JP4027744B2 - Cooling device for reduced iron agglomerates - Google Patents

Cooling device for reduced iron agglomerates Download PDF

Info

Publication number
JP4027744B2
JP4027744B2 JP2002225233A JP2002225233A JP4027744B2 JP 4027744 B2 JP4027744 B2 JP 4027744B2 JP 2002225233 A JP2002225233 A JP 2002225233A JP 2002225233 A JP2002225233 A JP 2002225233A JP 4027744 B2 JP4027744 B2 JP 4027744B2
Authority
JP
Japan
Prior art keywords
reduced iron
conveyor
cooling
spray
agglomerate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002225233A
Other languages
Japanese (ja)
Other versions
JP2003166788A (en
Inventor
宏 市川
泰 大庭
史郎 大原
幸男 小脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002225233A priority Critical patent/JP4027744B2/en
Application filed by Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to PCT/JP2002/009627 priority patent/WO2003027333A1/en
Priority to KR1020047004004A priority patent/KR100649732B1/en
Priority to CNB028184661A priority patent/CN100455677C/en
Priority to EP02772866A priority patent/EP1445335A4/en
Priority to US10/489,996 priority patent/US7618476B2/en
Priority to TW091121469A priority patent/TW546384B/en
Priority to EP09161067A priority patent/EP2100973A1/en
Publication of JP2003166788A publication Critical patent/JP2003166788A/en
Priority to US11/890,133 priority patent/US20070296127A1/en
Application granted granted Critical
Publication of JP4027744B2 publication Critical patent/JP4027744B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、酸化鉄塊成化物から還元鉄塊成化物を製造する設備において、還元炉で還元されて連続的に排出される高温の還元鉄塊成化物を冷却するための装置に関するものである。
【0002】
【従来の技術】
還元鉄製造設備から排出される還元鉄塊成化物の冷却方法として、従来から、還元鉄塊成化物を水槽内で浸水冷却した後、水槽内からコンベアで引き上げ、これを土間に直接払い出して山積み貯蔵した後、適宜搬送し、電気炉に投入する方法が実機化されている。
【0003】
しかしながらこの浸水冷却方法では、還元鉄塊成化物の含水率が高くなるため、溶湯中に投入すると水蒸気爆発を起こす危険性があることから、電気炉への投入に限定されているうえ、還元鉄塊成化物の粉化や金属化率の低下という問題も生じていた。
【0004】
また特許第3145834号公報には、直接還元製鉄法により得られた還元鉄をブリケットマシン設備により成形し、この状態の還元鉄ブリケットをスプレー水にて150℃/分〜250℃/分の冷却速度で徐冷する還元鉄ブリケットの製造方法が開示されている。
【0005】
しかし、この方法は、高温還元鉄ブリケットの割れを抑制するためにスプレー冷却により徐冷する方法であって、回転炉床炉などの還元鉄製造設備から排出される還元鉄塊成化物冷却する方法ではないうえ、還元鉄塊成化物の適正な含水率については考慮されていない。
【0006】
さらに、特許第3009661号公報には、加熱還元後の高温の還元鉄ペレットを、その表面温度が650℃から150℃まで降温する間の平均冷却速度を1500℃/分から500℃/分の間になるように水冷する方法が開示されている。
【0007】
しかし、この方法は還元鉄ペレットの冷却に関するものであり、本発明が対象とするブリケットのような塊成化物とは大きさおよび性状が異なり、この方法をそのまま適用することはできない。また回転炉床炉から排出される還元鉄塊成化物の温度は約1000℃前後であるが、650℃までの冷却方法や冷却速度についての記述がないばかりか、650℃以下についても具体的な冷却手段の記述がなく、さらに塊成化物の含水率にも全く着目していない。
【0008】
【発明が解決しようとする課題】
本発明は前述のような従来技術の問題点を解決し、還元鉄塊成化物の中心温度と含水率を適正範囲にする冷却装置を提供することを課題として下記の具体的な技術課題の解決手段を提供する。
回転炉床炉などの還元鉄製造設備から排出される約1000℃の還元鉄塊成化物を、速やかに300℃以下まで冷却することで大気による再酸化を抑制する。冷却後の還元鉄塊成化物の含水率を6%以下とすることにより、還元鉄塊成化物を溶湯中に投入することを可能ならしめるとともに、溶解時の水分蒸発エネルギーを低減する。冷却時間を適正化することにより、還元鉄塊成化物の粉化や金属化率の低下を抑制する。
【0009】
【課題を解決するための手段】
上記課題を解決するための本発明の第1発明装置は、酸化鉄塊成化物を還元炉内で還元し還元鉄塊成化物として排出する還元鉄塊成化物製造設備において、排出される高温の還元鉄塊成化物を冷却するための装置であって、前記還元鉄塊成化物製造設備の排出口に高温の還元鉄塊成化物を搬送するコンベアを配設し、該コンベアの上方または上方および下方に複数のスプレーノズルを、該各スプレーノズルから連続的にスプレー水を噴出させてコンベア上の還元鉄塊成化物を間欠的に冷却すべく、還元鉄塊成化物の搬送方向に間隔をあけて配設し、前記噴出するスプレー水の搬送方向広がり幅Bとスプレーノズルの配設ピッチPとの関係を下記(1)式の範囲としたことを特徴とする還元鉄塊成化物の冷却装置である。
1.2×B≦P≦10×B (1)
【0010】
また上記課題を解決するための本発明の第2発明装置は、酸化鉄塊成化物を還元炉内で還元し還元鉄塊成化物として排出する還元鉄塊成化物製造設備において、排出される高温の還元鉄塊成化物を冷却するための装置であって、前記還元鉄塊成化物製造設備の排出口に高温の還元鉄塊成化物を搬送するコンベアを配設し、該コンベアの上方または上方および下方に複数のスプレーノズルを、該各スプレーノズルから連続的にスプレー水を噴出させてコンベア上の還元鉄塊成化物を間欠的に冷却すべく、還元鉄塊成化物の搬送方向に間隔をあけて配設し、前記噴出するスプレー水の搬送方向広がり幅Bとコンベア幅方向広がり幅Wとの関係を下記(2)式の範囲としたことを特徴とする還元鉄塊成化物の冷却装置である。
W≧2×B (2)
【0011】
そして上記第1発明装置および第2発明装置において、前記スプレー水のコンベア幅方向広がり幅Wとコンベア幅CWとの関係を下記(3)式の範囲とするのが好ましい。
CW≦W (3)
【0012】
【発明の実施の形態】
図1の例により本発明装置を説明する。還元炉としての回転炉床炉13内で酸化鉄塊成化物が還元され、還元鉄塊成化物排出口8から連続的に排出される。排出された高温の還元鉄塊成化物5は、排出口8に連設された冷却装置16内でコンベア6上を搬送されつつ、複数のスプレーノズル1からの散水により冷却されて還元鉄塊成化物排出口7から排出され、図示しない貯留装置等へ搬送される。
【0013】
各スプレーノズル1は、コンベア6の上方でコンベア6の搬送方向に平行に設けたノズルヘッダー2に所定の間隔をあけて取付けられている。
これらスプレーノズル1、スプレーヘッダー2、コンベア6はケーシング15に覆われており、ケーシング15の先端側には冷却された還元鉄塊成化物5を排出するための還元鉄塊成化物排出口7が設けられ、後端側には還元鉄塊成化物5に散水することにより発生するスラッジを排出するスラッジ排出口9が設けられている。
【0014】
図2は、コンベア6上における図1のA−A矢視平面の例を示し、各スプレーノズル1からのスプレー水は、スプレー範囲1−1で示すように、搬送方向広がり幅Bで間隔をあけて散水される。
図3は図2のC−C矢視断面拡大図であり、各スプレーノズル1は搬送方向に間隔Pをもってスプレーヘッダー2に取付けられ、スプレー水はコンベア6上で搬送方向広がり幅Bで間隔をあけて散水される。
【0015】
図4は図2のB−B矢視正面を示し、スプレーノズル1はコンベア6の幅方向中央に配置されたスプレーヘッダー2に設けられ、スプレー水はコンベア6上にてコンベア6の幅CW以上の幅方向広がり幅Wで散水される。
スプレーヘッダー2には、図5に例示するように給水配管3より水が供給される。
【0016】
本発明装置は、このようにコンベア6の上方に複数のスプレーノズル1を、還元鉄塊成化物5の搬送方向に間隔をあけて配設し、各スプレーノズルから連続的にスプレー水を噴出させてコンベア6上の還元鉄塊成化物5を間欠的に冷却する装置である。間欠的に冷却するための条件は、図3からわかるようにB<Pである。
【0017】
間欠的に冷却することにより、コンベア6上の還元鉄塊成化物5の表面温度は、たとえば図10のように変化しながら降下する。すなわち、最初のスプレーノズル1から噴射されたスプレー水により冷却された後、つぎのスプレー水により冷却されるまでの間に還元鉄塊成化物の内部熱により温度上昇しはじめ、還元鉄塊成化物の内部と外部の温度がバランスしたところで温度上昇はとまる。
【0018】
そして、つぎのスプレー水によりバランスした温度から冷却が開始される。この繰返しにより、図10に示すような冷却パターンとなって還元鉄塊成化物5は100〜300℃に冷却される。還元鉄塊成化物5は該塊成化物内の熱の授受と外部からのスプレー水による強制冷却により温度降下するので、間欠冷却は連続的な強制冷却に比べて水量密度を小さくすることができる。これは、一方的に外部からスプレー水を散水する場合にくらべて還元鉄塊成化物内の熱の内部移動の方が速いため、少ない水量密度で冷却することができるからと考えられる。
【0019】
また、間欠冷却により還元鉄塊成化物は、冷却とつぎの冷却の間での表面温度の上昇によって、表面に散水されたスプレー水は蒸発し表面が乾燥する。このパターンを繰返すことで、還元鉄塊成化物の表面では、散水と蒸発が繰返されながら排出目標温度まで冷却される。これにより、本発明の冷却装置から排出される還元鉄塊成化物5は、含水率6%以下を確保することができる。
還元鉄塊成化物の含水率は、電気炉等による溶解時のエネルギー消費を抑えるため低い方が好ましく、また溶湯への投入時の水蒸気爆発を防止するため6%以下が好ましい。
【0020】
本発明装置による冷却後の還元鉄塊成化物の排出温度は100〜300℃とすればよい。回転炉床炉から排出される約1000℃の還元鉄塊成化物を間欠散水により100〜300℃まで冷却する。
一般的に冷却ノズルの配置は、図14および図15に示すように、還元鉄塊成化物の幅方向および搬送方向全域にわたって均一に散水されるように円錐スプレーノズルが配置されている。
【0021】
この状態では、連続的な散水によって還元鉄塊成化物の内部と表面の温度差が大きくなり(内部が高温、表面が低温)、本発明の間欠水冷に比べて水量を多くする必要が生じる。内部まで充分に冷却するために水量を増加すると、既に低温になっている表面に水分が残存し、含水率が6%超になってしまう。
さらに図14および図15のような円錐スプレーノズルを使用した場合、各ノズルのスプレー範囲1−2,1−3に重なりが生じ、コンベア幅方向で冷却状態にバラツキが生じ、塊成化物の温度、水分にバラツキが生じる。
【0022】
本発明の第1発明装置は、このスプレー水の搬送方向広がり幅Bとスプレーノズルの配設ピッチPとの関係を、前記(1)式の範囲とした。
1.2×B≦Pは、隣設するスプレーノズル1の間で、スプレー範囲1−1を図2のように確実に離すための条件、すなわち確実な間欠冷却を行うための条件として定めた。
P≦10×Bは、冷却とつぎの冷却の間での還元鉄塊成化物の内部熱による温度上昇が飽和せず、効果的な冷却を行うための条件として定めた。
【0023】
つぎに本発明の第2発明装置は、スプレー水の搬送方向広がり幅Bとコンベア幅方向広がり幅Wとの関係を前記(2)式の範囲とした。この条件は、スプレー範囲1−1が図2のような扁平となる、たとえばフラットスプレーノズルを採用することによりスプレー水の搬送方向広がり幅Bがコンベア幅方向でほぼ一定であるため、コンベア幅方向での冷却状態のバラツキが小さいので、間欠冷却を効果的に行うことができる。
【0024】
また上記第1発明装置および第2発明装置において、スプレー水のコンベア幅方向広がり幅Wとコンベア幅CWとの関係を前記(3)式の範囲とすることにより、すなわちWとCWの関係を図4のようにすることにより、コンベア6上の還元鉄塊成化物は、コンベア幅方向で均一に冷却される。
【0025】
図1において、回転炉床炉13から排出された還元鉄塊成化物5はコンベア6に連続的に載置され搬送される。コンベア6の上方には、コンベア6の搬送方向に所定の間隔をあけてスプレーノズル1を配置している。このため各スプレーノズル1からは連続してスプレー水が散水されるが、コンベア6上を連続的に搬送される還元鉄塊成化物5への散水は間欠散水となる。塊成化物から見た間欠散水の冷却パターンは例えば図9のようになり、散水のONとOFFの時間は、PとBの関係により調整することができる。
【0026】
つぎに実施例を図6〜図8に示す。本発明例の間欠冷却は、スプレー水の搬送方向広がり幅Bとスプレーノズルの配設ピッチPの関係を2B=Pとしたもの、比較例の連続冷却はB≧Pとしたものである。
図6は還元鉄塊成化物の冷却時の中心温度と散水量の関係を示したもので、本発明例の間欠冷却は、比較例の連続冷却よりも冷却効果が優れていることがわかる。本発明装置により、還元鉄塊成化物の中心温度が好ましくは実線で示す300℃以下、より好ましくは破線で示す200℃以下に冷却されればよい。間欠冷却では散水量比0.7以上で300℃以下になっているのに対し、連続冷却では散水量比を2.0にする必要があった。
【0027】
図7は散水量と冷却後の含水率の関係を示す。本発明例では還元鉄塊成化物の含水率が散水量によって調整可能となる。含水率は実線で示す6%以下が好ましく、破線で示す5%以下がより好ましい。間欠冷却では散水量比1.3以下で含水率6%以下になり、散水量比が0.7以上1.3以下で温度300℃以下かつ含水率6%以下となるのに対し、連続冷却では温度300℃以下を満足した散水量比では含水率が6%超となった。
【0028】
図8は図6と図7をまとめたもので、還元鉄塊成化物の中心温度と含水率の関係を示した。比較例の連続冷却では、還元鉄塊成化物の中心温度を300℃以下にすると含水率が6%を超え、含水率を6%以下にすると中心温度が300℃を超えてしまう。それに対して本発明例の間欠冷却では、実線で示す中心温度300℃以下、含水率は6%以下に調整でき、良好な還元鉄塊成化物を得ることができる。
【0029】
図11は本発明の別の例を示したものである。すなわち回転炉床炉13により還元された高温の還元塊成化物5は、排出口8より該排出口に連設された冷却装置16内のコンベア6上に送られ、搬送されつつ、コンベア6の上方および下方に配設した複数の上方スプレーノズル1および下方スプレーノズル1aからの散水により冷却されて還元鉄塊成化物排出口7から排出される。このようにコンベア6上に載置した高温の還元塊成化物をコンベア6の上下に配設した複数のノズル1,1aにより、還元塊成化物を上下から冷却する。これにより、コンベア6上には、複数の層状に還元塊成化物を載置することができ、生産性が向上する。図12は図4と同様にコンベア6の上下に配置したスプレーノズル1,1aからの散水状況を示し、図13には図5と同様に上下スプレーノズル1,1aへ供水する供水手段2,2a,3,3aが示されている。
【0030】
コンベア6は板状の形状および金網状のものを採用するが、コンベア6の上下にノズルを配設した還元塊成化物を冷却する場合は、金網状のコンベア6を採用すると冷却効果も一層向上する。また、金網の開口大きさは、還元塊成化物が載置された際に落下しなければ、どのような大きさでもよいが、10mm程度の開口大きさのものが望ましい。
【0031】
【発明の効果】
以上のように、本発明装置によれば高温の還元鉄塊成化物を間欠冷却により一気に100〜300℃まで効率的に冷却することができ、大気による再酸化を抑制できる。また冷却された還元鉄塊成化物の含水率を低く調整でき、溶湯へ投入時の水蒸気爆発のおそれが解消され、かつ溶解に必要とするエネルギーを最小限に抑えることができる。
【図面の簡単な説明】
【図1】本発明例を示す説明図である。
【図2】本発明例を示し、図1のA−A矢視平面図である。
【図3】本発明におけるスプレー散水の例を示し、図2のC−C矢視拡大断面図である。
【図4】本発明例を示し、図2のB−B矢視正面図である。
【図5】本発明におけるスプレーノズルの例を示す説明図である。
【図6】本発明の実施例を示すグラフである。
【図7】本発明の実施例を示す別のグラフである。
【図8】本発明の実施例を示す別のグラフである。
【図9】本発明における塊成化物から見た冷却パターンの例を示す説明図である
【図10】本発明における塊成化物の温度変化の例を示すグラフである。
【図11】本発明の他の実施例であって、上下にスプレーノズルを配置した例の説明図である。
【図12】図11に示す本発明例の散水状況を示す図である。
【図13】図11に示す本発明例の供水手段を示す図である。
【図14】従来のスプレーノズルの配置例を示す説明図である。
【図15】従来のスプレーノズルの別の配置例を示す説明図である。
【符号の説明】
1:スプレーノズル
1a:下部スプレーノズル
1−1:フラットスプレーノズルによるスプレー範囲
1−2,1−3:円錐スプレーノズルによるスプレー範囲
2:ノズルヘッダ
2a:下部ノズルヘッダ
3:給水配管
3a:下部給水配管
4:蒸気排気口
5:還元鉄塊成化物
6:コンベア
7,8:還元鉄塊成化物排出口
9,10:スラッジ排出口
11:スラッジタンク
12:スラッジコンベア
13:回転炉床炉
14:スラッジ回収タンク
15:ケーシング
16:冷却装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for cooling a high-temperature reduced iron agglomerate that is reduced in a reduction furnace and continuously discharged in an facility for producing a reduced iron agglomerate from an iron oxide agglomerate. .
[0002]
[Prior art]
As a cooling method for reduced iron agglomerates discharged from the reduced iron production facility, conventionally, after the reduced iron agglomerates are submerged and cooled in the water tank, they are pulled up from the water tank by a conveyor, and then directly discharged into the soil to pile up the piles. After being stored, a method of carrying it appropriately and putting it into an electric furnace has been put into practice.
[0003]
However, in this submerged cooling method, the water content of the reduced iron agglomerate is high, and there is a risk of causing a steam explosion when thrown into the molten metal. There has also been a problem of powdering the agglomerated material and lowering the metalization rate.
[0004]
In Japanese Patent No. 314534, reduced iron obtained by a direct reduction iron making method is formed by briquette machine equipment, and the reduced iron briquette in this state is cooled at 150 ° C./min to 250 ° C./min with spray water. Discloses a method for producing reduced iron briquettes that are cooled slowly.
[0005]
However, this method is a method of slow cooling by spray cooling to suppress cracking of high-temperature reduced iron briquettes, and a method of cooling reduced iron agglomerates discharged from reduced iron production facilities such as a rotary hearth furnace In addition, the proper moisture content of the reduced iron agglomerates is not considered.
[0006]
Further, in Japanese Patent No. 3009661, the average cooling rate during the temperature reduction of the high-temperature reduced iron pellets after heat reduction from 650 ° C. to 150 ° C. is between 1500 ° C./min and 500 ° C./min. A method of water cooling is disclosed.
[0007]
However, this method relates to cooling of reduced iron pellets, and is different in size and property from the agglomerates such as briquettes targeted by the present invention, and this method cannot be applied as it is. The temperature of the reduced iron agglomerate discharged from the rotary hearth furnace is about 1000 ° C., but there is no description about the cooling method and cooling rate up to 650 ° C., and the specific temperature is also below 650 ° C. There is no description of the cooling means, and no attention is paid to the water content of the agglomerated material.
[0008]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art as described above, and solves the following specific technical problems with the object of providing a cooling device that makes the center temperature and moisture content of the reduced iron agglomerates within an appropriate range. Provide a means.
Reoxidation by the atmosphere is suppressed by rapidly cooling a reduced iron agglomerate at about 1000 ° C. discharged from reduced iron production equipment such as a rotary hearth furnace to 300 ° C. or less. By setting the water content of the reduced iron agglomerated product after cooling to 6% or less, the reduced iron agglomerated product can be introduced into the molten metal, and the water evaporation energy at the time of melting is reduced. By optimizing the cooling time, pulverization of the reduced iron agglomerate and reduction in the metalization rate are suppressed.
[0009]
[Means for Solving the Problems]
The first invention apparatus of the present invention for solving the above problems is a reduced iron agglomerate production facility that reduces iron oxide agglomerates in a reduction furnace and discharges them as reduced iron agglomerates. A device for cooling the reduced iron agglomerate, comprising a conveyor for conveying the reduced iron agglomerated material at a discharge port of the reduced iron agglomerate production facility, above or above the conveyor and A plurality of spray nozzles are provided below, and spray water is continuously ejected from each of the spray nozzles so as to intermittently cool the reduced iron agglomerate on the conveyor, with an interval in the conveying direction of the reduced iron agglomerate. The reduced iron agglomerate cooling apparatus is characterized in that the relationship between the spread width B of the spray water sprayed in the transport direction and the spray nozzle pitch P is in the range of the following formula (1): It is.
1.2 × B ≦ P ≦ 10 × B (1)
[0010]
Further, the second invention apparatus of the present invention for solving the above-mentioned problems is a reduced iron agglomerate production facility that reduces iron oxide agglomerates in a reduction furnace and discharges them as reduced iron agglomerates. Is a device for cooling the reduced iron agglomerate, comprising a conveyor for conveying the reduced iron agglomerated material at a discharge port of the reduced iron agglomerate production facility, above or above the conveyor And a plurality of spray nozzles below, and in order to intermittently cool the reduced iron agglomerate on the conveyor by spraying spray water continuously from each of the spray nozzles, the interval in the conveying direction of the reduced iron agglomerate is increased. The reduced iron agglomerate cooling apparatus, characterized in that the relationship between the spreading width B in the conveying direction of the spray water sprayed and the spreading width W in the conveyor width is in the range of the following formula (2): It is.
W ≧ 2 × B (2)
[0011]
And in the said 1st invention apparatus and 2nd invention apparatus, it is preferable to make the relationship of the conveyor width direction breadth W and the conveyor width | variety CW of the said spray water into the range of following (3) Formula.
CW ≦ W (3)
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The apparatus of the present invention will be described with reference to the example of FIG. The iron oxide agglomerate is reduced in a rotary hearth furnace 13 as a reduction furnace and continuously discharged from the reduced iron agglomerate discharge port 8. The discharged reduced iron agglomerated material 5 is cooled on the conveyor 6 in the cooling device 16 connected to the discharge port 8 and cooled by water sprayed from the plurality of spray nozzles 1 to be reduced iron agglomerated. It is discharged from the chemical discharge port 7 and conveyed to a storage device (not shown).
[0013]
Each spray nozzle 1 is attached to the nozzle header 2 provided above the conveyor 6 in parallel with the conveying direction of the conveyor 6 at a predetermined interval.
The spray nozzle 1, the spray header 2, and the conveyor 6 are covered with a casing 15, and a reduced iron agglomerate discharge port 7 for discharging the cooled reduced iron agglomerate 5 is provided at the front end side of the casing 15. Provided on the rear end side is a sludge discharge port 9 for discharging sludge generated by watering the reduced iron agglomerate 5.
[0014]
FIG. 2 shows an example of the AA arrow plane of FIG. 1 on the conveyor 6, and the spray water from each spray nozzle 1 is spaced in the conveying direction spread width B as shown by the spray range 1-1. It is sprinkled with water.
FIG. 3 is an enlarged cross-sectional view taken along the line CC in FIG. 2. Each spray nozzle 1 is attached to the spray header 2 with a spacing P in the transport direction, and spray water is spread on the conveyor 6 in the transport direction with a width B. It is sprinkled with water.
[0015]
4 shows a front view taken along the line B-B in FIG. 2, the spray nozzle 1 is provided on the spray header 2 disposed at the center in the width direction of the conveyor 6, and the spray water is not less than the width CW of the conveyor 6 on the conveyor 6. Water is sprayed with a width W of the width direction.
Water is supplied to the spray header 2 from a water supply pipe 3 as illustrated in FIG.
[0016]
The apparatus of the present invention thus arranges the plurality of spray nozzles 1 above the conveyor 6 at intervals in the conveying direction of the reduced iron agglomerate 5, and continuously sprays spray water from each spray nozzle. In this way, the reduced iron agglomerate 5 on the conveyor 6 is intermittently cooled. The condition for intermittent cooling is B <P as can be seen from FIG.
[0017]
By cooling intermittently, the surface temperature of the reduced iron agglomerate 5 on the conveyor 6 drops while changing as shown in FIG. 10, for example. That is, after being cooled by the spray water sprayed from the first spray nozzle 1, the temperature starts to rise due to the internal heat of the reduced iron agglomerate until it is cooled by the next spray water. The temperature rise stops when the temperature inside and outside of the room is balanced.
[0018]
And cooling is started from the temperature balanced by the next spray water. By repeating this, the reduced iron agglomerate 5 is cooled to 100 to 300 ° C. in a cooling pattern as shown in FIG. Since the reduced iron agglomerate 5 drops in temperature due to the transfer of heat in the agglomerate and forced cooling by external spray water, intermittent cooling can reduce the water density compared to continuous forced cooling. . This is presumably because the internal movement of heat in the reduced iron agglomerated material is faster than when spraying spray water from the outside, so that it can be cooled with a small water density.
[0019]
Further, the reduced iron agglomerate is intermittently cooled, and the spray water sprayed on the surface evaporates and the surface is dried due to the increase in the surface temperature between the cooling and the subsequent cooling. By repeating this pattern, the surface of the reduced iron agglomerate is cooled to the discharge target temperature while watering and evaporation are repeated. Thereby, the reduced iron agglomerate 5 discharged from the cooling device of the present invention can ensure a moisture content of 6% or less.
The water content of the reduced iron agglomerated material is preferably low in order to suppress energy consumption during melting by an electric furnace or the like, and is preferably 6% or less in order to prevent steam explosion at the time of charging into the molten metal.
[0020]
The discharge temperature of the reduced iron agglomerate after cooling by the apparatus of the present invention may be 100 to 300 ° C. The reduced iron agglomerates at about 1000 ° C. discharged from the rotary hearth furnace are cooled to 100 to 300 ° C. by intermittent watering.
In general, as shown in FIGS. 14 and 15, the cooling nozzles are arranged such that conical spray nozzles are sprayed uniformly over the entire width direction and the conveying direction of the reduced iron agglomerate.
[0021]
In this state, the temperature difference between the inside and the surface of the reduced iron agglomerate is increased by continuous watering (the inside is at a high temperature and the surface is at a low temperature), and it is necessary to increase the amount of water compared to the intermittent water cooling of the present invention. When the amount of water is increased in order to sufficiently cool the inside, moisture remains on the surface that has already become low temperature, and the water content exceeds 6%.
Further, when the conical spray nozzles as shown in FIGS. 14 and 15 are used, the spray ranges 1-2 and 1-3 of each nozzle are overlapped, the cooling state varies in the conveyor width direction, and the temperature of the agglomerated product is increased. Variation in moisture occurs.
[0022]
In the first invention apparatus of the present invention, the relationship between the spread width B of the spray water in the transport direction and the arrangement pitch P of the spray nozzles is set in the range of the formula (1).
1.2 × B ≦ P is determined as a condition for reliably separating the spray range 1-1 between adjacent spray nozzles 1 as shown in FIG. 2, that is, a condition for performing reliable intermittent cooling. .
P ≦ 10 × B was determined as a condition for effective cooling without saturating the temperature rise due to internal heat of the reduced iron agglomerate between cooling and the next cooling.
[0023]
Next, the 2nd invention apparatus of this invention made the relationship of the conveyance direction spreading width B and the conveyor width direction spreading width W of the spray water the range of said (2) Formula. This condition is that the spray range 1-1 is flat as shown in FIG. 2, for example, by adopting a flat spray nozzle, the spread width B of the spray water in the conveying direction is substantially constant in the conveyor width direction. Since the variation in the cooling state is small, intermittent cooling can be performed effectively.
[0024]
In the first and second invention devices, the relationship between the spread width W of the spray water in the width direction of the conveyor and the conveyor width CW is within the range of the expression (3), that is, the relationship between W and CW is illustrated. By doing so, the reduced iron agglomerate on the conveyor 6 is uniformly cooled in the conveyor width direction.
[0025]
In FIG. 1, the reduced iron agglomerate 5 discharged from the rotary hearth furnace 13 is continuously placed on a conveyor 6 and conveyed. Above the conveyor 6, the spray nozzle 1 is arranged at a predetermined interval in the conveying direction of the conveyor 6. For this reason, although spray water is sprinkled continuously from each spray nozzle 1, the water spray to the reduced iron agglomerate 5 continuously conveyed on the conveyor 6 turns into intermittent water spray. The cooling pattern of intermittent water spray seen from the agglomerate is as shown in FIG. 9, for example, and the ON and OFF times of water spray can be adjusted by the relationship between P and B.
[0026]
Next, examples are shown in FIGS. In the intermittent cooling of the example of the present invention, the relationship between the spread width B of the spray water in the transport direction and the arrangement pitch P of the spray nozzle is 2B = P, and the continuous cooling of the comparative example is B ≧ P.
FIG. 6 shows the relationship between the central temperature during cooling of the reduced iron agglomerate and the amount of sprinkling. It can be seen that the intermittent cooling of the example of the present invention is superior in cooling effect to the continuous cooling of the comparative example. With the apparatus of the present invention, the center temperature of the reduced iron agglomerate is preferably cooled to 300 ° C. or lower, more preferably 200 ° C. or lower, indicated by a broken line. In the intermittent cooling, the water spray ratio is 0.7 to 300 ° C., whereas in the continuous cooling, the water spray ratio needs to be 2.0.
[0027]
FIG. 7 shows the relationship between the water spray amount and the water content after cooling. In the present invention example, the water content of the reduced iron agglomerate can be adjusted by the amount of water spray. The moisture content is preferably 6% or less indicated by a solid line, and more preferably 5% or less indicated by a broken line. In intermittent cooling, the water content is 1.3% or less and the water content is 6% or less. The water ratio is 0.7 or more and 1.3 or less, the temperature is 300 ° C. or less and the water content is 6% or less. Then, the water content was more than 6% at the water spray ratio that satisfied the temperature of 300 ° C. or lower.
[0028]
FIG. 8 is a summary of FIG. 6 and FIG. 7 and shows the relationship between the center temperature of the reduced iron agglomerate and the moisture content. In the continuous cooling of the comparative example, when the center temperature of the reduced iron agglomerate is 300 ° C. or less, the water content exceeds 6%, and when the water content is 6% or less, the center temperature exceeds 300 ° C. On the other hand, in the intermittent cooling of the example of the present invention, the center temperature shown by a solid line can be adjusted to 300 ° C. or less and the water content can be adjusted to 6% or less, and a good reduced iron agglomerate can be obtained.
[0029]
FIG. 11 shows another example of the present invention. That is, the high-temperature reduced agglomerated product 5 reduced by the rotary hearth furnace 13 is sent from the discharge port 8 onto the conveyor 6 in the cooling device 16 connected to the discharge port, and is conveyed while being conveyed. It is cooled by water sprayed from a plurality of upper spray nozzles 1 and lower spray nozzles 1 a disposed above and below and discharged from the reduced iron agglomerate discharge port 7. The reduced agglomerated product is cooled from above and below by the plurality of nozzles 1, 1 a in which the high-temperature reduced agglomerated material placed on the conveyor 6 is arranged above and below the conveyor 6. Thereby, the reduced agglomerated material can be placed on the conveyor 6 in a plurality of layers, and productivity is improved. FIG. 12 shows the condition of water spraying from the spray nozzles 1 and 1a arranged above and below the conveyor 6 as in FIG. 4, and FIG. 13 shows water supply means 2 and 2a for supplying water to the upper and lower spray nozzles 1 and 1a as in FIG. 3, 3a are shown.
[0030]
The conveyor 6 employs a plate-like shape and a wire mesh shape. However, when cooling the reduced agglomerates having nozzles disposed above and below the conveyor 6, the cooling effect is further improved by employing the wire mesh conveyor 6. To do. Further, the opening size of the wire mesh may be any size as long as it does not drop when the reduced agglomerated material is placed, but it is desirable that the opening size is about 10 mm.
[0031]
【The invention's effect】
As described above, according to the apparatus of the present invention, high-temperature reduced iron agglomerates can be efficiently cooled to 100 to 300 ° C. at a stretch by intermittent cooling, and reoxidation by the atmosphere can be suppressed. In addition, the water content of the cooled reduced iron agglomerate can be adjusted to be low, the risk of steam explosion at the time of charging into the molten metal is eliminated, and the energy required for melting can be minimized.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing an example of the present invention.
FIG. 2 is a plan view taken along the line AA of FIG. 1, showing an example of the present invention.
FIG. 3 is an enlarged cross-sectional view taken along the line CC of FIG. 2, showing an example of spray watering according to the present invention.
4 shows an example of the present invention and is a front view taken along arrow BB in FIG.
FIG. 5 is an explanatory view showing an example of a spray nozzle in the present invention.
FIG. 6 is a graph showing an example of the present invention.
FIG. 7 is another graph showing an example of the present invention.
FIG. 8 is another graph showing an example of the present invention.
FIG. 9 is an explanatory diagram showing an example of a cooling pattern viewed from the agglomerated material according to the present invention. FIG. 10 is a graph showing an example of temperature change of the agglomerated material according to the present invention.
FIG. 11 is an explanatory view of an example in which spray nozzles are arranged vertically on another embodiment of the present invention.
12 is a view showing a watering condition of the example of the present invention shown in FIG. 11. FIG.
13 is a view showing water supply means of the example of the present invention shown in FIG.
FIG. 14 is an explanatory view showing an arrangement example of a conventional spray nozzle.
FIG. 15 is an explanatory view showing another arrangement example of a conventional spray nozzle.
[Explanation of symbols]
1: Spray nozzle 1a: Lower spray nozzle 1-1: Spray range by flat spray nozzle 1-2, 1-3: Spray range by conical spray nozzle 2: Nozzle header 2a: Lower nozzle header 3: Water supply pipe 3a: Lower water supply Pipe 4: Steam exhaust port 5: Reduced iron agglomerate 6: Conveyor 7, 8: Reduced iron agglomerate discharge port 9, 10: Sludge discharge port 11: Sludge tank 12: Sludge conveyor 13: Rotary hearth furnace 14: Sludge recovery tank 15: casing 16: cooling device

Claims (3)

酸化鉄塊成化物を還元炉内で還元し還元鉄塊成化物として排出する還元鉄塊成化物製造設備において、排出される高温の還元鉄塊成化物を冷却するための装置であって、前記還元鉄塊成化物製造設備の排出口に高温の還元鉄塊成化物を搬送するコンベアを配設し、該コンベアの上方または上方および下方に複数のスプレーノズルを、該各スプレーノズルから連続的にスプレー水を噴出させてコンベア上の還元鉄塊成化物を間欠的に冷却すべく、還元鉄塊成化物の搬送方向に間隔をあけて配設し、前記噴出するスプレー水の搬送方向広がり幅Bとスプレーノズルの配設ピッチPとの関係を下記(1)式の範囲としたことを特徴とする還元鉄塊成化物の冷却装置。
1.2×B≦P≦10×B (1)
In a reduced iron agglomerate production facility that reduces iron oxide agglomerates in a reduction furnace and discharges them as reduced iron agglomerates, an apparatus for cooling the high-temperature reduced iron agglomerates discharged, A conveyor that conveys high-temperature reduced iron agglomerate is disposed at the discharge port of the reduced iron agglomerate production facility, and a plurality of spray nozzles are continuously provided from the respective spray nozzles above, above and below the conveyor. In order to intermittently cool the reduced iron agglomerate on the conveyor by spraying spray water, the reduced iron agglomerated material is arranged at intervals in the conveying direction of the reduced iron agglomerated material, and the width B in the conveying direction of the spray water to be ejected is arranged. And an arrangement pitch P of spray nozzles within the range of the following formula (1), a cooling apparatus for reduced iron agglomerates.
1.2 × B ≦ P ≦ 10 × B (1)
酸化鉄塊成化物を還元炉内で還元し還元鉄塊成化物として排出する還元鉄塊成化物製造設備において、排出される高温の還元鉄塊成化物を冷却するための装置であって、前記還元鉄塊成化物製造設備の排出口に高温の還元鉄塊成化物を搬送するコンベアを配設し、該コンベアの上方または上方および下方に複数のスプレーノズルを、該各スプレーノズルから連続的にスプレー水を噴出させてコンベア上の還元鉄塊成化物を間欠的に冷却すべく、還元鉄塊成化物の搬送方向に間隔をあけて配設し、前記噴出するスプレー水の搬送方向広がり幅Bとコンベア幅方向広がり幅Wとの関係を下記(2)式の範囲としたことを特徴とする還元鉄塊成化物の冷却装置。
W≧2×B (2)
In a reduced iron agglomerate production facility that reduces iron oxide agglomerates in a reduction furnace and discharges them as reduced iron agglomerates, an apparatus for cooling the high-temperature reduced iron agglomerates discharged, A conveyor that conveys high-temperature reduced iron agglomerate is disposed at the discharge port of the reduced iron agglomerate production facility, and a plurality of spray nozzles are continuously provided from the respective spray nozzles above, above and below the conveyor. In order to intermittently cool the reduced iron agglomerate on the conveyor by ejecting spray water, the reduced iron agglomerated material is arranged at intervals in the conveying direction of the reduced iron agglomerated material, and the spread width B of the spray water to be ejected in the conveying direction A reduced iron agglomerate cooling apparatus characterized in that the relationship between the width of the conveyor and the width W of the conveyor is in the range of the following formula (2).
W ≧ 2 × B (2)
前記スプレー水のコンベア幅方向広がり幅Wとコンベア幅CWとの関係を下記(3)式の範囲としたことを特徴とする請求項1または2に記載の還元鉄塊成化物の冷却装置。
CW≦W (3)
The reduced iron agglomerate cooling apparatus according to claim 1 or 2, wherein the relationship between the spread width W of the spray water in the conveyor width direction and the conveyor width CW is in the range of the following formula (3).
CW ≦ W (3)
JP2002225233A 2001-09-19 2002-08-01 Cooling device for reduced iron agglomerates Expired - Fee Related JP4027744B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002225233A JP4027744B2 (en) 2001-09-19 2002-08-01 Cooling device for reduced iron agglomerates
KR1020047004004A KR100649732B1 (en) 2001-09-19 2002-09-19 Reduced iron mass cooling method and cooling device
CNB028184661A CN100455677C (en) 2001-09-19 2002-09-19 Reduced iron mass cooling method and cooling device
EP02772866A EP1445335A4 (en) 2001-09-19 2002-09-19 Reduced iron mass cooling method and cooling device
PCT/JP2002/009627 WO2003027333A1 (en) 2001-09-19 2002-09-19 Reduced iron mass cooling method and cooling device
US10/489,996 US7618476B2 (en) 2001-09-19 2002-09-19 Method and apparatus for cooling reduced-iron agglomerate
TW091121469A TW546384B (en) 2001-09-19 2002-09-19 A method of, and an apparatus for, cooling a reduced iron ingot
EP09161067A EP2100973A1 (en) 2001-09-19 2002-09-19 Method and apparatus for cooling reduced-iron agglomerate
US11/890,133 US20070296127A1 (en) 2001-09-19 2007-08-02 Method and apparatus for cooling reduced-iron agglomerate

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001285978 2001-09-19
JP2001-285978 2001-09-19
JP2002225233A JP4027744B2 (en) 2001-09-19 2002-08-01 Cooling device for reduced iron agglomerates

Publications (2)

Publication Number Publication Date
JP2003166788A JP2003166788A (en) 2003-06-13
JP4027744B2 true JP4027744B2 (en) 2007-12-26

Family

ID=26622549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002225233A Expired - Fee Related JP4027744B2 (en) 2001-09-19 2002-08-01 Cooling device for reduced iron agglomerates

Country Status (1)

Country Link
JP (1) JP4027744B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766806B2 (en) * 2001-09-27 2011-09-07 新日鉄エンジニアリング株式会社 Method for cooling reduced iron agglomerates
JP4860852B2 (en) * 2001-09-27 2012-01-25 新日鉄エンジニアリング株式会社 Cooling method for reduced iron agglomerates.
JP4783871B2 (en) * 2011-05-27 2011-09-28 新日鉄エンジニアリング株式会社 Cooling device for reduced iron agglomerates
JP6617587B2 (en) * 2016-02-01 2019-12-11 住友金属鉱山株式会社 Conveyor for sinter transport
KR102390012B1 (en) * 2020-06-09 2022-04-28 제일산기 주식회사 The cooling apparatus of hot briquetted iron

Also Published As

Publication number Publication date
JP2003166788A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US20070296127A1 (en) Method and apparatus for cooling reduced-iron agglomerate
AU720827B2 (en) Method and system for cooling strip material
JP4027744B2 (en) Cooling device for reduced iron agglomerates
CN107335518A (en) A kind of microwave ore treatment method and device
JP4766806B2 (en) Method for cooling reduced iron agglomerates
JPH089582Y2 (en) Frozen grain production equipment
JP4783871B2 (en) Cooling device for reduced iron agglomerates
JP4860852B2 (en) Cooling method for reduced iron agglomerates.
CN212457552U (en) Rice cooling device
CN210602700U (en) Drying device of pesticide granules
JP2004162167A (en) Cooling unit for steel strip
JP2010138464A (en) Method for manufacturing reduced-iron using rotary hearth type reducing furnace and apparatus for cooling reduced-iron pellet
JP7119962B2 (en) Sinter cooling device and method
JPH06262243A (en) Scale generation preventing method in hot rolling steel plate
KR100959006B1 (en) Ingredient deflection decrease equipment for cast metal pin iron and the decrease method thereof
JPS5848612B2 (en) Steel cooling method
JPH0742523B2 (en) Method and apparatus for cooling high temperature reduced pellets
CN112877532A (en) Pipe heat treatment process
JP4557158B2 (en) Manufacturing method of polyolefin resin-coated steel pipe with excellent surface appearance
JP2000273667A (en) Apparatus for pickling metallic ball
KR100918639B1 (en) The method for cooling wires using wake vane during producing wires
JPS6333110Y2 (en)
KR101220491B1 (en) Apparatus for preventing yellowing of ahss
JPH0255482B2 (en)
JPS58193326A (en) Apparatus for direct heat treatment of steel wire material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4027744

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees