JP2004162167A - Cooling unit for steel strip - Google Patents

Cooling unit for steel strip Download PDF

Info

Publication number
JP2004162167A
JP2004162167A JP2003172695A JP2003172695A JP2004162167A JP 2004162167 A JP2004162167 A JP 2004162167A JP 2003172695 A JP2003172695 A JP 2003172695A JP 2003172695 A JP2003172695 A JP 2003172695A JP 2004162167 A JP2004162167 A JP 2004162167A
Authority
JP
Japan
Prior art keywords
nozzle
cooling
steel strip
cooling device
cooling box
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003172695A
Other languages
Japanese (ja)
Other versions
JP4331982B2 (en
Inventor
Yasuo Matsuura
泰夫 松浦
Masakuni Taguchi
昌邦 田ロ
Hirotoshi Konishi
弘敏 小西
Hiroshi Noda
宏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003172695A priority Critical patent/JP4331982B2/en
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to PCT/JP2003/011522 priority patent/WO2004029305A1/en
Priority to AU2003258836A priority patent/AU2003258836A1/en
Priority to BRPI0314758-4A priority patent/BR0314758B1/en
Priority to KR1020057005321A priority patent/KR100664002B1/en
Priority to EP03798394A priority patent/EP1549776B1/en
Priority to CA2500271A priority patent/CA2500271C/en
Priority to DE60310106T priority patent/DE60310106T2/en
Publication of JP2004162167A publication Critical patent/JP2004162167A/en
Application granted granted Critical
Publication of JP4331982B2 publication Critical patent/JP4331982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Nozzles (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a resistance coefficient of a nozzle part and to realize the compactness of a cooling facility in the cooling unit desired to be high cooling speed. <P>SOLUTION: In the cooling unit for steel strip, with which the moving steel strip is cooled by projecting a plurality of nozzles on the surface of a cooling box while holding the distance of 50-100mm from the tip part of the nozzle to the steel strip surface and spouting cooling medium from these nozzles, D/d of the spouted nozzle is made to be 1.5≤D/d ≤3.0. Wherein, d is the inner diameter at the tip part of the nozzle (steel strip side) and D is the inner diameter at the base part of the nozzle (cooling box side). <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、鋼帯の連続焼鈍設備、連続式溶融亜鉛めっき設備、カラーコーティングラインおよびステンレス酸洗焼鈍ライン等において、連続して走行する鋼帯を冷却する装置に関するものである。
【0002】
【従来の技術】
連続焼鈍炉設備は良く知られているように、鋼帯を連続的に加熱・均熱および冷却し、必要により過時効処理する工程を備えている。ところで、鋼帯の特性を所望のものにするためには、加熱温度や均熱時間のほかに、その鋼帯を均一急速冷却することが重要である。鋼帯の冷却方法として、現状各種の冷却媒体が採用されており、この冷媒の選択によって鋼帯の冷却速度も異なってくる。
【0003】
このうち、水を冷媒として用いる場合、かなり高い冷却速度が得られ超急冷域までの冷却が司能であるが、焼き入れ歪によってクーリングバックルといわれる鋼帯の形状変化が発生することが最大の難点である。また、水との接触により鋼帯の表面に酸化膜が生じ、これを除去するための設備が別に必要となり、経済的に有利な設備とはいえない。
【0004】
この問題を解決するため、ロールの内部に水またはその他の冷却媒体を通し、この冷却されたロール表面に鋼帯を接触させて冷却するロール冷却方法がある。
この方法は次のような問題がある。すなわち、連続焼鈍炉を通過する鋼帯はすべて平坦度を保っているとは限らない。従って、冷却ロールに接する際に、局部的に非接触となる場合があり、この非接触により鋼帯の幅方向の冷却が不均一となり、鋼帯の形状が変形する原因となる。そのため、冷却ロールヘの接触前に鋼帯の平坦化を行う手段が必要となり、これが設備費をアップさせていた。
【0005】
別の冷却手段としてガスを冷媒とする冷却方法が実用化され、多くの実績を上げている。この方法は、前記した水冷却やロール冷却に比べて冷却速度が遅いが、比較的鋼帯の幅方向の均一な冷却が可能である。このガス冷却の最大の難点である、冷却速度を上げるため、ガスを噴射するノズルの先端を鋼帯に極力近づけて熱伝達率を上げて冷却速度を上げるものや、冷却媒体として水素ガスの濃度を上げて熱伝達率を上げたものを採用したものが開示されている。
【0006】
噴射するノズルの先端を鋼帯に近接させて熱伝達率を上げるものとして、特許文献1がある。この技術は、ノズルの先端と鋼帯との距離を小さくして効率よい冷却を可能にしたものである。具体的には、冷却ガス室に設けられた冷却ガス室表面から突出する突出ノズルの長さを100mm−Z以上とし、突出ノズルから噴射されたガスが鋼帯に当たって背部に逃げる部分が設けられている。これにより、噴射されたガスが鋼帯表面に滞留することを減少し、鋼帯の幅方向における冷却均一性を向上させることが開示されている。なお、Zは突出ノズル先端と鋼帯との距離を示す。
【0007】
【特許文献1】
特公平2−16375号公報
【0008】
また、ノズルの突出高さを50mm−Zから200mm−Zまで種々変えて熱伝達係数の最適点を導き出す実験を行っている。そして、連続焼鈍炉の冷却帯に用いられる冷却装置として、この実験から効率的冷却能力を持つ冷却装置を提案している。この冷却装置により、通常100kcal/m2 h℃であった熱伝達係数が400kca1/m2 h℃まで上げることが出来るようになった。
【0009】
しかし、さらなる冷却速度の向上が望まれるようになり、通常の冷却媒体としてN2 :95%程度+H2 :5%程度の雰囲気ガスを循環させる既存の冷却装置では限界があった。
この問題を解決するため、冷却媒体として水素ガスを使用することが考えられた。水素ガスを採用することにより冷却能力が向上することは、古くから知られていたが、水素ガスの危険性から実機への適用はされていなかった。
【0010】
この水素ガス濃度を上げて急速冷却する技術が特許文献2に開示されている。この技術は急速冷却帯において、冷却ガスの水素濃度を30%〜60%、その吹き付け速度を100m/秒〜150m/秒として鋼帯に吹きつけて冷却速度である。このように、水素ガスを採用するための具体的技術が開発され、実機化されようとしている。
【0011】
【特許文献2】
特開平9−235626号公報
【0012】
【発明が解決しようとする課題】
通常、N2 ガス主体の雰囲気ガスによる冷却からH2 濃度を上げて、かつ、ノズルからの吐出流速を100m/秒〜150m/秒必要なため、鋼帯に吹き付けられるガスの量も多量のガスが必要となる。また、100m/秒〜150m/秒をノズルから噴出させるための圧力も必要となる。一般にこれらの冷却装置は、鋼帯の吹きつけた冷却媒体をダクトを介して循環させ、再度吹き付ける循環式冷却装置を採用している。この循環式冷却装置では、鋼帯に吹き付けた冷却媒体が炉内に排出され、炉体に設けた吸い込みダクトとから循環ブロワによって吸引される。循環ブロワの前には、鋼帯の吹き付けて温度上昇した冷却媒体を吹き付け温度に冷却する熱交換機が設置されており、これらの装置により循環を行いながら鋼帯を冷却するようになっている。
【0013】
これら循環装置での必要圧力はノズルからの噴出する際に必要な圧力が一番高く、このノズル部の圧損を極力低くすることが望まれていた。
【0014】
【課題を解決するための手段】
上記課題を解決するため、本発明は、
(1)冷却箱の表面に、ノズルの先端から鋼帯面までの距離を50〜100mmに保持する複数のノズルを突出させ、このノズルから冷媒を噴出させて走行する鋼帯を冷却する鋼帯の冷却装置において、吐出するノズルのD/dを1.5≦D/d≦3.0としたことを特徴とするる鋼帯の冷却装置。
ここで、dはノズル先端内径(鋼帯側)
Dはノズル基部内径(冷却箱側)
【0015】
(2)前記ノズルは、ノズル基部を冷却箱に設けた取付け孔に拡管接合により固定してなることを特徴とする前記(1)記載の鋼帯の冷却装置。
【0016】
(3)前記冷却箱に設けるノズル取付け用孔径は、[ノズル全長L−10mm(ノズル基部から先端側に10mm)±3mm]の範囲のところを孔径とすることを特徴とする前記(1)または(2)に記載の鋼帯の冷却装置。
【0017】
(4)前記ノズルは、そのノズル基部が冷却箱内面より突出しないように取り付けたことを特徴とする前記(1)〜(3)のいずれかに記載の鋼帯の冷却装置。
【0018】
(5)冷媒として、N2 およびH2 その他の不活性ガスからなる混合ガスとし、H2 濃度を0〜100%残りをNまたはその他の不活性ガスとしたことを特徴とする前記(1)記載の鋼帯の冷却装置。
【0019】
【発明の実施の態様】
以下に本発明を図に示す実施例に基づいて詳細に説明する。
図1は本発明を適用した連続焼鈍設備の冷却装置の側部断面図、図2は図1のA−A矢視図、図3は本発明のノズルの詳細図、図4は本発明のノズルの取り付け要領を示す図、図5はノズルの抵抗係数を示すグラフ、図6は連続式塗装ラインに本発明の冷却装置を適用した概略図、図7、図8は連続溶融亜鉛めっき設備のめっき後を鋼帯を冷却する冷却装置に本発明例を適用した概略図である。
【0020】
図1において、鋼帯12を搬送する上下ロール9,11間に設置され、このロール間に、ガスを噴出する冷却装置2の一対を鋼帯12の面に対向して設け、この冷却装置2を鋼帯12の流れに沿って複数段配置している。そしてこの冷却装置2の上下間には鋼帯のバタツキを防止する押さえロール10を鋼帯12を挟持するように配置している。
【0021】
図2は、図1のA−A矢視図であり、冷却装置2により鋼帯12に吹き付けられたガスは循環系を介して冷却ガスとして再利用される。すなわち、吹き付けられたガスは、炉体1に設けられたガス吸い込み口から吸い込まれ、吸引側ダクト5、熱交換機6、循環ブロワ7および吐出側ダクト8を介し、さらに、炉体内の冷却箱3に連結された循環系により、冷却箱3の鋼帯12面側に設けられたノズルから鋼帯12に向けて再び噴出される。このように、鋼帯12に吹き付けられた炉内のガスを循環して使用する。
【0022】
冷却装置2は、冷却箱3とこの冷却箱3の鋼帯12面側に設けた突出ノズル4からなっている。この突出ノズル4は基部B側ノズル内径Dと先端A側ノズル内径dの比(D/d)が1.5〜3.0となるようなノズルを選定し、配置している。また、先端ノズルの開口面積が冷却箱表面積の2〜4%となるように配置している。
【0023】
図3には、本発明のノズル形状を示し、Dはノズル基部B側の内径(ここで、ノズル基部B側とは冷却箱3に取付け側をいう)、D0 はノズル基部B側の外径で、dはノズル先端A側の内径、Lはノズルの全長、DNはノズル基部Bを機転として、(ノズル全長L)−(10mm±3mm)の範囲、言い換えると、ノズル基部B側より先端B側10mm±3mmの範囲におけるノズルの外径を差している。ノズル4は円錐形状となるため、SUS(ステンレス鋼)のプレートを板巻きして製作した。ノズルは板巻きのほか、引き抜き鋼管や削り出し、また、鋳造で製作することも可能である。ノズル全長Lは200mmとしてD/dが種々のものを製作して実験を行った。
【0024】
図4には、本発明のノズルを冷却箱3に取り付けるときの状況を示し、冷却箱3の鋼帯12方向の面にDN径の孔を設ける。孔の数は開口面積が冷却箱表面積の2〜4%なるように設けている。
DN径は、図3に示すノズル基部Bから先端部B側へ10mm±3mmの範囲におけるノズル径とした。
【0025】
詳述すると、まず、冷却箱3の表面にDN径の孔を開ける。この孔に基部Bの外径D0 ノズルを差込み、ポンチ(図示せず)にて図4に示すように冷却箱3に打ち込む。ノズル4打ち込む際、図4のようにノズルの基部Bが冷却箱の内面に突出しないように打ち込む。図4ではノズル基部Bが冷却箱3にその面内より10mmを残して装入されるように打ち込んでいる。そして、打ち込まれたノズル4の基部B側より拡管器により基部側ノズル内径Dを拡管し、冷却箱3に設けた孔DN径に圧着する。拡管機により圧着することで、従来、溶接で取り付けていた場合寄りもノズル4の取り付け精度は向上する。
なお、DN径の位置を上記のように限定したのは、上限以上(10mm+3mmを超える)とすると、冷却箱への挿入が困難となり、また下限より少ないと密着性が劣ることになる。
図4ではノズルの抵抗係数を減じるために冷却箱3の内表面からノズルの基部側の先端を埋設したが、抵抗係数を減じるものであれば、冷却箱3の内表面に合わせることも可能である。
【0026】
このように、製作したノズルを実験装置により圧力損失を求め、それぞれの抵抗係数を算出した。その結果を図5に示す。D/d=1.0、すなわち、従来のストレートノズルに比べD/d=1.5〜3.0のときが抵抗係数が小さく、2.0近傍が最も小さいことが判明した。このように、従来のストレートノズルに比ベノズルの抵抗係数が30%程度小さくなる。
【0027】
図6に連続式塗装ラインの塗装および乾燥・焼付け炉の配置を示す。鋼帯S1は、コーター設備14にて表面に塗装をコーティングされ、乾燥・焼付け炉15において所定の温度パターンに沿って乾燥・焼付けされる。引き続いて冷却装置16で常温近くまで冷却される。従来、この冷却装置16は前段を空冷、後段を水冷することによって、冷却前段での塗料表面品質確保と後段での急速冷却を実現していた。冷却設備16に本発明によるノズルを用いた冷却設備とすることで、水冷を用いることなく冷却効率のよい設備構成とすることができる。
【0028】
図7は、連続式溶融亜鉛めっき設備のメッキ合金化処理後の冷却設備に本発明によるノズルを用いた冷却設備を適用する例を示す。鋼帯S2 はターンダウンセクション17内に設けられたターンダウンロール18を経てメッキポット19に導入される。シンクロール20を介して垂直に引き上げられ、メッキ機21にて所定のメッキ厚みに調整された後、合金化加熱装置22で合金化処理温度に加熱され、引き続き保持炉23で保熱される。合金化を完了した鋼帯S2 は冷却装置24及びダウンパスに設けられた冷却装置27にて冷却され、最終冷却である浸漬冷却装置28へ送られる。本発明よるノズルを用いた冷却設備を冷却装置24及び冷却装置27へ適用することで、冷却効率を高め合金化炉全体を低層化することが可能となり、また、合金化処理後の鋼帯S2 を急速冷却することで合金層の健全化を計ることが可能となる。
【0029】
図8は、同じく連続式溶融亜鉛めっき設備のメッキ後の冷却設備に本発明によるテーパー型円孔ノズルを用いた冷却設備を適用する例を示す。鋼帯S2 は、メッキ機21にて所定のメッキ厚みに調整された後、冷却装置24及びダウンパスに設けられた冷却装置27にて冷却され、最終冷却である浸漬冷却装置28へ送られる。本発明よるノズルを用いた冷却設備を冷却装置24及び27へ適用することで、冷却効率を高め合金化炉全体を低層化することが可能となる。
【0030】
図9は、ステンレス鋼帯の連続焼鈍酸洗設備の一例を示す。ステンレス鋼帯S3 は、加熱帯29において所定の焼鈍温度に加熱・均熱された後、冷却帯30において所定冷却速度で終点温度まで冷却される。引き続いて脱スケール装置31にてステンレス鋼帯S3 の上下面に配設したロール群によってステンレス鋼帯表面に生成したスケールが除去される。その後、酸洗槽32に導入される。冷却設備30に本発明によるノズルを用いた冷却設備を適用することで、冷却効率を高めコンパクトな装置構成とすることができる。
【0031】
【発明の効果】
このように、高冷却速度を得るため、益々、ノズルからの噴出速度を速くし、ノズルの抵抗係数を小さくして、循環設備をコンパクトにすることが最重要課題であり、これに対する本発明の効果は非常に大きい。また、従来の溶接構造から拡管機による圧着構造としたため、溶接によるノズルの歪も解消し、製作精度が向上する。
【図面の簡単な説明】
【図1】本発明を適用した連続焼鈍設備の冷却装置の側部断面図。
【図2】図1のA−A矢視図。
【図3】本発明のノズルの詳細図。
【図4】本発明のノズルの取り付け要領を示す図。
【図5】ノズルの抵抗係数を示すグラフ。
【図6】本発明を適用した連続式塗装ラインにの概略図。
【図7】本発明を適用した連続式溶融亜鉛メッキ設備の概略図。
【図8】本発明を適用した別の連続式溶融亜鉛メッキ設備の概略図。
【図9】本発明を適用したステンレス連続式焼鈍酸洗設備の概略図。
【符号の説明】
1:冷却帯
2:冷却装置
3:冷却箱
4:ノズル
5:吸引側ダクト
6:熱交換機
7:循環ブロワ
8:吐出側ダクト
9:トップロール
10:押さえロール
11:ボトムロール
12:鋼帯
13:仕切り壁
14:コーター設備
15:乾燥・焼付け炉
16:冷却装置
17:ターンダウンセクション
18:ターンダウンロール
19:メッキポット
20:シンクロール
21:メッキ槽
22:加熱装置
23:保熱炉
24:冷却装置
25:トップロール
26:トップロール
27:冷却装置
28:浸漬冷却装置
29:加熱帯
30:冷却帯
31:脱スケール装置
32:酸洗槽
A:ノズル先端
B:ノズル基端
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for cooling a continuously running steel strip, for example, in a continuous annealing facility for steel strip, a continuous hot-dip galvanizing facility, a color coating line, and a stainless pickling annealing line.
[0002]
[Prior art]
As is well known, continuous annealing furnace equipment includes a step of continuously heating, soaking and cooling a steel strip and, if necessary, overaging. Incidentally, in order to obtain the desired properties of the steel strip, it is important to uniformly and rapidly cool the steel strip in addition to the heating temperature and the soaking time. Various cooling media are currently used as a method for cooling the steel strip, and the cooling rate of the steel strip varies depending on the selection of the refrigerant.
[0003]
Of these, when water is used as the refrigerant, a considerably high cooling rate is obtained and cooling to the super-quenched region is the function, but the biggest change is that the shape change of the steel strip called cooling buckle due to quenching distortion occurs. It is a difficult point. Further, an oxide film is formed on the surface of the steel strip due to contact with water, and a separate device for removing the oxide film is required, which is not economically advantageous.
[0004]
In order to solve this problem, there is a roll cooling method in which water or other cooling medium is passed through the inside of the roll and a steel strip is brought into contact with the cooled roll surface to cool the roll.
This method has the following problems. That is, not all steel strips passing through the continuous annealing furnace maintain flatness. Therefore, when the steel strip comes into contact with the cooling roll, it may be locally non-contacted, and the non-contact may cause uneven cooling in the width direction of the steel strip, which may cause deformation of the shape of the steel strip. Therefore, means for flattening the steel strip before contact with the cooling roll is required, which has increased equipment costs.
[0005]
As another cooling means, a cooling method using gas as a refrigerant has been put to practical use and has achieved many achievements. This method has a lower cooling rate than the water cooling or the roll cooling described above, but can relatively uniformly cool the steel strip in the width direction. In order to increase the cooling rate, which is the biggest difficulty in gas cooling, the tip of the nozzle that injects the gas is brought as close as possible to the steel strip to increase the heat transfer coefficient and increase the cooling rate, or the concentration of hydrogen gas as a cooling medium Which employs a material having a higher heat transfer coefficient.
[0006]
Patent Document 1 discloses a technique for increasing the heat transfer coefficient by bringing the tip of a nozzle for jetting close to a steel strip. This technique enables efficient cooling by reducing the distance between the tip of the nozzle and the steel strip. Specifically, the length of the protruding nozzle projecting from the surface of the cooling gas chamber provided in the cooling gas chamber is set to 100 mm-Z or more, and a portion where the gas injected from the protruding nozzle hits the steel strip and escapes to the back is provided. I have. This discloses that the injected gas is prevented from staying on the steel strip surface, and the cooling uniformity in the width direction of the steel strip is improved. Z indicates the distance between the tip of the protruding nozzle and the steel strip.
[0007]
[Patent Document 1]
Japanese Patent Publication No. 2-16375
In addition, an experiment is conducted in which the protrusion height of the nozzle is variously changed from 50 mm-Z to 200 mm-Z to derive the optimum point of the heat transfer coefficient. As a cooling device used in a cooling zone of a continuous annealing furnace, a cooling device having an efficient cooling capacity has been proposed from this experiment. The cooling device, the heat transfer coefficient was usually 100kcal / m 2 h ℃ has become possible to raise up 400kca1 / m 2 h ℃.
[0009]
However, it has been desired to further improve the cooling rate, and there has been a limit to the existing cooling device that circulates an atmosphere gas of about 95% N 2 + 5% H 2 as a normal cooling medium.
In order to solve this problem, it has been considered to use hydrogen gas as a cooling medium. It has been known for a long time that the cooling capacity is improved by employing hydrogen gas, but it has not been applied to actual machines due to the danger of hydrogen gas.
[0010]
Patent Document 2 discloses a technique for rapidly cooling by increasing the hydrogen gas concentration. According to this technique, in a rapid cooling zone, the cooling gas is blown onto a steel strip at a hydrogen concentration of 30% to 60% and a blowing speed of 100 m / sec to 150 m / sec. As described above, a specific technology for adopting hydrogen gas has been developed and is being commercialized.
[0011]
[Patent Document 2]
JP-A-9-235626
[Problems to be solved by the invention]
Usually, since the H 2 concentration is increased from the cooling by the atmosphere gas mainly composed of N 2 gas and the discharge flow rate from the nozzle is required to be 100 m / sec to 150 m / sec, a large amount of gas is blown to the steel strip. Is required. Further, a pressure for ejecting 100 m / sec to 150 m / sec from the nozzle is also required. In general, these cooling devices employ a circulation type cooling device in which a cooling medium blown by a steel strip is circulated through a duct and then blown again. In this circulation type cooling device, the cooling medium blown to the steel strip is discharged into the furnace, and is sucked by a circulation blower from a suction duct provided in the furnace body. In front of the circulating blower, a heat exchanger that cools the cooling medium whose temperature has been raised by blowing the steel strip to the blowing temperature is installed, and the steel strip is cooled while circulating by these devices.
[0013]
The required pressure in these circulating devices is the highest required when ejecting from the nozzle, and it has been desired to reduce the pressure loss of this nozzle as much as possible.
[0014]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides:
(1) On the surface of the cooling box, a plurality of nozzles projecting from the tip of the nozzle to the steel strip surface at a distance of 50 to 100 mm are projected, and a coolant is jetted from the nozzle to cool the running steel strip. 3. The cooling device for a steel strip according to claim 1, wherein D / d of the nozzle to be discharged is 1.5 ≦ D / d ≦ 3.0.
Where d is the inner diameter of the nozzle tip (steel strip side)
D is the inner diameter of the nozzle base (cooling box side)
[0015]
(2) The cooling device for a steel strip according to (1), wherein the nozzle has a nozzle base fixed to a mounting hole provided in a cooling box by pipe joining.
[0016]
(3) The nozzle according to (1), wherein the diameter of the nozzle mounting hole provided in the cooling box is within a range of [nozzle length L-10 mm (10 mm from the nozzle base to the tip side) ± 3 mm]. The steel strip cooling device according to (2).
[0017]
(4) The cooling device for a steel strip according to any one of (1) to (3), wherein the nozzle is mounted such that the nozzle base does not protrude from the inner surface of the cooling box.
[0018]
(5) The above-mentioned (1), wherein the refrigerant is a mixed gas composed of N 2 and H 2 and other inert gases, and the remaining H 2 concentration is 0 to 100%, and N or another inert gas is used. A cooling device for the steel strip according to the above.
[0019]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Hereinafter, the present invention will be described in detail based on an embodiment shown in the drawings.
FIG. 1 is a side sectional view of a cooling device of a continuous annealing equipment to which the present invention is applied, FIG. 2 is a view taken along a line AA in FIG. 1, FIG. 3 is a detailed view of a nozzle of the present invention, and FIG. FIG. 5 is a graph showing the resistance coefficient of the nozzle, FIG. 6 is a schematic diagram showing the application of the cooling device of the present invention to a continuous coating line, and FIGS. It is the schematic which applied the example of this invention to the cooling device which cools a steel strip after plating.
[0020]
In FIG. 1, a pair of cooling devices 2 that are installed between upper and lower rolls 9 and 11 that convey a steel strip 12 and that eject gas are provided between the rolls so as to face the surface of the steel strip 12. Are arranged in a plurality of stages along the flow of the steel strip 12. A press roll 10 for preventing the steel strip from flapping is arranged between the upper and lower sides of the cooling device 2 so as to sandwich the steel strip 12.
[0021]
FIG. 2 is a view taken in the direction of arrows AA in FIG. 1. The gas blown to the steel strip 12 by the cooling device 2 is reused as a cooling gas through a circulation system. That is, the blown gas is sucked from a gas suction port provided in the furnace body 1, passes through the suction side duct 5, the heat exchanger 6, the circulation blower 7, and the discharge side duct 8, and further passes through the cooling box 3 in the furnace body. Is sprayed again from the nozzle provided on the steel strip 12 side of the cooling box 3 toward the steel strip 12 by the circulation system connected to the cooling box 3. Thus, the gas in the furnace sprayed on the steel strip 12 is circulated and used.
[0022]
The cooling device 2 includes a cooling box 3 and a protruding nozzle 4 provided on the steel strip 12 side of the cooling box 3. The protruding nozzle 4 is selected and arranged so that the ratio (D / d) of the base B side nozzle inner diameter D to the tip A side nozzle inner diameter d is 1.5 to 3.0. Further, the tip nozzle is arranged so that the opening area thereof is 2 to 4% of the surface area of the cooling box.
[0023]
FIG. 3 shows the nozzle shape of the present invention, where D is the inside diameter of the nozzle base B side (here, the nozzle base B side is the side attached to the cooling box 3), and D0 is the outside diameter of the nozzle base B side. Where d is the inner diameter of the nozzle tip A side, L is the total length of the nozzle, DN is the range of (nozzle full length L) − (10 mm ± 3 mm) with the nozzle base B as tact, in other words, the tip B from the nozzle base B side. The outside diameter of the nozzle in the range of 10 mm ± 3 mm on the side is indicated. Since the nozzle 4 has a conical shape, the nozzle 4 was manufactured by winding a plate of SUS (stainless steel). The nozzle can be manufactured by drawing a steel pipe, shaving, or casting in addition to plate winding. An experiment was conducted by manufacturing various nozzles having a total length L of 200 mm and various D / d.
[0024]
FIG. 4 shows a state in which the nozzle of the present invention is attached to the cooling box 3, and a hole having a DN diameter is provided on the surface of the cooling box 3 in the direction of the steel strip 12. The number of holes is set such that the opening area is 2 to 4% of the surface area of the cooling box.
The DN diameter was a nozzle diameter in a range of 10 mm ± 3 mm from the nozzle base B to the tip B shown in FIG.
[0025]
More specifically, first, a hole having a DN diameter is formed in the surface of the cooling box 3. The outer diameter D0 nozzle of the base B is inserted into this hole, and is driven into the cooling box 3 with a punch (not shown) as shown in FIG. When the nozzle 4 is driven, it is driven so that the base B of the nozzle does not protrude from the inner surface of the cooling box as shown in FIG. In FIG. 4, the nozzle base B is driven so as to be inserted into the cooling box 3 while leaving 10 mm from the plane thereof. Then, the base side nozzle inner diameter D is expanded from the base B side of the driven nozzle 4 by a pipe expander, and is crimped to the hole DN provided in the cooling box 3. By crimping with a pipe expander, the mounting accuracy of the nozzle 4 is improved, even if it has been conventionally mounted by welding.
The reason for limiting the position of the DN diameter as described above is that if it is not less than the upper limit (exceeding 10 mm + 3 mm), it becomes difficult to insert it into the cooling box, and if it is less than the lower limit, the adhesion is inferior.
In FIG. 4, the tip on the base side of the nozzle is buried from the inner surface of the cooling box 3 in order to reduce the resistance coefficient of the nozzle. However, if the resistance coefficient is reduced, it can be adjusted to the inner surface of the cooling box 3. is there.
[0026]
The pressure loss of the manufactured nozzle was determined by an experimental device, and the respective resistance coefficients were calculated. The result is shown in FIG. It was found that when D / d = 1.0, that is, when D / d = 1.5 to 3.0 as compared with the conventional straight nozzle, the resistance coefficient was small, and the resistance coefficient near 2.0 was the smallest. As described above, the resistance coefficient of the conventional nozzle is about 30% smaller than that of the conventional straight nozzle.
[0027]
FIG. 6 shows the arrangement of the coating and drying / baking furnaces in the continuous coating line. The surface of the steel strip S1 is coated with a coating by a coater facility 14, and is dried and baked in a drying and baking furnace 15 along a predetermined temperature pattern. Then, it is cooled by the cooling device 16 to near normal temperature. Conventionally, this cooling device 16 has achieved the surface quality of the paint before cooling and the rapid cooling at the subsequent stage by cooling the former stage with air and the latter stage with water. By using a cooling facility using the nozzle according to the present invention as the cooling facility 16, a facility with high cooling efficiency can be obtained without using water cooling.
[0028]
FIG. 7 shows an example in which a cooling facility using a nozzle according to the present invention is applied to a cooling facility after a plating alloying process in a continuous galvanizing facility. The steel strip S2 is introduced into a plating pot 19 through a turndown roll 18 provided in a turndown section 17. After being vertically pulled up via the sink roll 20 and adjusted to a predetermined plating thickness by the plating machine 21, it is heated to the alloying treatment temperature by the alloying heating device 22, and subsequently kept in the holding furnace 23. The alloyed steel strip S2 is cooled by the cooling device 24 and the cooling device 27 provided in the down path, and is sent to the immersion cooling device 28 which is the final cooling. By applying the cooling equipment using the nozzle according to the present invention to the cooling devices 24 and 27, the cooling efficiency can be increased and the entire alloying furnace can be lowered, and the steel strip S2 after the alloying process can be used. It is possible to measure the soundness of the alloy layer by rapidly cooling the alloy layer.
[0029]
FIG. 8 shows an example in which a cooling facility using a tapered circular nozzle according to the present invention is applied to a cooling facility after plating of a continuous galvanizing facility. After the steel strip S2 is adjusted to a predetermined plating thickness by the plating machine 21, the steel strip S2 is cooled by the cooling device 24 and the cooling device 27 provided in the down path, and sent to the immersion cooling device 28 which is the final cooling. By applying the cooling equipment using the nozzle according to the present invention to the cooling devices 24 and 27, the cooling efficiency can be increased and the entire alloying furnace can be lowered.
[0030]
FIG. 9 shows an example of a continuous annealing pickling facility for a stainless steel strip. The stainless steel strip S3 is heated and soaked at a predetermined annealing temperature in the heating zone 29, and then cooled in the cooling zone 30 at a predetermined cooling rate to the end point temperature. Subsequently, the scale formed on the surface of the stainless steel strip is removed by the rolls disposed on the upper and lower surfaces of the stainless steel strip S3 in the descaling device 31. Then, it is introduced into the pickling tank 32. By applying the cooling facility using the nozzle according to the present invention to the cooling facility 30, the cooling efficiency can be increased and a compact device configuration can be achieved.
[0031]
【The invention's effect】
As described above, in order to obtain a high cooling rate, it is more important to increase the ejection speed from the nozzle, to reduce the resistance coefficient of the nozzle, and to make the circulating equipment compact. The effect is very large. In addition, since the conventional welding structure is replaced with a crimping structure using a pipe expander, distortion of the nozzle due to welding is eliminated, and manufacturing accuracy is improved.
[Brief description of the drawings]
FIG. 1 is a side sectional view of a cooling device of a continuous annealing facility to which the present invention is applied.
FIG. 2 is a view taken in the direction of arrows AA in FIG. 1;
FIG. 3 is a detailed view of the nozzle of the present invention.
FIG. 4 is a view showing a procedure for mounting the nozzle of the present invention.
FIG. 5 is a graph showing a resistance coefficient of a nozzle.
FIG. 6 is a schematic view of a continuous coating line to which the present invention is applied.
FIG. 7 is a schematic diagram of a continuous galvanizing equipment to which the present invention is applied.
FIG. 8 is a schematic view of another continuous hot-dip galvanizing equipment to which the present invention is applied.
FIG. 9 is a schematic view of a stainless steel continuous annealing and pickling facility to which the present invention is applied.
[Explanation of symbols]
1: Cooling zone 2: Cooling device 3: Cooling box 4: Nozzle 5: Suction side duct 6: Heat exchanger 7: Circulating blower 8: Discharge side duct 9: Top roll 10: Holding roll 11: Bottom roll 12: Steel strip 13 : Partition wall 14: Coater equipment 15: Drying / baking furnace 16: Cooling device 17: Turndown section 18: Turndown roll 19: Plating pot 20: Sink roll 21: Plating tank 22: Heating device 23: Heat retention furnace 24: Cooling device 25: top roll 26: top roll 27: cooling device 28: immersion cooling device 29: heating zone 30: cooling zone 31: descaling device 32: pickling tank A: nozzle tip B: nozzle base

Claims (5)

冷却箱の表面に、ノズルの先端から鋼帯面までの距離を50〜100mmに保持する複数のノズルを突出させ、このノズルから冷媒を噴出させて走行する鋼帯を冷却する鋼帯の冷却装置において、吐出するノズルのD/dを1.5≦D/d≦3.0としたことを特徴とする鋼帯の冷却装置。
ここで、d:ノズル先端内径(鋼帯側)
D:ノズル基部内径(冷却箱側)
A plurality of nozzles that maintain a distance from the tip of the nozzle to the steel strip surface of 50 to 100 mm protruding from the surface of the cooling box, and a cooling device for the steel strip that cools the running steel strip by ejecting a coolant from the nozzle. , Wherein the D / d of the nozzle for discharging is set to 1.5 ≦ D / d ≦ 3.0.
Here, d: nozzle tip inner diameter (steel strip side)
D: Nozzle base inner diameter (cooling box side)
前記ノズルは、ノズル基部を冷却箱に設けた取付け孔に拡管接合により固定してなることを特徴とする請求項1記載の鋼帯の冷却装置。The steel strip cooling device according to claim 1, wherein the nozzle has a nozzle base fixed to a mounting hole provided in a cooling box by pipe joining. 前記冷却箱に設けるノズル取付け用孔径は、[ノズル全長L−10mm(ノズル基部から先端側に10mmの位置)±3mm]の範囲のところを孔径とすることを特徴とする請求項1または2に記載の鋼帯の冷却装置。The nozzle mounting hole diameter provided in the cooling box has a hole diameter in a range of [nozzle total length L-10 mm (position of 10 mm from the nozzle base to the tip side) ± 3 mm]. A cooling device for the steel strip according to the above. 前記ノズルは、そのノズル基部が冷却箱内面より突出しないように取り付けたことを特徴とする請求項1〜3のいずれかに記載の鋼帯の冷却装置。The steel strip cooling device according to any one of claims 1 to 3, wherein the nozzle is mounted such that the nozzle base does not protrude from the inner surface of the cooling box. 冷媒として、N2 およびH2 その他の不活性ガスからなる混合ガスとし、H2 濃度を0〜100%残りをN2 またはその他の不活性ガスとしたことを特徴とする請求項1に記載の鋼帯の冷却装置。2. The refrigerant according to claim 1, wherein the refrigerant is a mixed gas composed of N 2, H 2 and other inert gases, and the H 2 concentration is 0 to 100%, and the remainder is N 2 or other inert gases. 3. Steel strip cooling system.
JP2003172695A 2002-09-27 2003-06-17 Steel strip cooling device Expired - Fee Related JP4331982B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003172695A JP4331982B2 (en) 2002-09-27 2003-06-17 Steel strip cooling device
AU2003258836A AU2003258836A1 (en) 2002-09-27 2003-09-09 Cooling device for steel strip
BRPI0314758-4A BR0314758B1 (en) 2002-09-27 2003-09-09 steel strip cooling device.
KR1020057005321A KR100664002B1 (en) 2002-09-27 2003-09-09 Cooling device for steel strip
PCT/JP2003/011522 WO2004029305A1 (en) 2002-09-27 2003-09-09 Cooling device for steel strip
EP03798394A EP1549776B1 (en) 2002-09-27 2003-09-09 Cooling device for steel strip
CA2500271A CA2500271C (en) 2002-09-27 2003-09-09 Cooling device for steel strip
DE60310106T DE60310106T2 (en) 2002-09-27 2003-09-09 COOLING DEVICE FOR STEEL STRIP

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002284302 2002-09-27
JP2003172695A JP4331982B2 (en) 2002-09-27 2003-06-17 Steel strip cooling device

Publications (2)

Publication Number Publication Date
JP2004162167A true JP2004162167A (en) 2004-06-10
JP4331982B2 JP4331982B2 (en) 2009-09-16

Family

ID=32044646

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003172695A Expired - Fee Related JP4331982B2 (en) 2002-09-27 2003-06-17 Steel strip cooling device

Country Status (8)

Country Link
EP (1) EP1549776B1 (en)
JP (1) JP4331982B2 (en)
KR (1) KR100664002B1 (en)
AU (1) AU2003258836A1 (en)
BR (1) BR0314758B1 (en)
CA (1) CA2500271C (en)
DE (1) DE60310106T2 (en)
WO (1) WO2004029305A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274379A (en) * 2005-03-30 2006-10-12 Nippon Steel Corp Apparatus for cooling steel strip
JP2007277668A (en) * 2006-04-10 2007-10-25 Nippon Steel Corp Steel strip cooling apparatus
KR20210097677A (en) * 2019-08-05 2021-08-09 주식회사 포스코 Apparatus for damping vibration of strip

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT502239B1 (en) * 2005-08-01 2007-07-15 Ebner Ind Ofenbau Device for cooling metal strip, e.g. steel strip after heat treatment, comprises groups of nozzles arranged in parallel nozzle strips with flow channels between them for removing cooling gas deflected from the metal strip
US7968046B2 (en) 2005-08-01 2011-06-28 Ebner Industrieofenbau Ges.M.B.H Apparatus for cooling a metal strip
FR2919877B1 (en) * 2007-08-10 2009-10-09 Siemens Vai Metals Tech Sas COOLING DEVICE AFTER GALVANIZING A BANDED PRODUCT
MX2018011993A (en) 2016-04-05 2019-02-07 Nippon Steel & Sumitomo Metal Corp Cooling facility in continuous annealing furnace.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750715A (en) * 1985-07-09 1988-06-14 Mitsubishi Jukogyo Kabushiki Kaisha Apparatus for cooling steel belt
JPS62116724A (en) * 1985-11-15 1987-05-28 Nippon Steel Corp Strip cooler for continuous annealing furnace
US5611151A (en) * 1994-06-10 1997-03-18 Busch Co. Strip cooling, heating, wiping or drying apparatus and associated method
TW420718B (en) * 1995-12-26 2001-02-01 Nippon Steel Corp Primary cooling method in continuously annealing steel strip
FR2796139B1 (en) 1999-07-06 2001-11-09 Stein Heurtey METHOD AND DEVICE FOR SUPPRESSING THE VIBRATION OF STRIPS IN GAS BLOWING ZONES, ESPECIALLY COOLING ZONES

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274379A (en) * 2005-03-30 2006-10-12 Nippon Steel Corp Apparatus for cooling steel strip
JP4537875B2 (en) * 2005-03-30 2010-09-08 新日本製鐵株式会社 Steel strip cooling device
JP2007277668A (en) * 2006-04-10 2007-10-25 Nippon Steel Corp Steel strip cooling apparatus
KR20210097677A (en) * 2019-08-05 2021-08-09 주식회사 포스코 Apparatus for damping vibration of strip
KR102348526B1 (en) * 2019-08-05 2022-01-06 주식회사 포스코 Apparatus for damping vibration of strip

Also Published As

Publication number Publication date
DE60310106D1 (en) 2007-01-11
KR20050090370A (en) 2005-09-13
BR0314758B1 (en) 2011-04-05
CA2500271A1 (en) 2004-04-08
AU2003258836A1 (en) 2004-04-19
KR100664002B1 (en) 2007-01-03
AU2003258836A8 (en) 2004-04-19
JP4331982B2 (en) 2009-09-16
WO2004029305A1 (en) 2004-04-08
EP1549776A1 (en) 2005-07-06
BR0314758A (en) 2005-07-26
CA2500271C (en) 2011-02-22
DE60310106T2 (en) 2007-06-21
EP1549776B1 (en) 2006-11-29

Similar Documents

Publication Publication Date Title
KR100293139B1 (en) Steel Band Heat Treatment Apparatus by Gas Jet Flow
JPH11172401A (en) Cooling of strip and device therefor
EP2495343B1 (en) Gas jet cooling device for continuous annealing furnace
JP4319254B2 (en) Equipment for cooling extrusion profiles
JP2004162167A (en) Cooling unit for steel strip
JP4290430B2 (en) Rapid cooling device for steel strip in continuous annealing equipment
JP4332017B2 (en) Steel strip cooling device for continuous annealing furnace
JPS609834A (en) Method and device for cooling steel strip
JPS62116724A (en) Strip cooler for continuous annealing furnace
JP4901276B2 (en) Steel strip cooling device
JP2019526454A (en) Scale remover
JP4537875B2 (en) Steel strip cooling device
JP2006274365A (en) Apparatus for cooling steel strip
JP2006274409A (en) Apparatus for manufacturing galvannealed steel sheet
CN100402674C (en) Cooling device for steel strip
JPH07290136A (en) Method and device for cooling wide flange shape
JP4340090B2 (en) Steel strip cooling device
JPH09256076A (en) Method for cooling steel strip on continuous annealing and cooling device therefor
JPS6229492B2 (en)
JPH1171618A (en) Cooling device for rolled product
JPH11285723A (en) Method for uniformly cooling thin steel plate
JPS638752Y2 (en)
JP2000040613A (en) Method for applying anneal separating agent of directional silicon steel plate and device therefor
JPS6157894B2 (en)
JP2002309359A (en) Method for manufacturing hot-dip metal coated steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090619

R151 Written notification of patent or utility model registration

Ref document number: 4331982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120626

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130626

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees