JP3995637B2 - Method for producing laminate of oxygen radical-containing calcium aluminate film - Google Patents

Method for producing laminate of oxygen radical-containing calcium aluminate film Download PDF

Info

Publication number
JP3995637B2
JP3995637B2 JP2003276829A JP2003276829A JP3995637B2 JP 3995637 B2 JP3995637 B2 JP 3995637B2 JP 2003276829 A JP2003276829 A JP 2003276829A JP 2003276829 A JP2003276829 A JP 2003276829A JP 3995637 B2 JP3995637 B2 JP 3995637B2
Authority
JP
Japan
Prior art keywords
film
oxygen
calcium aluminate
laminate
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003276829A
Other languages
Japanese (ja)
Other versions
JP2005035857A (en
Inventor
卓 川崎
和弘 伊藤
正浩 伊吹山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003276829A priority Critical patent/JP3995637B2/en
Publication of JP2005035857A publication Critical patent/JP2005035857A/en
Application granted granted Critical
Publication of JP3995637B2 publication Critical patent/JP3995637B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、酸化触媒、イオン伝導体などの用途展開が期待されている、活性酸素種であるO やOの酸素ラジカルを高濃度に含み、これらのラジカルイオンの高いイオン伝導性を示すカルシウムアルミネート膜の積層体の製造方法に関する。 The present invention is an oxidation catalyst, applications expand, such as an ion conductor is expected, O 2 is active oxygen species - and O - includes oxygen radicals in high concentrations, high ionic conductivity of these radical ions The present invention relates to a method for manufacturing a laminate of calcium aluminate films.

やOの酸素ラジカルは、活性酸素の1種であり、有機物や無機物の酸化過程で重要な役割を果たすことが知られている。酸化物化合物の固体表面上に吸着したO については、広範な研究が行われている(非特許文献1参照)。
J.H.Lunsford、Catal.Rev.8,135,1973、M.Che and A.J.Tench,Adv.Catal,32,1,1983。
O 2 - or O - oxygen radicals is one of the active oxygen has been known to play an important role in the oxidation process of organic substances and inorganic substances. Extensive research has been conducted on O 2 adsorbed on the solid surface of an oxide compound (see Non-Patent Document 1).
J. et al. H. Lunsford, Catal. Rev. 8, 135, 1973, M.M. Che and A.A. J. et al. Tench, Adv. Catal, 32, 1, 1983.

この研究では、γ線などの高エネルギーの放射線を酸化物化合物表面に照射することでO を作成している。 In this research, O 2 is created by irradiating the surface of an oxide compound with high-energy radiation such as γ rays.

を構成アニオンとする結晶はRO(R=アルカリ金属)が知られているが、これらの化合物はいずれも300℃以下の低温で容易に分解してしまうため、酸化触媒、イオン伝導体などの用途には使用できない。 RO 2 (R = alkali metal) is known as a crystal having O 2 as a constituent anion. However, since these compounds are easily decomposed at a low temperature of 300 ° C. or lower, an oxidation catalyst, ion conduction It cannot be used for purposes such as body.

1970年にH.B.Bartlらは、12CaO・7Al(以下、C12という)結晶においては、2分子を含む単位胞にある66個の酸素のうち、2個はネットワークに含まれず、結晶の中に存在するケージ内の空間に「フリー酸素」として存在すると主張している(非特許文献2参照)。
H.B.Bartl and T.Scheller、Neues Jarhrb.Mineral.,Monatsh.1970、547。
In 1970, H.C. B. Bartl et al., In 12CaO · 7Al 2 O 3 (hereinafter referred to as C 12 A 7 ) crystal, 2 out of 66 oxygen atoms in a unit cell containing 2 molecules are not included in the network, It claims to exist as “free oxygen” in the existing space in the cage (see Non-Patent Document 2).
H. B. Bartl and T.W. Scheller, Neues Jarhrb. Mineral. , Monash. 1970, 547.

また、細野らは、CaCOとAlまたはAl(OH)を原料として空気中で1200℃の温度で固相反応により合成したC12結晶中に1×1019/cm程度のO が包接されていることを電子スピン共鳴の測定から発見し、フリー酸素の一部がO の形でゲージ内に存在するというモデルを提案している(非特許文献3参照)。
H.Hosono and Y.Abe,Inorg.Chem.26、1193、1997。
Moreover, Hosono et al. 1 × 10 19 / cm 3 in a C 12 A 7 crystal synthesized by a solid phase reaction in air at a temperature of 1200 ° C. using CaCO 3 and Al 2 O 3 or Al (OH) 3 as raw materials. the degree of O 2 - that is inclusion found from the measurement of electron spin resonance, part of the free oxygen O 2 - form (non-patent literature have proposed a model that exists in the gauge of 3).
H. Hosono and Y. Abe, Inorg. Chem. 26, 1193, 1997.

12は、融点1415℃の安定な酸化物であり、包接されるO の量を増加させ、連続的な取り込み、放出が可能となれば、酸化触媒、イオン伝導体などとしての用途が開けるものと期待できる。 C 12 A 7 is a stable oxide with a melting point of 1415 ° C. If the amount of O 2 — included is increased and continuous uptake and release are possible, it can be used as an oxidation catalyst, ion conductor, etc. Can be expected to open up applications.

細野らは更に、前記O を包接するC12について検討を行い、CaCO、Ca(OH)又はCaOと、Al又はAl(OH)とを原料に用い、酸素分圧10Pa以上、水蒸気分圧10Pa以下の乾燥酸化雰囲気下、1200℃以上1415℃未満に焼成し、固相反応させることで、活性酸素種であるO 及びOを1020/cm以上の高濃度で包接するC12を得ている(特許文献1参照)。
特開2002―3218公報。
Further, Hosono et al. Examined C 12 A 7 which includes the O 2 , and used CaCO 3 , Ca (OH) 2 or CaO and Al 2 O 3 or Al (OH) 3 as raw materials, and oxygen. In a dry oxidation atmosphere with a partial pressure of 10 4 Pa or more and a water vapor partial pressure of 10 2 Pa or less, firing is performed at 1200 ° C. or more and less than 1415 ° C., and a solid-phase reaction is performed, so that O 2 and O that are active oxygen species C 12 A 7 is obtained that is included at a high concentration of 20 / cm 3 or more (see Patent Document 1).
Japanese Patent Laid-Open No. 2002-3218.

しかし、細野らの見いだした高濃度に活性酸素種を含有するC12を産業上利用する場合、更に解決するべき課題がある。 However, when C 12 A 7 containing active oxygen species at a high concentration found by Hosono et al. Is used industrially, there is a problem to be further solved.

すなわち、高濃度の酸素ラジカルを含有するC12を、酸化触媒、イオン伝導体用途に適用する場合、当該用途に応じた機能を充分発揮させるためには、それぞれの用途に適合した様々な形態とする必要がある。 That is, when C 12 A 7 containing a high concentration of oxygen radicals is applied to an oxidation catalyst or an ion conductor, various functions suitable for each application can be used in order to fully exhibit the function corresponding to the use. It needs to be in form.

12を粉末形態で使用する場合以外は、形態の付与はC12を焼結させることによってなされるのが一般的である。焼結体は、原料となるC12粉末またはカルシウム化合物とアルミニウム化合物との混合粉末を、金型等を用いて所定の形状に成形した後に焼成することによって、製造することができる。しかし、大面積の板状品等の大型品を製造する際には大規模な成形機や焼成炉が必要になるため、高価なものとなってしまう。 Except when C 12 A 7 is used in powder form, the form is generally imparted by sintering C 12 A 7 . The sintered body can be produced by firing a C 12 A 7 powder or a mixed powder of a calcium compound and an aluminum compound as a raw material into a predetermined shape using a mold or the like and then firing. However, when a large-sized product such as a plate-shaped product with a large area is manufactured, a large-scale molding machine and a firing furnace are required, which is expensive.

この対策として、大面積化が比較的容易なC12の膜を、酸素イオン導電性を有する基材上に形成させて積層体を作製することが考えられる。膜形成の具体的な方法として、スパッタ法やレーザーアブレイシブ法などの物理気相蒸着(PVD)法、ゾルゲル法等が挙げられるが、それぞれに問題点があった。 As a countermeasure, it is conceivable to form a laminate by forming a C 12 A 7 film, which is relatively easy to increase in area, on a base material having oxygen ion conductivity. Specific methods of film formation include physical vapor deposition (PVD) methods such as sputtering and laser abrasive methods, sol-gel methods, and the like, but each has problems.

つまり、PVD法やゾルゲル法で得られるC12膜は非晶質であり、そのままでは酸素ラジカルを包接することができない。酸素ラジカルを高濃度に包接できる結晶質のC12とするためには、成膜後さらに1000℃以上の高温で熱処理する必要がある。 That is, the C 12 A 7 film obtained by the PVD method or the sol-gel method is amorphous and cannot include oxygen radicals as it is. In order to obtain crystalline C 12 A 7 that can include oxygen radicals at a high concentration, it is necessary to further heat-treat at a high temperature of 1000 ° C. or higher after film formation.

CVD法によれば結晶質のC12を直接成膜することが可能であるが、基材は1000℃以上の高温に保持せねばならない。従ってC12膜と基材との熱膨張係数が一致しないと、冷却時に膜が基材から剥離したり、膜にクラックが発生したりする。 Although it is possible to directly form crystalline C 12 A 7 by the CVD method, the substrate must be kept at a high temperature of 1000 ° C. or higher. Accordingly, if the thermal expansion coefficients of the C 12 A 7 film and the substrate do not match, the film peels off from the substrate during cooling or cracks occur in the film.

以上のように、前記の方法では、酸素ラジカルを高濃度に包接できる結晶質のC12膜を得るための基材は、1000℃以上の高温に耐え、高温でC12と反応せず、さらにC12と熱膨張係数が一致するものでなければならないが、酸素イオン導電性を有し、かつ1000℃以上までC12と熱膨張係数が一致するような材料は無く、前記の膜形成方法による積層体の作製は事実上不可能であった。 As described above, in the above-described method, the substrate for obtaining a crystalline C 12 A 7 film that can include oxygen radicals at a high concentration can withstand a high temperature of 1000 ° C. or higher, and C 12 A 7 A material that does not react and must have a thermal expansion coefficient that matches C 12 A 7 , but has oxygen ion conductivity and a thermal expansion coefficient that matches C 12 A 7 up to 1000 ° C. or higher. However, it was practically impossible to produce a laminate by the film forming method.

12膜の有するこのような問題点に対しては、基材を加熱しなくとも結晶質のC12を直接成膜できる、溶射法と呼ばれる膜形成法を用いることによって解決できる。しかし、かかる場合においても、膜形成後に酸素ラジカルの連続的な取り込みや放出を行うためには、積層体を700〜900℃まで加熱しなければならない。溶射膜と基材の熱膨張係数の不一致が大きい場合には、この加熱と冷却の繰り返しによって、膜が基材から剥離してしまう。 C 12 For such problems of the A 7 layer, without heating the substrate can be deposited C 12 A 7 crystalline directly be solved by using a film forming method called spraying method . However, even in such a case, the laminate must be heated to 700 to 900 ° C. in order to continuously take up and release oxygen radicals after film formation. When the thermal expansion coefficient and the base material have a large mismatch in thermal expansion coefficient, the film is peeled off from the base material due to repeated heating and cooling.

酸素イオン導電性を有する基材としては、酸化ジルコニウムが一般的である。酸化ジルコニウムは相転移による急激な体積変化を避けるために、通常は各種の添加剤を用いて高温安定相である立方晶を室温まで安定化させた、安定化酸化ジルコニウムとして用いられる。しかし安定化酸化ジルコニウムの室温〜900℃における熱膨張係数は10〜11×10―6/℃であり、C12の熱膨張係数(7×10−6/℃)よりも大きい。このため、C12溶射膜と安定化酸化ジルコニウム基材の積層体に対し、室温〜900℃の加熱と冷却の繰り返しを行うと、膜が基材から剥離してしまう。 As a base material having oxygen ion conductivity, zirconium oxide is generally used. Zirconium oxide is usually used as stabilized zirconium oxide in which cubic crystals, which are high-temperature stable phases, are stabilized to room temperature using various additives in order to avoid sudden volume changes due to phase transition. However, the thermal expansion coefficient of the stabilized zirconium oxide at room temperature to 900 ° C. is 10 to 11 × 10 −6 / ° C., which is larger than the thermal expansion coefficient of C 12 A 7 (7 × 10 −6 / ° C.). For this reason, when heating and cooling at room temperature to 900 ° C. are repeated on the laminate of the C 12 A 7 sprayed film and the stabilized zirconium oxide base material, the film peels off from the base material.

本発明者らは、基材とC12膜との積層体の有する前記の問題点に対し、特定の材質の基材を用いたときにのみ解決でき、加熱・冷却の繰り返しによっても膜が基材から剥離しない積層体が容易に再現性高く得られること見出し、本発明に至ったものである。 The present inventors can solve the above-mentioned problems of the laminate of the base material and the C 12 A 7 film only when a base material of a specific material is used, and the film can be obtained by repeated heating and cooling. It has been found that a laminate that does not peel from the substrate can be easily obtained with high reproducibility, and has led to the present invention.

即ち、本発明は、基材上に酸素ラジカル含有カルシウムアルミネート膜を形成してなる積層体であって、前記基材がかさ密度が5.5〜6.1g/cm 部分安定化酸化ジルコニウム(artially tabilized irconium Oxide 以下、PSZと略記する)焼結体であって、前記酸素ラジカル含有カルシウムアルミネート膜が酸素ラジカル含有カルシウムアルミネート粉末を用いて溶射して成ることを特徴とする積層体の製造方法である。
That is, the present invention relates to a laminate obtained by forming an oxygen radical-containing calcium aluminate film on a substrate, and the substrate has a partially stabilized oxidation with a bulk density of 5.5 to 6.1 g / cm 3. zirconium (hereinafter P artially S tabilized Z irconium Oxide, abbreviated as PSZ) a sintered body, and wherein the oxygen radical-containing calcium aluminate film is formed by thermal spraying using oxygen radicals containing calcium aluminate powder It is the manufacturing method of the laminated body to perform.

本発明は、本発明者が酸素ラジカル含有カルシウムアルミネート膜の基材として、PSZ焼結体を用いることによって、加熱・冷却の繰り返しによっても膜が基材から剥離しない積層体が得られることを見出したことに基づいている。 In the present invention, the present inventor uses a PSZ sintered body as a base material for an oxygen radical-containing calcium aluminate film, thereby obtaining a laminate in which the film does not peel from the base material even by repeated heating and cooling. Based on what you found.

本発明におけるPSZは、安定化酸化ジルコニウムが安定化剤の添加によって立方晶を室温まで安定化させるのに対し、安定化剤の量を少なくすることによって立方晶の母相の中に立方晶よりも低温で安定な正方晶の分散相を析出させたものである。 In the PSZ according to the present invention, stabilized zirconium oxide stabilizes the cubic crystal to room temperature by the addition of the stabilizer, whereas by reducing the amount of the stabilizer, the cubic crystal is added to the cubic parent phase. Also, a stable tetragonal dispersed phase is precipitated at a low temperature.

正方晶はその一部が900℃以下で低温安定相である単斜晶に相転移するため、900℃以下ではPSZは立方晶、正方晶及び単斜晶の混合相になる。室温からの加熱時には、この単斜相が逆に正方晶に相転移するが、この時に体積収縮が生じるためPSZの熱膨張係数は安定化酸化ジルコニウムよりも小さくなる。 Since a part of the tetragonal crystal transitions to a monoclinic crystal which is a low temperature stable phase at 900 ° C. or lower, PSZ becomes a mixed phase of cubic, tetragonal and monoclinic crystals at 900 ° C. or lower. When heating from room temperature, this monoclinic phase reversely transforms to tetragonal crystal, but at this time, volume contraction occurs, so that the thermal expansion coefficient of PSZ is smaller than that of stabilized zirconium oxide.

PSZの室温〜900℃における熱膨張係数は、添加する安定化剤の種類や量にもよるが、5.5〜8.0×10−6/℃程度でありC12の熱膨張係数(7×10−6/℃)に近い。本発明のPSZを基材とする酸素ラジカル含有カルシウムアルミネート膜が、加熱・冷却の繰り返しによっても基材から剥離しないのは、このためである。 The thermal expansion coefficient of PSZ at room temperature to 900 ° C. is about 5.5 to 8.0 × 10 −6 / ° C., although it depends on the type and amount of stabilizer to be added, and the thermal expansion coefficient of C 12 A 7. It is close to (7 × 10 −6 / ° C.). This is why the oxygen radical-containing calcium aluminate film based on PSZ of the present invention does not peel from the substrate even by repeated heating and cooling.

本発明におけるPSZ焼結体の原料粉末は、純酸化ジルコニウム粉末(単斜晶)と安定化酸化ジルコニウム粉末(立方晶)の混合粉末である。純酸化ジルコニウムを安定化酸化ジルコニウムに添加することによって、立方晶の母相中に正方晶が析出した組織が形成される。 The raw material powder of the PSZ sintered body in the present invention is a mixed powder of pure zirconium oxide powder (monoclinic crystal) and stabilized zirconium oxide powder (cubic crystal). By adding pure zirconium oxide to stabilized zirconium oxide, a structure in which tetragonal crystals are precipitated in a cubic parent phase is formed.

本発明における安定化剤は、例えば酸化イットリウム(Y)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化スカンジウム(Sc)、あるいは酸化ランタン(La)、酸化サマリウム(Sm)、酸化ガドリニウム(Gd)などのランタニド元素の酸化物である。 Examples of the stabilizer in the present invention include yttrium oxide (Y 2 O 3 ), magnesium oxide (MgO), calcium oxide (CaO), scandium oxide (Sc 2 O 3 ), lanthanum oxide (La 2 O 3 ), and oxidation. It is an oxide of a lanthanide element such as samarium (Sm 2 O 3 ) or gadolinium oxide (Gd 2 O 3 ).

本発明におけるカルシウムアルミネートは、主たる元素がCa、Al、酸素(O)で構成され、さらに主たる鉱物相が結晶性の12CaO・7Al(C12)である。カルシウムアルミネートとしては、他に、3CaO・Al(CA)、CaO・Al(CA)、CaO・2Al(CA)、CaO・6Al(CA)などの鉱物相を含有できるが、結晶質のC12だけが酸素ラジカルを1020/cm以上の高濃度で包接する性質を有する。 The calcium aluminate in the present invention is composed of Ca, Al, and oxygen (O) as main elements, and crystalline 12CaO.7Al 2 O 3 (C 12 A 7 ) whose main mineral phase is crystalline. Other calcium aluminates include 3CaO · Al 2 O 3 (C 3 A), CaO · Al 2 O 3 (CA), CaO · 2Al 2 O 3 (CA 2 ), CaO · 6Al 2 O 3 (CA 6 )), but only crystalline C 12 A 7 has the property of including oxygen radicals at a high concentration of 10 20 / cm 3 or more.

カルシウムアルミネートの主たる成分をC12にするためには、原料中に含まれるCaとAlのモル比を、0.77〜0.96とすれば良い。CaとAlのモル比が上記以外の範囲では、C12以外のカルシウムアルミネートであるCAやCAの生成量が多くなり、酸素ラジカルを包接する性質が損なわれる。このため本発明には適さない。 In order to make the main component of calcium aluminate C 12 A 7 , the molar ratio of Ca and Al contained in the raw material may be 0.77 to 0.96. When the molar ratio of Ca and Al is in a range other than the above, the amount of C 3 A and CA, which are calcium aluminates other than C 12 A 7 , increases, and the property of including oxygen radicals is impaired. For this reason, it is not suitable for the present invention.

本発明に用いられるカルシウムアルミネート粉末は、前述の配合となるように、いろいろな原料から得ることができる。その原料として用いられるCa源の物質としては、例えば石灰石(CaCO)、消石灰(Ca(OH))または生石灰(CaO)などがあげられる。またAl源の物質としてはアルミナ(Al)、水酸化アルミニウム(Al(OH))、ボーキサイトまたはアルミ残灰などがあげられる。これらのうち、入手が容易であり安全性が高い事から、特にCaCO及びAlを好適に使用することができる。 The calcium aluminate powder used in the present invention can be obtained from various raw materials so as to have the aforementioned composition. Examples of the Ca source material used as the raw material include limestone (CaCO 3 ), slaked lime (Ca (OH) 2 ), and quick lime (CaO). Examples of the Al source material include alumina (Al 2 O 3 ), aluminum hydroxide (Al (OH) 3 ), bauxite, and aluminum residual ash. Of these, CaCO 3 and Al 2 O 3 can be particularly preferably used because they are easily available and highly safe.

前記の原料を混合後、雰囲気と温度を制御した条件下で直接固相反応させることによって、あるいは固相反応後に雰囲気と温度を制御した条件下で保持することによって酸素ラジカルを1020/cm以上の高濃度で包接するカルシウムアルミネートが得られる。雰囲気と温度を制御した条件の具体例は、例えば酸素分圧10Pa以上、水蒸気分圧10Pa以下の乾燥酸化雰囲気、1200℃以上1415℃未満の温度である。 After mixing the raw materials, the oxygen radicals can be 10 20 / cm 3 by directly causing a solid phase reaction under controlled conditions of atmosphere and temperature, or by maintaining the conditions of controlled atmosphere and temperature after the solid phase reaction. Calcium aluminate can be obtained which can be included at the above high concentration. A specific example of the conditions for controlling the atmosphere and temperature is, for example, a dry oxidation atmosphere having an oxygen partial pressure of 10 4 Pa or more and a water vapor partial pressure of 10 2 Pa or less, and a temperature of 1200 ° C. or more and less than 1415 ° C.

前記操作で得た高濃度の酸素ラジカルを包接したカルシウムアルミネートは、粉砕や篩い分けなどの方法で10〜100μm好ましくは10〜50μmに粒径を調整して、溶射用の原料に適した粉末とされる。 The calcium aluminate clathrated with the high concentration oxygen radicals obtained by the above operation is adjusted to a particle size of 10 to 100 μm, preferably 10 to 50 μm by a method such as pulverization or sieving, and is suitable as a raw material for thermal spraying. Powdered.

本発明における溶射法としては、プラズマ溶射法、フレーム溶射法、爆発溶射法あるいはレーザー溶射法等であればいずれでも良いが、膜の均一性や膜と基材の密着性が良好であり、安全性や経済性にも優れたプラズマ溶射法が特に好ましい。 The thermal spraying method in the present invention may be any of plasma spraying method, flame spraying method, explosive spraying method or laser spraying method, etc., but the uniformity of the film and the adhesion between the film and the substrate are good, and it is safe. A plasma spraying method that is excellent in properties and economy is particularly preferable.

本発明に於いて溶射法が選択される理由については、明らかでないが、本発明者は次の通りに考えている。即ち、溶射法に用いる一般的な溶射装置においては、粉末等の原料が溶射ガンと呼ばれる部位に搬送されると同時に、プラズマやフレームによって高温に加熱されて少なくとも表面が液状になり、これが溶射ガンの先端から連続的に噴射されて基材表面に付着した後、凝固することによって膜が形成されると言われている。 The reason why the thermal spraying method is selected in the present invention is not clear, but the present inventor considers as follows. That is, in a general thermal spraying apparatus used for a thermal spraying method, raw materials such as powder are conveyed to a part called a thermal spray gun, and at the same time, heated at a high temperature by a plasma or a flame, and at least the surface becomes liquid. It is said that a film is formed by continuously spraying from the tip of the material and adhering to the surface of the substrate and then solidifying.

溶射法で得られるカルシウムアルミネート膜は、PVD法、ゾルゲル法あるいはCVD法で得られる膜とは異なり、基材を加熱せずに成膜されるにも関わらず結晶質である。これは、溶射法における原料がPVD法、ゾルゲル法あるいはCVD法とは異なり、気化あるいは化学反応等による著しい状態変化を起こさずに、単に表面あるいはその近傍が高温で融解した後に基材上で凝固するに過ぎず、原料の組成や結晶構造がそのまま膜に反映されやすいためである。 Unlike the film obtained by the PVD method, the sol-gel method or the CVD method, the calcium aluminate film obtained by the thermal spraying method is crystalline despite being formed without heating the substrate. This is because, unlike PVD, sol-gel, or CVD, the raw material in the thermal spraying method does not cause a significant change in state due to vaporization or chemical reaction, and simply solidifies on the substrate after the surface or its vicinity melts at a high temperature. This is because the composition and crystal structure of the raw material are easily reflected in the film as they are.

また、本発明は、基材上に酸素ラジカル含有カルシウムアルミネート膜を形成してなる積層体の製造方法であって、前記基材が部分安定化酸化ジルコニウム焼結体であって、前記酸素ラジカル含有カルシウムアルミネート膜が酸素ラジカル含有カルシウムアルミネート粉末を用いて溶射して成ることを特徴とする積層体の製造方法である。 The present invention is also a method for producing a laminate comprising an oxygen radical-containing calcium aluminate film formed on a substrate, wherein the substrate is a partially stabilized zirconium oxide sintered body, and the oxygen radical A method for producing a laminate, wherein the calcium aluminate film is formed by thermal spraying using an oxygen radical-containing calcium aluminate powder.

上述した通りに、本発明により、結晶質のカルシウムアルミネート膜が得られ、しかも溶射法を採用しているので、溶射の際に溶射ガンを移動させれば、大面積の基材や、曲面を有する基材上への成膜も容易にできる。基材は必要に応じ、膜との密着性を向上させるため表面粗化の前処理が施される場合がある。 As described above, according to the present invention, a crystalline calcium aluminate film is obtained, and since the spraying method is adopted, if the spray gun is moved during spraying, a large-area substrate or curved surface is obtained. It is also possible to easily form a film on a substrate having If necessary, the base material may be subjected to a surface roughening pretreatment in order to improve adhesion to the film.

本発明の積層体は酸素イオン伝導性を有し、特に結晶質のカルシウムアルミネート(C12)と熱膨張係数が近いPSZ焼結体表面に高酸素ラジカル含有のカルシウムアルミネート膜が形成されているので、加熱・冷却の繰り返しが必要な、酸素ラジカル或いは酸素イオンを提供するイオン源として特に好適に用いられる。 The laminate of the present invention has oxygen ion conductivity, and in particular, a calcium aluminate film containing a high oxygen radical is formed on the surface of a PSZ sintered body having a thermal expansion coefficient close to that of crystalline calcium aluminate (C 12 A 7 ). Therefore, it is particularly suitably used as an ion source that provides oxygen radicals or oxygen ions that require repeated heating and cooling.

炭酸カルシウム(CaCO)粉末と、アルミナ(γ−Al)粉末を、CaとAlのモル比が0.82:1になるように混合した後、大気中、1300℃で3時間焼成して白色粉末を得た。冷却後X線回折測定を行い、この粉末がC12であることを確認した。 Calcium carbonate (CaCO 3 ) powder and alumina (γ-Al 2 O 3 ) powder were mixed so that the molar ratio of Ca and Al was 0.82: 1, and then fired at 1300 ° C. for 3 hours in the air. A white powder was obtained. After cooling, X-ray diffraction measurement was performed to confirm that the powder was C 12 A 7 .

さらに前記粉末を酸素分圧4×10Pa、水蒸気分圧10Paの乾燥酸化雰囲気下、1250℃で2時間焼成した。冷却後室温及び77KでのESRスペクトルを測定し、それぞれの吸収バンドの強度からO イオンラジカル及びOイオンラジカルの濃度を求めたところ、それぞれ6×1020cm−3であった(以下、この粉末を「酸素ラジカル含有C12粉」という)。 Further, the powder was fired at 1250 ° C. for 2 hours in a dry oxidizing atmosphere having an oxygen partial pressure of 4 × 10 4 Pa and a water vapor partial pressure of 10 2 Pa. The ESR spectrum after cooling at room temperature and 77K were measured, O 2 from the intensity of the respective absorption band - ion radicals and O - was determined the concentration of ions radicals, were respectively 6 × 10 20 cm -3 (hereinafter This powder is referred to as “oxygen radical-containing C 12 A 7 powder”).

市販のPSZ粉末(東ソー製TZ−3YS、Y安定化酸化ジルコニウムと単斜晶酸化ジルコニウムの混合粉末、Y量5.2質量%)を金型を用いて圧力10MPaで成型後、圧力200MPaでCIPを行い直径28mm、厚さ5mmの円板形状に成型した。これを大気中1500℃で2時間焼成して、室温〜900℃の熱膨張係数7.2×10−6/℃、かさ密度6.1g/cmの焼結体を得た。X線回折測定により焼結体がPSZであることを確認した。 Commercially available PSZ powder (Tosoh's TZ-3YS, mixed powder of Y 2 O 3 stabilized zirconium oxide and monoclinic zirconium oxide, Y 2 O 3 amount 5.2 mass%) is molded at a pressure of 10 MPa using a mold. Thereafter, CIP was performed at a pressure of 200 MPa to form a disk shape having a diameter of 28 mm and a thickness of 5 mm. This was fired in the atmosphere at 1500 ° C. for 2 hours to obtain a sintered body having a thermal expansion coefficient of 7.2 × 10 −6 / ° C. and a bulk density of 6.1 g / cm 3 from room temperature to 900 ° C. It was confirmed by X-ray diffraction measurement that the sintered body was PSZ.

この焼結体を、直径20mm、厚さ2mmの円板に加工した後、片面を#54のAlブラスト材でブラスト処理して基材を作製した。 After processing this sintered body into a disk having a diameter of 20 mm and a thickness of 2 mm, one side was blasted with an Al 2 O 3 blast material of # 54 to prepare a base material.

前記の酸素ラジカル含有C12粉を、粉砕、篩い分けして10〜50μmの粉末を調製し、プラズマ溶射機に装填後、プラズマガスとしてアルゴンと水素の混合ガスを用い、電流値500アンペア、電圧値64ボルト、溶射距離100mmの条件で、前記の基材面上に、溶射を行い、積層体を作製した。 The oxygen radical-containing C 12 A 7 powder is pulverized and sieved to prepare a powder of 10 to 50 μm, loaded into a plasma spraying machine, and then a mixed gas of argon and hydrogen is used as a plasma gas, and a current value of 500 amperes. Then, spraying was performed on the substrate surface under the conditions of a voltage value of 64 volts and a spraying distance of 100 mm to prepare a laminate.

得られた積層体の溶射膜は、厚さ約120μmで基材に隙間無く密着していること、結晶質のC12であること、O イオンラジカル及びOイオンラジカルの濃度が、それぞれ4×1020cm−3であることを確認した。また、この積層体に対し、室温から900℃まで100回繰り返し加熱・冷却を行った結果、溶射膜に亀裂や剥離は生じなかった。またこのものは750℃において、連続的に酸素イオンを供給するイオン源として動作可能であった。 The resulting sprayed film of the laminate, it is in close contact without gaps to the substrate in a thickness of about 120 [mu] m, it is C 12 A 7 crystalline, O 2 - is the concentration of ion radical - ion radical and O , Each confirmed to be 4 × 10 20 cm −3 . In addition, as a result of repeatedly heating and cooling the laminate from room temperature to 900 ° C. 100 times, no cracks or peeling occurred in the sprayed film. Further, it was operable at 750 ° C. as an ion source for continuously supplying oxygen ions.

市販のPSZ焼結体(品川ファインセラミックス製SZM−H、安定化剤MgO、室温〜900℃の熱膨張係数6.9×10−6/℃、かさ密度5.5g/cm)の、25mm×60mm×1mmの角板に、実施例1と同様に酸素ラジカル含有C12粉の溶射を行い、積層体を作製した。 25 mm of a commercially available PSZ sintered body (SZM-H manufactured by Shinagawa Fine Ceramics, Stabilizer MgO, thermal expansion coefficient of room temperature to 900 ° C. 6.9 × 10 −6 / ° C., bulk density 5.5 g / cm 3 ) Thermal spraying of oxygen radical-containing C 12 A 7 powder was performed on a square plate of × 60 mm × 1 mm in the same manner as in Example 1 to prepare a laminate.

得られた積層体の溶射膜は、厚さ約90μmで基材に隙間無く密着していること、結晶質のC12であること、O イオンラジカル及びOイオンラジカルの濃度が、それぞれ5×1020cm−3であることを確認した。また、この積層体に対し、室温から900℃まで100回繰り返し加熱・冷却を行った結果、溶射膜に亀裂や剥離は生じなかった。またこのものは800℃において、連続的に酸素イオンを供給するイオン源として動作可能であった。 The resulting sprayed film of the laminate, it is in close contact without gaps to the substrate in a thickness of about 90 [mu] m, it is C 12 A 7 crystalline, O 2 - is the concentration of ion radical - ion radical and O , Respectively, were confirmed to be 5 × 10 20 cm −3 . In addition, as a result of repeatedly heating and cooling the laminate from room temperature to 900 ° C. 100 times, no cracks or peeling occurred in the sprayed film. In addition, it was operable at 800 ° C. as an ion source for continuously supplying oxygen ions.

(比較例1)市販の安定化酸化ジルコニウム粉末(第一稀元素化学製8YSZ、Y安定化酸化ジルコニウム粉末、Y量13.7質量%)を実施例1と同様に成型し、大気中14750℃で2時間焼成して、室温〜900℃の熱膨張係数10.5×10−6/℃、かさ密度6.1g/cmの焼結体を得た。X線回折測定により焼結体が立方晶の安定化酸化ジルコニウムであることを確認した。この焼結体を、実施例1と同様に加工し、さらに前記の酸素ラジカル含有C12粉の溶射を行い、積層体を作製した。 (Comparative Example 1) A commercially available stabilized zirconium oxide powder (8YSZ, Y 2 O 3 stabilized zirconium oxide powder, 13.7% by mass of Y 2 O 3 manufactured by Daiichi Elemental Chemistry) was molded in the same manner as in Example 1. And it baked at 14750 degreeC in air | atmosphere for 2 hours, and obtained the sintered compact of the thermal expansion coefficient of 10.5 * 10 < -6 > / degreeC and the bulk density of 6.1 g / cm < 3 > from room temperature to 900 degreeC. The sintered body was confirmed to be cubic stabilized zirconium oxide by X-ray diffraction measurement. This sintered body was processed in the same manner as in Example 1, and further, the above-mentioned oxygen radical-containing C 12 A 7 powder was sprayed to produce a laminate.

得られた積層体の溶射膜は、厚さ約100μmで基材に隙間無く密着していること、結晶質のC12であること、O イオンラジカル及びOイオンラジカルの濃度が、それぞれ4×1020cm−3であることを確認した。また、この積層体に対し、室温から900℃まで繰り返し加熱・冷却を行った結果、5回目の加熱時に溶射膜が剥離した。 The resulting sprayed film of the laminate, it is in close contact without gaps to the substrate in a thickness of about 100 [mu] m, it is C 12 A 7 crystalline, O 2 - is the concentration of ion radical - ion radical and O And 4 × 10 20 cm −3 respectively. Moreover, as a result of repeatedly heating and cooling the laminated body from room temperature to 900 ° C., the sprayed film was peeled off during the fifth heating.

(比較例2)市販の安定化ジルコニア焼結体(ニッカトー製YSZ−8、安定化剤Y、室温〜900℃の熱膨張係数10.1×10−6/℃、かさ密度6.0g/cm)の、直径25mm、厚さ2.8mmの円板に、実施例1と同様に酸素ラジカル含有C12粉の溶射を行い、積層体を作製した。 (Comparative example 2) Commercially available stabilized zirconia sintered body (YSZ-8 manufactured by Nikkato, stabilizer Y 2 O 3 , coefficient of thermal expansion of 10.1 × 10 −6 / ° C. from room temperature to 900 ° C., bulk density of 6. A 0 g / cm 3 ) disk having a diameter of 25 mm and a thickness of 2.8 mm was sprayed with oxygen radical-containing C 12 A 7 powder in the same manner as in Example 1 to prepare a laminate.

得られた積層体の溶射膜は、厚さ約120μmで基材に隙間無く密着していること、結晶質のC12であること、O イオンラジカル及びOイオンラジカルの濃度が、それぞれ4×1020cm−3であることを確認した。また、この積層体に対し、室温から900℃まで繰り返し加熱・冷却を行った結果、3回目の加熱時に溶射膜が剥離した。 The resulting sprayed film of the laminate, it is in close contact without gaps to the substrate in a thickness of about 120 [mu] m, it is C 12 A 7 crystalline, O 2 - is the concentration of ion radical - ion radical and O , Each confirmed to be 4 × 10 20 cm −3 . Moreover, as a result of repeatedly heating and cooling the laminated body from room temperature to 900 ° C., the sprayed film was peeled off during the third heating.

本発明によれば、所望の形状、酸素イオン伝導性を有する基材表面に、高濃度に酸素ラジカルを含有するカルシウムアルミネート膜を形成し、酸素ラジカルの連続的な取り込みや放出が可能で繰り返しの加熱・冷却でも膜に剥離や亀裂が生じない積層体が得られ、例えば、酸化触媒、イオン伝導体用途に好適であり、産業上有用である。 According to the present invention, a calcium aluminate film containing oxygen radicals at a high concentration is formed on the surface of a substrate having a desired shape and oxygen ion conductivity, so that oxygen radicals can be continuously taken in and released repeatedly. A laminated body in which peeling or cracking does not occur in the film even by heating / cooling is suitable for use in, for example, oxidation catalysts and ion conductors, and is industrially useful.

Claims (1)

基材上に酸素ラジカル含有カルシウムアルミネート膜を形成してなる積層体の製造方法であって、前記基材がかさ密度が5.5〜6.1g/cm 部分安定化酸化ジルコニウム焼結体であって、前記酸素ラジカル含有カルシウムアルミネート膜が酸素ラジカル含有カルシウムアルミネート粉末を用いて溶射して成ることを特徴とする積層体の製造方法。 A method for producing a laminate obtained by forming oxygen radicals containing calcium aluminate film on a substrate, portions wherein the substrate bulk density of 5.5~6.1g / cm 3 stabilized zirconia sintered A method for producing a laminate, wherein the oxygen radical-containing calcium aluminate film is thermally sprayed using an oxygen radical-containing calcium aluminate powder.
JP2003276829A 2003-07-18 2003-07-18 Method for producing laminate of oxygen radical-containing calcium aluminate film Expired - Fee Related JP3995637B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003276829A JP3995637B2 (en) 2003-07-18 2003-07-18 Method for producing laminate of oxygen radical-containing calcium aluminate film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003276829A JP3995637B2 (en) 2003-07-18 2003-07-18 Method for producing laminate of oxygen radical-containing calcium aluminate film

Publications (2)

Publication Number Publication Date
JP2005035857A JP2005035857A (en) 2005-02-10
JP3995637B2 true JP3995637B2 (en) 2007-10-24

Family

ID=34213029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003276829A Expired - Fee Related JP3995637B2 (en) 2003-07-18 2003-07-18 Method for producing laminate of oxygen radical-containing calcium aluminate film

Country Status (1)

Country Link
JP (1) JP3995637B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4708857B2 (en) * 2005-05-16 2011-06-22 電気化学工業株式会社 Molded body, method for producing the same, and method for promoting oxidation reaction using the same
JP5408517B2 (en) * 2006-03-15 2014-02-05 日本電気株式会社 COMPOSITE STRUCTURE, ITS MANUFACTURING METHOD, AND THERMOELECTRIC CONVERSION DEVICE USING THE SAME
JP4885002B2 (en) * 2007-02-14 2012-02-29 独立行政法人科学技術振興機構 Superconducting compound thin film and method for producing the same

Also Published As

Publication number Publication date
JP2005035857A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
Chen et al. Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure
Hirata et al. Characterization and Sintering Behavior of Alkoxide‐Derived Aluminosilicate Powders
Kim et al. Effect of phase transformation on the densification of coprecipitated nanocrystalline indium tin oxide powders
Duan et al. Spark plasma sintering (SPS) consolidated ceramic composites from plasma-sprayed metastable Al2TiO5 powder and nano-Al2O3, TiO2, and MgO powders
Sakharov et al. Glycol-citrate synthesis of fine-grained oxides La2− xGdxZr2O7 and preparation of corresponding ceramics using FAST/SPS process
JP4010414B2 (en) Method for producing oxygen radical-containing calcium aluminate film and laminate
Lee et al. Structural and microstructural studies on SiC-SiO2 ceramic composites
Lee et al. Effect of fe 2 o 3 additions on the hydration resistance of cao
Koçyiğit Boron and praseodymium doped bismuth oxide nanocomposites: preparation and sintering effects
JP3995637B2 (en) Method for producing laminate of oxygen radical-containing calcium aluminate film
Parchovianská et al. Effect of sintering temperature on phase evolution, microstructure, and mechanical properties of La2Ce2O7/40 wt.% YSZ composite ceramics
Filipović et al. Spark plasma sintering of magnesium titanate ceramics
Galusek et al. Ceramic oxides
Miao et al. Effect of nano-TiO2 and nano-SiO2 addition on the morphological control of α-Al2O3 platelets via solid-state reaction
JP4010994B2 (en) Method for producing laminate of oxygen radical-containing calcium aluminate film
JP4056258B2 (en) Method for producing oxygen radical-containing calcium aluminate
Vlasova et al. Synthesis of composite AlN-AlON-Al2O3 powders and ceramics prepared by high-pressure sintering
Smirnov et al. Study of liquid-phase sintering of materials based on zirconium dioxide containing alumina
Bokov et al. Formation mechanism of monoclinic ZrO 2 at the contact of YSZ with CuO
Prosvirnin et al. Methods and techniques for producing ceramics from aluminum oxynitride
JP2003226580A (en) Aluminum nitride-based ceramic and member for producing semiconductor
Al-Naboulsi et al. Elaboration and characterization of barium titanate powders obtained by the mechanical activation of barium nitrate and titanate oxide, and electrical properties of the ceramics sintered by SPS
JP4030493B2 (en) Calcium aluminate laminate and method for producing the same
JP4076505B2 (en) Stack of oxygen radical-containing calcium aluminate film
Rao et al. Combustion synthesis and characterisation of lanthanum hexa-aluminate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070731

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100810

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110810

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120810

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130810

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees