JP4026823B2 - Light modulator - Google Patents

Light modulator Download PDF

Info

Publication number
JP4026823B2
JP4026823B2 JP2003082147A JP2003082147A JP4026823B2 JP 4026823 B2 JP4026823 B2 JP 4026823B2 JP 2003082147 A JP2003082147 A JP 2003082147A JP 2003082147 A JP2003082147 A JP 2003082147A JP 4026823 B2 JP4026823 B2 JP 4026823B2
Authority
JP
Japan
Prior art keywords
range
voltage
optical modulator
bias voltage
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003082147A
Other languages
Japanese (ja)
Other versions
JP2004287330A (en
Inventor
誠 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2003082147A priority Critical patent/JP4026823B2/en
Publication of JP2004287330A publication Critical patent/JP2004287330A/en
Application granted granted Critical
Publication of JP4026823B2 publication Critical patent/JP4026823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バイアス電圧によってその動作点が設定される光変調器を有する光変調装置において、初期動作時等に所望の動作点に設定するための技術に関する。
【0002】
【従来の技術】
光の強度を入力信号によって強度変調する光変調装置では、電気光学効果や磁気光学効果によって光を変調する光変調器が用いられる場合が多い。
【0003】
これらの光変調器の動作点は直流のバイアス電圧によって決定される。しかし、光変調器に一定のバイアス電圧を印加して動作点を設定しても、温度や経時変化の影響によって光変調器自体の変調特性が変化して、動作点ずれが発生する場合がある。
【0004】
このため、この種の光変調器を用いた光変調装置では、光変調器の出射光に基づいて動作点のずれを検出し、そのずれが減少する方向にそのバイアス電圧を可変して、常に設定した動作点で光変調器が動作するようにフィードバック制御することが多い。
【0005】
図8は、このようなフィードバック制御によって動作点を安定化する従来の光変調装置10の構成を示している。
【0006】
図8において、レーザダイオード11から出射された光Pは、ニオブ酸リチウム(LiNbO)が有する電気光学効果を利用した光変調器12に入射される。
【0007】
ドライブアンプ13は、入力されたデータ信号Dを増幅し、これに低周波発振器16の出力信号Aが重畳された変調信号Mを生成して光変調器12に入力する。
【0008】
光変調器12は、入射光Pを変調信号Mによって強度変調し、その強度変調された光Pmを、動作点検出手段15の光カプラ17に出射する。
【0009】
動作点検出手段15は、光変調器12の動作点のずれを検出するためのものであり、光カプラ17によって入射光Pmを2分岐し、その一方Pm1を光変調装置の出射光として外部へ出力し、他方Pm2を例えばピン(PIN)フォトダイオードからなる受光素子18によって受光する。
【0010】
受光素子18は、入射光Pm2をその強度変化に応じて電圧が変化する電気信号Eに変換してBPF(バンドパスフィルタ)19に出力する。
【0011】
BPF19は、受光素子18の出力信号Eから、低周波発振器16の出力信号Aと同一周波数成分の信号A′を抽出して、位相検出器20に出力する。
【0012】
位相検出器20は、低周波発振器16の出力信号AとBPF17の出力信号A′との位相を比較し、その位相差に応じて電圧が変化する信号Qを、動作点のずれに対応した信号として直流アンプ21に出力する。
【0013】
直流アンプ21は、バイアス電圧供給手段を構成するものであり、位相検出器20の出力信号Qを動作点のずれをなくす方向に変化するバイアス電圧Bとして光変調器12に供給する。ここで、直流アンプ21が光変調器12に供給できるバイアス電圧Bの範囲は、直流アンプ21に供給されている電源電圧V+、V−の範囲であるものとする。実際のバイアス電圧Bの範囲は、電源電圧の範囲より狭くなるが説明上同一とする。
【0014】
一方、光変調器12は、図9の(a)、(b)に示すように、入力電圧の単調変化に対して、出射光の強度が正弦状に周期変化する変調特性Fを有しているが、この変調特性は、温度変化や経時変化等によって、例えば図9の(a)の特性F′や図9の(b)の特性F″のように変動する。
【0015】
通常、光変調器の動作点として好ましいのは、入力信号に対するダイナミックレンジが最も広くなる点であり、この点は正弦波状の変調特性Fの最大と最小の中間の点(バイアス電圧Bが取り得るV+〜V−の範囲無いではS1〜Sn)である。以下、これらの点を安定点と呼ぶ。
【0016】
動作点が安定点からずれると、そのずれの量と方向に応じて信号Aに対する信号A′の位相が変化し、その位相差に応じた信号が位相検出器20から直流アンプ21に出力され、直流アンプ21が動作点のずれをなくす方向にバイアス電圧Bを変化させ、動作点が安定点に一致した状態を維持する。
【0017】
【発明が解決しようとする課題】
しかしながら、上記のように光変調器12の動作点が安定点と一致するように制御する光変調装置の場合、電源投入時等の過渡的な状態において、光変調器12の動作点はいずれの安定点S1〜Snにも一致する可能性があり、入力電圧の下限や上限に近い安定点に動作点が一致した場合に、変調特性のドリフトに対して、バイアス電圧が追従できず、動作点ずれを招く。
【0018】
例えば、電源が投入された初期動作時に、図9の(a)の特性Fに対して動作点が下限に近い安定点S1に一致した状態で、変調特性がF′のように変動すると、入力電圧の下限(V−)よりバイアス電圧を下げることができなくなり、動作点ずれが発生する。
【0019】
また、逆に、図9の(b)の特性Fに対して、動作点が上限に近い安定点Snに一致した状態で、変調特性がF″のように変動すると、入力電圧の上限(V+)よりバイアス電圧を上げることができなくなり、動作点ずれが発生する。
【0020】
この問題は、下記の特許文献1に記載されているように、マッハツェンダ型の光変調器から得られる位相の反転した2つの出射光の平均パワーをそれぞれ求め、その差に対応するモニタ電圧を生成し、光変調器の動作点が設定すべき点に一致したときのモニタ電圧を基準値とし、この基準値に対するモニタ電圧の偏差を動作点のずれとして検出し、その動作点のずれを少なくするバイアス電圧を光変調器に供給するように構成された光変調装置についても同様に発生する。
【0021】
【特許文献1】
特開平4−294318号公報
【0022】
本発明は、この問題を解決した光変調装置を提供することを目的としている。
【0023】
【課題を解決するための手段】
前記目的を達成するために、本発明の請求項1の光変調装置は、
バイアス電圧によってその動作点が設定される光変調器(12)と、
前記光変調器の出射光に基づいて動作点の設定すべき点からのずれを検出する動作点検出手段(15)と、
前記動作点検出手段の検出結果に基づいて動作点のずれを減少させる方向に変化する所定電圧範囲内のバイアス電圧を前記光変調器に供給するバイアス電圧供給手段(21)とを有する光変調装置において、
初期動作時から一定時間の間に前記光変調器に供給されるバイアス電圧の取り得る範囲を前記所定電圧範囲より狭い範囲となるように制限することにより、該制限された電圧範囲内で前記光変調器の初期動作点を設定し、前記一定時間経過後に前記バイアス電圧の取り得る範囲が前記所定電圧範囲となるように制御する電圧範囲制御手段(31)を設けたことを特徴としている。
【0024】
また、本発明の請求項2の光変調装置は、請求項1記載の光変調装置において、
前記電圧範囲制御手段は、前記バイアス電圧供給手段に供給される電源電圧を制御して、前記初期動作時から前記一定時間の間に前記光変調器に供給されるバイアス電圧の取り得る範囲を、前記所定電圧範囲より狭い範囲に制限することにより、該制限された電圧範囲内で前記光変調器の初期動作点を設定し、前記一定時間経過後に前記バイアス電圧の取り得る範囲が前記所定電圧範囲となるように制御することを特徴としている。
【0025】
また、本発明の請求項3の光変調装置は、請求項1記載の光変調装置において、
前記電圧範囲制御手段は、前記バイアス電圧供給手段と前記光変調器との間にリミッタ回路(35)を挿入して、前記初期動作時から前記一定時間の間に前記光変調器に供給されるバイアス電圧の取り得る範囲を、前記所定電圧範囲より狭い範囲に制限することにより、該制限された電圧範囲内で前記光変調器の初期動作点を設定し、前記一定時間経過後に前記バイアス電圧の取り得る範囲が前記所定電圧範囲となるように制御することを特徴としている。
【0026】
また、本発明の請求項4の光変調装置は、請求項1〜3のいずれかに記載の光変調装置において、
前記電圧範囲制御手段は、前記光変調に供給されるバイアス電圧の取り得る範囲を、前記初期動作時から前記一定時間の間は前記所定電圧範囲より狭い一定の範囲となり、前記一定時間経過後に前記所定電圧範囲へ段階的に変化させることを特徴としている。
【0027】
また、本発明の請求項5の光変調装置は、請求項1または請求項2記載の光変調装置において、
前記電圧範囲制御手段は、前記光変調に供給されるバイアス電圧の取り得る範囲を、前記初期動作時から前記一定時間の間は前記所定電圧範囲より狭い範囲となり、前記一定時間経過後に前記所定電圧範囲に至るように連続的に漸増変化させることを特徴としている。
【0028】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明を適用した光変調装置30の構成を示している。
【0029】
この光変調装置30を構成するレーザダイオード11、光変調器12、ドライブアンプ13、動作点検出手段15を構成する低周波発振器16、光カプラ17、受光素子18、BPF19、位相検出器20およびバイアス電圧供給手段としての直流アンプ21は、前記した図8の光変調装置10に示したものと同一であるので、同一符号を付して説明を省略する。
【0030】
この光変調装置30には、初期動作時等の所定タイミングに光変調器12に供給されるバイアス電圧Bの取り得る範囲を、直流アンプ21が出力できる所定電圧範囲より狭い範囲となるように制限し、その制限された電圧範囲内で光変調器12の動作点を設定すべき点(前記安定点の一つあるいはその付近)に一致させ、動作点が設定すべき点あるいはその付近に一致した後にバイアス電圧Bの取り得る範囲が所定電圧範囲となるように制御する電圧範囲制御手段31が設けられている。
【0031】
なお、動作点が安定点でなくその付近の状態でバイアス電圧が所定電圧範囲となった場合、その安定点付近から安定点に変動するので問題ない。
【0032】
電圧範囲制御手段31の具体的な構成としては、直流アンプ21に供給されている電源電圧を制御して光変調器12に供給されるバイアス電圧Bの取り得る範囲を間接的に狭い範囲に制限する場合と、光変調器12に入力されるバイアス電圧信号に対して直接的な制限を加える場合とがある。
【0033】
図2は、直流アンプ21の電源を制御する電圧範囲制御手段31の構成例である。
【0034】
この電圧範囲制御手段31は、一定時間Tだけ直流アンプ21に供給される電源電圧をVaおよび−Va(光変調器12の変調特性の半周期分に相当する電圧幅をVaとする)と設定し、その一定時間Tが経過した後に、電源電圧を所定の電圧範囲V+、V−とするように構成する。
【0035】
このように構成された電圧範囲制御手段31を用いた場合、図3に示すように、変調器12の変調特性Fに対して、バイアス電圧Bの取り得る範囲は、初期動作時(t=0)から一定時間Tが経過するまでは、直流アンプ21の正規出力電圧設定範囲V+〜V−よりも狭いVa〜−Vaの範囲に制限され、初期動作点もVa〜−Vaの範囲で設定される。
【0036】
つまり、この一定時間T内に光変調器12の動作点を、電圧範囲Va〜−Va内の唯一の安定点Skあるいはその近傍に一致させることができる。
【0037】
また、一定時間Tが経過した後には、直流アンプ21に正規の電源電圧V+、V−が供給されるため、温度変化や経時変化にともなう光変調器12の変調特性Fの変動に対して、広い電圧範囲でバイアス電圧Bを追従できる状態となるため、長期的に動作させることが可能となる。
【0038】
図4は、光変調器12に入力されるバイアス電圧信号に対して直接的な制限を加える電圧範囲制御手段31の構成例を示している。
【0039】
この電圧範囲制御手段31は、Vaより高い電圧をVaに規制し、−Vaより低い電圧を−Vaに規制し、Va〜−Vaの範囲の電圧をそのまま出力させるリミッタ回路35を有し、このリミッタ回路35をスイッチ32を介して直流アンプ21と光変調器12の間のバイアス電圧供給ラインに接続し、スイッチ32をタイマ回路33によって開閉している。
【0040】
この構成の電圧範囲制御手段31の場合は、スイッチ回路32をタイマ回路33によって初期動作時から一定時間Tが経過するまで閉じ、一定時間Tが経過した後に開くように制御することで、前記図2の構成例の場合と全く同様に図3に示した動作が行なわれる。
【0041】
また、光変調器12に入力されるバイアス電圧信号に対して直接的な制限を加える電圧範囲制御手段31の構成例としては、上記のようにリミッタ回路35を挿入する構成の他に、図5のように、出力QをA/D変換するA/D変換器36と、A/D変換出力に応じてバイアス電圧Bを調整できるようにプログラムされたCPU37と、CPU37の出力をD/A変換するD/A変換器38、D/A変換された出力を増幅する直流アンプ21とによって構成したバイアス電圧供給手段において、CPU37によってそのバイアス電圧範囲を所定の時間だけ制限を加える機能を持たせることにより、初期動作時等に光変調器12に供給されるバイアス電圧の取り得る範囲を狭い範囲に制限してもよい。なお、直流アンプ21を介さずに、D/A変換出力をバイアス電圧Bとしてもよい。
【0042】
また、上記した各電圧範囲制御手段31は、光変調器12に供給されるバイアス電圧の取り得る範囲を段階的に変化させていたが、光変調器12に供給されるバイアス電圧の取り得る範囲を、時間の経過とともに狭い範囲から広い範囲へ連続的に漸増させてもよい。
【0043】
例えば、図6のように、直流アンプ21の電源端子と電源V+、V−の間にスロースタート機能39を追加することにより、直流アンプ21に供給される電源電圧を初期動作時において徐々に且つ連続的に増加させることができる。
【0044】
この場合、図7に示すように、初期動作時から一定時間Tが経過するタイミングでは、バイアス電圧の取り得る範囲がほぼVa〜−Vaの範囲内であるように制御し、さらに時間が経過してバイアス電圧の取り得る範囲が正規の電圧範囲V+、V−に達するように制御する。なお、このスロースタート機能39は、安定点を0ボルト付近とするのであれば、簡単な積分回路で実現できる。
【0045】
このような構成の電圧範囲制御手段31を用いた場合、図7に示しているように、変調器12の変調特性Fに対して、バイアス電圧Bの取り得る範囲は、初期動作時(t=0)から一定時間Tが経過するまで、電圧Va〜−Vaより狭い範囲から電圧Va〜−Vaまで徐々に且つ連続的に拡がる。
【0046】
この初期動作時から一定時間Tが経過するまでの間、動作点検出手段15による動作点のずれの検出動作と、そのずれに応じたバイアス電圧Bの光変調器12への供給動作が直流アンプ21によってなされるが、この間バイアス電圧Bが取り得る電圧範囲はVa〜−Va以下の狭い範囲に制限されているので、動作点の過渡的な変動もこの電圧範囲内で収まっている。
【0047】
つまり、この一定時間T内に直流アンプ21によるバイアス電圧Bの供給動作が電圧範囲Va〜−Va内で正常に行なわれ、一定時間Tが経過したタイミングには光変調器12の動作点が、電圧範囲Va〜−Va内の唯一の安定点Skあるいはその近傍に一致する。
【0048】
このように実施形態の光変調装置30は、初期動作時に光変調器12に供給されるバイアス電圧の取り得る範囲を所定電圧範囲より狭い範囲となるように制限し、その制限された電圧範囲内で光変調器12の動作点を設定すべき安定点あるいはその近傍に一致させ、動作点が安定点あるいはその近傍に一致した後にバイアス電圧の取り得る範囲が所定電圧範囲となるように制御する電圧範囲制御手段31を設けている。
【0049】
このため、初期バイアス電圧の動作点を任意の安定点に設定することが可能となり、例えば、所定電圧範囲の中心に安定点を設定することにより、安定点の可動範囲を多くとることができ、長期連続動作が可能となる。
【0050】
なお、前記説明では、電圧範囲制御手段31が装置の電源が投入された初期動作時に光変調器に供給されるバイアス電圧の取り得る範囲を狭い範囲に制限していたが、装置動作中の任意のタイミング、例えば手動によるスイッチ操作があったときや所定時間が経過する毎に、光変調器12に供給されるバイアス電圧の取り得る範囲を狭い範囲に制限してもよい。
【0051】
また、上記説明では、初期動作時に取り得るバイアス電圧の範囲を、0ボルトを中心とし、光変調器12の変調特性の1周期相当の幅をもつ範囲に設定して、動作点を0ボルトに近い特定の安定点に一致させていたが、これは、本発明を限定するものではなく、電圧範囲制御手段31によって所定タイミングに制限されるバイアス電圧の取り得る範囲の中心および幅は、光変調器の変調特性やその変動傾向等に応じて任意に設定することができる。
【0052】
例えば、バイアス電圧として正側(または負側)のみを用いる場合、正規の電圧範囲0〜V+(または0〜V−)に対し、所定タイミングにバイアス電圧の取り得る範囲を、V+/2(またはV−/2)を中心とし、前記した電圧幅Vaの範囲に設定すればよい。
【0053】
また、上記説明では、光変調器12の変調特性のうち、電圧の単調増加に対して正の傾きをもつ領域の中心点を安定点としていたが、負の傾きをもつ領域の中心点を安定点としてもよい。
【0054】
また、前記した光変調装置30では、光変調器12の動作点のずれを検出するための動作点検出手段15を、低周波発振器16、光カプラ17、受光素子18、BPF19および位相検出器20によって構成し、バイアス電圧供給手段として直流アンプ21を用いた例を説明したが、これは本発明を限定するものではなく、他の構成の光変調装置、例えば前記した特許文献1の光変調装置のように、光変調器から出射される2つの出射光の平均パワーをそれぞれ求め、その差に対応するモニタ電圧を生成し、光変調器の動作点が設定すべき点に一致したときのモニタ電圧を基準値とし、この基準値に対するモニタ電圧の偏差を動作点のずれとして検出し、その動作点のずれを少なくするバイアス電圧を光変調器に供給する光変調装置についても本発明を適用できる。
【0055】
【発明の効果】
以上説明したように、本発明の光変調装置は、初期動作時から一定時間の間に光変調器に供給されるバイアス電圧の取り得る範囲を所定電圧範囲より狭い範囲となるように制限し、その制限された電圧範囲内で光変調器の初期動作点を設定し、前記一定時間が経過した後にバイアス電圧の取り得る範囲が所定電圧範囲となるように制御する電圧範囲制御手段を設けている。
【0056】
このため、初期バイアス電圧の動作点を任意の安定点に設定することが可能となり、例えば、所定電圧範囲の中心に安定点を設定することにより、安定点の可動範囲を多くとることができ、長期連続動作が可能となる。
【図面の簡単な説明】
【図1】本発明の実施形態の構成を示すブロック図
【図2】実施形態の要部の構成例を示す図
【図3】実施形態の動作を説明するための図
【図4】実施形態の要部の別の構成例を示す図
【図5】実施形態の要部の別の構成例を示す図
【図6】実施形態の要部の別の構成例を示す図
【図7】実施形態の動作を説明するための図
【図8】従来装置の構成を示すブロック
【図9】光変調器の変調特性を示す図
【符号の説明】
11……レーザダイオード、12……光変調器、13……ドライブアンプ、15……動作点検出手段、16……低周波発振器、17……光カプラ、18……受光素子、19……BPF、20……位相検出器、21……直流アンプ、30……光変調装置、31……電圧範囲制御手段、32……スイッチ、33……タイマ回路、35……リミッタ回路、36……A/D変換器、37……CPU、38……D/A変換器、39……スロースタート機能
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for setting a desired operating point in an initial operation or the like in an optical modulator having an optical modulator whose operating point is set by a bias voltage.
[0002]
[Prior art]
In an optical modulation device that modulates the intensity of light by an input signal, an optical modulator that modulates light by an electro-optic effect or a magneto-optic effect is often used.
[0003]
The operating point of these optical modulators is determined by a DC bias voltage. However, even if the operating point is set by applying a constant bias voltage to the optical modulator, the modulation characteristics of the optical modulator itself may change due to the influence of temperature and changes over time, and the operating point may be shifted. .
[0004]
For this reason, in an optical modulation device using this type of optical modulator, the deviation of the operating point is detected based on the light emitted from the optical modulator, and the bias voltage is varied in the direction in which the deviation is reduced, so that In many cases, feedback control is performed so that the optical modulator operates at a set operating point.
[0005]
FIG. 8 shows a configuration of a conventional optical modulation device 10 that stabilizes the operating point by such feedback control.
[0006]
In FIG. 8, the light P emitted from the laser diode 11 is incident on the optical modulator 12 utilizing the electro-optic effect of lithium niobate (LiNbO 3 ).
[0007]
The drive amplifier 13 amplifies the input data signal D, generates a modulation signal M on which the output signal A of the low frequency oscillator 16 is superimposed, and inputs the modulation signal M to the optical modulator 12.
[0008]
The optical modulator 12 modulates the intensity of the incident light P with the modulation signal M, and emits the intensity-modulated light Pm to the optical coupler 17 of the operating point detection means 15.
[0009]
The operating point detection means 15 is for detecting a shift of the operating point of the optical modulator 12, and the incident light Pm is branched into two by the optical coupler 17, while Pm1 is emitted to the outside as outgoing light of the optical modulator. On the other hand, the other Pm2 is received by the light receiving element 18 made of a pin (PIN) photodiode, for example.
[0010]
The light receiving element 18 converts the incident light Pm2 into an electric signal E whose voltage changes according to the intensity change, and outputs the electric signal E to a BPF (band pass filter) 19.
[0011]
The BPF 19 extracts a signal A ′ having the same frequency component as the output signal A of the low frequency oscillator 16 from the output signal E of the light receiving element 18 and outputs the signal A ′ to the phase detector 20.
[0012]
The phase detector 20 compares the phases of the output signal A of the low-frequency oscillator 16 and the output signal A ′ of the BPF 17, and a signal Q whose voltage changes according to the phase difference is a signal corresponding to the deviation of the operating point. To the DC amplifier 21.
[0013]
The DC amplifier 21 constitutes a bias voltage supply means, and supplies the output signal Q of the phase detector 20 to the optical modulator 12 as a bias voltage B that changes in a direction that eliminates the deviation of the operating point. Here, the range of the bias voltage B that can be supplied to the optical modulator 12 by the DC amplifier 21 is the range of the power supply voltages V + and V− supplied to the DC amplifier 21. The actual range of the bias voltage B is narrower than the range of the power supply voltage, but is assumed to be the same for explanation.
[0014]
On the other hand, as shown in FIGS. 9A and 9B, the optical modulator 12 has a modulation characteristic F in which the intensity of emitted light periodically changes sinusoidally with respect to a monotonous change in input voltage. However, this modulation characteristic varies, for example, as a characteristic F ′ in FIG. 9A and a characteristic F ″ in FIG.
[0015]
In general, the operating point of the optical modulator is preferably the point where the dynamic range with respect to the input signal is the widest, and this point is the intermediate point between the maximum and minimum of the sinusoidal modulation characteristic F (the bias voltage B can be taken). If there is no range of V + to V−, S1 to Sn). Hereinafter, these points are called stable points.
[0016]
When the operating point deviates from the stable point, the phase of the signal A ′ with respect to the signal A changes according to the amount and direction of the deviation, and a signal corresponding to the phase difference is output from the phase detector 20 to the DC amplifier 21. The DC amplifier 21 changes the bias voltage B in a direction that eliminates the deviation of the operating point, and maintains the state where the operating point coincides with the stable point.
[0017]
[Problems to be solved by the invention]
However, in the case of an optical modulation device that controls the operating point of the optical modulator 12 to coincide with the stable point as described above, the operating point of the optical modulator 12 is any in a transient state such as when the power is turned on. There is a possibility that the stable points S1 to Sn also coincide with each other. When the operating point coincides with a stable point close to the lower limit or upper limit of the input voltage, the bias voltage cannot follow the drift of the modulation characteristic, and the operating point Incurs a gap.
[0018]
For example, in the initial operation when the power is turned on, if the modulation characteristic fluctuates as F ′ in the state where the operating point matches the stable point S1 close to the lower limit with respect to the characteristic F in FIG. The bias voltage cannot be lowered below the lower limit (V−) of the voltage, and an operating point shift occurs.
[0019]
On the other hand, if the modulation characteristic fluctuates as F ″ with the operating point matching the stable point Sn close to the upper limit with respect to the characteristic F in FIG. 9B, the upper limit (V + ), The bias voltage cannot be increased more and the operating point shift occurs.
[0020]
As described in Patent Document 1 below, this problem is obtained by obtaining the average power of two outgoing lights with reversed phases obtained from a Mach-Zehnder type optical modulator, and generating a monitor voltage corresponding to the difference between them. The monitor voltage when the operating point of the optical modulator coincides with the point to be set is used as a reference value, and the deviation of the monitor voltage with respect to the reference value is detected as a shift of the operating point to reduce the shift of the operating point. The same occurs for an optical modulator configured to supply a bias voltage to the optical modulator.
[0021]
[Patent Document 1]
JP-A-4-294318
An object of the present invention is to provide an optical modulation device that solves this problem.
[0023]
[Means for Solving the Problems]
In order to achieve the above object, an optical modulation device according to claim 1 of the present invention includes:
An optical modulator (12) whose operating point is set by a bias voltage;
An operating point detecting means (15) for detecting a deviation of the operating point from the point to be set based on the light emitted from the optical modulator;
An optical modulation device comprising bias voltage supply means (21) for supplying the optical modulator with a bias voltage within a predetermined voltage range that changes in a direction to reduce the deviation of the operating point based on the detection result of the operating point detection means. In
By limiting the range that the bias voltage supplied to the optical modulator can take within a certain period of time from the initial operation so as to be a range narrower than the predetermined voltage range, the light within the limited voltage range. A voltage range control means (31) is provided for setting an initial operating point of the modulator and controlling so that a range that the bias voltage can take after the predetermined time has passed is the predetermined voltage range.
[0024]
The optical modulation device according to claim 2 of the present invention is the optical modulation device according to claim 1,
The voltage range control unit controls a power supply voltage supplied to the bias voltage supply unit, and a range that can be taken by the bias voltage supplied to the optical modulator during the predetermined time from the initial operation time , by limiting the narrower range than the previous SL predetermined voltage range, and sets the initial operating point of the optical modulator in a voltage range which is the limit, the possible range of the bias voltage after the elapse of the predetermined time is the predetermined voltage It is characterized by controlling it to be within a range .
[0025]
According to a third aspect of the present invention, there is provided the optical modulation device according to the first aspect,
The voltage range control means inserts a limiter circuit (35) between the bias voltage supply means and the optical modulator, and is supplied to the optical modulator during the predetermined time from the initial operation time. the possible range of the bias voltage by limiting the narrower range than the previous SL predetermined voltage range, and sets the initial operating point of the optical modulator in a voltage range which is the limit, the bias voltage after the elapse of the predetermined time It is characterized by controlling so that the range which can be taken becomes the said predetermined voltage range .
[0026]
Moreover, the light modulation device according to claim 4 of the present invention is the light modulation device according to any one of claims 1 to 3,
The voltage range control means, the possible range of the bias voltage supplied to the optical modulator, during said predetermined time from the time of the initial operation, the predetermined voltage narrow constant range next than the range, after the elapse of the predetermined time The voltage is changed stepwise to the predetermined voltage range.
[0027]
The light modulation device according to claim 5 of the present invention is the light modulation device according to claim 1 or 2 ,
The voltage range control means has a range that can be taken by the bias voltage supplied to the optical modulator , which is narrower than the predetermined voltage range during the predetermined time from the initial operation, and the predetermined voltage after the predetermined time has elapsed. It is characterized by being continuously increased and changed so as to reach the voltage range.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration of an optical modulation device 30 to which the present invention is applied.
[0029]
The laser diode 11, the optical modulator 12, the drive amplifier 13, and the low-frequency oscillator 16, the optical coupler 17, the light receiving element 18, the BPF 19, the phase detector 20, and the bias that configure the optical modulator 30. Since the DC amplifier 21 as the voltage supply means is the same as that shown in the light modulation device 10 of FIG. 8, the same reference numerals are given and description thereof is omitted.
[0030]
In this optical modulation device 30, the range that can be taken by the bias voltage B supplied to the optical modulator 12 at a predetermined timing such as during initial operation is limited to a range narrower than the predetermined voltage range that the DC amplifier 21 can output. Then, within the limited voltage range, the operating point of the optical modulator 12 is made to coincide with the point to be set (one of the stable points or the vicinity thereof), and the operating point coincides with the point to be set or the vicinity thereof. Voltage range control means 31 is provided for controlling the range that can be taken later by the bias voltage B to be a predetermined voltage range.
[0031]
If the bias voltage falls within the predetermined voltage range when the operating point is not a stable point but in the vicinity thereof, there is no problem because the operating point changes from the vicinity of the stable point to the stable point.
[0032]
As a specific configuration of the voltage range control means 31, the power supply voltage supplied to the DC amplifier 21 is controlled to restrict the possible range of the bias voltage B supplied to the optical modulator 12 to a narrow range indirectly. In some cases, the bias voltage signal input to the optical modulator 12 is directly restricted.
[0033]
FIG. 2 is a configuration example of the voltage range control means 31 that controls the power source of the DC amplifier 21.
[0034]
The voltage range control means 31 sets the power supply voltage supplied to the DC amplifier 21 for a certain time T as Va and -Va (the voltage width corresponding to the half period of the modulation characteristic of the optical modulator 12 is Va). Then, after the predetermined time T has elapsed, the power supply voltage is set to a predetermined voltage range V +, V−.
[0035]
When the voltage range control means 31 configured in this way is used, the range that the bias voltage B can take with respect to the modulation characteristic F of the modulator 12 is as shown in FIG. ) Until a predetermined time T elapses, the normal output voltage setting range V + to V− of the DC amplifier 21 is limited to a range of Va to −Va, and the initial operating point is also set to a range of Va to −Va. The
[0036]
In other words, the operating point of the optical modulator 12 can be matched with the only stable point Sk in the voltage range Va to -Va or in the vicinity thereof within this fixed time T.
[0037]
In addition, since the regular power supply voltages V + and V− are supplied to the DC amplifier 21 after the lapse of the predetermined time T, the fluctuation of the modulation characteristic F of the optical modulator 12 due to a temperature change or a change with time is reduced. Since the bias voltage B can be followed in a wide voltage range, it can be operated for a long time.
[0038]
FIG. 4 shows a configuration example of the voltage range control unit 31 that directly limits the bias voltage signal input to the optical modulator 12.
[0039]
This voltage range control means 31 has a limiter circuit 35 that regulates a voltage higher than Va to Va, regulates a voltage lower than −Va to −Va, and outputs a voltage in a range of Va to −Va as it is. The limiter circuit 35 is connected to the bias voltage supply line between the DC amplifier 21 and the optical modulator 12 via the switch 32, and the switch 32 is opened and closed by the timer circuit 33.
[0040]
In the case of the voltage range control means 31 having this configuration, the switch circuit 32 is closed by the timer circuit 33 until the predetermined time T has elapsed since the initial operation, and is controlled to be opened after the predetermined time T has elapsed. The operation shown in FIG. 3 is performed in exactly the same manner as in the second configuration example.
[0041]
In addition to the configuration in which the limiter circuit 35 is inserted as described above, examples of the configuration of the voltage range control unit 31 that directly limits the bias voltage signal input to the optical modulator 12 include those shown in FIG. The A / D converter 36 for A / D converting the output Q, the CPU 37 programmed to adjust the bias voltage B according to the A / D conversion output, and the output of the CPU 37 for D / A conversion In the bias voltage supply means constituted by the D / A converter 38 and the DC amplifier 21 for amplifying the D / A converted output, the CPU 37 has a function of limiting the bias voltage range for a predetermined time. Thus, the range that the bias voltage supplied to the optical modulator 12 can take during the initial operation or the like may be limited to a narrow range. Note that the D / A conversion output may be the bias voltage B without using the DC amplifier 21.
[0042]
In addition, each voltage range control unit 31 described above gradually changes the range that the bias voltage supplied to the optical modulator 12 can take, but the range that the bias voltage supplied to the optical modulator 12 can take. May be gradually increased from a narrow range to a wide range over time.
[0043]
For example, as shown in FIG. 6, by adding a slow start function 39 between the power supply terminal of the DC amplifier 21 and the power supplies V + and V−, the power supply voltage supplied to the DC amplifier 21 is gradually increased during the initial operation. It can be increased continuously.
[0044]
In this case, as shown in FIG. 7, at a timing when a certain time T elapses from the initial operation time, control is performed so that the range in which the bias voltage can be taken is approximately in the range of Va to -Va. Thus, the range in which the bias voltage can be taken is controlled to reach the normal voltage ranges V + and V−. The slow start function 39 can be realized by a simple integration circuit as long as the stable point is near 0 volts.
[0045]
When the voltage range control means 31 having such a configuration is used, the range that the bias voltage B can take with respect to the modulation characteristic F of the modulator 12 is as shown in FIG. 0) until a certain time T elapses, it gradually and continuously expands from a range narrower than the voltages Va to -Va to the voltages Va to -Va.
[0046]
From the initial operation to the elapse of a predetermined time T, the operation point detection means 15 detects the operation point deviation and the operation of supplying the bias voltage B to the optical modulator 12 according to the deviation is a direct current amplifier. The voltage range that the bias voltage B can take during this time is limited to a narrow range of Va to -Va or less, so that the transient fluctuation of the operating point is also within this voltage range.
[0047]
That is, the supply operation of the bias voltage B by the DC amplifier 21 is normally performed within the voltage range Va to −Va within the fixed time T, and the operating point of the optical modulator 12 is at the timing when the fixed time T elapses. It corresponds to the only stable point Sk in the voltage range Va to -Va or the vicinity thereof.
[0048]
As described above, the light modulation device 30 according to the embodiment restricts the range of the bias voltage supplied to the light modulator 12 during the initial operation so that the range can be narrower than the predetermined voltage range, and is within the restricted voltage range. Thus, the operating point of the optical modulator 12 is made to coincide with the stable point to be set or the vicinity thereof, and the voltage that controls the range that the bias voltage can take after the operating point coincides with the stable point or the vicinity thereof becomes a predetermined voltage range. Range control means 31 is provided.
[0049]
For this reason, it becomes possible to set the operating point of the initial bias voltage to an arbitrary stable point.For example, by setting the stable point at the center of the predetermined voltage range, the movable range of the stable point can be increased. Long-term continuous operation is possible.
[0050]
In the above description, the range in which the bias voltage supplied to the optical modulator can be taken during the initial operation when the voltage range control unit 31 is turned on is limited to a narrow range. For example, the range of the bias voltage supplied to the optical modulator 12 may be limited to a narrow range when a manual switch operation or a predetermined time elapses.
[0051]
Further, in the above description, the range of the bias voltage that can be taken during the initial operation is set to a range that has a width corresponding to one period of the modulation characteristic of the optical modulator 12 with the center being 0 volt, and the operating point is set to 0 volt. Although it was matched with a specific point in the vicinity, this does not limit the present invention, and the center and width of the possible range of the bias voltage limited to a predetermined timing by the voltage range control means 31 is determined by the optical modulation. It can be arbitrarily set according to the modulation characteristics of the device and its fluctuation tendency.
[0052]
For example, when only the positive side (or negative side) is used as the bias voltage, the range that the bias voltage can take at a predetermined timing is set to V + / 2 (or to the normal voltage range 0 to V + (or 0 to V−). What is necessary is just to set to the range of voltage width Va mentioned above centering on V- / 2).
[0053]
In the above description, the center point of the region having a positive slope with respect to the monotonic increase of the voltage is used as the stable point in the modulation characteristics of the optical modulator 12, but the center point of the region having a negative slope is stable. It is good also as a point.
[0054]
Further, in the optical modulation device 30 described above, the operating point detection means 15 for detecting the deviation of the operating point of the optical modulator 12 includes the low frequency oscillator 16, the optical coupler 17, the light receiving element 18, the BPF 19, and the phase detector 20. However, this is not intended to limit the present invention, and other configurations of the light modulation device, such as the light modulation device disclosed in Patent Document 1 described above, are described. As described above, the average power of the two outgoing lights emitted from the optical modulator is obtained, the monitor voltage corresponding to the difference is generated, and the monitor when the operating point of the optical modulator matches the point to be set An optical modulator that uses a voltage as a reference value, detects a deviation of a monitor voltage with respect to the reference value as an operating point deviation, and supplies a bias voltage to the optical modulator to reduce the operating point deviation. The present invention can be applied.
[0055]
【The invention's effect】
As described above, the light modulation device of the present invention limits the possible range of the bias voltage supplied to the light modulator for a fixed time from the initial operation time to be a range narrower than the predetermined voltage range, Voltage range control means is provided for setting an initial operating point of the optical modulator within the limited voltage range and controlling the range that the bias voltage can take after the predetermined time has elapsed to be a predetermined voltage range. .
[0056]
For this reason, it becomes possible to set the operating point of the initial bias voltage to an arbitrary stable point.For example, by setting the stable point at the center of the predetermined voltage range, the movable range of the stable point can be increased. Long-term continuous operation is possible.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an embodiment of the present invention. FIG. 2 is a diagram showing a configuration example of a main part of the embodiment. FIG. 3 is a diagram for explaining an operation of the embodiment. FIG. 5 is a diagram showing another configuration example of the main part of the embodiment. FIG. 6 is a diagram showing another configuration example of the main part of the embodiment. FIG. FIG. 8 is a block diagram illustrating a configuration of a conventional apparatus. FIG. 9 is a diagram illustrating a modulation characteristic of an optical modulator.
DESCRIPTION OF SYMBOLS 11 ... Laser diode, 12 ... Optical modulator, 13 ... Drive amplifier, 15 ... Operating point detection means, 16 ... Low frequency oscillator, 17 ... Optical coupler, 18 ... Light receiving element, 19 ... BPF , 20 ... Phase detector, 21 ... DC amplifier, 30 ... Optical modulator, 31 ... Voltage range control means, 32 ... Switch, 33 ... Timer circuit, 35 ... Limiter circuit, 36 ... A / D converter, 37 ... CPU, 38 ... D / A converter, 39 ... slow start function

Claims (5)

バイアス電圧によってその動作点が設定される光変調器(12)と、
前記光変調器の出射光に基づいて動作点の設定すべき点からのずれを検出する動作点検出手段(15)と、
前記動作点検出手段の検出結果に基づいて動作点のずれを減少させる方向に変化する所定電圧範囲内のバイアス電圧を前記光変調器に供給するバイアス電圧供給手段(21)とを有する光変調装置において、
初期動作時から一定時間の間に前記光変調器に供給されるバイアス電圧の取り得る範囲を前記所定電圧範囲より狭い範囲となるように制限することにより、該制限された電圧範囲内で前記光変調器の初期動作点を設定し、前記一定時間経過後に前記バイアス電圧の取り得る範囲が前記所定電圧範囲となるように制御する電圧範囲制御手段(31)を設けたことを特徴とする光変調装置。
An optical modulator (12) whose operating point is set by a bias voltage;
An operating point detecting means (15) for detecting a deviation of the operating point from the point to be set based on the light emitted from the optical modulator;
An optical modulation device comprising bias voltage supply means (21) for supplying the optical modulator with a bias voltage within a predetermined voltage range that changes in a direction to reduce the deviation of the operating point based on the detection result of the operating point detection means. In
By limiting the range that the bias voltage supplied to the optical modulator can take within a certain period of time from the initial operation so as to be a range narrower than the predetermined voltage range, the light within the limited voltage range. Optical modulation characterized by comprising voltage range control means (31) for setting an initial operating point of the modulator and controlling so that a range that the bias voltage can take after the predetermined time has passed is the predetermined voltage range apparatus.
前記電圧範囲制御手段は、前記バイアス電圧供給手段に供給される電源電圧を制御して、前記初期動作時から前記一定時間の間に前記光変調器に供給されるバイアス電圧の取り得る範囲を、前記所定電圧範囲より狭い範囲に制限することにより、該制限された電圧範囲内で前記光変調器の初期動作点を設定し、前記一定時間経過後に前記バイアス電圧の取り得る範囲が前記所定電圧範囲となるように制御することを特徴とする請求項1記載の光変調装置。The voltage range control unit controls a power supply voltage supplied to the bias voltage supply unit, and a range that can be taken by the bias voltage supplied to the optical modulator during the predetermined time from the initial operation time , by limiting the narrower range than the previous SL predetermined voltage range, and sets the initial operating point of the optical modulator in a voltage range which is the limit, the possible range of the bias voltage after the elapse of the predetermined time is the predetermined voltage The light modulation device according to claim 1, wherein the light modulation device is controlled to be within a range . 前記電圧範囲制御手段は、前記バイアス電圧供給手段と前記光変調器との間にリミッタ回路(35)を挿入して、前記初期動作時から前記一定時間の間に前記光変調器に供給されるバイアス電圧の取り得る範囲を、前記所定電圧範囲より狭い範囲に制限することにより、該制限された電圧範囲内で前記光変調器の初期動作点を設定し、前記一定時間経過後に前記バイアス電圧の取り得る範囲が前記所定電圧範囲となるように制御することを特徴とする請求項1記載の光変調装置。The voltage range control means inserts a limiter circuit (35) between the bias voltage supply means and the optical modulator, and is supplied to the optical modulator during the predetermined time from the initial operation time. the possible range of the bias voltage by limiting the narrower range than the previous SL predetermined voltage range, and sets the initial operating point of the optical modulator in a voltage range which is the limit, the bias voltage after the elapse of the predetermined time The light modulation device according to claim 1, wherein the range that can be taken is controlled to be the predetermined voltage range . 前記電圧範囲制御手段は、前記光変調に供給されるバイアス電圧の取り得る範囲を、前記初期動作時から前記一定時間の間は前記所定電圧範囲より狭い一定の範囲となり、前記一定時間経過後に前記所定電圧範囲へ段階的に変化させることを特徴とする請求項1または請求項2または請求項3記載の光変調装置。The voltage range control means, the possible range of the bias voltage supplied to the optical modulator, during said predetermined time from the time of the initial operation, the predetermined voltage narrow constant range next than the range, after the elapse of the predetermined time 4. The light modulation device according to claim 1, wherein the light modulation device is changed stepwise to the predetermined voltage range. 前記電圧範囲制御手段は、前記光変調に供給されるバイアス電圧の取り得る範囲を、前記初期動作時から前記一定時間の間は前記所定電圧範囲より狭い範囲となり、前記一定時間経過後に前記所定電圧範囲に至るように連続的に漸増変化させることを特徴とする請求項1または請求項2記載の光変調装置。The voltage range control means has a range that can be taken by the bias voltage supplied to the optical modulator , which is narrower than the predetermined voltage range during the predetermined time from the initial operation, and the predetermined voltage after the predetermined time has elapsed. claim 1 or claim 2 Symbol placement of the light modulation device, characterized in that to continuously increasing change to reach the voltage range.
JP2003082147A 2003-03-25 2003-03-25 Light modulator Expired - Fee Related JP4026823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003082147A JP4026823B2 (en) 2003-03-25 2003-03-25 Light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003082147A JP4026823B2 (en) 2003-03-25 2003-03-25 Light modulator

Publications (2)

Publication Number Publication Date
JP2004287330A JP2004287330A (en) 2004-10-14
JP4026823B2 true JP4026823B2 (en) 2007-12-26

Family

ID=33295512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003082147A Expired - Fee Related JP4026823B2 (en) 2003-03-25 2003-03-25 Light modulator

Country Status (1)

Country Link
JP (1) JP4026823B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034047A1 (en) * 2012-08-28 2014-03-06 日本電気株式会社 Optical transmitter, and bias voltage control method
JP2017125867A (en) * 2014-04-17 2017-07-20 日本電気株式会社 Light transmitter, and source voltage control method

Also Published As

Publication number Publication date
JP2004287330A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
US6836622B2 (en) Optical transmitter, and method of controlling bias voltage to the optical transmitter
JP3724894B2 (en) Optical transmitter
KR100226210B1 (en) Optical external transformer and its method
US5742268A (en) Optical modulation device having bias reset means
JP2008510174A (en) Automatic bias control of optical modulator
CN109196408B (en) Optical modulator and method for controlling optical modulator
JP2005202400A (en) Optical modulating apparatus having bias controller and bias control method using the same
JP2677234B2 (en) Light modulator
US20130135704A1 (en) Compensation method, optical modulation system, and optical demodulation system
US4101847A (en) Laser control circuit
US7630651B2 (en) Method and apparatus for controlling bias point of optical transmitter
JP4026823B2 (en) Light modulator
US7801450B2 (en) Optical transmitter and optical communication system
US4827116A (en) Square wave modulation circuit for laser diode
US20040190103A1 (en) Method and device for stabilizing operation point and optical output of external optical modulator
JP3398929B2 (en) Optical modulator bias control circuit
JP3527832B2 (en) Bias voltage control circuit for mark rate fluctuation
JP3749874B2 (en) OPTICAL MODULATOR CONTROL DEVICE, OPTICAL TRANSMITTER USING SAME, OPTICAL MODULATOR CONTROL METHOD, AND CONTROL PROGRAM RECORDING MEDIUM
JP2005091663A (en) Driving voltage control method, driving voltage control program and driving voltage control device for mach-zehnder type optical modulator, and optical transmission device
JP2004301965A (en) Bias controlling device of optical modulator and optical modulation device using bias controlling device
JP2005091517A (en) Method for controlling bias voltage of optical modulation element and stabilization optical modulator
WO2015159528A1 (en) Optical transmission device and power supply voltage control method
JP2004294827A (en) Bias voltage control method for optical modulator, and optical modulation device
JPH10117170A (en) Light transmitter
US20090251063A1 (en) Dimmer noise reducing circuit of piezoelectric transformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees