JP4030108B2 - Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor - Google Patents

Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor Download PDF

Info

Publication number
JP4030108B2
JP4030108B2 JP2003084020A JP2003084020A JP4030108B2 JP 4030108 B2 JP4030108 B2 JP 4030108B2 JP 2003084020 A JP2003084020 A JP 2003084020A JP 2003084020 A JP2003084020 A JP 2003084020A JP 4030108 B2 JP4030108 B2 JP 4030108B2
Authority
JP
Japan
Prior art keywords
eddy current
dummy
sensor
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003084020A
Other languages
Japanese (ja)
Other versions
JP2004294132A (en
Inventor
正紘 上田
茂 稲垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Power Co Ltd
University of Fukui
Original Assignee
Japan Atomic Power Co Ltd
University of Fukui
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Power Co Ltd, University of Fukui filed Critical Japan Atomic Power Co Ltd
Priority to JP2003084020A priority Critical patent/JP4030108B2/en
Publication of JP2004294132A publication Critical patent/JP2004294132A/en
Application granted granted Critical
Publication of JP4030108B2 publication Critical patent/JP4030108B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸受等の摩耗量あるいは被切削体の切削量等を計測する計測方法、計測用センサ、計測装置及び計測用センサを備えた装置に関するものである。
【0002】
【従来の技術】
近年、各種の産業分野において設備診断技術の開発および実用化がなされており、ポンプに関する診断技術やシステムが種々提案されている。
【0003】
プラント、例えば発電所において使用されるポンプに竪型ポンプがあり、この竪型ポンプは海水の取水あるいは揚水用として使用され大型機であって、その重要度も高い。このような竪型ポンプは、全体として縦長構造で、ポンプの上部に駆動用モータが配置され、前記ポンプの入力軸(回転軸)と前記駆動用モータの出力軸とがカップリングにより接続されている。
【0004】
ポンプ内の流体は、駆動用モータによって回転するインペラーにより吐出されるが、ポンプ内の昇圧された流体が回転軸から漏洩することを防止するために、一般的にメカニカルシールあるいはグランドパッキンが用いられている。
【0005】
また、ポンプ内には、流体潤滑領域で使用されるように設計されたすべり軸受によって回転軸を軸支している。なお、すべり軸受の殆どは、高荷重,高速域,大型装置の軸受として使用されるケースが多い。
【0006】
このような竪型ポンプの故障またはメインテナンス箇所の殆どは、回転体との接触部分である軸受部分および軸シールに集中しており、寿命に応じて定期的な交換や日常的な点検が必要とされている。
【0007】
そこで、竪型ポンプの運転状況をモニタリングしてポンプの異常診断を行なうシステムが種々提案されているが、その一例としては、ポンプの運転中にポンプの軸受付近の外側における振動を測定し監視して、振動解析から軸受摩耗量の推測を行なうようにしたものがある。これは、ポンプの回転軸に振動が発生すればそれに伴い軸受に摩耗が生じ、摩耗量が増加すれば回転軸の振動振幅が大きくなることを利用し、この振動振幅を測定することによって軸受摩耗量を推測するようにしたものである。
【0008】
【発明が解決しようとする課題】
しかしながら、このような回転系の振動振幅を計測して竪型ポンプの軸受の摩耗量を推測する方法にあっては、上述のようにポンプには揚液の漏れを防止用のグランドパッキン等のシールがポンプケーシングと回転軸との間に設けられているため、これが大きな減衰効果をもたらし、また該グランドパッキンの状態や締め付けの違いによっても振動振幅が影響を受けるという問題があった。
【0009】
このため、ポンプの定期点検時に軸受を分解して軸受の摩耗の観測、軸受の摩耗量の測定を行なっているのが現状である。
【0010】
特に、点検等のために検査員等が容易に近づくことが難しく、また分解等の手間を要する機器における軸受、あるいは石炭等の粉体をパイプ輸送するシステムにおける該パイプ内周壁面の摩擦量を高い信頼性を有し、しかも運転中であってもリアルタイムに計測できることが要望されていた。
【0011】
本願発明の目的は、このような従来の問題に鑑みなされたもので、軸受やパイプ輸送システムにおける管内等の摩耗箇所の摩耗量を高い信頼性を有して運転中等にリアルタイムに計測できる計測方法、計測用センサ、計測装置、軸受及び計測用センサを備えた装置を提供しようとするものである。
【0012】
また、本願発明の他の目的は、測定対象を摩耗するものに限らず、切削加工等において、切削中においてリアルタイムに計測できる計測方法、計測用センサ、計測装置、軸受及び計測用センサを備えた装置を提供しようとするものである。
【0013】
【課題を解決するための手段】
第1の発明は、請求項1に記載のように、計測対象物と一体に摩耗することで表面積が減少する電磁誘導体からなるダミー計測体に対して渦電流センサにより渦電流を生成し、該ダミー計測体の面積の減少に応じた該渦電流センサの出力変化に応じて該計測対象物の摩耗量を計測する摩耗量計測方法とするものである。
【0014】
第2の発明は、請求項2に記載のように、計測対象物と一体に切削されることで表面積が減少する電磁誘導体からなるダミー計測体に対して渦電流センサにより渦電流を生成し、該ダミー計測体の面積の減少に応じた該渦電流センサの出力変化に応じて該計測対象物の切削量を計測する切削量計測方法とするものである。
【0015】
第3の発明は、請求項3に記載のように、渦電流センサと、前記渦電流センサで発生する磁界によって渦電流が生成される電磁誘導体からなるダミー計測体とを有し、前記渦電流センサに対して前記ダミー計測体を一定位置に固持し、前記ダミー計測体を計測対象物と一体に摩耗させることにより面積を減少させ、前記渦電流センサから前記ダミー計測体の面積減少に応じた信号を出力することを特徴とする摩耗量計測用センサとするものである。
【0016】
第4の発明は、請求項4に記載のように、渦電流センサと、前記渦電流センサで発生する磁界によって渦電流が生成される電磁誘導体からなるダミー計測体とを有し、前記渦電流センサに対して前記ダミー計測体を一定位置に固持し、前記ダミー計測体を計測対象物と一体に切削させることにより面積を減少させ、前記渦電流センサから前記ダミー計測体の面積減少に応じた信号を出力することを特徴とする切削量計測用センサとするものである。
【0017】
第5の発明は、請求項5に記載のように、上記した第3の発明で、前記ダミー計測体は、前記計測対象物の摩耗面に対して傾斜していることを特徴とする。
【0018】
第6の発明は、請求項6に記載のように、上記した第4の発明で、前記ダミー計測体は、前記計測対象物の切削面に対して傾斜していることを特徴とする。
【0019】
第7の発明は、請求項7に記載のように、上記した第3または第5の発明である摩耗量計測用センサと、前記ダミー計測体の出力に応じた摩耗量のデータが予め記憶されている処理装置とを有し、前記処理装置は前記摩耗量計測用センサからの出力と前記予め記憶されているデータとに基づいて計測対象物の摩耗量を演算することを特徴とする摩耗量計測装置とするものである。
【0020】
第8の発明は、請求項8に記載のように、上記した第4または第6の発明である切削量計測用センサと、前記ダミー計測体の出力に応じた切削量のデータが予め記憶されている処理装置とを有し、前記処理装置は前記切削量計測用センサからの出力と前記予め記憶されているデータとに基づいて計測対象物の切削量を演算することを特徴とする切削量計測装置とするものである。
【0021】
第9の発明は、請求項9に記載のように、回転軸を軸受部材により軸支する軸受において、上記した第3または第5の発明である摩耗量計測用センサを有し、前記計測対象物を前記軸受部材として前記摩耗量計測用センサの前記ダミー計測体を該軸受部材に設けたことを特徴とするものである。
【0022】
第10の発明は、請求項10に記載のように、上記した第9の発明である軸受と、前記軸受により軸支される回転軸と、前記回転軸により回転される被駆動体とを有することを摩耗量計測用センサを備えた装置とするものである。
【0023】
第11の発明は、請求項11に記載のように、上記した第10の発明で、前記装置は竪型ポンプで、前記被駆動体はインペラであることを特徴とする。
【0024】
【発明の実施の形態】
以下本発明を図面に示す実施の形態に基づいて説明する。
【0025】
図1は本発明の第1の実施の形態を示す竪型ポンプの概略構成を示す一部切り欠き斜視図及び軸受部分の拡大図を示す。
【0026】
図1に示す竪型ポンプ1は、上下方向に延びるポンプケーシング2内に配置された回転軸3が軸受4により回転可能に軸支されており、ポンプの下部に配置された軸受4より下方に延びる回転軸3の下端部にインペラー5が取り付けられている。またポンプ1の上部にはモータ6が取り付けられ、モータ6の回転動力によりインペラー5が回転し、ケーシング2内を通して液体を上方にポンプアップする。このような竪型ポンプ1は、軸受4は液中に没した状態にあるため、従来のように軸受4の摩耗量を計測するには、ポンプを引上げてモータ6とポンプ1とを分離し、ポンプ1を分解し、さらに軸受4を分解する必要があった。
【0027】
しかし、本実施の形態では、すべり軸受である軸受4に摩耗量を計測する摩耗量計測センサ7を取り付けている。
【0028】
本実施の形態におけるすべり軸受4は、図1の拡大図に示すように、例えばステンレス鋳物製のケーシング8の内周部に円筒状のブッシュ9を取り付けた構造で、このブッシュ9は円筒状のラバー部材10の内周部に、軸方向に沿って延びる直方体に形成したテフロン(登録商標)等のフッ素樹脂製の軸受部材11を周方向に複数固着し、これらの軸受部材11により回転軸3を軸支している。そして、回転軸3の回転により、回転軸3と摩擦接触する複数の軸受部材11は表面が摩耗し、摩耗が進むと軸受部材11の厚みが薄くなる。
【0029】
摩耗量計測センサ7は、渦電流センサ12と、渦電流センサ12の発生する磁界に対して斜めに横切るように配置された金属、非鉄金属等の電磁誘導体(以下ダミー計測体と称す)13とを基本構成としている。そして、ダミー計測体13は例えばアルミ箔で形成し、このアルミ箔製のダミー計測体13を軸受部材11と同じ樹脂材料であるフッ素樹脂内に埋設している。
【0030】
本実施の形態では、フッ素樹脂内にダミー計測体13を埋設して円筒状に形成した埋設体14を複数の軸受部材11の中の一つに埋め込み、この軸受部材11と同様にして埋設体14も摩耗するようにしており、その際、埋設体14内のダミー計測体13も傾斜している先端部側(回転軸側)から摩耗が始まり表面積が徐々に減少する。
【0031】
一方、渦電流センサ12は、埋設体14に対応してケーシング8を貫通する取り付け孔部15内にねじ込まれている。埋設体14の厚みを渦電流センサ12の前面に当接するまでの厚みとしており、埋設体14の外端面はラバー部材10を貫通してケーシング8の取り付け孔部15内で渦電流センサ12の前端面に当接し、埋設体14と渦電流センサ12との距離が変化しないようにしている。なお、渦電流センサ12はケーシング8にねじ結合されているので、埋設体14をブッシュ9あるいはケーシング8に固定することにより、埋設体14と渦電流センサ12との距離を一定に維持することができる。
【0032】
渦電流センサ12は、一般に渦電流変位センサと称され、センサ部のコイルのインダクタンスLと、変換部のコンデンサCによりLC共振回路を形成し、このLC共振回路を例えば水晶発振子により共振状態とし、変位センサとして使用する場合は、高周波電流が流された該コイルからなるセンサ部に測定対象となる金属等の電磁誘導体(被測定物)を近づけると、該コイルで発生する交流磁界により被測定物内に渦電流が流れる。この渦電流の強さは到達する磁力線の強度、すなわち前記コイルと前記被測定物との距離(ギャップ)に依存するため、渦電流の強度によってインダクタンスLが変化する。その結果、前記共振回路の端子電圧に変化が生じ、その変化は距離の関数となるため、この端子電圧に基づいてギャップを求めることができるようになっている。このように、このセンサは被測定物までのギャップを測定するために用いられていたため、渦電流変位センサと称されているが、本発明では被測定物までのギャップを測定するものではないため、単に渦電流センサと称する。
【0033】
ここで、渦電流変位センサの端子電圧は、被測定物が近づくと減少するため、リニアライズ回路で直線性の補正を行なうことにより、センサ出力Pは、センサと被測定物間の距離dに正比例し、式(1)で表される。
【0034】
P=kd・・・・(1)
但し、kはセンサ感度を示し、被測定物である電磁誘導体の種類によって決まる定数である。
【0035】
本発明はこのようなギャップセンサとして用いられている渦電流変位センサにおいて、図2に示すように、センサ出力Pは磁界と交差する電磁誘導体の面積Sの大きさに影響を受けるのではないかという点に着目してなされたものである。この場合、式(1)は下記の式(2)に書き換えられる。
【0036】
P=P´{1+kf(S/S0)}・・・・(2)
但し、P´は式(1)、Sは全ての磁力線がダミー計測体と交差する範囲を示し、Kは関数f(S/S0)が、0≦f(S/S0)≦1、となるようにするための、すなわち関数f(S/S0)を規格化するための定数である。なお、式(2)の関数f(S/S0)の前の符号は、ダミー計測体に生成される渦電流が増加(減少)すると、センサ出力が減少(増加)するためのプラス符合である。
【0037】
また、S≒S0とした場合、全ての磁界がダミー計測体と交差し、最大の渦電流が発生し、センサ出力が最小となる。換言すれば、関数f(S/S0)は、f(1)のとき0となり、結果的に式(1)となる。
【0038】
しかし、図2(a)に示すように、ダミー計測体の面積がS0からSに減少すると、f(S/S0)が増加し、最終的にはf(0)=1となる。このような状態は、図2(b)に示すように、ダミー計測体を水平移動することによって模擬することができる。これは、センサとダミー計測体間の距離を一定に保ったとしても、ダミー計測体の寸法が変化すれば、その変化を測定できることを示している。
【0039】
すなわち、本発明では、ダミー計測体のサイズの減少から例えば軸受部材11の摩耗量を渦電流センサ12で直接的に計測できることになる。
【0040】
そこで、本実施の形態では、軸受部材11の摩耗にあわせてアルミ箔で形成したダミー計測体13を回転軸3によって面積が減少するように、回転軸3が軸受部材11に対してなす接線に対し、θの傾斜角度を有してダミー計測体13を配置し、また渦電流センサ12に対しては磁界を斜めに横切るように配置する。そして、ダミー計測体13の面積の減少を渦電流センサ12により検出し、検出出力を演算処理装置である不図示の監視装置に送信して軸受の摩耗量を求めるようにしている。
【0041】
図3は、幅Wのアルミ箔で形成したダミー計測体13と渦電流センサ12との関係、及び軸受部材11の摩耗領域とダミー計測体13との関係を示したもので、傾斜角度θで渦電流センサ12に対して傾斜配置されているダミー計測体13の傾斜後端を渦電流センサ12の前端まで延ばしたものとして渦電流センサの出力Pの算出について説明する。
【0042】
図3において、渦電流センサ12の出力Pは、距離dとダミー計測体13の面積Sとの関数となるので、式(3)で表される。
【0043】
P=P´{1+kg(dmax,S/S0)}
但し、dmaxは、距離dの最大値で、k3は 0≦g(dmax,S/S0)≦1 となるように規格化するための定数である。
【0044】
maxはダミー計測体13の有効面積Sの減少に正比例して減少し、
また、S=Wdmax/sinθの関係があるので、上述の式(3)は下記の式(4)のように簡素化できる。
【0045】
P=g(D-dmax)・・・・(4)
ここで、Dは図3からもわかるように、ダミー計測体13を最初にセットしたとき(摩耗の全くないとき)のダミー計測体13と渦電流センサ12との間の距離、すなわちdmaxの最大値である。よって、D-dmaxは軸受部材11の摩耗量を示し、上記した式(4)から得られる。
【0046】
また、関数g(D-dmax)は、予め実験的に求め、これを前記監視装置に記憶させて軸受摩耗量の校正曲線として用いる。
【0047】
したがって、本実施の形態における摩耗量計測センサ7は、竪型ポンプの運転中において、軸受4の軸受部材11が回転軸3との摩擦によって摩耗する摩耗量をアルミ箔からなるダミー計測体13の面積の減少として渦電流センサ12が計測し、この渦電流センサ12からのセンサ出力を、前記監視装置で予め求めていた上記関数g(D-dmax)で校正することにより、軸受4の軸受部材11の摩耗量をリアルタイムに計測することができる。
【0048】
実施例1
ダミー計測体13の傾斜角度θと、渦電流センサ12の出力との関係について、傾斜角度θをA:18.6度、B:15.6度、C:12.6度とし、図4(a)に示すように、θの角度を持ったウエッジ形状のポリエステル板16にアルミ箔17を貼り付け、これを渦電流センサ12と一体化して回転する砥石18に向けて押し付けることにより、アルミ箔17の先端から徐々に研削し、その時の渦電流センサ12の移動量(摩耗量に相当し、上記D-dmaxに相当する)をレーザー変位計19で計測した。このときの渦電流センサ12の出力と摩耗量との関係を図4(b)に示す。
【0049】
これら3つの角度におけるA〜Cの特性曲線は感度に少しバラツキはあるものの類似しており、また角度θを20度以上とした場合でも同様の結果が得られた。
【0050】
したがって、角度θは渦電流センサ12の測定距離、軸受摩耗量等によって決定され、例えば摩耗量が大きい場合には角度θを大きくすればよい。
【0051】
以上述べたように本実施の形態によれば、竪型ポンプ1の軸受4における軸受部材11に埋設体14を設け、埋設体14内に埋設した電磁誘導体であるアルミ箔製のダミー計測体13を軸受部材11が回転軸3の外周面に対する接線に対し角度θを有して傾斜配置し、回転軸3による軸受部材11の摩耗と共にダミー計測体13をその先端側から摩滅させてダミー計測体13の表面積を減少させ、渦電流センサ12はダミー計測体13の表面積の減少を出力の増加として検出するので、予めダミー計測体13の摩耗量と表面積との関係及びそのときの渦電流センサ12の出力を求めておけば、ポンプの運転中における軸受4の摩擦部材11の摩耗量をリアルタイムに計測することができる。
【0052】
また、渦電流センサ12はコイル部分を回転軸3側に向けているが、渦電流センサ12と例えば電磁誘導体であるステンレス製の回転軸3との間には電磁誘導体であるアルミ箔からなるダミー計測体13が介在しているため、ダミー計測体13が回転軸3に対してシールド部材として作用し、特にダミー計測体13が新品の場合には回転軸3に及ぼす磁場を完全にシールドすることができるので、回転軸3には渦電流センサ12によって渦電流が発生しないため、回転軸3の振動の影響を受けない。しかし、図5に示すように、ダミー計測体13の摩滅によって渦電流センサ12の磁場によって回転軸3に渦電流が発生するため、渦電流センサ12は回転軸3に形成される渦電流の影響を受ける。この回転軸3に形成される渦電流により、渦電流センサ12は周期的にセンサ出力が減少する。この周期的な減少は回転軸3の回転による軸振動の一定の周波数fに依存する。これとは対照的に、軸受の摩耗に相当した渦電流センサ12の出力信号は、日単位、月単位、年単位の変化であるため、T=1/f単位の時間で変化する回転軸の振動による変化と比較すれば、一定の直流的な変化であると考えられる。したがって、回転軸3に発生する渦電流による影響は、例えばデジタル的な数10Hz(回転軸の軸振動の周波数)間にわたった平均化などのスムージング化処理、あるいはアナログ的なローパスフィルタ(周波数f近傍の信号を無視する)によって解決することができ、軸受の摩耗量に相当する信号を取り出して軸受の摩耗量を計測することができる。
他の実施の形態
上記した実施の形態は、竪型ポンプの回転軸を軸支するすべり軸受の軸受部材の摩耗量を計測するものであったが、本発明はこの竪型ポンプの軸受における軸受部材の摩耗量を計測することに限られるものではなく、蒸気、あるいはガスタービン、の回転軸あるいはエンジンのクランクシャフトの軸受、石炭等の粉体をパイプ内を移送させる輸送システムにおいて、該パイプ内壁の摩耗量の計測、あるいは切削加工等において被加工物を切削する際の切削量の計測等にも適用することができる。
【0053】
石炭等の粉体をパイプ内を移送させる輸送システムにおいて、該パイプの内壁の摩耗量を計測する場合、摩耗量計測センサを上記した実施の形態と同様に埋設体14と渦電流センサ12とにより構成し、パイプの周壁に形成した貫通孔部に埋設体14を装着し、さらにその外側に渦電流センサ12を取り付ける。なお、埋設体14はアルミ箔製の被測定物を埋設する樹脂を硬質とし、パイプの内壁と同じ条件で摩耗する材質のものを選択すればよく、特にパイプ本体の内壁面にライニング部材を設けたものにあっては、該ライニング部材と同じ材質のものを用いれば良い。
【0054】
また、切削加工等において被加工物を切削する際の切削量を計測する場合は、被切削物の端に埋設体14と渦電流センサ12とを一体化して構成される計測センサ(この場合は切削量計測センサ)を前記被加工物の例えば端に埋設体14の上面を前記被切削物の上面に合わせて固定する。
【0055】
そして、前記被切削物の上面を切削すると、埋設体14の上面も切削され、上述した摩耗量の計測と同様にして切削量計測センサは被切削物の切削量を計測することができる。その際、埋設体14内に埋設される電磁誘導体からなるアルミ箔等のダミー計測体を切削面に対して傾斜させているが、該ダミー計測体を切削面に対して直角に配置し、渦電流センサ12からの磁界によって該ダミー計測体に渦電流を形成し、該ダミー計測体の切削による面積の減少に応じた渦電流センサ12の出力基づいてダミー計測体の切削量を計測するようにしても良い。この場合、切削量計測センサは被切削物の端に配置できるため、切削面に対してダミー計測体を直角に配置し、かつ該被切削物の下方に延びるダミー計測体に対して渦電流センサ12を直角に配置あるいは角度を有して配置することができる。
【0056】
また、上記した実施の形態では、ダミー計測体としてアルミ箔を用いているが、他の材料からなる電磁誘導体製の金属箔、例えばプラチナ、チタン等を用いることができ、特に耐腐食性に優れたプラチナやチタン等を上記実施の形態のポンプ軸受用に用いれば、ダミー計測体の寿命を延ばすことができ、ひいてはセンサの寿命を延ばすことができる。
【0057】
【発明の効果】
以上説明したように、本発明の計測方法によれば、摩耗量あるいは切削量をリアルタイムに計測することができ、例えば外部からの目視あるいは直接に計測することが困難な条件下での摩耗量の計測を可能とする。
【0058】
また、本発明の計測センサによれば、渦電流センサとダミー計測体で構成することができ、渦電流センサとダミー計測体と計測対象物との配置を適宜に設定し、例えば計測対象物の摩耗にしたがってダミー計測体の面積を減少させるようにしておけば、渦電流センサの出力は、摩耗により減少するダミー計測体の面積に応じた値となり、摩耗量(切削量)を得ることが可能となる。
【0059】
本発明の計測装置によれば、予めメモリなどに記憶していた摩耗量(切削量)と渦電流センサ出力との関係に基づいて、計測センサからの出力により摩耗量、切削量を演算することができる。
【0060】
本発明の軸受によれば、摩耗量計測用センサは、渦電流センサと電磁誘導体からなるアルミ箔等のダミー計測体という可動部分がない構成とすることができるため、故障が少なく、交換、点検、修理などが面倒な機器の軸受における軸受部材の摩耗量をリアルタイムに計測することができる。
【0061】
特に、竪型ポンプのインペラーを回転駆動する回転軸の軸受のように、常に水中に没している軸受に適用した場合にも摩耗量計測センサは高信頼度を有して常に摩耗量を計測することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す竪型ポンプの概略構成を示す一部切り欠き斜視図及び軸受部分の拡大図。
【図2】被測定物の面積の減少と渦電流センサの磁場との関係を示す図。
【図3】摩耗量と面積変化の関係を示す図。
【図4】傾斜角度に応じた摩耗量とセンサ出力との関係を示す図。
【図5】回転軸の影響を含んだセンサ出力を示す図表。
【符号の説明】
1 竪型ポンプ
2 ポンプケーシング
3 回転軸
4 軸受
5 インペラ
6 モータ
7 摩耗量計測センサ
8 ケーシング
9 ブッシュ
10 ラバー
11 軸受部材
12 渦電流センサ
13 ダミー計測体
14 埋設体
15 取り付け孔部
16 ポリエステル板
17 アルミ箔
18 砥石
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a measuring method, a measuring sensor, a measuring device, and an apparatus including a measuring sensor for measuring a wear amount of a bearing or the like or a cutting amount of a workpiece.
[0002]
[Prior art]
In recent years, equipment diagnostic techniques have been developed and put into practical use in various industrial fields, and various diagnostic techniques and systems related to pumps have been proposed.
[0003]
There is a vertical pump as a pump used in a plant, for example, a power plant. This vertical pump is a large-sized machine that is used for intake or pumping of seawater, and its importance is high. Such a vertical pump has a vertically long structure as a whole, a driving motor is disposed on the upper part of the pump, and an input shaft (rotary shaft) of the pump and an output shaft of the driving motor are connected by a coupling. Yes.
[0004]
The fluid in the pump is discharged by an impeller that is rotated by a drive motor. Generally, a mechanical seal or a gland packing is used to prevent the pressurized fluid in the pump from leaking from the rotating shaft. ing.
[0005]
In the pump, a rotating shaft is supported by a slide bearing designed to be used in a fluid lubrication region. Most of the plain bearings are often used as bearings for high loads, high speed ranges, and large devices.
[0006]
Most of the failure or maintenance points of such vertical pumps are concentrated on the bearings and shaft seals that are in contact with the rotating body and require periodic replacement and daily inspection according to the service life. Has been.
[0007]
Various systems have been proposed to monitor the operation status of vertical pumps and diagnose pump abnormalities. One example is the measurement and monitoring of vibrations near the pump bearings during pump operation. Some bearing wear amounts are estimated from vibration analysis. This is based on the fact that if vibration is generated on the rotary shaft of the pump, the bearing will wear, and if the amount of wear increases, the vibration amplitude of the rotary shaft increases. The amount is estimated.
[0008]
[Problems to be solved by the invention]
However, in the method of estimating the wear amount of the vertical pump bearing by measuring the vibration amplitude of such a rotating system, the pump has a gland packing or the like for preventing leakage of pumped liquid as described above. Since the seal is provided between the pump casing and the rotating shaft, this brings about a great damping effect, and there is a problem that the vibration amplitude is also affected by the state of the gland packing and the difference in tightening.
[0009]
For this reason, the present situation is that the bearing is disassembled at the periodic inspection of the pump to observe the wear of the bearing and measure the amount of wear of the bearing.
[0010]
In particular, it is difficult for inspectors to easily approach for inspection, etc., and the friction amount of the inner wall surface of the pipe in a system for transporting powder such as coal or bearings in equipment that requires labor such as disassembly or the like. It has been desired to have high reliability and to measure in real time even during operation.
[0011]
The object of the present invention is made in view of such a conventional problem, and is a measurement method capable of measuring in real time during operation, etc. with high reliability the amount of wear in a pipe or the like in a bearing or pipe transportation system. An object of the present invention is to provide a measurement sensor, a measurement device, a bearing, and a device including the measurement sensor.
[0012]
Further, the other object of the present invention is not limited to wear of the object to be measured, but includes a measuring method, a measuring sensor, a measuring device, a bearing, and a measuring sensor capable of measuring in real time during cutting in cutting and the like. The device is to be provided.
[0013]
[Means for Solving the Problems]
According to a first aspect of the present invention, an eddy current is generated by an eddy current sensor with respect to a dummy measurement body made of an electromagnetic derivative whose surface area is reduced by being worn integrally with a measurement object. This is a wear amount measuring method for measuring the wear amount of the measurement object in accordance with the change in output of the eddy current sensor in accordance with the decrease in the area of the dummy measurement body.
[0014]
According to a second aspect of the present invention, as described in claim 2, an eddy current is generated by an eddy current sensor for a dummy measurement body made of an electromagnetic derivative whose surface area is reduced by being cut integrally with a measurement object, The cutting amount measuring method measures the cutting amount of the measurement object according to the output change of the eddy current sensor according to the decrease in the area of the dummy measuring body.
[0015]
According to a third aspect of the present invention, the eddy current sensor includes: an eddy current sensor; and a dummy measuring body made of an electromagnetic derivative that generates an eddy current by a magnetic field generated by the eddy current sensor. The dummy measurement body is held at a fixed position with respect to the sensor, the area is reduced by wearing the dummy measurement body integrally with the measurement object, and the area of the dummy measurement body is reduced from the eddy current sensor. The wear amount measuring sensor is characterized by outputting a signal.
[0016]
According to a fourth aspect of the present invention, the eddy current sensor includes a eddy current sensor and a dummy measuring body made of an electromagnetic derivative that generates an eddy current by a magnetic field generated by the eddy current sensor. The dummy measurement body is held in a fixed position with respect to the sensor, the area is reduced by cutting the dummy measurement body integrally with the measurement object, and the area of the dummy measurement body is reduced from the eddy current sensor. A cutting amount measuring sensor is characterized by outputting a signal.
[0017]
According to a fifth aspect of the present invention, as described in the fifth aspect, in the third aspect described above, the dummy measurement body is inclined with respect to the wear surface of the measurement object.
[0018]
According to a sixth aspect of the present invention, as described in the sixth aspect, in the fourth aspect described above, the dummy measuring body is inclined with respect to the cutting surface of the measurement object.
[0019]
According to a seventh aspect, as described in the seventh aspect, the wear amount measurement sensor according to the third or fifth aspect described above and the wear amount data corresponding to the output of the dummy measurement body are stored in advance. A wear amount of the object to be measured based on the output from the wear amount measurement sensor and the data stored in advance. This is a measuring device.
[0020]
According to an eighth aspect, as described in the eighth aspect, the cutting amount measurement sensor according to the fourth or sixth aspect described above and cutting amount data corresponding to the output of the dummy measuring body are stored in advance. A processing amount, and the processing device calculates a cutting amount of a measurement object based on an output from the cutting amount measuring sensor and the previously stored data. This is a measuring device.
[0021]
According to a ninth aspect of the present invention, in the bearing in which the rotating shaft is pivotally supported by the bearing member, the wear amount measuring sensor according to the third or fifth aspect described above is provided, and the measurement object is provided. The dummy measuring body of the wear amount measuring sensor is provided on the bearing member using an object as the bearing member.
[0022]
A tenth aspect of the invention includes a bearing according to the ninth aspect of the invention, a rotary shaft that is pivotally supported by the bearing, and a driven body that is rotated by the rotary shaft. This is an apparatus provided with a wear amount measuring sensor.
[0023]
According to an eleventh aspect of the present invention, as set forth in the eleventh aspect, in the tenth aspect described above, the device is a saddle type pump and the driven body is an impeller.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described based on embodiments shown in the drawings.
[0025]
FIG. 1 is a partially cutaway perspective view showing a schematic configuration of a saddle-type pump showing a first embodiment of the present invention and an enlarged view of a bearing portion.
[0026]
A vertical pump 1 shown in FIG. 1 has a rotary shaft 3 arranged in a pump casing 2 extending in the vertical direction supported rotatably by a bearing 4 and is below the bearing 4 arranged in the lower part of the pump. An impeller 5 is attached to the lower end portion of the extending rotating shaft 3. A motor 6 is attached to the upper part of the pump 1, and the impeller 5 is rotated by the rotational power of the motor 6, and the liquid is pumped up through the casing 2. In such a saddle type pump 1, since the bearing 4 is in a state of being submerged in the liquid, in order to measure the wear amount of the bearing 4 as in the prior art, the motor 6 and the pump 1 are separated by pulling up the pump. It was necessary to disassemble the pump 1 and further disassemble the bearing 4.
[0027]
However, in this embodiment, a wear amount measuring sensor 7 for measuring the wear amount is attached to the bearing 4 which is a slide bearing.
[0028]
As shown in the enlarged view of FIG. 1, the plain bearing 4 in the present embodiment has a structure in which a cylindrical bush 9 is attached to an inner peripheral portion of a casing 8 made of, for example, a stainless casting, and the bush 9 has a cylindrical shape. A plurality of bearing members 11 made of fluororesin such as Teflon (registered trademark) formed in a rectangular parallelepiped extending in the axial direction are fixed to the inner peripheral portion of the rubber member 10 in the circumferential direction, and the rotating shaft 3 is secured by these bearing members 11. Is supported. Then, due to the rotation of the rotating shaft 3, the surfaces of the plurality of bearing members 11 that are in frictional contact with the rotating shaft 3 are worn, and as the wear progresses, the thickness of the bearing member 11 decreases.
[0029]
The wear amount measuring sensor 7 includes an eddy current sensor 12, an electromagnetic derivative (hereinafter referred to as a dummy measuring body) 13 such as a metal or a non-ferrous metal disposed so as to cross obliquely with respect to the magnetic field generated by the eddy current sensor 12. Is the basic configuration. The dummy measurement body 13 is formed of, for example, aluminum foil, and the dummy measurement body 13 made of aluminum foil is embedded in a fluororesin that is the same resin material as the bearing member 11.
[0030]
In this embodiment, an embedded body 14 formed by embedding a dummy measuring body 13 in a fluororesin in a cylindrical shape is embedded in one of the plurality of bearing members 11, and the embedded body is the same as the bearing member 11. 14 also wears, and at that time, the wear starts from the tip end side (rotating shaft side) where the dummy measurement body 13 in the embedded body 14 is also inclined, and the surface area gradually decreases.
[0031]
On the other hand, the eddy current sensor 12 is screwed into an attachment hole 15 that penetrates the casing 8 corresponding to the embedded body 14. The thickness of the embedded body 14 is set to a thickness until it comes into contact with the front surface of the eddy current sensor 12, and the outer end surface of the embedded body 14 penetrates the rubber member 10 and the front end of the eddy current sensor 12 in the mounting hole 15 of the casing 8. The distance between the embedded body 14 and the eddy current sensor 12 is prevented from changing by contacting the surface. Since the eddy current sensor 12 is screwed to the casing 8, the distance between the embedded body 14 and the eddy current sensor 12 can be kept constant by fixing the embedded body 14 to the bush 9 or the casing 8. it can.
[0032]
The eddy current sensor 12 is generally called an eddy current displacement sensor, and an LC resonance circuit is formed by the inductance L of the coil of the sensor unit and the capacitor C of the conversion unit, and this LC resonance circuit is brought into a resonance state by a crystal oscillator, for example. When used as a displacement sensor, when an electromagnetic derivative (measuring object) such as a metal to be measured is brought close to a sensor part comprising the coil through which a high-frequency current is passed, the object to be measured is measured by an alternating magnetic field generated by the coil Eddy current flows in the object. Since the strength of the eddy current depends on the strength of the magnetic field lines that reach, that is, the distance (gap) between the coil and the object to be measured, the inductance L changes depending on the strength of the eddy current. As a result, a change occurs in the terminal voltage of the resonance circuit, and the change is a function of distance, so that the gap can be obtained based on this terminal voltage. Thus, since this sensor was used to measure the gap to the object to be measured, it is called an eddy current displacement sensor. However, in the present invention, it does not measure the gap to the object to be measured. This is simply called an eddy current sensor.
[0033]
Here, since the terminal voltage of the eddy current displacement sensor decreases as the object to be measured approaches, the sensor output P is set to the distance d between the sensor and the object to be measured by correcting the linearity by the linearize circuit. It is directly proportional and is represented by the formula (1).
[0034]
P = k 1 d (1)
However, k 1 represents a sensor sensitivity is a constant determined by the type of electromagnetic derivative to be measured.
[0035]
In the eddy current displacement sensor used as the gap sensor of the present invention, as shown in FIG. 2, the sensor output P may be influenced by the size of the area S of the electromagnetic derivative that intersects the magnetic field. It was made paying attention to the point. In this case, Equation (1) can be rewritten as Equation (2) below.
[0036]
P = P ′ {1 + k 2 f (S / S 0 )} (2)
However, P'formula (1), S 0 represents the range in which all the magnetic field lines intersect the dummy measurement object, K 2 is a function f (S / S 0), 0 ≦ f (S / S 0) ≦ 1, and so as to for, that is a constant for normalizing the function f (S / S 0). The sign before the function f (S / S 0 ) in equation (2) is a plus sign for decreasing (increasing) the sensor output as the eddy current generated in the dummy measurement body increases (decreases). is there.
[0037]
Further, when S≈S 0 , all the magnetic fields intersect with the dummy measurement body, the maximum eddy current is generated, and the sensor output is minimized. In other words, the function f (S / S 0 ) becomes 0 when f (1), resulting in the expression (1).
[0038]
However, as shown in FIG. 2A, when the area of the dummy measurement body decreases from S0 to S, f (S / S 0 ) increases and finally f (0) = 1. Such a state can be simulated by horizontally moving the dummy measurement body as shown in FIG. This indicates that even if the distance between the sensor and the dummy measurement body is kept constant, the change can be measured if the size of the dummy measurement body changes.
[0039]
That is, in the present invention, for example, the amount of wear of the bearing member 11 can be directly measured by the eddy current sensor 12 due to the reduction in the size of the dummy measurement body.
[0040]
Therefore, in the present embodiment, the rotating shaft 3 is tangent to the bearing member 11 so that the area of the dummy measuring body 13 formed of aluminum foil is reduced by the rotating shaft 3 in accordance with the wear of the bearing member 11. On the other hand, the dummy measuring body 13 is disposed with an inclination angle of θ, and the magnetic field is disposed across the eddy current sensor 12 diagonally. Then, a decrease in the area of the dummy measurement body 13 is detected by the eddy current sensor 12, and the detection output is transmitted to a monitoring device (not shown) which is an arithmetic processing unit to determine the amount of wear of the bearing.
[0041]
FIG. 3 shows the relationship between the dummy measurement body 13 and the eddy current sensor 12 formed of an aluminum foil having a width W, and the relationship between the wear region of the bearing member 11 and the dummy measurement body 13. The calculation of the output P of the eddy current sensor will be described on the assumption that the inclined rear end of the dummy measurement body 13 inclined with respect to the eddy current sensor 12 extends to the front end of the eddy current sensor 12.
[0042]
In FIG. 3, the output P of the eddy current sensor 12 is a function of the distance d and the area S of the dummy measurement body 13, and therefore is expressed by Expression (3).
[0043]
P = P ′ {1 + k 3 g (d max , S / S 0 )}
However, d max is a maximum value of the distance d, and k3 is a constant for normalization so that 0 ≦ g (d max , S / S 0 ) ≦ 1.
[0044]
d max decreases in direct proportion to the decrease in the effective area S of the dummy measurement body 13,
Further, since there is a relationship of S = Wd max / sin θ, the above equation (3) can be simplified as the following equation (4).
[0045]
P = g (D-d max ) (4)
Here, D is as can be seen from Figure 3, the distance between the dummy measurement object 13 and the eddy current sensor 12 when setting the dummy measurement object 13 in the first (when no wear), namely of d max It is the maximum value. Therefore, D-d max indicates the amount of wear of the bearing member 11 and is obtained from the above-described equation (4).
[0046]
The function g (D-d max ) is experimentally obtained in advance, stored in the monitoring device, and used as a calibration curve for the bearing wear amount.
[0047]
Therefore, the wear amount measuring sensor 7 in the present embodiment is configured so that the wear amount that the bearing member 11 of the bearing 4 wears due to friction with the rotating shaft 3 during the operation of the saddle type pump is measured by the dummy measuring body 13 made of aluminum foil. The eddy current sensor 12 measures the decrease in the area, and the sensor output from the eddy current sensor 12 is calibrated with the function g (D-d max ) obtained in advance by the monitoring device. The amount of wear of the member 11 can be measured in real time.
[0048]
Example 1
Regarding the relationship between the tilt angle θ of the dummy measurement body 13 and the output of the eddy current sensor 12, the tilt angles θ are A: 18.6 degrees, B: 15.6 degrees, and C: 12.6 degrees, as shown in FIG. , Θ is attached to a wedge-shaped polyester plate 16 having an angle of θ, and is pressed against a rotating grindstone 18 that is integrated with the eddy current sensor 12 to gradually move from the tip of the aluminum foil 17. The amount of movement of the eddy current sensor 12 at that time (corresponding to the wear amount and corresponding to the D-d max ) was measured with a laser displacement meter 19. The relationship between the output of the eddy current sensor 12 and the amount of wear at this time is shown in FIG.
[0049]
The characteristic curves of A to C at these three angles are similar although there is a slight variation in sensitivity. Similar results were obtained even when the angle θ was 20 degrees or more.
[0050]
Therefore, the angle θ is determined by the measurement distance of the eddy current sensor 12, the bearing wear amount, and the like. For example, when the wear amount is large, the angle θ may be increased.
[0051]
As described above, according to the present embodiment, the embedded member 14 is provided in the bearing member 11 of the bearing 4 of the vertical pump 1, and the dummy measuring member 13 made of aluminum foil, which is an electromagnetic derivative embedded in the embedded member 14. The bearing member 11 is inclined with respect to the tangent to the outer peripheral surface of the rotary shaft 3, and the dummy measuring body 13 is worn away from the front end side along with the wear of the bearing member 11 by the rotating shaft 3. 13, the eddy current sensor 12 detects a decrease in the surface area of the dummy measurement body 13 as an increase in output, so that the relationship between the wear amount and the surface area of the dummy measurement body 13 and the eddy current sensor 12 at that time are detected in advance. Is obtained, the amount of wear of the friction member 11 of the bearing 4 during operation of the pump can be measured in real time.
[0052]
Further, the coil portion of the eddy current sensor 12 faces the rotating shaft 3, but a dummy made of aluminum foil, which is an electromagnetic derivative, is interposed between the eddy current sensor 12 and, for example, a stainless steel rotating shaft 3, which is an electromagnetic derivative. Since the measuring body 13 is interposed, the dummy measuring body 13 acts as a shield member with respect to the rotating shaft 3, and particularly when the dummy measuring body 13 is new, the magnetic field exerted on the rotating shaft 3 is completely shielded. Therefore, since no eddy current is generated by the eddy current sensor 12 on the rotating shaft 3, the rotating shaft 3 is not affected by the vibration of the rotating shaft 3. However, as shown in FIG. 5, eddy current is generated in the rotating shaft 3 due to the magnetic field of the eddy current sensor 12 due to wear of the dummy measurement body 13, so that the eddy current sensor 12 is affected by the eddy current formed on the rotating shaft 3. Receive. Due to the eddy current formed on the rotating shaft 3, the sensor output of the eddy current sensor 12 periodically decreases. This periodic decrease depends on the constant frequency f of the shaft vibration caused by the rotation of the rotating shaft 3. In contrast, the output signal of the eddy current sensor 12 corresponding to the wear of the bearing is a change in units of days, months, and years. Compared with the change caused by vibration, it is considered to be a constant DC change. Therefore, the influence of the eddy current generated on the rotating shaft 3 is affected by, for example, smoothing processing such as averaging over a digital number of 10 Hz (frequency of shaft vibration of the rotating shaft) or an analog low-pass filter (frequency f Ignoring the signal in the vicinity), the signal corresponding to the wear amount of the bearing can be taken out to measure the wear amount of the bearing.
Other Embodiments In the above-described embodiment, the amount of wear of the bearing member of the slide bearing that supports the rotary shaft of the vertical pump is measured. It is not limited to measuring the amount of wear of a member. In a transportation system for transferring steam, gas turbine bearings, engine crankshaft bearings, powders such as coal, etc., pipe inner wall It can also be applied to the measurement of the amount of wear or the measurement of the amount of cutting when the workpiece is cut in cutting or the like.
[0053]
In the transport system for transferring powder such as coal through the pipe, when measuring the wear amount of the inner wall of the pipe, the wear amount measurement sensor is composed of the embedded body 14 and the eddy current sensor 12 as in the above-described embodiment. The embedded body 14 is attached to a through-hole portion formed in the peripheral wall of the pipe, and the eddy current sensor 12 is attached to the outside thereof. The buried body 14 may be made of a resin that embeds an object to be measured made of aluminum foil and is made of a material that wears under the same conditions as the inner wall of the pipe. In particular, a lining member is provided on the inner wall surface of the pipe body. For example, the same material as that of the lining member may be used.
[0054]
Further, when measuring the amount of cutting when cutting a workpiece in cutting or the like, a measurement sensor (in this case) configured by integrating the embedded body 14 and the eddy current sensor 12 at the end of the workpiece. A cutting amount measurement sensor) is fixed to, for example, an end of the workpiece by aligning the upper surface of the embedded body 14 with the upper surface of the workpiece.
[0055]
Then, when the upper surface of the workpiece is cut, the upper surface of the embedded body 14 is also cut, and the cutting amount measuring sensor can measure the cutting amount of the workpiece in the same manner as the measurement of the wear amount described above. At that time, a dummy measuring body such as an aluminum foil made of an electromagnetic derivative embedded in the embedded body 14 is inclined with respect to the cutting surface. An eddy current is formed in the dummy measurement body by the magnetic field from the current sensor 12, and the cutting amount of the dummy measurement body is measured based on the output of the eddy current sensor 12 according to the reduction of the area due to the cutting of the dummy measurement body. May be. In this case, since the cutting amount measuring sensor can be arranged at the end of the workpiece, the dummy measuring body is arranged at a right angle with respect to the cutting surface, and the eddy current sensor with respect to the dummy measuring body extending below the workpiece. 12 can be arranged at right angles or with an angle.
[0056]
Moreover, in the above-described embodiment, aluminum foil is used as the dummy measurement body, but metal foil made of electromagnetic derivatives made of other materials, such as platinum, titanium, etc., can be used, and particularly excellent in corrosion resistance. If platinum, titanium, or the like is used for the pump bearing of the above embodiment, the life of the dummy measuring body can be extended, and as a result, the life of the sensor can be extended.
[0057]
【The invention's effect】
As described above, according to the measurement method of the present invention, the amount of wear or the amount of cutting can be measured in real time, for example, the amount of wear under conditions that are difficult to measure visually or directly from the outside. Enable measurement.
[0058]
Further, according to the measurement sensor of the present invention, it can be constituted by an eddy current sensor and a dummy measurement body, and the arrangement of the eddy current sensor, the dummy measurement body and the measurement object is appropriately set, for example, the measurement object If the area of the dummy measurement body is reduced according to wear, the output of the eddy current sensor becomes a value corresponding to the area of the dummy measurement body that decreases due to wear, and the wear amount (cutting amount) can be obtained. It becomes.
[0059]
According to the measuring device of the present invention, the wear amount and the cutting amount are calculated from the output from the measurement sensor based on the relationship between the wear amount (cutting amount) stored in advance in a memory and the eddy current sensor output. Can do.
[0060]
According to the bearing of the present invention, the wear amount measuring sensor can be configured to have no movable part such as a dummy measuring body such as an aluminum foil made of an eddy current sensor and an electromagnetic derivative. In addition, it is possible to measure in real time the amount of wear of the bearing member in a bearing of a device that is troublesome to repair.
[0061]
Especially when applied to bearings that are always submerged in water, such as bearings for rotary shafts that rotate the impellers of vertical pumps, the wear amount measurement sensor always measures wear amounts with high reliability. can do.
[Brief description of the drawings]
FIG. 1 is a partially cutaway perspective view showing a schematic configuration of a saddle type pump showing a first embodiment of the present invention and an enlarged view of a bearing portion.
FIG. 2 is a diagram showing the relationship between the decrease in the area of the object to be measured and the magnetic field of the eddy current sensor.
FIG. 3 is a diagram showing the relationship between the amount of wear and the area change.
FIG. 4 is a diagram showing a relationship between an amount of wear and a sensor output according to an inclination angle.
FIG. 5 is a chart showing sensor output including the influence of a rotation axis.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vertical pump 2 Pump casing 3 Rotating shaft 4 Bearing 5 Impeller 6 Motor 7 Wear amount measuring sensor 8 Casing 9 Bush 10 Rubber 11 Bearing member 12 Eddy current sensor 13 Dummy measuring body 14 Embedded body 15 Mounting hole 16 Polyester plate 17 Aluminum Foil 18 Whetstone

Claims (11)

計測対象物と一体に摩耗することで表面積が減少する電磁誘導体からなるダミー計測体に対して渦電流センサにより渦電流を生成し、該ダミー計測体の面積の減少に応じた該渦電流センサの出力変化に応じて該計測対象物の摩耗量を計測する摩耗量計測方法。An eddy current is generated by an eddy current sensor with respect to a dummy measurement body made of an electromagnetic derivative whose surface area is reduced by being worn integrally with the measurement object, and the eddy current sensor corresponding to the decrease in the area of the dummy measurement body A wear amount measuring method for measuring the wear amount of the measurement object in accordance with a change in output. 計測対象物と一体に切削されることで表面積が減少する電磁誘導体からなるダミー計測体に対して渦電流センサにより渦電流を生成し、該ダミー計測体の面積の減少に応じた該渦電流センサの出力変化に応じて該計測対象物の切削量を計測する切削量計測方法。An eddy current is generated by an eddy current sensor with respect to a dummy measurement body made of an electromagnetic derivative whose surface area is reduced by being cut integrally with the measurement object, and the eddy current sensor according to the decrease in the area of the dummy measurement body A cutting amount measuring method for measuring a cutting amount of the measurement object in accordance with a change in output. 渦電流センサと、前記渦電流センサで発生する磁界によって渦電流が生成される電磁誘導体からなるダミー計測体とを有し、前記渦電流センサに対して前記ダミー計測体を一定位置に固持し、前記ダミー計測体を計測対象物と一体に摩耗させることにより面積を減少させ、前記渦電流センサから前記ダミー計測体の面積減少に応じた信号を出力することを特徴とする摩耗量計測用センサ。An eddy current sensor and a dummy measuring body made of an electromagnetic derivative that generates eddy current by a magnetic field generated by the eddy current sensor, and holds the dummy measuring body at a fixed position with respect to the eddy current sensor; A wear amount measuring sensor, wherein the dummy measuring body is worn integrally with a measurement object to reduce the area, and the eddy current sensor outputs a signal corresponding to the area reduction of the dummy measuring body. 渦電流センサと、前記渦電流センサで発生する磁界によって渦電流が生成される電磁誘導体からなるダミー計測体とを有し、前記渦電流センサに対して前記ダミー計測体を一定位置に固持し、前記ダミー計測体を計測対象物と一体に切削させることにより面積を減少させ、前記渦電流センサから前記ダミー計測体の面積減少に応じた信号を出力することを特徴とする切削量計測用センサ。An eddy current sensor and a dummy measuring body made of an electromagnetic derivative that generates eddy current by a magnetic field generated by the eddy current sensor, and holds the dummy measuring body at a fixed position with respect to the eddy current sensor; A cutting amount measuring sensor, wherein the dummy measuring body is cut integrally with a measurement object to reduce the area, and the eddy current sensor outputs a signal corresponding to the area reduction of the dummy measuring body. 前記ダミー計測体は、前記計測対象物の摩耗面に対して傾斜していることを特徴とする請求項3に記載の摩耗量計測用センサ。The wear amount measuring sensor according to claim 3, wherein the dummy measurement body is inclined with respect to a wear surface of the measurement object. 前記ダミー計測体は、前記計測対象物の切削面に対して傾斜していることを特徴とする請求項4に記載の切削量計測用センサ。The sensor for cutting amount measurement according to claim 4, wherein the dummy measuring body is inclined with respect to a cutting surface of the measurement object. 請求項3または5に記載の摩耗量計測用センサと、前記ダミー計測体の出力に応じた摩耗量のデータが予め記憶されている処理装置とを有し、前記処理装置は前記摩耗量計測用センサからの出力と前記予め記憶されているデータとに基づいて計測対象物の摩耗量を演算することを特徴とする摩耗量計測装置。The wear amount measurement sensor according to claim 3 or 5, and a processing device in which wear amount data corresponding to the output of the dummy measurement body is stored in advance, wherein the processing device is used for the wear amount measurement. A wear amount measuring apparatus for calculating a wear amount of an object to be measured based on an output from a sensor and the previously stored data. 請求項4または6に記載の切削量計測用センサと、前記ダミー計測体の出力に応じた切削量のデータが予め記憶されている処理装置とを有し、前記処理装置は前記切削量計測用センサからの出力と前記予め記憶されているデータとに基づいて計測対象物の切削量を演算することを特徴とする切削量計測装置。The cutting amount measurement sensor according to claim 4 or 6, and a processing device in which cutting amount data corresponding to the output of the dummy measuring body is stored in advance, and the processing device is used for the cutting amount measurement. A cutting amount measuring apparatus that calculates a cutting amount of an object to be measured based on an output from a sensor and the data stored in advance. 回転軸を軸受部材により軸支する軸受において、請求項3または5に記載の摩耗量計測用センサを有し、前記計測対象物を前記軸受部材として前記摩耗量計測用センサの前記ダミー計測体を該軸受部材に設けたことを特徴とする軸受。A bearing for supporting a rotating shaft by a bearing member, the wear amount measuring sensor according to claim 3 or 5, wherein the measurement object is the bearing member, and the dummy measuring body of the wear amount measuring sensor is used. A bearing provided on the bearing member. 請求項9に記載の軸受と、前記軸受により軸支される回転軸と、前記回転軸により回転される被駆動体とを有することを摩耗量計測用センサを備えた装置。An apparatus provided with a wear amount measuring sensor, comprising the bearing according to claim 9, a rotating shaft supported by the bearing, and a driven body rotated by the rotating shaft. 前記装置は竪型ポンプで、前記被駆動体はインペラであることを特徴とする請求項10に記載の摩耗量計測用センサを備えた装置。11. The apparatus with a wear amount measuring sensor according to claim 10, wherein the apparatus is a saddle type pump and the driven body is an impeller.
JP2003084020A 2003-03-26 2003-03-26 Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor Expired - Lifetime JP4030108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084020A JP4030108B2 (en) 2003-03-26 2003-03-26 Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084020A JP4030108B2 (en) 2003-03-26 2003-03-26 Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor

Publications (2)

Publication Number Publication Date
JP2004294132A JP2004294132A (en) 2004-10-21
JP4030108B2 true JP4030108B2 (en) 2008-01-09

Family

ID=33399282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084020A Expired - Lifetime JP4030108B2 (en) 2003-03-26 2003-03-26 Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor

Country Status (1)

Country Link
JP (1) JP4030108B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6239416B2 (en) * 2014-03-19 2017-11-29 ジヤトコ株式会社 Continuously variable transmission and vehicle
CN115289956B (en) * 2022-10-10 2022-12-23 太原向明智控科技有限公司 Fault detection method and system for stroke sensor of mining hydraulic support

Also Published As

Publication number Publication date
JP2004294132A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
US7392713B2 (en) Monitoring system for turbomachinery
US10684193B2 (en) Strain based systems and methods for performance measurement and/or malfunction detection of rotating machinery
McKee et al. A review of major centrifugal pump failure modes with application to the water supply and sewerage industries
EP3129758B1 (en) System and method for capacitive proximity sensing
EP3615809B1 (en) System and method for monitoring operating condition in a hydraulic turbocharger
US20040213319A1 (en) System of monitoring operating conditions of rotating equipment
JP4030108B2 (en) Wear amount measuring method, cutting amount measuring method, wear amount measuring sensor, cutting amount measuring sensor, wear amount measuring device, cutting amount measuring device, bearing and wear amount measuring sensor
EP3055661B1 (en) A method for determining current eccentricity of rotating rotor and method of diagnostics of eccentricity of rotating rotor
Al Thobiani The non-intrusive detection of incipient cavitation in centrifugal pumps
US5042292A (en) Viscometer
JP4014605B2 (en) Magnetic substance concentration measuring device
Yamaguchi et al. A method for detecting bearing wear in a drain pump utilizing an eddy-current displacement sensor
JP2016075481A (en) Bearing device and rotating machine including the same
JP3184553U (en) Underwater bearing diagnostic device
US11674412B2 (en) Closed loop control employing magnetostrictive sensing
US8943912B1 (en) Proximity probe mounting device
JP2002181525A (en) Device for measuring interval of impeller for pump and anomaly determining method
WO2022093676A1 (en) Instrumented fracturing pump systems and methods
JP7161965B2 (en) VERTICAL SHAFT PUMP AND WEAR DETECTION METHOD
JP2006097496A (en) Oil degradation sensing device
GB2388193A (en) Flowmeter and method of use
JP2020101269A (en) Rotating machine device
JP6918557B2 (en) Horizontal axis pump
WO2022264047A1 (en) Wear monitoring system and method for monitoring bearing wear in a roller for an undercarriage track system
Smith et al. Upthrust problems on multistage vertical turbine pumps

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071015

R150 Certificate of patent or registration of utility model

Ref document number: 4030108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term