JP4030340B2 - Method for producing colored styrene-based expandable resin particles - Google Patents

Method for producing colored styrene-based expandable resin particles Download PDF

Info

Publication number
JP4030340B2
JP4030340B2 JP2002112410A JP2002112410A JP4030340B2 JP 4030340 B2 JP4030340 B2 JP 4030340B2 JP 2002112410 A JP2002112410 A JP 2002112410A JP 2002112410 A JP2002112410 A JP 2002112410A JP 4030340 B2 JP4030340 B2 JP 4030340B2
Authority
JP
Japan
Prior art keywords
resin particles
styrene
expandable resin
colored
dye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002112410A
Other languages
Japanese (ja)
Other versions
JP2003306572A (en
Inventor
昌臣 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2002112410A priority Critical patent/JP4030340B2/en
Publication of JP2003306572A publication Critical patent/JP2003306572A/en
Application granted granted Critical
Publication of JP4030340B2 publication Critical patent/JP4030340B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【0001】
【技術分野】
本発明はスチレン系発泡性樹脂粒子に染料を含浸させた着色スチレン系発泡性樹脂粒子の製造方法に関する。
【0002】
【従来技術】
従来より,スチレン系発泡性樹脂粒子を発泡成形したスチレン系発泡体は,断熱材,包装緩衝材等に用いられている。
上記スチレン系発泡体は,スチレン系発泡性樹脂粒子をスチームで予備発泡させ,ついで,この予備発泡粒子をスチーム孔を有する型内に充填し,スチームにより加熱して二次発泡させて成形する。通常,染料を添加していない上記スチレン系発泡体は白色であるが,商品の差別化等を目的として,上記スチレン系発泡体を着色することが行われている。例えば,魚用クーラーとしては青色に,アメリカン冷凍ステーキ用容器としては茶色に着色されたスチレン系発泡体が使用されている。
【0003】
従来,樹脂粒子に染料としての着色剤を含有させる方法としては,主として次の3つの方法が知られている。
(1)樹脂と着色剤とを押出機にて溶融混練し,ストランド状に押出し,これをペレット化する方法。
(2)発泡性樹脂粒子と着色剤とをブレンダーにて混合し,表面に着色剤を付着させる方法。
(3)発泡性樹脂粒子を水に懸濁させこの液中に染料と着色助剤を加えて行う方法。
【0004】
しかし,上記(1)の方法では着色した樹脂ペレットを製造する際,色変更の度に押出機を清掃する必要があり,また各色の樹脂ペレットの在庫管理等が繁雑になるという問題があった。
また,上記(2)の方法は,比較的容易に着色剤を含有させることができるが,色落ちにより成形設備が汚染したり,また,発泡性樹脂粒子の表面に均一に着色剤を付着することができずに色ムラが発生し易いという問題があった。
また,上記(3)の方法では,水に懸濁させた染料は粒子中に全て吸収されずに水中に残存する。そのため,染料を多く必要とし,コストが高くなるという問題があった。また,染料を懸濁する水を大量に用いるため,設備が大型化すると共に,着色水の廃液が大量に発生するという問題があった。
【0005】
上記(1)〜(3)の問題を解決するために,第4の方法としてスチレン系樹脂粒子と染料とを,ブタン,ペンタン,ネオペンタン等の発泡剤とともに分散させ,着色したスチレン系樹脂粒子を製造する方法が提案されている(特開昭59−56433号,特開平8−319366号)。この方法によれば,水を用いないため,大型の設備を用いる必要がなく,また,成形設備を汚染させることなくスチレン系樹脂粒子を着色することができる。
【0006】
【解決しようとする課題】
しかしながら,上記第4の方法においては,スチレン系発泡性樹脂粒子に染料を含浸させる際に,スチレン系発泡性樹脂粒子が帯電する。そのため,上記スチレン系発泡性樹脂粒子の着色に色ムラが発生するという問題があった。
【0007】
また,特開昭59−56433号の方法では染料の含浸性が不充分であるという問題があった。そのため,着色させたスチレン系発泡性樹脂粒子を発泡成形すると,該スチレン系発泡性樹脂粒子の表面に残存した染料が,スチレン系発泡性樹脂粒子同士の融着を妨げるという問題があった。それ故,上記スチレン系発泡性樹脂粒子を発泡成形して作製したスチレン系発泡体の強度が低下するという問題があった。
【0008】
一方,特開平8−319366号の方法においては,トルエン,キシレン,ベンゼン等の芳香族炭化水素を用いることにより,染料の含浸性を向上させている。しかし,着色させたスチレン系発泡性樹脂粒子が凝結し易いという問題があった。
【0009】
本発明は,かかる従来の問題点に鑑みてなされたもので,スチレン系発泡性樹脂粒子に染料を色ムラ発生なく含浸させることができ,かつ染料含浸時に凝結しにくく,発泡成形時の融着性に優れた着色スチレン系発泡性樹脂粒子の製造方法を提供しようとするものである。
【0010】
【課題の解決手段】
本発明は,スチレン系発泡性樹脂粒子,染料及び発泡剤を,密閉容器内にて,スチレン系発泡性樹脂粒子の発泡温度よりも低い温度で加熱しながら攪拌し,スチレン系発泡性樹脂粒子に染料を含浸させて着色スチレン系発泡樹脂粒子を製造する方法において,
上記染料の含浸にあたっては,上記密閉容器内の水分量が,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜2重量部で,かつ脂肪酸エステル類の存在下で行うことを特徴とする着色スチレン系発泡性樹脂粒子の製造方法にある(請求項1)。
【0011】
本発明においては,染料含浸時における密閉容器内の水分量が,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜2重量部である。
そのため,上記スチレン系発泡性樹脂粒子の表面が帯電することを防止することができる。それ故,上記染料を色ムラなく含浸させることができる。また,上記密閉容器内の水分量は,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜2重量部という非常に少ない量である。そのため,上記の水中懸濁による着色方法のように,水の体積を考慮して大きな密閉容器を用いる必要はなく,設備が大型化することはない。
【0012】
また,本発明においては,脂肪酸エステル類の存在下で染料の含浸を行っている。
そのため,上記染料の含浸性が向上すると共に,上記着色スチレン系発泡性樹脂粒子が互いに凝結することを抑制することができる。また,染料を含浸させる際に,スチレン系発泡性樹脂粒子の表面に余分な染料が残留することを防止することができる。そのため,上記着色スチレン系発泡性樹脂粒子を発泡成形するときには,該着色スチレン系発泡性樹脂粒子が互いに強固に融着し易くなる。それ故,強度に優れたスチレン系発泡体を得ることができる。
【0013】
このように,本発明によれば,スチレン系発泡性樹脂粒子に染料を色ムラ発生なく含浸させることができ,かつ染料含浸時に凝結しにくく,発泡成形時の融着性に優れた着色スチレン系発泡性樹脂粒子の製造方法を提供することができる。
【0014】
【発明の実施の形態】
本発明(請求項1)においては,上記密閉容器中の水分量は,スチレン系発泡性樹脂粒子100重量部に対して0.001〜2重量部である。
上記水分量が0.001重量部未満の場合には,上記染料をスチレン系発泡性樹脂粒子に含浸させる際に,上記スチレン系発泡性樹脂粒子が帯電し,着色スチレン系発泡性樹脂粒子に色ムラが発生する。一方,2重量部を超える場合には,上記着色スチレン系発泡性樹脂粒子が互いに凝結し易くなる。
【0015】
また,上記スチレン系発泡性樹脂粒子,染料及び発泡剤は,密閉容器内にて,スチレン系発泡性樹脂粒子の発泡温度よりも低い温度,つまりスチレン系発泡性樹脂粒子が発泡しない温度で加熱する。上記発泡温度よりも高い温度で加熱すると,上記スチレン系発泡性樹脂粒子が発泡を開始してしまい,着色スチレン系発泡樹脂粒子を作製することができない。ここで,上記発泡温度は,スチレン系発泡性樹脂粒子が発泡を開始する温度のことであり,一般的には,60〜80℃である。
【0016】
また,上記脂肪酸エステル類としては,例えば2−エチルヘキサン酸ヘキサデシル,ヤシ脂肪酸メチル,ラウリン酸メチル,ミリスチン酸イソプロピル,パルミチン酸イソプロピル,パルミチン酸2−エチルヘキシル,牛脂脂肪酸メチル,ミリスチン酸オクチルドデシル,ステアリン酸メチル,ステアリン酸ブチル,ステアリン酸2−エチルヘキシル,ステアリン酸イソトリデシル,カプリン酸メチル,ミリスチン酸メチル,オレイン酸メチル,オレイン酸イソブチル,オレイン酸オクチル,オレイン酸ラウリル,オレイン酸オレイル,ミリスチン酸ミリスチル,ステアリン酸ステアリル,オレイン酸2−エチルヘキシル,オレイン酸デシル,オレイン酸イソブチル等の脂肪酸と1価のアルコールのエステル,ソルビタンモノラウレート,ソルビタンモノパルミテート,ソルビタンモノステアレート,ソルビタントリステアレート,ソルビタンモノオレエート,ソルビタントリオレエート,ポリエチレングリコールモノラウエート,ポリエチレングリコールモノステアレート,ポリエチレングリコールジステアレート,ペンタエリスリトールモノステアレート,グリセリンモノステアレート,グリセリンジステアレート,グリセリントリステアレート,グリセリンモノオレエート,硬化牛脂,硬化ヒマシ油等の脂肪酸と多価アルコールのエステル等がある。また,これらの脂肪酸エステル類は,単独で又は混合して使用することができる。好ましくはグリセリン脂肪酸エステルを用いるのがよい。
【0017】
また,上記スチレン系発泡性樹脂粒子としては,発泡剤を含有するスチレン系樹脂粒子を用いることができる。
スチレン系発泡性樹脂粒子を製造する方法としては,例えば特開平7−79376号及び特開平8−253510号に開示されている方法がある。即ち,まず重合開始剤及び懸濁剤の存在下にて,スチレン系単量体を水性媒体中に分散させる。その後,重合反応を開始し,該重合反応の前後または途中で発泡剤を添加し,スチレン系発泡性樹脂粒子を製造する方法である。
【0018】
また,他の製造方法としては,押出機内にてスチレン系樹脂と揮発性発泡剤とを溶融混練し,押出機先端のダイの細孔より押出し,直ちに水中へ導入し急冷し,未発泡の状態で粒子化し,スチレン系発泡性樹脂粒子を製造する方法がある。
また,押出機中でスチレン系樹脂を溶融混練し,ストランドカット,ホットカット,水中カット等の方法により0.5〜5mg/個の大きさの粒子とし,得られたスチレン系樹脂の樹脂粒子を密閉容器中に,懸濁剤の存在下で水性媒体に分散させる。その後,揮発性発泡剤を樹脂粒子に含浸させて,スチレン系発泡性樹脂粒子を製造する方法がある(特開2000−178373号)。
【0019】
上記染料の含浸の際に用いる発泡剤としては,沸点が90℃以下のプロパン,ノルマルブタン,イソブタン,ノルマルペンタン,イソペンタン,ネオペンタン,ヘキサン等の脂肪族炭化水素,又はシクロブタン,シクロペンタン等の脂環族炭化水素等がある。
沸点が90℃を超える場合には,上記染料を含浸させる際に,スチレン系発泡性樹脂粒子が互いに凝結するおそれがある。さらに好ましくは,沸点が60℃以下の脂肪族炭化水素や脂環族炭化水素である。また,これらの発泡剤は,単独で又は混合して使用することができる。また,上記染料含浸時に用いる発泡剤は,既にスチレン系発泡性樹脂粒子に含有されている発泡剤と同じものでも異なるものでも良い。
【0020】
また,染料含浸時に用いる上記発泡剤の添加量は,スチレン系発泡性樹脂粒子100重量部に対して1〜10重量部であることが好ましい。
上記発泡剤の添加量が1重量部未満の場合には,スチレン系発泡性樹脂粒子に染料が完全に含浸されないおそれがある。一方,10重量部を超える場合には,スチレン系発泡性樹脂粒子が互いに凝結するおそれがある。更に好ましくは2〜5重量部がよい。
【0021】
また,上記染料としては,アゾ系染料,アントラキノン系染料,アジン系染料,キノリン系染料等がある。上記染料の量はスチレン系発泡性樹脂粒子100重量部に対し,0.001〜1重量部であることが好ましい。上記染料の量が0.001重量部未満の場合には,上記スチレン系発泡性樹脂粒子に所望の着色を施すことができなくなるおそれがある。一方,1重量部を超える場合には,スチレン系発泡性樹脂粒子に染料が充分に含浸されないおそれがある。
【0022】
また,上記染料の粒子径は100メッシュ篩を通過するものであることが好ましい。100メッシュ篩を通過しない染料では,スチレン系発泡性樹脂粒子への含浸性が悪くなるおそれがある。
【0023】
また,上記密閉容器は,密閉可能で,例えば容器内の攪拌,混合が可能,かつ加熱可能であるものを用いることが好ましい。このような密閉容器としては,例えば攪拌装置付きオートクレーブ及び密閉可能なミキサー等がある。
【0024】
また,上記染料,脂肪酸エステル類,水及び発泡剤の投入順序に制約はない。しかし,上記発泡剤は,スチレン系発泡性樹脂粒子の表面部分に染料や脂肪酸エステル類が混合あるいは被覆された後に添加することが好ましい。この場合には,上記染料をスチレン系発泡性樹脂粒子に色ムラなく含浸させることができる。また,密閉容器内に投入する前に,上記染料,脂肪酸エステル類及び水はあらかじめスチレン系発泡性樹脂粒子に混合あるいは被覆されていてもよい。また,上記発泡剤は,加熱前,加熱中,または所定温度到達後のいずれの状態で添加しても良いし,複数回に分けて添加しても良い。
【0025】
次に,上記水分量は,上記スチレン系発泡性樹脂粒子100重量部に対して0.005〜1重量部であることが好ましい(請求項2)。
この場合には,上記スチレン系発泡性樹脂粒子にほぼ均一な着色を施すことができる。さらに好ましくは,0.01〜0.5重量部がよい。
【0026】
次に,上記脂肪酸エステル類は,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜1重量部であることが好ましい(請求項3)
0.001重量部未満の場合には,上記スチレン系発泡性樹脂粒子に染料を充分に含浸させることができないおそれがある。一方,1重量部を超える場合には,上記着色スチレン系発泡性樹脂粒子の表面の可塑化が大きくなりすぎて,凝結が発生するおそれがある。さらに好ましくは,0.01〜0.5重量部がよい。
【0027】
次に,上記脂肪酸エステル類の融点は70℃以下であることが好ましい(請求項4)。
上記脂肪酸エステル類の融点が70℃を超える場合には,上記スチレン系発泡性樹脂粒子に染料を充分に含浸させることができなくなるおそれがある。
【0028】
次に,上記密閉容器内の加熱の温度は,20〜80℃であることが好ましい(請求項5)。
上記加熱の温度が80℃を超える場合には,上記スチレン系発泡性樹脂粒子が発泡を開始するおそれがあり,所望の着色スチレン系発泡性樹脂粒子を得ることができないおそれがある。一方,20℃未満の場合には,上記スチレン系発泡性樹脂粒子に染料が充分に含浸されないおそれがある。
【0029】
また,上記染料を上記スチレン系発泡性樹脂粒子に含浸させる時間は,0.5時間以上であることが好ましい。
0.5時間未満の場合には,上記スチレン系発泡性樹脂粒子に染料が充分に含浸されないおそれがある。
なお,染料の含浸時間を短縮させるためには,上記加熱の温度をできるだけ高くすると良い。
【0030】
【実施例】
次に,着色スチレン系発泡性樹脂粒子を製造する実施例を示す。
本例の着色スチレン系発泡性樹脂粒子の製造方法は,スチレン系発泡性樹脂粒子,染料及び発泡剤を,密閉容器内にて,スチレン系発泡性樹脂粒子の発泡温度よりも低い温度で加熱しながら攪拌し,スチレン系発泡性樹脂粒子に染料を含浸させて着色スチレン系発泡樹脂粒子を製造する方法である。また,上記染料の含浸にあたっては,上記密閉容器内の水分量が,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜2重量部で,かつ脂肪酸エステル類の存在下で行う。
【0031】
以下,上記着色スチレン系発泡性樹脂粒子の製造方法につき詳細に説明する。
まず,以下の方法により,3種類のスチレン系発泡性樹脂粒子A〜Cを準備した。
(スチレン系発泡性樹脂粒子A)
撹拌機付きの50リットルのオートクレーブに,イオン交換水18リットルと,難水溶性の無機系懸濁剤としての第3リン酸カルシウム(太平化学産業株式会社製)63gと,界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム(東京化成工業株式会社製)0.54gとを投入した。
【0032】
次いで,撹拌下に重合開始剤としてのベンゾイルパーオキサイド(日本油脂株式会社製,純度75%)45g(純品換算で33.75g)とt−ブチルパーオキシ2−エチルヘキシルカーボネート27gと,有機臭素化合物としての1,2,5,6,9,10−ヘキサブロモシクロドデカン108gと,可塑剤として硬化牛脂180gを溶解させたスチレンモノマー18kgとを投入した。
【0033】
次に,撹拌下で30分間室温のまま放置した後,1時間半かけて90℃まで昇温し,更に6時間半かけて100℃まで昇温した。この間,90℃到達後から5時間後に,ブタン1.7kgをオートクレーブに圧入した。その後さらに,110℃まで3時間かけて昇温し,そのまま攪拌下にて110℃を5時間保持した。続いて,4時間かけて30℃まで冷却し,スチレン系発泡性樹脂粒子を作製した。
【0034】
さらに,上記スチレン系発泡性樹脂粒子を遠心分離機にて脱水し,流動乾燥装置で表面付着水分を除去した。その後,目開きが0.7mmと1.4mmの篩いで篩い分け,粒子径が0.7〜1.4mmのスチレン系発泡性樹脂粒子Aを得た。
【0035】
(スチレン系発泡性樹脂粒子B)
撹拌機付きの50リットルのオートクレーブに,イオン交換水20リットルと,難水溶性の無機系懸濁剤としての第3リン酸カルシウム(太平化学産業株式会社製)80gと,界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム(東京化成工業株式会社製)0.8gとを投入した。
次いで,撹拌下に,重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエート45gとt−ブチルパーオキシ2−エチルヘキシルカーボネート27gと,可塑剤としてシクロヘキサン270gと硬化牛脂135gを溶解させたスチレンモノマー18kgとを投入した。
【0036】
次に,撹拌下で30分間室温のまま放置した後,1時間半かけて90℃まで昇温し,更に5時間半かけて100℃まで昇温した。この間,90℃到達後から4時間後にブタン1.7kgをオートクレーブに圧入した。その後さらに,100℃から110℃まで1時間半かけて昇温し,そのまま攪拌下にて110℃を2時間保持した。続いて,4時間かけて30℃まで冷却し,スチレン系発泡性樹脂粒子を作製した。
【0037】
さらに,上記スチレン系発泡性樹脂粒子を遠心分離機にて脱水し,流動乾燥装置で表面付着水分を除去した。その後,目開きが0.7mmと1.4mmの篩いで篩い分け,粒子径が0.7〜1.4mmのスチレン系発泡性樹脂粒子Bを得た。
【0038】
(スチレン系発泡性樹脂粒子C)
撹拌機付きの50リットルのオートクレーブに,イオン交換水18リットルと,難水溶性の無機系懸濁剤としての第3リン酸カルシウム(太平化学産業株式会社製)63gと,界面活性剤としてのドデシルベンゼンスルホン酸ナトリウム(東京化成工業株式会社製)0.54gとを投入した。
次いで,撹拌下に,重合開始剤としてのt−ブチルパーオキシ2−エチルヘキサノエートを45gとt−ブチルパーオキシ2−エチルヘキシルカーボネート27gと,可塑剤としてフタル酸−ジ−2−エチルヘキシル180gを溶解させたスチレンモノマー18kgとを投入した。
【0039】
次に,撹拌下で30分間室温のまま放置した後,1時間半かけて90℃まで昇温し,更に5時間かけて110℃まで昇温した。この間,90℃到達後から3時間半後にブタン1.7kgをオートクレーブに圧入した。その後さらに,そのまま攪拌下にて110℃を4時間保持した。続いて,4時間かけて30℃まで冷却し,スチレン系発泡性樹脂粒子を作製した。
【0040】
さらに,上記スチレン系発泡性樹脂粒子を遠心分離機にて脱水し,流動乾燥装置で表面付着水分を除去した。その後,目開きが0.7mmと1.4mmの篩いで篩い分け,粒子径が0.7〜1.4mmのスチレン系発泡性樹脂粒子Cを得た。
【0041】
次に,以下のようにして,上記スチレン系発泡性樹脂粒子A〜Cを着色し,発泡成形した。
(実施例1)
上記スチレン系発泡性樹脂粒子としてのスチレン系発泡性樹脂粒子A500gと,青色染料としてのオリエント化学工業製「Oil Blue630」(Solvent Blue 36)1.0gと,脂肪酸エステル類としてのグリセリントリステアレート(融点65−69℃)0.5gと,水0.5gとを,内容積が約3Lの撹拌装置付きのオートクレーブ内に入れて10分間撹拌混合した。
【0042】
次いで,30分かけて70℃まで昇温し,発泡剤としてブタン(ノルマルブタン約70%,イソブタン約30%の混合物)15gを上記オートクレーブ内に添加した。添加後,更に70℃にて3時間撹拌を続け,その後冷却して,青色の着色スチレン系発泡性樹脂粒子を得た。
【0043】
次に,上記着色スチレン系発泡性樹脂粒子を30Lのバッチ式発泡機により,嵩密度33g/lに発泡させ,予備発泡粒子を得た。続いて,得られた予備発泡粒子を1日間室温で放置(熟成)し,25×75×300mmの金型内に充填し0.07MPaの蒸気吹き込み圧で20秒間加熱成形し,スチレン系発泡体を得た。
【0044】
(実施例2)
本例では,実施例1の水の添加量を0.01gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色スチレン系発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0045】
(実施例3)
本例では,実施例1の水の添加量を0.04gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色スチレン系発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0046】
(実施例4)
本例では,実施例1の水の添加量を4.0gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形を得た。
【0047】
(実施例5)
本例では,実施例1の水の添加量を7.5gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0048】
(実施例6)
本例では,実施例1のグリセリントリステアレートの添加量を2.5gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0049】
(実施例7)
本例では,実施例1のグリセリントリステアレートの添加量を7.5gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0050】
(実施例8)
本例では,実施例1のグリセリントリステアレート(融点65−69℃)をグリセリンジステアレート(融点61℃)に変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0051】
(実施例9)
本例では,実施例1のグリセリントリステアレート(融点65−69℃)をグリセリントリ2−エチルヘキシレート(融点−30℃)に変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0052】
(実施例10)
本例では,実施例1のグリセリントリステアレート(融点65−69℃)をソルビタンモノオレエート(融点9℃)に変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0053】
(実施例11)
本例では,実施例1のグリセリントリステアレート(融点65−69℃)を硬化ヒマシ油(融点84℃)に変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0054】
(実施例12)
本例では,実施例1のブタンの添加量を5gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0055】
(実施例13)
本例では,実施例1のブタンの添加量を35gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0056】
(実施例14)
本例では,実施例1のブタン(ノルマルブタン約70%,イソブタン約30%の混合物)15gを,ペンタン(ノルマルペンタン約80%,イソペンタン約20%の混合物)7.5gとブタン(ノルマルブタン約70%,イソブタン約30%の混合物)7.5gの混合物に変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0057】
(実施例15)
本例では,実施例1のブタン(ノルマルブタン約70%,イソブタン約30%の混合物)をペンタン(ノルマルペンタン約80%,イソペンタン約20%の混合物)に変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0058】
(実施例16)
本例では,実施例1の青色染料を赤色染料に変え,他は実施例1と同様にして,赤色染料を含浸させた着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。なお,赤色染料としては,オリエント化学工業製「OPLAS RED 330」(Solvent Red 111)1.0gを用いた。
【0059】
(実施例17)
本例では,実施例1の青色染料を黄色染料に変え,他は実施例1と同様にして,黄色顔料を含浸させた着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。なお,黄色染料としては,オリエント化学工業製「OPLAS YELLOW 136」(Solvent Yellow 33)1.0gを用いた。
【0060】
(実施例18)
本例では,実施例1のスチレン系発泡性樹脂粒子Aをスチレン系発泡性樹脂粒子Bに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0061】
(実施例19)
本例では,実施例1のスチレン系発泡性樹脂粒子Aをスチレン系発泡性樹脂粒子Cに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0062】
次に,上記実施例1〜19にて得られた着色スチレン系発泡性樹脂粒子につき,帯電状態,染料の含浸状態,凝結量を下記の方法によって評価した。また,上記実施例1〜19にて得られた発泡成形体の融着度合いについて評価した。
【0063】
(帯電状態)
上記着色スチレン系発泡性樹脂粒子の作製後に,上記オートクレーブの内壁に付着した着色スチレン系発泡性樹脂粒子の数を計測した。オートクレーブの内壁に付着した着色スチレン系発泡性樹脂粒子数が全着色スチレン系発泡性樹脂粒子数の1/20未満の場合を◎とし,1/20以上から1/10未満の場合を○とし,1/10以上n場合を×として評価した。その結果を表1に示す。
【0064】
(含浸状態)
上記着色スチレン系発泡性樹脂粒子を白色紙に指で押しつけ,白色紙への染料の移行性を目視にて観察した。上記白色紙上に着色が全く観察されない場合を◎とし,白色上に着色がほとんど観察されない場合を○とし,白色紙上に着色がはっきりと観察された場合を×として評価した。その結果を表1に示す。
【0065】
(凝結量)
上記着色スチレン系発泡性樹脂粒子を目開き1.7mmのJIS篩でふるい,篩上に残留した着色スチレン系発泡性樹脂粒子の数を,篩いにかけた全スチレン系発泡性樹脂粒子の数で除算し,凝結量として算定した。その結果を表1に示す。
【0066】
(融着度)
上記発泡成形体を切断し,その断面において上記予備発泡粒子の界面に生じた裂けを目視にて観察した。上記予備発泡粒子のすべての界面で裂けが発生している場合を0とし,上記予備発泡粒子の界面で裂けが全く発生していない場合を1として評価した。なお,評価は0から1の0.1毎の10段階にて行った。その結果を表1に示す。
【0067】
【表1】

Figure 0004030340
【0068】
表1より知られるごとく,本例(実施例1〜19)の製造方法により得られた着色スチレン系発泡性樹脂粒子は,帯電が少なく,染料の含浸性が良好で,かつ凝結も非常に少なかった。また,上記着色スチレン系発泡性樹脂粒子を発泡成形した発泡成形体は,融着が強固であった。
また,実施例1〜19の着色スチレン系発泡性樹脂粒子の製造方法においては,装置を染料で汚染することはなく,また特別に大きな装置を用いる必要もない。
【0069】
このように,本例によれば,スチレン系発泡性樹脂粒子に染料を色ムラ発生なく含浸させることができ,かつ染料含浸時に凝結しにくく,発泡成形時の融着性に優れた着色スチレン系発泡性樹脂粒子の製造方法を提供することができる。
【0070】
次に,比較のために以下に示す比較例1〜6を行った。
(比較例1)
本例では,水を添加せずに,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0071】
(比較例2)
本例では,実施例1の水の添加量を15gに変え,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0072】
(比較例3)
本例では,実施例1の脂肪酸エステル類を添加せずに,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0073】
(比較例4)
本例では,実施例1の発泡剤を添加せずに,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0074】
(比較例5)
本例では,実施例1の脂肪酸エステル類及び発泡剤を添加せずに,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0075】
(比較例6)
本例では,実施例1の脂肪酸エステル類の代わりにトルエン0.5gを用いて,他は実施例1と同様にして着色スチレン系発泡性樹脂粒子を作製し,該着色発泡性樹脂粒子を発泡成形して発泡成形体を得た。
【0076】
次に,上記実施例1〜19の着色スチレン系発泡性樹脂粒子と同様の方法により,上記比較例1〜6にて作製した着色スチレン系発泡性樹脂粒子の帯電状態,染料の含浸状態,及び凝結量を評価した。また,上記実施例1〜19の発泡成形体と同様の方法により,上記比較例1〜6にて得られた発泡成形体の融着度を評価した。その結果を表2に示す。
【0077】
【表2】
Figure 0004030340
【0078】
表2より知られるごとく,比較例1及び6にて得られる着色スチレン系発泡性樹脂粒子は,帯電が大きく,色ムラが発生していた。また,比較例2及び比較例6においては,着色スチレン系発泡性樹脂粒子同士の凝結が発生していた。また,比較例3〜5においては,染料の含浸性が不良であった。さらに,比較例3〜6において得られる発泡成形体は,融着が弱く,強度に問題があった。[0001]
【Technical field】
The present invention relates to a method for producing colored styrene-based expandable resin particles obtained by impregnating a styrene-based expandable resin particle with a dye.
[0002]
[Prior art]
Conventionally, styrene foams obtained by foam-molding styrene foam resin particles have been used as heat insulating materials, packaging cushioning materials, and the like.
The styrenic foam is molded by pre-foaming styrenic foam resin particles with steam, and then filling the pre-foamed particles into a mold having steam holes, followed by secondary foaming by heating with steam. Usually, the styrenic foam to which no dye is added is white, but the styrenic foam is colored for the purpose of product differentiation. For example, styrene foam colored in blue for fish coolers and brown in American frozen steak containers is used.
[0003]
Conventionally, the following three methods are mainly known as methods for incorporating a colorant as a dye into resin particles.
(1) A method in which a resin and a colorant are melt-kneaded with an extruder, extruded into a strand, and pelletized.
(2) A method in which expandable resin particles and a colorant are mixed with a blender and the colorant is adhered to the surface.
(3) A method of suspending expandable resin particles in water and adding a dye and a coloring aid to the liquid.
[0004]
However, in the method (1), when producing colored resin pellets, it is necessary to clean the extruder every time the color is changed, and there is a problem that inventory management of resin pellets of each color becomes complicated. .
In the method (2), a colorant can be contained relatively easily. However, the molding equipment is contaminated by discoloration, and the colorant is uniformly attached to the surface of the expandable resin particles. There is a problem that color unevenness is likely to occur.
In the method (3), the dye suspended in water remains in water without being absorbed in the particles. For this reason, there is a problem that a large amount of dye is required and the cost becomes high. In addition, since a large amount of water in which the dye is suspended is used, the size of the equipment is increased and a large amount of colored water wastewater is generated.
[0005]
In order to solve the above problems (1) to (3), as a fourth method, styrene resin particles and a dye are dispersed together with a foaming agent such as butane, pentane, or neopentane, and colored styrene resin particles are obtained. A manufacturing method has been proposed (Japanese Patent Laid-Open Nos. 59-56433 and 8-319366). According to this method, since water is not used, it is not necessary to use a large facility, and the styrene resin particles can be colored without contaminating the molding facility.
[0006]
[Problems to be solved]
However, in the fourth method, the styrenic expandable resin particles are charged when the styrenic expandable resin particles are impregnated with the dye. Therefore, there is a problem that color unevenness occurs in the coloring of the styrene-based expandable resin particles.
[0007]
Further, the method disclosed in JP-A-59-56433 has a problem that the impregnation property of the dye is insufficient. Therefore, when the colored styrene foam resin particles are subjected to foam molding, there is a problem that the dye remaining on the surface of the styrene foam resin particles prevents the fusion of the styrene foam resin particles. Therefore, there is a problem that the strength of the styrene foam produced by foam molding of the styrene foam resin particles is lowered.
[0008]
On the other hand, in the method of JP-A-8-319366, the impregnation property of the dye is improved by using aromatic hydrocarbons such as toluene, xylene and benzene. However, there is a problem that the colored styrene-based expandable resin particles are easy to condense.
[0009]
The present invention has been made in view of such a conventional problem, and allows the styrenic expandable resin particles to be impregnated with the dye without causing color unevenness, and is difficult to condense when impregnated with the dye. An object of the present invention is to provide a method for producing colored styrene-based expandable resin particles having excellent properties.
[0010]
[Means for solving problems]
The present invention stirs styrenic foamable resin particles, a dye and a foaming agent in a sealed container while heating them at a temperature lower than the foaming temperature of the styrenic foamable resin particles. Colored styrene foam impregnated with dye sex In a method for producing resin particles,
In the impregnation of the dye, the water content in the sealed container is 0.001 to 2 parts by weight with respect to 100 parts by weight of the styrene-based expandable resin particles and in the presence of fatty acid esters. (1).
[0011]
In the present invention, the amount of water in the sealed container when impregnated with the dye is 0.001 to 2 parts by weight with respect to 100 parts by weight of the styrene-based expandable resin particles.
Therefore, it is possible to prevent the surface of the styrenic expandable resin particles from being charged. Therefore, the dye can be impregnated without color unevenness. Further, the amount of water in the sealed container is a very small amount of 0.001 to 2 parts by weight with respect to 100 parts by weight of the styrenic expandable resin particles. Therefore, unlike the coloring method by suspension in water, it is not necessary to use a large sealed container in consideration of the volume of water, and the equipment does not increase in size.
[0012]
In the present invention, the dye is impregnated in the presence of fatty acid esters.
Therefore, the impregnation property of the dye can be improved, and the colored styrene-based expandable resin particles can be prevented from condensing with each other. Moreover, when impregnating a dye, it can prevent that excess dye remains on the surface of a styrene-type expandable resin particle. For this reason, when the colored styrene-based expandable resin particles are subjected to foam molding, the colored styrene-based expandable resin particles are easily bonded firmly to each other. Therefore, a styrenic foam excellent in strength can be obtained.
[0013]
As described above, according to the present invention, a colored styrene-based resin can be impregnated with styrenic expandable resin particles without causing color unevenness, is not easily condensed when impregnated with the dye, and has excellent fusion property during foam molding. A method for producing expandable resin particles can be provided.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention (Claim 1), the water content in the sealed container is 0.001 to 2 parts by weight with respect to 100 parts by weight of the styrene-based expandable resin particles.
When the water content is less than 0.001 part by weight, when the styrenic expandable resin particles are impregnated with the dye, the styrenic expandable resin particles are charged, and the colored styrene expandable resin particles are colored. Unevenness occurs. On the other hand, when the amount exceeds 2 parts by weight, the colored styrene-based expandable resin particles tend to coagulate with each other.
[0015]
The styrenic foamable resin particles, dye and foaming agent are heated in a sealed container at a temperature lower than the foaming temperature of the styrenic foamable resin particles, that is, a temperature at which the styrenic foamable resin particles do not foam. . When heated at a temperature higher than the foaming temperature, the styrenic foamable resin particles start to foam, and colored styrene foam sex Resin particles cannot be produced. Here, the foaming temperature is a temperature at which the styrene-based expandable resin particles start to foam, and is generally 60 to 80 ° C.
[0016]
Examples of the fatty acid esters include hexadecyl 2-ethylhexanoate, methyl palm fatty acid, methyl laurate, isopropyl myristate, isopropyl palmitate, 2-ethylhexyl palmitate, methyl tallow fatty acid, octyldodecyl myristate, stearic acid Methyl, butyl stearate, 2-ethylhexyl stearate, isotridecyl stearate, methyl caprate, methyl myristate, methyl oleate, isobutyl oleate, octyl oleate, lauryl oleate, oleyl oleate, myristyl myristate, stearic acid Stearyl, 2-ethylhexyl oleate, decyl oleate, isobutyl oleate and other fatty acid and monohydric alcohol esters, sorbitan monolaurate, Vitan monopalmitate, sorbitan monostearate, sorbitan tristearate, sorbitan monooleate, sorbitan trioleate, polyethylene glycol monolaurate, polyethylene glycol monostearate, polyethylene glycol distearate, pentaerythritol monostearate, glycerin monostearate There are esters of fatty acids and polyhydric alcohols such as rate, glycerol distearate, glycerol tristearate, glycerol monooleate, hydrogenated beef tallow and hydrogenated castor oil. These fatty acid esters can be used alone or in combination. Preferably, glycerin fatty acid ester is used.
[0017]
Moreover, as said styrene-type expandable resin particle, the styrene-type resin particle containing a foaming agent can be used.
As a method for producing styrene-based expandable resin particles, for example, there are methods disclosed in JP-A-7-79376 and JP-A-8-253510. That is, first, a styrenic monomer is dispersed in an aqueous medium in the presence of a polymerization initiator and a suspending agent. Thereafter, a polymerization reaction is started, and a foaming agent is added before, during or during the polymerization reaction to produce styrene-based expandable resin particles.
[0018]
As another manufacturing method, a styrene resin and a volatile foaming agent are melt-kneaded in an extruder, extruded from the pores of the die at the tip of the extruder, immediately introduced into water, rapidly cooled, and unfoamed. There is a method for producing styrene-based expandable resin particles by granulating the particles.
In addition, the styrene resin is melt-kneaded in an extruder to obtain particles having a size of 0.5 to 5 mg / piece by methods such as strand cutting, hot cutting, and underwater cutting. Disperse in a closed container in an aqueous medium in the presence of a suspending agent. Thereafter, there is a method for producing styrene-based expandable resin particles by impregnating resin particles with a volatile foaming agent (Japanese Patent Laid-Open No. 2000-178373).
[0019]
As the blowing agent used for impregnation with the above dye, aliphatic hydrocarbons such as propane, normal butane, isobutane, normal pentane, isopentane, neopentane, hexane, etc. having a boiling point of 90 ° C. or lower, or alicyclic rings such as cyclobutane, cyclopentane, etc. Group hydrocarbons.
When the boiling point exceeds 90 ° C., the styrenic expandable resin particles may coagulate with each other when impregnated with the dye. More preferably, it is an aliphatic hydrocarbon or alicyclic hydrocarbon having a boiling point of 60 ° C. or less. These foaming agents can be used alone or in combination. The foaming agent used at the time of impregnation with the dye may be the same as or different from the foaming agent already contained in the styrenic foamable resin particles.
[0020]
Moreover, it is preferable that the addition amount of the said foaming agent used at the time of dye impregnation is 1-10 weight part with respect to 100 weight part of styrene-type expandable resin particles.
When the amount of the foaming agent added is less than 1 part by weight, the styrenic foamable resin particles may not be completely impregnated with the dye. On the other hand, when the amount exceeds 10 parts by weight, the styrene-based expandable resin particles may coagulate with each other. More preferably, it is 2 to 5 parts by weight.
[0021]
Examples of the dye include azo dyes, anthraquinone dyes, azine dyes, and quinoline dyes. The amount of the dye is preferably 0.001 to 1 part by weight with respect to 100 parts by weight of the styrene-based expandable resin particles. If the amount of the dye is less than 0.001 part by weight, the styrenic expandable resin particles may not be colored as desired. On the other hand, when the amount exceeds 1 part by weight, the styrenic expandable resin particles may not be sufficiently impregnated with the dye.
[0022]
The particle diameter of the dye preferably passes through a 100 mesh sieve. With a dye that does not pass through a 100 mesh sieve, the impregnation property of the styrenic foamable resin particles may be deteriorated.
[0023]
Moreover, it is preferable to use the said airtight container which can be sealed, for example, what can be stirred and mixed in a container and can be heated. Examples of such a sealed container include an autoclave with a stirrer and a mixer that can be sealed.
[0024]
Moreover, there is no restriction | limiting in the injection | throwing-in order of the said dye, fatty-acid ester, water, and a foaming agent. However, the foaming agent is preferably added after a dye or a fatty acid ester is mixed or coated on the surface portion of the styrenic foamable resin particles. In this case, the above-mentioned dye can be impregnated into the styrene-based expandable resin particles without color unevenness. Further, the dye, fatty acid ester and water may be mixed or coated on the styrenic expandable resin particles in advance before being put into the sealed container. The foaming agent may be added before heating, during heating, or after reaching a predetermined temperature, or may be added in multiple times.
[0025]
Next, the water content is preferably 0.005 to 1 part by weight with respect to 100 parts by weight of the styrenic expandable resin particles.
In this case, the styrene-based expandable resin particles can be colored almost uniformly. More preferably, the content is 0.01 to 0.5 parts by weight.
[0026]
Next, the fatty acid esters are preferably 0.001 to 1 part by weight with respect to 100 parts by weight of the styrenic foamable resin particles.
If the amount is less than 0.001 part by weight, the styrenic foamable resin particles may not be sufficiently impregnated with the dye. On the other hand, when the amount exceeds 1 part by weight, the surface of the colored styrene-based expandable resin particles becomes too plastic, which may cause condensation. More preferably, the content is 0.01 to 0.5 parts by weight.
[0027]
Next, the melting point of the fatty acid esters is preferably 70 ° C. or lower.
When the melting point of the fatty acid ester exceeds 70 ° C., the styrenic expandable resin particles may not be sufficiently impregnated with the dye.
[0028]
Next, the heating temperature in the sealed container is preferably 20 to 80 ° C. (Claim 5).
When the heating temperature exceeds 80 ° C., the styrene-based expandable resin particles may start to foam, and the desired colored styrene-based expandable resin particles may not be obtained. On the other hand, when the temperature is lower than 20 ° C., the styrenic foamable resin particles may not be sufficiently impregnated with the dye.
[0029]
The time for impregnating the styrenic expandable resin particles with the dye is preferably 0.5 hours or more.
If it is less than 0.5 hour, the styrenic expandable resin particles may not be sufficiently impregnated with the dye.
In order to shorten the dye impregnation time, the heating temperature should be as high as possible.
[0030]
【Example】
Next, the Example which manufactures colored styrene-type expandable resin particle is shown.
In this example, the colored styrene foam resin particles are produced by heating the styrene foam resin particles, the dye and the foaming agent in a sealed container at a temperature lower than the foaming temperature of the styrene foam resin particles. Stirring while stirring, impregnating styrenic foamable resin particles with dye and coloring styrene foam sex This is a method for producing resin particles. In addition, the impregnation with the dye is performed in the presence of 0.001 to 2 parts by weight of water in the sealed container and 0.001 to 2 parts by weight with respect to 100 parts by weight of the styrenic expandable resin particles.
[0031]
Hereinafter, the manufacturing method of the colored styrene-based expandable resin particles will be described in detail.
First, three types of styrenic expandable resin particles A to C were prepared by the following method.
(Styrene-based expandable resin particles A)
In a 50 liter autoclave with a stirrer, 18 liters of ion-exchanged water, 63 g of tricalcium phosphate (made by Taihei Chemical Industrial Co., Ltd.) as a poorly water-soluble inorganic suspending agent, and dodecylbenzenesulfone as a surfactant Sodium sulfate (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.54 g was added.
[0032]
Next, under stirring, benzoyl peroxide (manufactured by NOF Corporation, purity 75%) 45 g (33.75 g in terms of pure product), t-butylperoxy 2-ethylhexyl carbonate 27 g, and organic bromine compound as a polymerization initiator 1,2,5,6,9,10-hexabromocyclododecane (108 g) and 18 kg of styrene monomer in which 180 g of cured beef tallow was dissolved as a plasticizer were added.
[0033]
Next, the mixture was allowed to stand at room temperature for 30 minutes under stirring, and then the temperature was raised to 90 ° C. over 1 hour and a half, and further raised to 100 ° C. over 6 hours and a half. During this time, 1.7 kg of butane was press-fitted into the autoclave 5 hours after reaching 90 ° C. Thereafter, the temperature was further raised to 110 ° C. over 3 hours, and the temperature was maintained at 110 ° C. for 5 hours under stirring. Then, it cooled to 30 degreeC over 4 hours, and produced the styrene-type expandable resin particle.
[0034]
Furthermore, the styrene-based expandable resin particles were dehydrated with a centrifuge, and water adhering to the surface was removed with a fluidized dryer. Thereafter, sieving foamed resin particles A having a mesh size of 0.7 mm to 1.4 mm were obtained by sieving with 0.7 mm and 1.4 mm sieves.
[0035]
(Styrene-based expandable resin particles B)
In a 50 liter autoclave equipped with a stirrer, 20 liters of ion exchange water, 80 g of tricalcium phosphate (made by Taihei Chemical Industrial Co., Ltd.) as a poorly water-soluble inorganic suspending agent, and dodecylbenzenesulfone as a surfactant 0.8 g of sodium acid (manufactured by Tokyo Chemical Industry Co., Ltd.) was added.
Then, under stirring, 45 g of t-butylperoxy 2-ethylhexanoate as a polymerization initiator, 27 g of t-butylperoxy 2-ethylhexyl carbonate, 270 g of cyclohexane as a plasticizer and 135 g of cured beef tallow are dissolved. 18 kg of monomer was charged.
[0036]
Next, the mixture was allowed to stand at room temperature for 30 minutes under stirring, and then the temperature was raised to 90 ° C. over 1 hour and a half, and further raised to 100 ° C. over 5 hours and a half. During this time, 1.7 kg of butane was injected into the autoclave 4 hours after reaching 90 ° C. Thereafter, the temperature was further raised from 100 ° C. to 110 ° C. over 1 hour and a half, and the temperature was kept at 110 ° C. for 2 hours under stirring. Then, it cooled to 30 degreeC over 4 hours, and produced the styrene-type expandable resin particle.
[0037]
Furthermore, the styrene-based expandable resin particles were dehydrated with a centrifuge, and water adhering to the surface was removed with a fluidized dryer. Thereafter, sieving foamed resin particles B having a particle size of 0.7 to 1.4 mm were obtained by sieving with sieves having an opening of 0.7 mm and 1.4 mm.
[0038]
(Styrene-based expandable resin particles C)
In a 50 liter autoclave with a stirrer, 18 liters of ion-exchanged water, 63 g of tricalcium phosphate (made by Taihei Chemical Industrial Co., Ltd.) as a poorly water-soluble inorganic suspending agent, and dodecylbenzenesulfone as a surfactant Sodium sulfate (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.54 g was added.
Next, under stirring, 45 g of t-butylperoxy 2-ethylhexanoate as a polymerization initiator, 27 g of t-butylperoxy 2-ethylhexyl carbonate, and 180 g of phthalic acid-di-2-ethylhexyl as a plasticizer. 18 kg of dissolved styrene monomer was added.
[0039]
Next, the mixture was allowed to stand at room temperature for 30 minutes under stirring, then heated to 90 ° C. over 1 hour and a half, and further heated to 110 ° C. over 5 hours. During this time, 1.7 kg of butane was pressed into the autoclave 3 and a half hours after reaching 90 ° C. Thereafter, the temperature was further maintained at 110 ° C. for 4 hours under stirring. Then, it cooled to 30 degreeC over 4 hours, and produced the styrene-type expandable resin particle.
[0040]
Furthermore, the styrene-based expandable resin particles were dehydrated with a centrifuge, and water adhering to the surface was removed with a fluidized dryer. Thereafter, sieving foamed resin particles C having a particle size of 0.7 to 1.4 mm were obtained by sieving with a sieve having an opening of 0.7 mm and 1.4 mm.
[0041]
Next, the styrenic foamable resin particles A to C were colored and foam-molded as follows.
Example 1
500 g of styrene foam resin particles A as the styrene foam resin particles, 1.0 g of “Oil Blue 630” (Solvent Blue 36) manufactured by Orient Chemical Industry as a blue dye, and glycerin tristearate (Fatty acid esters) 0.5 g (melting point: 65-69 ° C.) and 0.5 g of water were placed in an autoclave equipped with a stirrer having an internal volume of about 3 L and mixed with stirring for 10 minutes.
[0042]
Next, the temperature was raised to 70 ° C. over 30 minutes, and 15 g of butane (a mixture of about 70% normal butane and about 30% isobutane) as a blowing agent was added into the autoclave. After the addition, stirring was further continued at 70 ° C. for 3 hours, followed by cooling to obtain blue colored styrene-based expandable resin particles.
[0043]
Next, the colored styrene-based expandable resin particles were expanded to a bulk density of 33 g / l with a 30 L batch type expansion machine to obtain pre-expanded particles. Subsequently, the obtained pre-expanded particles are left to stand (aged) at room temperature for 1 day, filled in a 25 × 75 × 300 mm mold, and heat-molded for 20 seconds at a steam blowing pressure of 0.07 MPa, and styrene-based foam Got.
[0044]
(Example 2)
In this example, the amount of water added in Example 1 was changed to 0.01 g, and colored styrene-based expandable resin particles were produced in the same manner as in Example 1 except that the colored styrene-based expandable resin particles were foam-molded. Thus, a foamed molded product was obtained.
[0045]
(Example 3)
In this example, the amount of water added in Example 1 was changed to 0.04 g, and the others were produced in the same manner as in Example 1 to produce colored styrene-based expandable resin particles. Thus, a foamed molded product was obtained.
[0046]
Example 4
In this example, the amount of water added in Example 1 was changed to 4.0 g, and colored styrene-based expandable resin particles were produced in the same manner as in Example 1 except that the colored expandable resin particles were foam-molded. Foam molding was obtained.
[0047]
(Example 5)
In this example, the amount of water added in Example 1 was changed to 7.5 g, and other colored styrene-based expandable resin particles were produced in the same manner as in Example 1, and the colored expandable resin particles were foam-molded. A foamed molded product was obtained.
[0048]
(Example 6)
In this example, the amount of glycerin tristearate added in Example 1 was changed to 2.5 g, and colored styrene-based expandable resin particles were prepared in the same manner as in Example 1, and the colored expandable resin particles were expanded. Molded to obtain a foamed molded product.
[0049]
(Example 7)
In this example, the amount of glycerin tristearate added in Example 1 was changed to 7.5 g, and colored styrene-based expandable resin particles were produced in the same manner as in Example 1 except that the colored expandable resin particles were expanded. Molded to obtain a foamed molded product.
[0050]
(Example 8)
In this example, glycerin tristearate (melting point: 65-69 ° C.) of Example 1 was changed to glycerin distearate (melting point: 61 ° C.), and colored styrene-based expandable resin particles were prepared in the same manner as in Example 1. Then, the colored foamable resin particles were foam-molded to obtain a foam-molded product.
[0051]
Example 9
In this example, the glycerin tristearate (melting point 65-69 ° C.) of Example 1 was changed to glycerin tri-2-ethylhexylate (melting point −30 ° C.), and the others were the same as in Example 1, and the colored styrene foam Resin particles were produced, and the colored foamed resin particles were foam-molded to obtain a foam-molded article.
[0052]
(Example 10)
In this example, the glycerin tristearate (melting point 65-69 ° C.) of Example 1 was changed to sorbitan monooleate (melting point 9 ° C.), and the others were the same as in Example 1 to produce colored styrene-based foamable resin particles. Then, the colored foamable resin particles were foam-molded to obtain a foam-molded product.
[0053]
(Example 11)
In this example, the glycerin tristearate of Example 1 (melting point 65-69 ° C.) was changed to hydrogenated castor oil (melting point 84 ° C.), and the others were the same as in Example 1 to produce colored styrene-based expandable resin particles. The colored foamable resin particles were foam-molded to obtain a foam-molded article.
[0054]
(Example 12)
In this example, the amount of butane added in Example 1 was changed to 5 g, and colored styrene-based expandable resin particles were produced in the same manner as in Example 1 except that the colored expandable resin particles were subjected to foam molding and subjected to foam molding. Got the body.
[0055]
(Example 13)
In this example, the amount of butane added in Example 1 was changed to 35 g, and colored styrene-based expandable resin particles were produced in the same manner as in Example 1 except that the colored expandable resin particles were subjected to foam molding and subjected to foam molding. Got the body.
[0056]
(Example 14)
In this example, 15 g of butane of Example 1 (a mixture of about 70% normal butane and about 30% isobutane), 7.5 g of pentane (a mixture of about 80% normal pentane and about 20% isopentane) and butane (about about normal butane). 70%, isobutane approximately 30% mixture) The mixture was changed to 7.5 g of the mixture. Otherwise, colored styrene-based expandable resin particles were produced in the same manner as in Example 1, and the colored expandable resin particles were foamed and foamed. A molded body was obtained.
[0057]
(Example 15)
In this example, the butane of Example 1 (a mixture of about 70% normal butane and about 30% isobutane) was changed to pentane (a mixture of about 80% normal pentane and about 20% isopentane), and the others were the same as in Example 1. Colored styrene-based expandable resin particles were prepared, and the colored expandable resin particles were foam-molded to obtain a foam-molded product.
[0058]
(Example 16)
In this example, the blue dye of Example 1 was changed to a red dye, and other than in Example 1, colored styrene-based expandable resin particles impregnated with a red dye were prepared, and the colored expandable resin particles were Foam molding was performed to obtain a foam molding. As the red dye, 1.0 g of “OPLAS RED 330” (Solvent Red 111) manufactured by Orient Chemical Industries was used.
[0059]
(Example 17)
In this example, the blue dye of Example 1 was changed to a yellow dye, and others were made in the same manner as in Example 1 to produce colored styrene-based expandable resin particles impregnated with a yellow pigment. Foam molding was performed to obtain a foam molding. As the yellow dye, 1.0 g of “OPLAS YELLOW 136” (Solvent Yellow 33) manufactured by Orient Chemical Industries was used.
[0060]
(Example 18)
In this example, the styrenic foamable resin particles A of Example 1 were changed to styrenic foamable resin particles B, and other colored styrene foamable resin particles were produced in the same manner as in Example 1, and the colored foamable properties were Resin particles were subjected to foam molding to obtain a foam molded article.
[0061]
(Example 19)
In this example, the styrenic foamable resin particles A of Example 1 were changed to styrenic foamable resin particles C, and colored styrene foamable resin particles were produced in the same manner as in Example 1 except that Resin particles were subjected to foam molding to obtain a foam molded article.
[0062]
Next, with respect to the colored styrene-based expandable resin particles obtained in Examples 1 to 19, the charged state, the dye impregnation state, and the coagulation amount were evaluated by the following methods. Moreover, the fusion | melting degree of the foaming molding obtained in the said Examples 1-19 was evaluated.
[0063]
(Charged state)
After producing the colored styrene-based expandable resin particles, the number of colored styrene-based expandable resin particles adhering to the inner wall of the autoclave was measured. The case where the number of colored styrene-based expandable resin particles adhering to the inner wall of the autoclave is less than 1/20 of the total number of colored styrene-based expandable resin particles is ◎, and the case where it is 1/20 or more and less than 1/10 is ◯, The case where n was 1/10 or more was evaluated as x. The results are shown in Table 1.
[0064]
(Impregnated state)
The colored styrenic expandable resin particles were pressed against a white paper with a finger, and the transferability of the dye to the white paper was visually observed. The case where no coloring was observed on the white paper was evaluated as ◎, the case where little coloring was observed on the white paper was evaluated as ◯, and the case where coloring was clearly observed on the white paper was evaluated as x. The results are shown in Table 1.
[0065]
(Condensation amount)
The above colored styrene foam resin particles are sieved with a 1.7 mm mesh JIS sieve, and the number of colored styrene foam resin particles remaining on the sieve is divided by the number of all styrene foam resin particles passed through the sieve. And calculated as the amount of condensation. The results are shown in Table 1.
[0066]
(Fusion degree)
The foamed molded body was cut, and the tear generated at the interface of the pre-expanded particles in the cross section was visually observed. The case where tearing occurred at all the interfaces of the pre-expanded particles was evaluated as 0, and the case where tearing did not occur at the interface of the pre-expanded particles was evaluated as 1. In addition, evaluation was performed in ten steps of every 0.1 from 0 to 1. The results are shown in Table 1.
[0067]
[Table 1]
Figure 0004030340
[0068]
As is known from Table 1, the colored styrene-based expandable resin particles obtained by the production method of this example (Examples 1 to 19) have little charge, good dye impregnation, and very little condensation. It was. Further, the foamed molded article obtained by foaming the colored styrene-based expandable resin particles had strong fusion.
Moreover, in the manufacturing method of the colored styrene-type expandable resin particle of Examples 1-19, an apparatus is not contaminated with a dye and it is not necessary to use an especially big apparatus.
[0069]
As described above, according to this example, the colored styrene-based resin particles can be impregnated with the styrenic expandable resin particles without causing color unevenness, are hard to condense when impregnated with the dye, and have excellent fusion property during foam molding. A method for producing expandable resin particles can be provided.
[0070]
Next, Comparative Examples 1 to 6 shown below were performed for comparison.
(Comparative Example 1)
In this example, without adding water, colored styrene-based expandable resin particles were produced in the same manner as in Example 1, and the colored expandable resin particles were foam-molded to obtain a foam-molded article.
[0071]
(Comparative Example 2)
In this example, the amount of water added in Example 1 was changed to 15 g. Other than that in Example 1, colored styrene-based expandable resin particles were produced, and the colored expandable resin particles were subjected to foam molding to perform foam molding. Got the body.
[0072]
(Comparative Example 3)
In this example, the colored styrene-based expandable resin particles were prepared in the same manner as in Example 1 except that the fatty acid esters of Example 1 were not added. Got the body.
[0073]
(Comparative Example 4)
In this example, the colored styrene-based expandable resin particles were prepared in the same manner as in Example 1 except that the foaming agent of Example 1 was not added. Got.
[0074]
(Comparative Example 5)
In this example, the colored styrene-based expandable resin particles were prepared in the same manner as in Example 1 except that the fatty acid esters and the foaming agent of Example 1 were not added, and the colored expandable resin particles were foam-molded. Thus, a foamed molded product was obtained.
[0075]
(Comparative Example 6)
In this example, 0.5 g of toluene was used in place of the fatty acid esters of Example 1, and other colored styrene-based expandable resin particles were produced in the same manner as in Example 1, and the colored expandable resin particles were expanded. Molded to obtain a foamed molded product.
[0076]
Next, in the same manner as the colored styrene foam resin particles of Examples 1 to 19, the charged state of the colored styrene foam resin particles prepared in Comparative Examples 1 to 6, the dye impregnation state, and The amount of condensation was evaluated. In addition, the degree of fusion of the foam molded bodies obtained in Comparative Examples 1 to 6 was evaluated in the same manner as the foam molded bodies of Examples 1 to 19. The results are shown in Table 2.
[0077]
[Table 2]
Figure 0004030340
[0078]
As is known from Table 2, the colored styrene-based expandable resin particles obtained in Comparative Examples 1 and 6 were highly charged and had uneven color. Moreover, in Comparative Example 2 and Comparative Example 6, condensation of colored styrene-based expandable resin particles occurred. Further, in Comparative Examples 3 to 5, the dye impregnation property was poor. Furthermore, the foamed molded products obtained in Comparative Examples 3 to 6 had a weak fusion and had a problem in strength.

Claims (5)

スチレン系発泡性樹脂粒子,染料及び発泡剤を,密閉容器内にて,スチレン系発泡性樹脂粒子の発泡温度よりも低い温度で加熱しながら攪拌し,スチレン系発泡性樹脂粒子に染料を含浸させて着色スチレン系発泡樹脂粒子を製造する方法において,
上記染料の含浸にあたっては,上記密閉容器内の水分量が,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜2重量部で,かつ脂肪酸エステル類の存在下で行うことを特徴とする着色スチレン系発泡性樹脂粒子の製造方法。
Stir styrene foam resin particles, dye and foaming agent in a sealed container while heating at a temperature lower than the foaming temperature of the styrene foam resin particles to impregnate the styrene foam resin particles with the dye. a method for producing a colored styrenic expandable resin beads Te,
In the impregnation of the dye, the water content in the sealed container is 0.001 to 2 parts by weight with respect to 100 parts by weight of the styrene-based expandable resin particles and in the presence of fatty acid esters. A method for producing colored styrene-based expandable resin particles.
請求項1において,上記水分量は,上記スチレン系発泡性樹脂粒子100重量部に対して0.005〜1重量部であることを特徴とする着色スチレン系発泡性樹脂粒子の製造方法。  2. The method for producing colored styrene foam resin particles according to claim 1, wherein the water content is 0.005 to 1 part by weight with respect to 100 parts by weight of the styrene foam resin particles. 請求項1または2において,上記脂肪酸エステル類は,上記スチレン系発泡性樹脂粒子100重量部に対して0.001〜1重量部であることを特徴とする着色スチレン系発泡性樹脂粒子の製造方法。  3. The method for producing colored styrene-based expandable resin particles according to claim 1, wherein the fatty acid esters are 0.001 to 1 part by weight with respect to 100 parts by weight of the styrene-based expandable resin particles. . 請求項1〜3のいずれか1項において,上記脂肪酸エステル類の融点は70℃以下であることを特徴とする着色スチレン系発泡性樹脂粒子の製造方法。  The method for producing colored styrene-based expandable resin particles according to any one of claims 1 to 3, wherein the fatty acid esters have a melting point of 70 ° C or lower. 請求項1〜4のいずれか1項において,上記密閉容器内の加熱の温度は,20〜80℃であることを特徴とする着色スチレン系発泡性樹脂粒子の製造方法。  The method for producing colored styrene-based expandable resin particles according to any one of claims 1 to 4, wherein the heating temperature in the sealed container is 20 to 80 ° C.
JP2002112410A 2002-04-15 2002-04-15 Method for producing colored styrene-based expandable resin particles Expired - Fee Related JP4030340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002112410A JP4030340B2 (en) 2002-04-15 2002-04-15 Method for producing colored styrene-based expandable resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002112410A JP4030340B2 (en) 2002-04-15 2002-04-15 Method for producing colored styrene-based expandable resin particles

Publications (2)

Publication Number Publication Date
JP2003306572A JP2003306572A (en) 2003-10-31
JP4030340B2 true JP4030340B2 (en) 2008-01-09

Family

ID=29394921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002112410A Expired - Fee Related JP4030340B2 (en) 2002-04-15 2002-04-15 Method for producing colored styrene-based expandable resin particles

Country Status (1)

Country Link
JP (1) JP4030340B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2808006B1 (en) 2004-06-29 2019-02-20 Mayborn (UK) Limited Teat

Also Published As

Publication number Publication date
JP2003306572A (en) 2003-10-31

Similar Documents

Publication Publication Date Title
JPH073068A (en) Expandable styrene polymer bead
JP4070555B2 (en) Method for producing colored foamable styrene resin particles
JP4030340B2 (en) Method for producing colored styrene-based expandable resin particles
JP3970191B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles, and foamed molded products
JP3995982B2 (en) Method for producing colored foamable styrene resin particles
JPS60250047A (en) Production of expandable colored styrene resin particle
JP4935110B2 (en) Method for producing colored expandable styrene resin particles
JPH0598062A (en) Foamable styrene resin granule and production thereof
JP2002020527A (en) Self-extinguishable expandable polystyrene-based rein beads
JP5635392B2 (en) Method for producing expandable polystyrene-based colored resin particles, method for producing colored resin pre-foamed particles, and method for producing colored resin foam molded article
JP2012131955A (en) Expandable polystyrene-based colored resin particle for producing food container, method for producing the same, colored resin pre-expanded particle for producing food container and food container
JPH11255945A (en) Foamable styrene-based resin particle and its production
JP2003064211A (en) Regenerated, flame-retarding, foamable styrenic resin particle, its manufacturing method and foam product
JP4052193B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JP6371711B2 (en) Colored polystyrene-based expandable resin particles, pre-expanded particles, and molded article
JP2012082380A (en) Expandable polystyrene-based colored resin particle and method for producing the same, colored resin pre-expanded particle, and colored resin expansion molded body and application of the same
JP4179882B2 (en) Colored thermoplastic resin foam particles and method for producing foam molded article
JPH08151471A (en) Expandable particle for producing impact-resistant foam and production thereof
JP2003089728A (en) Recyclable expandable styrene-based resin particle and resin molded product using the same
JP2798572B2 (en) Method for producing recycled expanded polystyrene resin molded article
JP5126971B2 (en) Expandable polystyrene resin particles, method for producing the same, pre-expanded particles and foam-molded article
JP2637664B2 (en) Method for producing recycled expanded polystyrene resin molded article
JP2981374B2 (en) Method for producing expandable resin particles containing ceramics
JP4052234B2 (en) Recycled foamed styrene resin particles, recycled foamed beads, and recycled foamed styrene resin molded products
JPS60252639A (en) Improved foamable thermoplastic resin particle

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040602

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071016

R150 Certificate of patent or registration of utility model

Ref document number: 4030340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees