JP4028089B2 - Manufacturing method of cage rotor core - Google Patents

Manufacturing method of cage rotor core Download PDF

Info

Publication number
JP4028089B2
JP4028089B2 JP17164098A JP17164098A JP4028089B2 JP 4028089 B2 JP4028089 B2 JP 4028089B2 JP 17164098 A JP17164098 A JP 17164098A JP 17164098 A JP17164098 A JP 17164098A JP 4028089 B2 JP4028089 B2 JP 4028089B2
Authority
JP
Japan
Prior art keywords
rotor core
electric iron
iron plate
manufacturing
cage rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17164098A
Other languages
Japanese (ja)
Other versions
JP2000014105A (en
Inventor
俊郎 相賀
英俊 神嵜
誠 平林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP17164098A priority Critical patent/JP4028089B2/en
Publication of JP2000014105A publication Critical patent/JP2000014105A/en
Application granted granted Critical
Publication of JP4028089B2 publication Critical patent/JP4028089B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、かご形回転子鉄心の製造方法に関する。
【0002】
【従来の技術】
一般に誘導電動機のかご形回転子は、回転子鉄心1の溝にアルミニウムをダイキャストにより鋳込んで二次導体2と回転子鉄心1両端に短絡環3を形成すると共に、回転子鉄心1の軸孔6に回転軸を嵌合させて形成される(図6参照)。前記回転子鉄心1の二次導体2の一例に、図2に示すような頭部が三角形で凸形状のものがある。この二次導体2の総断面積(導体2総数を加算したもの)と短絡環3(ドーナツ形状)の断面積(鉄心1端面に接する面積)の比が1:2.8〜1:3.5と大きい為に、鋳造された溶融金属(アルミニウム)の凝固速度は前記断面積比の逆数以上の冷却速度となっている。すると、短絡環3との境界となる二次導体2の境界部5では、既に凝固完了状態の二次導体2より遅れて短絡環3側の凝固が開始される。その時、境界部5では引張の残留応力(約1.8〜2.0Kg/mm2 )が加わった状態(図7(a)参照)で二次導体2が形成されることとなる。
【0003】
一方、二次導体2の断面積は電動機の電気特性から決定されるもので、前記境界部5での二次導体2と短絡環3の放射方向の長さ比は約1:2(図6参照)である。この二次導体2が短絡環3より放射方向長さが50%短い状態の境界部5に、電動機が運転されると運転時に発生する熱応力と遠心力の合計応力が加わる(図7(b)参照)。
【0004】
【発明が解決しようとする課題】
このように境界部5には、引張残留応力と熱応力及び遠心力の合計応力が繰返し応力として加わる。すると、図7(b)で示す短絡環3の内周側根元X(境界部5の内周側)ではこれらの応力により亀裂の発生する恐れがあり、二次導体2と短絡環3が分離する現象(二次導体2が切れる)が発生し電動機特性を低下させる要因となる。この為に、鋳造時の残留応力を電動機運転時の負荷応力以下に抑える必要性が出てくる。
【0005】
本発明は上記事情に鑑みて成されたもので、鋳造時の残留応力を現象又は内在した状態でも二次導体の切れる現象が発生しない、かご形回転子鉄心の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明におけるかご形回転子鉄心の製造方法は、請求項1では、円周方向に複数個の溝を有する電気鉄板を規定枚数積層して回転子鉄心を形成し、この回転子鉄心を予熱された金型内に挿入し該回転子鉄心を予熱して溶融金属との温度比を1.75〜1.8とした状態で溶融金属を溝に鋳込んで二次導体と短絡環を形成し、回転子鉄心及び短絡環温度が200℃以下となるまで冷却保持した後に金型内から形成されたかご形回転子鉄心を取出すかご形回転子鉄心の製造方法である。金型外しの鉄心温度と二次導体温度が約200℃以下となるまで冷却保持することで、境界部18にかかる応力を緩和することができる。
【0009】
請求項では、前記電気鉄板を第1電気鉄板と第2電気鉄板で形成し、第1電気鉄板の溝と同数配置で且つ断面積が約1.5倍の溝を有する第2電気鉄板を規定枚数積層された第1電気鉄板の両端に規定枚数積層した回転子鉄心を予熱された金型内に挿入し、溶融金属を前記2種類の溝に鋳込んで第1,2導体と短絡環を形成するかご形回転子鉄心の製造方法である。この製法により段差部及び境界部の残留応力を除去する。
【0010】
請求項では、形成されたかご形回転子鉄心を、再度、昇温速度20〜30℃/Hrで熱処理温度を200〜300℃で3〜6時間保持して炉冷する製造方法である。この歪取焼鈍により更に段差部及び境界部の残留応力を除去し得る。
【0011】
請求項では、前記第1電気鉄板と第2電気鉄板を積層して回転子鉄心を形成後に、第1電気鉄板と第2電気鉄板との円弧段差部に半径3〜10mmの円弧を第2電気鉄板の溝側から加工して形成し、溶融金属を前記2種類の溝に鋳込んで形成する製造方法である。この製法で第1導体と第2導体との段差部に円弧段差部を形成させ、円弧段差部に集中する応力を分散緩和させる。
【0012】
【発明の実施の形態】
以下本発明の一実施例を図面を参照して説明する。図1は、かご形回転子鉄心の短絡環周辺の要部を示す断面図で、図2は図1のII方向断面図である。図3,4は回転子鉄心の電気抜板を夫々示す正面図である。
【0013】
図において、回転子鉄心は2種類の電気鉄板である第1電気鉄板(以下、第1鉄板)11, 第2電気鉄板(以下、第2鉄板)11aで形成され、第1鉄板11を複数枚積層して規定厚l1 とし、この第1鉄板11積層両端に第2鉄板11aを複数枚積層して規定厚l2 として、回転子鉄心は規定厚Lとなる。この第2鉄板11aの規定厚l2 は、回転子鉄心の規定厚Lの5〜10%(電動機特性を考慮して)に設定してある。前記第1鉄板11は、溝16形状が図3に示すように頭部16aが三角形で凸形状のものを円周方向に所定個数穿孔されている。次に第2鉄板11aは、第1鉄板11の溝16と同数穿孔され同溝16より断面積が約1.5倍大きい略茄子形状の溝17を図4に示すように穿孔されている。溝17の頭部17aは半径5〜10mmの円弧R1 状に形成され、前記溝16の頭部16aとは略外径である。
【0014】
この回転子鉄心を図示しない金型内に挿入して約400℃まで予熱し、約700〜720℃の溶融純アルミニウムを夫々の溝16,17にダイキャストにより鋳込み、金型外しの鉄心温度と二次導体温度が約200℃以下となるまで冷却保持する。この鋳込みにより溝16で第1導体である二次導体12を、溝17で第2導体である二次導体12aを夫々形成すると共に、二次導体12aに連通して回転子鉄心両端に短絡環13を有する図1に示すような、かご形回転子鉄心15を形成する。この時、かご形回転子鉄心15端面での二次導体12aの放射方向長さ(溝17高さ)と短絡環13の放射方向長さ(以下境界部18長さという)比は0.75〜1.0(図1では略1.0で表示)に形成されている。尚、二次導体12と二次導体12aとの段差部12c及び境界部18の残留応力を除去する歪取焼鈍として、再度かご形回転子鉄心15を昇温温度約20〜30℃/Hr,熱処理温度約200〜355℃で3〜6時間保持し炉冷してもよい。
【0015】
このように形成された境界部の作用効果を述べる。
境界部18長さ比を0.75〜1.0にしたことにより二次導体12aと短絡環13での段差がなくなる若しくは小さくなり、しかも二次導体12aの断面積は茄子形状で二次導体12の多角形に比べ角がないので角部への応力集中問題がない上に断面積は約1.5倍大きくなっており、短絡環13の内径側での二次導体12a強度が増加する。即ち、図9で示す100℃における修正グッドマン線図での破線で示す応力計算値が、従来のa点から境界部18長さ比が0.75の場合はb点へ、境界部18長さ比が1.0の場合はc点へと夫々移動して低下する。この結果、境界部18での残留応力が低下する。尚、図9でAは疲労試験のS−N曲線の1.0*10における疲労限度を示し、Bは100℃での引張強度である。また、図8は100℃における応力−歪み線図である。
【0016】
又、溝17の頭部17aは半径5〜10mmの円弧R1 状になっているので、形成された二次導体12aの頭部も円弧状になっている。この為、従来の頭部は三角形であつたので頂点に応力が集中し、この頂点で亀裂の発生する恐れがあったが、本実施例は三角形から円弧状になることで応力が分散されて頭部頂点での強度が高くなり亀裂発生の恐れがなくなった。更に、金型外しの鉄心温度と二次導体温度が約200℃以下となるまで冷却保持することで、境界部18にかかる応力を緩和することができる。しかも、二次導体12aと二次導体12の段差部12cは回転子鉄心内にあるので、回転による短絡環13の遠心力を鉄心によって保護される。
【0017】
これらの相乗効果で、電動機が運転された時に従来の境界部5で発生していた応力が緩和され、境界部5の内径側の段差部Xや外径側頭部で亀裂発生の恐れがあったが、本実施例の境界部18ではなくなった。そして、段差部12c及び境界部18の残留応力を除去する歪取焼鈍を実施すると、この効果は更に向上する。
【0018】
(第2実施例)
第2実施例を図5を参照して説明する。第1実施例と異なるのは、二次導体12aと二次導体12の段差部12cを円弧段差部24に形成したことである。これは、積層された電気抜板11両端に電気抜板11aを複数枚積層した後に、図1に示す段差部12cを溝17から研磨加工により半径3〜10mmの円弧R2 を設け、二次導体12aと二次導体12間の段差部12cに円弧段差部24を形成する。これは、電動機運転による発生する短絡環13及び二次導体12a,二次導体12の熱応力によって軸方向には伸縮作用が働き、この伸縮作用と短絡環13の遠心力が段差部12cに一点集中するのを円弧段差部24で分散支持することで緩和される。この結果、二次導体12aと二次導体12間の段差部12cでの切断発生の可能性を更になくすることができる。
【0019】
(第3実施例)
第3実施例を図10を参照して説明する。第1実施例と異なるのは、回転子鉄心の溝へ鋳込む溶融した純アルミニウムに、成分構成がAl−10%Ti−Bの合金を、溶解重量に対して0.2〜1.0重量%まで0.2%ピッチで添加し、形成される二次導体の電気伝導率を57IACS%以上を狙うと共に二次導体強度の向上にある。電気伝導率及び強度調査は二次導体12aと略同形状の試料を製作して比較試験した。その結果を図10に示した。
【0020】
電気伝導率は添加した0.2〜1.0重量%の全試料が57IACS%以上となり目的を達成した。又、Al−10%Ti−B合金の添加で結晶組織を微細化することができて引張り強度は若干バラツキはあるものの8〜13%向上し、伸びは略同等のものが形成されている。この結果から、Al−10%Ti−B合金を添加した材料を強度が向上した二次導体材料として使用可能で、段差部12c及び境界部18の耐残留応力を改善できる。
【0021】
【発明の効果】
以上のように本発明によれば、回転子鉄心端面での二次導体と短絡環の境界部が強度補強され、この境界部での亀裂発生を防止することができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示すかご形回転子鉄心の要部断面図、
【図2】図1のII方向断面図、
【図3】溝形状を示す第1電気鉄板の平面図、
【図4】溝形状を示す第2電気鉄板の平面図、
【図5】第2実施例を示す図1相当図、
【図6】従来のかご形回転子鉄心の断面図、
【図7】二次導体と短絡環にかかる応力の説明図、
【図8】応力−歪み線図、
【図9】修正グッドマン線図、
【図10】アルミ材料にAl−10%Ti−B添加による強度比較図。
【符号の説明】
11…第1電気鉄板(第1鉄板)、 11a…第2電気鉄板(第2鉄板)、
12…第1導体(二次導体)、 12a…第2導体(二次導体)、
12c…段差部、 13…短絡環、
15…かご形回転子鉄心、 16,17…溝、
16a,17a…頭部、 5,18…境界部、
24…円弧段差部、 R1 ,R2 …円弧。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of manufacturing a cage rotor iron core.
[0002]
[Prior art]
In general, a squirrel-cage rotor of an induction motor is formed by casting aluminum into a groove of a rotor core 1 by die-casting to form a secondary conductor 2 and a short-circuit ring 3 at both ends of the rotor core 1, and a shaft of the rotor core 1 It is formed by fitting a rotating shaft into the hole 6 (see FIG. 6). An example of the secondary conductor 2 of the rotor core 1 has a triangular head and a convex shape as shown in FIG. The ratio of the total cross-sectional area of the secondary conductor 2 (the sum of the total number of conductors 2) to the cross-sectional area of the short-circuit ring 3 (doughnut shape) (area in contact with the end surface of the iron core 1) is 1: 2.8 to 1: 3. Therefore, the solidification rate of the cast molten metal (aluminum) is a cooling rate equal to or higher than the reciprocal of the cross-sectional area ratio. Then, in the boundary part 5 of the secondary conductor 2 which becomes a boundary with the short-circuiting ring 3, solidification on the short-circuiting ring 3 side is started later than the secondary conductor 2 already solidified. At that time, the secondary conductor 2 is formed in the boundary portion 5 in a state where the tensile residual stress (about 1.8 to 2.0 kg / mm 2 ) is applied (see FIG. 7A).
[0003]
On the other hand, the cross-sectional area of the secondary conductor 2 is determined from the electrical characteristics of the motor, and the length ratio of the secondary conductor 2 and the short-circuit ring 3 in the radial direction at the boundary 5 is about 1: 2 (FIG. 6). Reference). When the electric motor is operated, the total stress of the thermal stress and centrifugal force generated when the motor is operated is applied to the boundary portion 5 in which the secondary conductor 2 is 50% shorter in the radial direction than the short-circuit ring 3 (FIG. 7B). )reference).
[0004]
[Problems to be solved by the invention]
Thus, the total stress of the tensile residual stress, the thermal stress, and the centrifugal force is applied to the boundary portion 5 as a repeated stress. As a result, cracks may occur due to these stresses on the inner periphery side X of the short-circuit ring 3 shown in FIG. 7B (the inner periphery side of the boundary portion 5), and the secondary conductor 2 and the short-circuit ring 3 are separated. Phenomenon occurs (secondary conductor 2 is cut), which causes a reduction in motor characteristics. For this reason, it becomes necessary to keep the residual stress during casting below the load stress during motor operation.
[0005]
The present invention has been made in view of the above circumstances, a phenomenon that expires the secondary conductor does not occur even in a state where the residual stress was phenomena or inherent during casting, to provide a method of manufacturing a cage rotor iron core Objective.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a cage rotor core manufacturing method according to claim 1, wherein a predetermined number of electric iron plates having a plurality of grooves in the circumferential direction are laminated to form a rotor core, and the rotor core is preheated. Inserted into a mold, preheated the rotor core and cast a molten metal into the groove in a temperature ratio with the molten metal of 1.75 to 1.8 to form a secondary conductor and a short circuit ring. And a method for manufacturing a squirrel-cage rotor core in which a squirrel-cage rotor core formed from the mold is taken out after being cooled and held until the temperature of the rotor core and the short-circuit ring reaches 200 ° C. or lower. The stress applied to the boundary 18 can be relieved by cooling and holding until the iron core temperature and the secondary conductor temperature of the mold removal become about 200 ° C. or lower.
[0009]
According to a second aspect of the present invention, there is provided the second electric iron plate which is formed of the first electric iron plate and the second electric iron plate, has the same number of grooves as the first electric iron plate, and has a groove having a cross-sectional area of about 1.5 times. Insert a specified number of rotor cores into the preheated mold on both ends of the specified number of first electric iron plates and insert the molten metal into the two types of grooves to connect the first and second conductors to the short circuit ring. Is a method of manufacturing a squirrel-cage rotor core. By this manufacturing method, the residual stress at the stepped portion and the boundary portion is removed.
[0010]
According to a third aspect of the present invention , the formed cage rotor core is furnace-cooled again by holding the heat treatment temperature at 200 to 300 ° C. for 3 to 6 hours at a heating rate of 20 to 30 ° C./Hr. By this strain relief annealing, residual stress at the stepped portion and the boundary portion can be further removed.
[0011]
In claim 4 , after forming the rotor core by laminating the first electric iron plate and the second electric iron plate, a second arc having a radius of 3 to 10 mm is formed on the arc step portion between the first electric iron plate and the second electric iron plate. It is a manufacturing method in which a molten metal is formed by processing from the groove side of the electric iron plate, and cast into the two types of grooves. With this manufacturing method, an arc step portion is formed at the step portion between the first conductor and the second conductor, and the stress concentrated on the arc step portion is dispersed and relaxed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing the main part around the short-circuit ring of the cage rotor core, and FIG. 2 is a cross-sectional view in the II direction of FIG. 3 and 4 are front views showing the electrical punching plates of the rotor core, respectively.
[0013]
In the figure, the rotor core is formed of a first electric iron plate (hereinafter referred to as a first iron plate) 11 and a second electric iron plate (hereinafter referred to as a second iron plate) 11a, which are two types of electric iron plates. The rotor core has a specified thickness L by laminating to a specified thickness l1 and laminating a plurality of second iron plates 11a on both ends of the first iron plate 11 to obtain a specified thickness l2. The specified thickness l2 of the second iron plate 11a is set to 5 to 10% (in consideration of the motor characteristics) of the specified thickness L of the rotor core. As shown in FIG. 3, the first iron plate 11 is formed with a predetermined number of holes 16a having a triangular head 16a and a convex shape in the circumferential direction. Next, the second iron plate 11a has the same number of holes 16 as the grooves 16 of the first iron plate 11, and has a substantially insulator-shaped groove 17 having a cross-sectional area approximately 1.5 times larger than the groove 16 as shown in FIG. The head portion 17a of the groove 17 is formed in the shape of an arc R1 having a radius of 5 to 10 mm, and the head portion 16a of the groove 16 has a substantially outer diameter.
[0014]
This rotor core is inserted into a mold (not shown), preheated to about 400 ° C., molten aluminum at about 700 to 720 ° C. is cast into the respective grooves 16 and 17 by die casting, and the temperature of the core is removed from the mold. Cool and hold until the secondary conductor temperature is about 200 ° C. or less. By this casting, the secondary conductor 12 which is the first conductor is formed in the groove 16 and the secondary conductor 12a which is the second conductor is formed in the groove 17, and the short-circuit ring is connected to the both ends of the rotor core in communication with the secondary conductor 12a. A cage rotor core 15 is formed as shown in FIG. At this time, the ratio of the radial length of the secondary conductor 12a (height of the groove 17) to the radial length of the short-circuit ring 13 (hereinafter referred to as the length of the boundary portion 18) at the end face of the cage rotor core 15 is 0.75. To 1.0 (indicated by about 1.0 in FIG. 1). In addition, as the strain relief annealing for removing the residual stress at the step portion 12c and the boundary portion 18 between the secondary conductor 12 and the secondary conductor 12a, the squirrel-cage rotor core 15 is again heated at a temperature of about 20 to 30 ° C./Hr, You may hold | maintain at the heat processing temperature about 200-355 degreeC for 3 to 6 hours, and furnace-cooling.
[0015]
The effect of the boundary portion thus formed will be described.
By setting the length ratio of the boundary portion 18 to 0.75 to 1.0, the step between the secondary conductor 12a and the short-circuit ring 13 is eliminated or reduced, and the secondary conductor 12a has a cross-sectional area in the form of an insulator. Since there are no corners compared to 12 polygons, there is no problem of stress concentration at the corners, and the cross-sectional area is about 1.5 times larger, and the strength of the secondary conductor 12a on the inner diameter side of the short-circuit ring 13 is increased. . That is, the stress calculation value indicated by the broken line in the modified Goodman diagram at 100 ° C. shown in FIG. 9 is changed from the conventional point a to the point b when the boundary portion 18 length ratio is 0.75. When the ratio is 1.0, it moves to point c and decreases. As a result, the residual stress at the boundary 18 is reduced. In FIG. 9, A represents the fatigue limit at 1.0 * 10 of the SN curve of the fatigue test, and B represents the tensile strength at 100 ° C. FIG. 8 is a stress-strain diagram at 100 ° C.
[0016]
Further, since the head portion 17a of the groove 17 has an arc R1 shape having a radius of 5 to 10 mm, the head portion of the formed secondary conductor 12a also has an arc shape. For this reason, since the conventional head is a triangle, stress concentrates on the apex and there is a risk of cracks occurring at this apex, but in this example, the stress is dispersed by changing from a triangle to an arc. The strength at the top of the head has increased and there is no risk of cracking. Furthermore, the stress applied to the boundary portion 18 can be relieved by cooling and holding until the iron core temperature and the secondary conductor temperature are about 200 ° C. or less. In addition, since the step 12c between the secondary conductor 12a and the secondary conductor 12 is in the rotor core, the centrifugal force of the short-circuit ring 13 due to rotation is protected by the iron core.
[0017]
Due to these synergistic effects, the stress generated in the conventional boundary portion 5 when the motor is operated is relieved, and there is a risk of cracks occurring in the stepped portion X on the inner diameter side of the boundary portion 5 and the outer diameter side head portion. However, it is no longer the boundary 18 in this embodiment. And if the stress relief annealing which removes the residual stress of the level | step-difference part 12c and the boundary part 18 is implemented, this effect will further improve.
[0018]
(Second embodiment)
A second embodiment will be described with reference to FIG. The difference from the first embodiment is that the stepped portion 12c between the secondary conductor 12a and the secondary conductor 12 is formed in the arc-shaped stepped portion 24. This is because, after laminating a plurality of electrical release plates 11a at both ends of the laminated electrical release plate 11, an arc R2 having a radius of 3 to 10 mm is provided by polishing the step portion 12c shown in FIG. An arc step portion 24 is formed in a step portion 12c between 12a and the secondary conductor 12. This is because the expansion and contraction action acts in the axial direction by the thermal stress of the short-circuit ring 13 and the secondary conductor 12a and the secondary conductor 12 generated by the motor operation, and this expansion action and the centrifugal force of the short-circuit ring 13 are applied to the step portion 12c. Concentration is alleviated by supporting in a distributed manner with the circular arc step portion 24. As a result, it is possible to further eliminate the possibility of cutting at the step portion 12c between the secondary conductor 12a and the secondary conductor 12.
[0019]
(Third embodiment)
A third embodiment will be described with reference to FIG. The difference from the first embodiment is that 0.2 to 1.0 weight of the alloy whose composition is Al-10% Ti-B is added to molten pure aluminum cast into the groove of the rotor core. In addition, the electrical conductivity of the formed secondary conductor is set to 57 IACS% or more and the secondary conductor strength is improved. For the electrical conductivity and strength investigation, a sample having the same shape as that of the secondary conductor 12a was manufactured and subjected to a comparative test. The results are shown in FIG.
[0020]
The electrical conductivity of the whole sample of 0.2 to 1.0% by weight added was 57 IACS% or more, and the object was achieved. Further, the addition of Al-10% Ti-B alloy can refine the crystal structure, and the tensile strength is slightly varied, but is improved by 8 to 13%, and the elongation is substantially the same. From this result, it is possible to use a material added with an Al-10% Ti-B alloy as a secondary conductor material with improved strength, and to improve the residual stress resistance of the stepped portion 12c and the boundary portion 18.
[0021]
【The invention's effect】
As described above, according to the present invention, the boundary portion between the secondary conductor and the short-circuit ring at the rotor core end face is reinforced, and cracking at this boundary portion can be prevented.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part of a cage rotor core showing a first embodiment of the present invention;
FIG. 2 is a cross-sectional view in the II direction of FIG.
FIG. 3 is a plan view of a first electric iron plate showing a groove shape;
FIG. 4 is a plan view of a second electric iron plate showing a groove shape;
FIG. 5 is a view corresponding to FIG. 1 showing a second embodiment;
FIG. 6 is a sectional view of a conventional cage rotor core,
FIG. 7 is an explanatory diagram of stress applied to the secondary conductor and the short-circuit ring,
FIG. 8 is a stress-strain diagram,
FIG. 9 is a modified Goodman diagram.
FIG. 10 is a strength comparison diagram by adding Al-10% Ti-B to an aluminum material.
[Explanation of symbols]
11 ... 1st electric iron plate (1st iron plate), 11a ... 2nd electric iron plate (2nd iron plate),
12 ... 1st conductor (secondary conductor), 12a ... 2nd conductor (secondary conductor),
12c ... Step part, 13 ... Short-circuiting ring,
15… Cage rotor core, 16, 17… Groove,
16a, 17a ... head, 5, 18 ... boundary,
24: Arc step, R1, R2 ... Arc.

Claims (5)

円周方向に複数個の溝を有する電気鉄板を規定枚数積層して回転子鉄心を形成し、この回転子鉄心を予熱された金型内に挿入し該回転子鉄心を予熱して溶融金属との温度比を1.75〜1.8とした状態で溶融金属を溝に鋳込んで二次導体と短絡環を形成し、回転子鉄心及び短絡環温度が200℃以下となるまで冷却保持した後に金型内から形成されたかご形回転子鉄心を取出すことを特徴とするかご形回転子鉄心の製造方法。A predetermined number of electric iron plates having a plurality of grooves in the circumferential direction are laminated to form a rotor core, and this rotor core is inserted into a preheated mold, and the rotor core is preheated to form a molten metal. The molten metal was cast into the groove in a state where the temperature ratio of 1.75 to 1.8 was formed to form a secondary conductor and a short circuit ring, and cooled and held until the rotor core and the short circuit ring temperature were 200 ° C. or less. A method for manufacturing a cage rotor core, comprising: taking out a cage rotor core formed later from within a mold. 前記電気鉄板を第1電気鉄板と第2電気鉄板で形成し、第1電気鉄板の溝と同数配置で且つ断面積が約1.5倍の溝を有する第2電気鉄板を規定枚数積層された第1電気鉄板の両端に規定枚数積層した回転子鉄心を予熱された金型内に挿入し、溶融金属を前記2種類の溝に鋳込んで第1,2導体と短絡環を形成する請求項1記載のかご形回転子鉄心の製造方法。The electric iron plate is formed of a first electric iron plate and a second electric iron plate, and a predetermined number of second electric iron plates having grooves arranged in the same number as the grooves of the first electric iron plate and having a cross-sectional area of about 1.5 times are laminated. A rotor core having a predetermined number of layers laminated on both ends of a first electric iron plate is inserted into a preheated mold, and molten metal is cast into the two types of grooves to form a first and second conductors and a short ring. A method for manufacturing the cage rotor core according to 1. 形成されたかご形回転子鉄心を、再度、昇温速度20〜30℃/Hrとし熱処理温度200〜300℃で3〜6時間保持して炉冷する請求項1または2記載のかご形回転子鉄心の製造方法。The cage rotor according to claim 1 or 2, wherein the formed cage rotor core is furnace-cooled by holding again at a heating rate of 20 to 30 ° C / Hr and a heat treatment temperature of 200 to 300 ° C for 3 to 6 hours. Manufacturing method of iron core. 前記第1電気鉄板と第2電気鉄板を積層して回転子鉄心を形成後に、第1電気鉄板と第2電気鉄板との境界段差部に半径3〜10mmの円弧を第2電気鉄板の溝側から加工して形成し、溶融金属を前記2種類の溝に鋳込んで形成する請求項1乃至3のいずれか記載のかご形回転子鉄心の製造方法。 After forming the rotor core by laminating the first electric iron plate and the second electric iron plate, an arc having a radius of 3 to 10 mm is formed at the boundary step between the first electric iron plate and the second electric iron plate on the groove side of the second electric iron plate. The method for manufacturing a cage rotor core according to any one of claims 1 to 3, wherein the cage metal core is formed by machining and molten metal is cast into the two types of grooves . 前記溶融金属を純アルミニウムとし、この純アルミニウムに成分構成がAl− 10 %Ti−Bの合金を溶解重量に対して0.2〜1.0重量%まで0.2%ピッチで添加し製造する請求項1乃至4のいずれか記載のかご形回転子鉄心の製造方法。 The molten metal is pure aluminum, and an alloy having a composition of Al- 10 % Ti-B is added to the pure aluminum at a 0.2% pitch from 0.2 to 1.0% by weight with respect to the dissolved weight. A manufacturing method of the cage rotor core according to any one of claims 1 to 4 .
JP17164098A 1998-06-18 1998-06-18 Manufacturing method of cage rotor core Expired - Fee Related JP4028089B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17164098A JP4028089B2 (en) 1998-06-18 1998-06-18 Manufacturing method of cage rotor core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17164098A JP4028089B2 (en) 1998-06-18 1998-06-18 Manufacturing method of cage rotor core

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007153718A Division JP2007228798A (en) 2007-06-11 2007-06-11 Squirrel-cage rotor core

Publications (2)

Publication Number Publication Date
JP2000014105A JP2000014105A (en) 2000-01-14
JP4028089B2 true JP4028089B2 (en) 2007-12-26

Family

ID=15926962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17164098A Expired - Fee Related JP4028089B2 (en) 1998-06-18 1998-06-18 Manufacturing method of cage rotor core

Country Status (1)

Country Link
JP (1) JP4028089B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005030377A1 (en) * 2005-06-29 2007-01-11 Siemens Ag asynchronous
US9166462B2 (en) 2010-10-19 2015-10-20 Mitsubishi Electric Corporation Rotor of induction motor, induction motor, compressor, air blower, and air conditioner
WO2012077171A1 (en) 2010-12-06 2012-06-14 三菱電機株式会社 Induction motor, compressor, air blower, and air conditioner
JP2012257439A (en) * 2011-06-10 2012-12-27 Mitsubishi Electric Corp Cage-type rotor
US10804781B2 (en) * 2017-12-30 2020-10-13 Abb Schweiz Ag Electrical machines and methods for manufacturing electrical machines
JP6601592B1 (en) 2018-09-13 2019-11-06 三菱電機株式会社 Cage rotor and rotating electric machine

Also Published As

Publication number Publication date
JP2000014105A (en) 2000-01-14

Similar Documents

Publication Publication Date Title
Bonnett et al. Squirrel cage rotor options for AC induction motors
US8910371B2 (en) Method for fabricating an induction rotor
JP4028089B2 (en) Manufacturing method of cage rotor core
EP2849320A2 (en) Squirrel cage rotor for an asynchronous machine with integrally connected stabilization of the short circuit ring
US8925182B2 (en) Cast rotor and method
US4603474A (en) Collector for an electric machine and method for its production
JP2007228798A (en) Squirrel-cage rotor core
JP5898476B2 (en) Aluminum alloy foil for lithium ion battery positive electrode current collector and method for producing the same
KR101695184B1 (en) Rotor assembly and manufacturing method by centrifugal casting
US20220320975A1 (en) Method for producing a squirrel-cage rotor of an asynchronous machine
JP3246240B2 (en) Manufacturing method of cage type rotating electric machine
JPH01252144A (en) Rotor for squirrel-cage induction motor and manufacture thereof
JPH0736686B2 (en) Induction motor
JPH0313935B2 (en)
JP2862942B2 (en) Heat treatment method of Corson alloy
JPS6141973B2 (en)
JP2693556B2 (en) Casting rotor and manufacturing method thereof
JPS5895961A (en) Manufacture of squirrel-cage rotor
JP3227072B2 (en) Method of manufacturing aluminum alloy wire for electric conduction
JPH10150751A (en) Method and equipment for manufacturing cage rotor
JPS6123752A (en) Manufacture of high strength and heat resistant aluminum alloy conductor
JPS6041542B2 (en) cast rotor
JPH1175330A (en) Rotor and manufacture thereof
JPS60131956A (en) Production of heat resistant aluminum alloy conductor
JPS60145364A (en) Production of heat-resistant aluminum alloy conductor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040326

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees