical and O - was determined the concentration of ions radicals, were respectively 3 × 10 20 cm -3.

(実施例3)長さ45mm、幅30mm、厚さ2.5mmの板状酸化マグネシウム安定化酸化ジルコニウム焼結体(ニッカトー製ZR−15M)を基体として用いたこと以外は実施例2と同様にして、C12塗膜との積層化を行った。積層体の膜は、走査型電子顕微鏡(SEM)によって厚さ約110μmで基材に隙間無く密着していることを確認した。またX線回折測定によって非晶質を全く含まない結晶質のC12であると判断された。さらに膜のESRスペクトルを測定し、O イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ5×1020cm−3であった。この積層体は800℃において、酸素イオンのイオン源として動作可能であった。 (Example 3) A plate-like magnesium oxide-stabilized zirconium oxide sintered body (ZR-15M manufactured by Nikkato) having a length of 45 mm, a width of 30 mm, and a thickness of 2.5 mm was used in the same manner as in Example 2 except that it was used as a substrate. Then, lamination with a C 12 A 7 coating film was performed. It was confirmed by a scanning electron microscope (SEM) that the laminated film had a thickness of about 110 μm and was in close contact with the substrate without any gaps. Further, it was determined to be crystalline C 12 A 7 containing no amorphous substance by X-ray diffraction measurement. Further measuring the ESR spectrum of the film, O 2 - ion radical and O - was determined the concentration of ions radicals were respectively 5 × 10 20 cm -3. This laminate was operable at 800 ° C. as an ion source of oxygen ions.

(比較例1)実施例2において、酸化マグネシウム部分安定化酸化ジルコニウムの代わりに、直径25mm、厚さ2.8mmのイットリア(Y)安定化酸化ジルコニウム焼結体(ニッカトー製YSZ−8)からなる円板を基体として用いたこと以外は、実施例2と同様にして塗膜との積層化を行った。その結果、焼き付けた膜は元のC12ではなく、ジルコン酸カルシウム(CaZrO)に変質していることをX線回折測定によって確認した。さらに膜のESRスペクトルを測定したところ、O イオンラジカル及びOイオンラジカルはいずれも検出されなかった。 (Comparative Example 1) In Example 2, instead of magnesium oxide partially stabilized zirconium oxide, yttria (Y 2 O 3 ) stabilized zirconium oxide sintered body (YSZ-8 manufactured by Nikkato) having a diameter of 25 mm and a thickness of 2.8 mm The disc was laminated with the coating film in the same manner as in Example 2 except that the disc made of the above was used as the substrate. As a result, it was confirmed by X-ray diffraction measurement that the baked film was altered to calcium zirconate (CaZrO 3 ) instead of the original C 12 A 7 . Was further measured ESR spectra of the membrane, O 2 - ion radical and O - ion radicals were detected either.

(比較例2)実施例2において、酸化マグネシウム部分安定化酸化ジルコニウムの代わりに、直径21mm、厚さ2mmの酸化カルシウム安定化酸化ジルコニウム円板(ニッカトー製ZR−11)を基体として用いたこと以外は、実施例2と同様にして塗膜との積層化を行った。その結果焼き付けた膜は元のC12ではなく、CA(CaO・Al)に変質していることをX線回折測定によって確認した。さらに膜のESRスペクトルを測定したところ、O イオンラジカル及びOイオンラジカルはいずれも検出されなかった。 (Comparative Example 2) In Example 2, a calcium oxide stabilized zirconium oxide disk (ZR-11 manufactured by Nikkato) having a diameter of 21 mm and a thickness of 2 mm was used as the substrate in place of the magnesium oxide partially stabilized zirconium oxide. Was laminated with a coating film in the same manner as in Example 2. As a result, it was confirmed by X-ray diffraction measurement that the baked film was altered not to the original C 12 A 7 but to CA (CaO.Al 2 O 3 ). Was further measured ESR spectra of the membrane, O 2 - ion radical and O - ion radicals were detected either.

本発明によれば、原料に結晶質C12からなるカルシウムアルミネート粉末を用い、これをスラリー化して酸化マグネシウムで安定化又は部分安定化した酸化ジルコニウム基体上に塗布し、高酸素分圧及び低水蒸気分圧の乾燥酸化雰囲気下で加熱することのみによって、高濃度に酸素ラジカルを含有するカルシウムアルミネート膜の積層体が得られるので、用途に応じて大面積や複雑形状の酸素ラジカル含有カルシウムアルミネート膜の積層体を容易に再現性高く提供することができ、この積層体は、例えば、酸化触媒、イオン伝導体用途に好適であり、産業上非常に有用である。 According to the present invention, calcium aluminate powder composed of crystalline C 12 A 7 is used as a raw material, and this is slurried and coated on a zirconium oxide substrate stabilized or partially stabilized with magnesium oxide, and then has a high oxygen partial pressure. And a layer of calcium aluminate film containing oxygen radicals at a high concentration can be obtained only by heating in a dry oxidizing atmosphere with a low water vapor partial pressure. A laminate of calcium aluminate films can be easily provided with high reproducibility, and this laminate is suitable for use in, for example, oxidation catalysts and ion conductors, and is very useful in industry.

Claims (2)

酸化マグネシウムで安定化又は部分安定化した酸化ジルコニウム焼結体表面に、結晶質の酸素ラジカル含有の12CaO・7Al からなる膜を設けていることを特徴とするカルシウムアルミネート積層体。 A calcium aluminate laminate, wherein a film made of 12CaO.7Al 2 O 3 containing crystalline oxygen radicals is provided on the surface of a sintered zirconium oxide stabilized or partially stabilized with magnesium oxide. 酸化マグネシウムで安定化又は部分安定化した酸化ジルコニウム焼結体表面に、結晶質の12CaO・7Al 粉末を含んでなるスラリーを塗布し、これを酸素分圧10Pa以上、水蒸気分圧10Pa以下の雰囲気下、1300℃以上1400℃以下の温度範囲で加熱することを特徴とするカルシウムアルミネート積層体の製造方法。 A slurry containing crystalline 12CaO · 7Al 2 O 3 powder is applied to the surface of a sintered zirconium oxide stabilized or partially stabilized with magnesium oxide, and this is applied to an oxygen partial pressure of 10 4 Pa or more and a water vapor partial pressure. A method for producing a calcium aluminate laminate, comprising heating in a temperature range of 1300 ° C. to 1400 ° C. in an atmosphere of 10 2 Pa or less.
JP2003365966A 2003-10-27 2003-10-27 Calcium aluminate laminate and method for producing the same Expired - Fee Related JP4030493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003365966A JP4030493B2 (en) 2003-10-27 2003-10-27 Calcium aluminate laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003365966A JP4030493B2 (en) 2003-10-27 2003-10-27 Calcium aluminate laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005126299A JP2005126299A (en) 2005-05-19
JP4030493B2 true JP4030493B2 (en) 2008-01-09

Family

ID=34644458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003365966A Expired - Fee Related JP4030493B2 (en) 2003-10-27 2003-10-27 Calcium aluminate laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP4030493B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4942963B2 (en) * 2005-08-18 2012-05-30 日本碍子株式会社 Corrosion-resistant member and manufacturing method thereof
JP7269563B2 (en) * 2019-03-07 2023-05-09 太平洋マテリアル株式会社 Support immobilized catalyst carrier

Also Published As

Publication number Publication date
JP2005126299A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
TWI694971B (en) MXene particle material, manufacturing method of these particle materials and secondary battery
US8268408B2 (en) Method of manufacturing composite structure, impurity removal processing apparatus, film forming apparatus, composite structure and raw material powder
CN113727946B (en) Powder for film formation or sintering
JP6028797B2 (en) Method for producing conductive mayenite compound having high electron density and target
RU2673801C1 (en) Method for producing powdered material from cerium oxide on substrate of aluminum oxide
Nikolić et al. The influence of mechanical activation on zinc stannate spinel formation
Cherdchom et al. Calcium titanate from food waste: combustion synthesis, sintering, characterization, and properties
Liu et al. Effect of ZnO on the microstructure and dielectric properties of BaTiO3 ceramic coatings prepared by plasma spraying
JP4010414B2 (en) Method for producing oxygen radical-containing calcium aluminate film and laminate
Ctibor et al. Structure and properties of plasma sprayed BaTiO3 coatings after thermal posttreatment
JP4030493B2 (en) Calcium aluminate laminate and method for producing the same
Pakseresht et al. Effect of morphology and non-bounded interface on dielectric properties of plasma sprayed BaTiO3 coating
JP2003277048A (en) FIRED ALUMINA PRODUCT, METHOD FOR MANUFACTURING FIRED ALUMINA PRODUCT AND FINE alpha ALUMINA POWDER OBTAINED BY USING FIRED ALUMINA PRODUCT
Pakseresht et al. Effect of heat treatment on the microstructure and dielectric properties of plasma-sprayed barium titanate films
JP6885015B2 (en) Method for Producing Conductive Mayenite Compound and Sintered Body of Conductive Mayenite Compound
US20070132154A1 (en) Low-temperature high-rate superplastic forming of ceramic composite
JP4076505B2 (en) Stack of oxygen radical-containing calcium aluminate film
JP6070563B2 (en) Conductive mayenite compound sintered body, sputtering target, and method for producing conductive mayenite compound sintered body
JP3995637B2 (en) Method for producing laminate of oxygen radical-containing calcium aluminate film
CN100349800C (en) Method for preparing calcium aluminate film containing oxygen radical and laminate
JP4010994B2 (en) Method for producing laminate of oxygen radical-containing calcium aluminate film
JPWO2020217552A1 (en) Powder for film formation or sintering
Savastru et al. PZT films prepared by TVA and PLD from PbO2: TiO2: ZrO2 (1: 1: 1) nanoceramic targets
RU2805519C1 (en) Method for producing thin films of complex oxide systems from dry nanocrystalline powder for electrochemical devices
JP4410607B2 (en) Oxygen radical generating electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees