WO2015159528A1 - Optical transmission device and power supply voltage control method - Google Patents

Optical transmission device and power supply voltage control method Download PDF

Info

Publication number
WO2015159528A1
WO2015159528A1 PCT/JP2015/002026 JP2015002026W WO2015159528A1 WO 2015159528 A1 WO2015159528 A1 WO 2015159528A1 JP 2015002026 W JP2015002026 W JP 2015002026W WO 2015159528 A1 WO2015159528 A1 WO 2015159528A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
bias voltage
light
bias
Prior art date
Application number
PCT/JP2015/002026
Other languages
French (fr)
Japanese (ja)
Inventor
山本 浩史
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2015159528A1 publication Critical patent/WO2015159528A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0121Operation of devices; Circuit arrangements, not otherwise provided for in this subclass
    • G02F1/0123Circuits for the control or stabilisation of the bias voltage, e.g. automatic bias control [ABC] feedback loops
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • H04B10/5057Laser transmitters using external modulation using a feedback signal generated by analysing the optical output
    • H04B10/50575Laser transmitters using external modulation using a feedback signal generated by analysing the optical output to control the modulator DC bias

Definitions

  • the present invention relates to an external optical modulation type optical transmission apparatus and a power supply voltage control method thereof.
  • Recent optical transmitters for example, digital coherent optical transmitters, often employ an external optical modulation method.
  • the external light modulation method is a method in which light from a light source (for example, a laser light source) is modulated by an optical modulator.
  • an optical modulator In an optical transmitter of an external light modulation system, as an optical modulator, a modulator using an electro-optic effect by a dielectric material such as LiNbO 3 (lithium niobate: abbreviation LN), or a semiconductor such as InP (indium phosphide) A modulator using an electroabsorption effect of a material is used.
  • a device using LiNbO 3 is called an LN modulator
  • a device using InP is called an InP modulator.
  • the LN modulator can perform high-speed modulation.
  • a drift phenomenon is known in which the operating point of the LN modulator changes due to a temperature change or a change with time.
  • a phenomenon caused by a pyroelectric effect caused by a temperature change is called a thermal (temperature) drift, and a thing caused by a change with time is called a DC drift.
  • FIG. 4 shows a configuration of an optical transmission apparatus that performs feedback control.
  • the optical transmission apparatus includes a light source 101, an optical modulator 102, an RF (Radio Frequency) drive circuit 103, a power supply circuit 104, a bias supply circuit 105, a light detection unit 106, and a control unit 100.
  • RF Radio Frequency
  • the light source 101 is a laser light source and outputs laser light according to the control signal S1.
  • the optical modulator 102 is an LN phase modulator. In the LN phase modulator, one optical waveguide is formed on an LN substrate, and an RF driving electrode and a bias adjusting electrode are formed in the vicinity of the optical waveguide.
  • the light detection unit 106 detects the light intensity of the output light (monitor light) of the light modulator 102, and outputs an electric signal corresponding to the magnitude of the light intensity to the control unit 100 as a monitor light detection signal S3.
  • the RF drive circuit 103 converts a digital signal corresponding to the input information into an analog drive signal and supplies the analog drive signal to the optical modulator 102. Specifically, the RF drive circuit 103 converts an RF electric signal (high frequency signal) that is an input modulation signal (digital signal) into an analog signal, and supplies the drive signal to the optical modulator 102. .
  • the power supply circuit 104 supplies a power supply voltage to the bias supply circuit 105.
  • the bias supply circuit 105 operates by receiving the power supply voltage from the power supply circuit 104 and supplies the bias voltage V B to the optical modulator 102 in accordance with the drive control signal S2.
  • the control unit 100 supplies the control signal S1 to the light source 101 and supplies the drive control signal S2 to the bias supply circuit 105.
  • the control unit 100 controls the bias supply circuit 105 so that the bias voltage V B becomes a voltage value (optimum value) that is the operating point of the optical modulator 102 based on the monitor light detection signal S 3 from the light detection unit 106.
  • (ABC control: Auto Bias Control) As an ABC operation at the time of phase modulation, for example, the control unit 100 inserts a pilot signal into the drive control signal S2 and extracts a pilot signal inserted from the monitor light detection signal S3 input from the light detection unit 106. Then, the inserted pilot signal and the extracted pilot signal are synchronously detected, and the bias supply circuit 105 is controlled so that the synchronous detection signal becomes 0V. Details of ABC operation during phase modulation are disclosed in, for example, Patent Documents 1 and 2.
  • FIG. 5 is a diagram for explaining a modulation curve and an operating point of the optical modulator 102.
  • the modulation curve of the optical modulator 102 is shown in a two-dimensional coordinate system in which the vertical axis represents the light intensity and the horizontal axis represents the bias voltage value.
  • the modulation curve of the optical modulator 102 is a COS square function curve, and the operating point of the optical modulator 102 is set on this modulation curve.
  • the operating point of the optical modulator 102 is appropriately set according to the modulation method.
  • the minimum point on the modulation curve is set as an operating point (a point indicated by a circle).
  • the optical modulator 102 performs phase modulation based on the drive signal from the RF drive circuit 103 with the operating point as a reference. Specifically, when the RF electric signal is “0”, the driving voltage V 1 is supplied to the RF driving electrode, and when the RF electric signal is “1”, the driving voltage V 2 is for RF driving. Supplied to the electrode.
  • each of the drive voltages V 1 and V 2 is a voltage value based on the operating point, and is set to a voltage value at a maximum point located on the left and right of the operating point on the modulation curve.
  • the drive voltage V 1 is ⁇ V ⁇
  • the drive voltage V 2 is + V ⁇ .
  • V ⁇ is a half-wave voltage that changes the phase of light propagating in the waveguide by a half wavelength. For example, a phase change amount of 2 ⁇ occurs between the phase of light when the drive voltage V 1 ( ⁇ V ⁇ ) is supplied and the phase of light when the drive voltage V 2 (+ V ⁇ ) is supplied.
  • the operating point of the optical modulator 102 drifts (changes) over time.
  • a curve indicated by a solid line is a modulation curve when the power is turned on, and the voltage value at the operating point A is V B 1.
  • the control unit 100 controls the bias supply circuit 105 so that the bias voltage V B becomes the voltage value V B 1.
  • the optical modulator 102 performs phase modulation based on the drive signal from the RF drive circuit 103 with the operating point A as a reference.
  • a curve indicated by a broken line is a modulation curve after a certain time has elapsed since the power was turned on, and the voltage value V B 2 at the operating point B is different from the voltage V B 1 at the operating point A. That is, the voltage value of the operating point is shifted from V B 1 to V B 2.
  • V B bias voltage
  • the control unit 100 changes the bias voltage V B so that the synchronous detection signal becomes 0V.
  • the bias voltage V B is set to the optimum voltage value V B 2, and as a result, the optical modulator 102 uses the operating point B as a reference and the phase based on the drive signal from the RF drive circuit 103. Modulation is performed.
  • the power supply circuit 104 outputs a fixed power supply voltage of 50 V so that the upper limit value of the bias voltage specification of the optical modulator 102 can be covered.
  • Patent Documents 3-7 techniques relating to bias voltage control of an optical transmitter of an external modulation type are described in Patent Documents 3-7 and the like in addition to Patent Documents 1 and 2 described above.
  • Patent Document 1 describes an optical transmission device including a Mach-Zehnder type LN modulator.
  • a Mach-Zehnder LN modulator is driven by a drive signal on which a low-frequency dither signal is superimposed. Then, based on the phase comparison result between the dither signal extracted from the output signal of the Mach-Zehnder LN modulator and the dither signal before superposition, a bias voltage for compensating for the operating point drift of the Mach-Zehnder LN modulator is generated.
  • Patent Document 2 describes feedback control in which output light (monitor light) of a Mach-Zehnder LN modulator is detected by a photodetector and a bias voltage is controlled based on the output value of the photodetector.
  • Patent Document 3 discloses that training is performed to calculate an intermediate point from the minimum and maximum values of the operating point bias set value, and the calculated intermediate value is set as an appropriate operating point of the external modulator. Has been.
  • the power supply circuit 104 outputs a voltage (V max in FIG. 5) that can cover the upper limit value of the bias voltage specification of the optical modulator 102.
  • V max the voltage
  • the power supply circuit 104 always supplies a power supply voltage of 50 V to the bias supply circuit 105. In this case, the following problems occur.
  • the optical modulator shown in FIG. A power supply voltage V max that can cover the upper limit value of the bias voltage specification 102 is supplied to the bias supply circuit 105. That is, in the optical transmission device shown in FIG. 4, a power supply voltage larger than necessary with respect to the bias voltage supplied to the optical modulator 102 is supplied to the bias supply circuit 105. For this reason, the problem that power consumption increases arises.
  • optical transmission devices described in Patent Documents 1-3 also have the above-described problem of increased power consumption because the power supply voltage is fixed.
  • An object of the present invention is to provide an optical transmission apparatus and a power supply voltage control method thereof that can solve the above-described problems and can reduce power consumption.
  • an optical transmission apparatus receives light output means for outputting light, a drive signal and a bias voltage as inputs, and modulates light from the light output means according to the drive signal.
  • a light modulation means for changing the intensity of the output light in accordance with the bias voltage, and a feedback indicating a deviation amount of the bias voltage with respect to an operating point of the light modulation means set to a predetermined value based on the intensity of the output light.
  • Feedback means for generating information; power supply means for outputting a power supply voltage; bias supply means that operates in response to the power supply voltage and supplies the bias voltage to the light modulation means; and the bias of the bias supply means Control means for controlling the supply operation of the voltage and the output operation of the power supply voltage of the power supply means. Based on Dobakku information, along with changing the bias voltage, to vary the power supply voltage according to the value of the bias voltage.
  • a power supply voltage control method receives a drive signal and a bias voltage as input, modulates light from a light source according to the drive signal, and outputs light intensity according to the bias voltage.
  • a power supply voltage control method for an optical transmission device comprising: an optical modulator that changes, and a bias supply circuit that operates by receiving a power supply voltage and supplies the bias voltage to the optical modulator, The bias voltage is changed based on feedback information indicating a deviation amount of the bias voltage with respect to the operating point of the optical modulator that is generated based on the intensity and is set to a predetermined value, and according to the value of the bias voltage The power supply voltage is changed.
  • the power consumption can be reduced.
  • FIG. 2 is a diagram for explaining a relationship among an operating point drift, a bias voltage, and a power supply voltage when the optical modulator of the optical transmission device shown in FIG. 1 is turned on.
  • FIG. 2 is a diagram for explaining a relationship between an operating point drift, a bias voltage, and a power supply voltage when a certain time has elapsed after the optical modulator of the optical transmission device shown in FIG. 1 is turned on.
  • FIG. 2 is a diagram for explaining an optimum value of a bias voltage and a change in power supply voltage in the optical transmission device shown in FIG. 1.
  • FIG. 5 is a diagram for explaining a modulation curve and an operating point of an optical modulator of the optical transmission device shown in FIG. 4.
  • FIG. 1 is a block diagram showing a configuration of an optical transmission apparatus according to an embodiment of the present invention.
  • the optical transmission apparatus includes a light source 1, an optical modulator 2, an RF drive circuit 3, a power supply circuit 4, a bias supply circuit 5, a light detection unit 6, and a control unit 10.
  • the light source 1, the RF drive circuit 3, and the bias supply circuit 5 are the same as the light source 101, the RF drive circuit 103, and the bias supply circuit 105 shown in FIG. That is, the light source 1 outputs laser light according to the control signal S1 input from the control unit 10.
  • the RF drive circuit 3 converts a digital signal corresponding to the input information into an analog drive signal and supplies the analog drive signal to the optical modulator 2.
  • Bias supply circuit 5 operates receiving the power supply voltage from the power supply circuit 4 supplies a bias voltage V B to the optical modulator 2 according to the driving control signal S2.
  • the light modulator 2 is an LN modulator and modulates light from the light source 1.
  • LN modulators include modulation schemes such as intensity modulation, phase modulation, and polarization modulation, and the optical modulator 2 can employ any modulation scheme.
  • an LN phase modulator is used as the optical modulator 2.
  • one optical waveguide is formed on an LN substrate, and an RF driving electrode and a bias adjusting electrode are formed in the vicinity of the optical waveguide.
  • Light from the light source 1 enters from one end of the optical waveguide.
  • the incident light propagates in the optical waveguide and is emitted from the other end of the optical waveguide.
  • a phase change corresponding to the drive voltage supplied to the RF drive electrode is caused to the light propagating in the optical waveguide.
  • the light detection unit 6 detects the output light of the light modulator 2 and includes, for example, a PD (photodiode).
  • the output light of the optical modulator 2 is branched into two using a Y-branch waveguide or a 3 dB directional coupler, and one of the branched lights is supplied to the PD as monitor light.
  • the PD supplies an electrical signal corresponding to the light intensity of the input monitor light to the control unit 10 as a monitor light detection signal S3. Note that the light detection unit 6 may be incorporated in the light modulator 2.
  • the power supply circuit 4 supplies a power supply voltage to the bias supply circuit 5, and is configured to increase or decrease the power supply voltage according to the power supply control signal S4.
  • a power supply circuit 4 with a variable power supply voltage can be constituted by, for example, a DC-DC converter with a variable output voltage.
  • the control unit 10 supplies the control signal S 1 to the light source 1, supplies the drive control signal S 2 to the bias supply circuit 5, and supplies the power control signal S 4 to the power circuit 4.
  • the control unit 10 performs ABC control based on the monitor light detection signal S 3 from the light detection unit 6 so that the bias voltage V B becomes the voltage value of the operating point of the optical modulator 2.
  • the control unit 10 according to the present embodiment further performs power supply voltage control so that a necessary minimum power supply voltage corresponding to the determined voltage value is supplied to the bias supply circuit 5.
  • control unit 10 inserts a pilot signal into the drive control signal S2 and extracts the inserted pilot signal from the monitor light detection signal S3 input from the light detection unit 6. Then, the inserted pilot signal and the extracted pilot signal are synchronously detected, and the bias supply circuit 5 is controlled so that the synchronous detection signal becomes 0V.
  • the power supply voltage supplied to the bias supply circuit 5 is adjusted to the voltage value at the operating point if a voltage (for example, V B + ⁇ ) that is slightly larger than the voltage value at the operating point of the optical modulator 2 can be supplied. I can do it.
  • the application of the RF signal from the RF drive circuit 3 is performed by AC (Alternating Current) coupling from the outside, so that it is not necessary to apply a bias voltage considering the AC amplitude.
  • 2A and 2B are diagrams for explaining the relationship between the operating point drift of the optical modulator 2, the optimum value of the bias voltage, and the minimum required power supply voltage.
  • 2A shows the time when the power is turned on
  • FIG. 2B shows the time when a certain time has passed after the power is turned on.
  • the modulation curve of the optical modulator 2 is shown in a two-dimensional coordinate system in which the vertical axis represents the light intensity and the horizontal axis represents the bias voltage value.
  • the modulation curve at power-on is shown by a broken line.
  • the upper limit value of the bias voltage specification of the optical modulator 2 is V max .
  • the modulation curve of the optical modulator 2 is a COS square function curve, and the operating point of the optical modulator 2 is set on this modulation curve.
  • the operating point of the optical modulator 2 is appropriately set according to the modulation method.
  • the minimum point on the modulation curve is set as an operating point (a point indicated by a circle).
  • phase modulation based on the drive signal from the RF drive circuit 3 is performed with the operating point as a reference. Specifically, when the RF electric signal is “0”, the driving voltage V 1 is supplied to the RF driving electrode, and when the RF electric signal is “1”, the driving voltage V 2 is for RF driving. Supplied to the electrode.
  • each of the drive voltages V 1 and V 2 is a voltage value based on the operating point, and is set to a voltage value at a maximum point located on the left and right of the operating point on the modulation curve.
  • the drive voltage V 1 is ⁇ V ⁇
  • the drive voltage V 2 is + V ⁇ .
  • V ⁇ is a half-wave voltage that changes the phase of light propagating in the waveguide by a half wavelength. For example, a phase change amount of 2 ⁇ occurs between the phase of light when the drive voltage V 1 ( ⁇ V ⁇ ) is supplied and the phase of light when the drive voltage V 2 (+ V ⁇ ) is supplied.
  • the voltage value of the operating point of the optical modulator 2 (the operating point A in FIG. 2A) is V B 1.
  • the controller 10 controls the bias supply circuit 5 so that the bias voltage V B becomes the voltage value V B 1, and at the same time controls the power supply circuit 4 so that the power supply voltage V 0 becomes the voltage value V min 1.
  • the bias supply circuit 5 can secure a necessary voltage control range, and the optical modulator 2 performs phase modulation based on the drive signal from the RF drive circuit 3 with the operating point A as a reference.
  • the power supply voltage is lower by [V max ⁇ V min 1], so that the power consumption by the bias supply circuit 5 can be reduced.
  • the operating point of the optical modulator 2 changes from the operating point A to the operating point B over time.
  • the voltage value at the operating point B is V B 2 (> V B 1).
  • the control unit 10 controls the power supply circuit 4 so that the power supply voltage V 0 becomes the voltage value V min 2 at the same time as controlling the bias supply circuit 5 so that the bias voltage V B becomes the voltage value V B 2.
  • the bias supply circuit 5 can secure a necessary voltage control range, and the optical modulator 2 performs phase modulation based on the drive signal from the RF drive circuit 3 with the operating point B as a reference.
  • the power supply voltage is lower by [V max ⁇ V min 2], so that the power consumption by the bias supply circuit 5 can be reduced.
  • FIG. 3 is a diagram for explaining the change in the optimum value (voltage at the operating point) of the bias voltage and the change in the power supply voltage supplied to the bias supply circuit 5.
  • the vertical axis represents the bias voltage, and the horizontal axis represents time.
  • a graph G1 shows a change in the optimum value (voltage at the operating point) of the bias voltage.
  • a graph G2 shows a change in the power supply voltage.
  • a hatched area S indicates a reduction amount of the power supply voltage. As the power supply voltage reduction amount increases, the power consumption reduction amount increases.
  • the bias voltage V B gradually increases as the operating point changes.
  • the power supply voltage V 0 gradually increases as the bias voltage V B changes.
  • the difference between the bias voltage V B and the power supply voltage V 0 corresponds to the above “ ⁇ ”.
  • the power consumption reduction effect is greatest when the power is turned on, and then gradually decreases with time.
  • a method of gradually increasing the power supply voltage at a fixed rate is also conceivable.
  • the speed of the operating point drift of the optical modulator 2 is not constant, and varies depending on the operating conditions and the characteristics (inherent characteristics) of the optical modulator 2, so that the bias voltage V B is set to an optimum value.
  • the power supply voltage necessary for this cannot be obtained.
  • the bias voltage V B can be maintained at an optimum value even when the operating point of the optical modulator 2 fluctuates. There is no problem of distortion.
  • the bias supply circuit 5 is operated at a power supply voltage (minimum required power supply voltage) slightly higher than the voltage value at the operating point of the optical modulator 2, power consumption can be reduced.
  • a power supply voltage minimum required power supply voltage
  • the drive voltage based on the RF electrical signal is applied by AC coupling, it is not necessary to apply the bias voltage in consideration of the AC amplitude.
  • the power consumption can be reduced to half or less as compared with the specification considering long-term reliability.
  • the specification with consideration for long-term reliability needs to set the power supply voltage to 50 V, whereas in this embodiment, the operating point is If it is about 10V, the power supply voltage of the bias supply circuit 5 may be about 12V (about 1/4). That is, when the power supply voltage can be lowered by about 38 V and the power consumption can be considered to be proportional to the power supply voltage, the power consumption can be reduced to about 1 ⁇ 4.
  • the operating point may drift once in the minus direction and then drift in the plus direction.
  • the bias voltage V B is changed according to the monitor light detection signal S3, and the power supply voltage V 0 is changed according to the change of the bias voltage V B. For this reason, even if the operating point moves in either the plus direction or the minus direction, it is possible to follow the bias voltage V B and the power supply voltage V 0 .
  • the optical modulator 2 is not limited to the LN phase modulator.
  • the optical modulator 2 may be an LN intensity modulator.
  • an optical transmission device in which the optical modulator 2 is configured by an LN intensity modulator will be described.
  • the LN intensity modulator is formed with first and second optical waveguides constituting a Mach-Zehnder interferometer on an LN substrate, and in addition to the first and second optical waveguides, an RF driving electrode In addition, a bias adjusting electrode is formed.
  • One end of the first and second optical waveguides is coupled to the first Y branch waveguide, and the other end is coupled to the second Y branch waveguide.
  • Light from the light source 1 is supplied to the first and second optical waveguides via the first Y branch waveguide.
  • the light propagated through each of the first and second optical waveguides is multiplexed by the second Y branch waveguide.
  • the light detection unit 6 detects a part of the output light output through the second Y-branch waveguide as monitor light.
  • the operating point of the optical modulator 2 is set between the maximum point and the minimum point of the modulation curve shown in FIG. 2A and the like.
  • the drive voltage V 1 when the RF electrical signal is “0” is a minimum voltage value
  • the drive voltage V 2 when the RF electrical signal is “1” is a maximum voltage value.
  • the drive voltage V 1 is supplied, there is no phase difference between the lights propagated through the respective first and second optical waveguides.
  • the second Y-branch waveguide the light from the first optical waveguide and the light from the second optical waveguide are combined without canceling each other and output from the optical modulator 2.
  • the phase difference of 180 ° between light propagating in the respective first and second optical waveguides is produced.
  • the light from the first optical waveguide and the light from the second optical waveguide cancel each other, so that no light is output from the optical modulator 2.
  • the control unit 10 determines that the bias voltage V B becomes the voltage value of the operating point of the optical modulator 2 based on the monitor light detection signal S3 from the light detection unit 6. Thus, the bias voltage control is performed, and the power supply voltage control for performing the bias voltage supply operation with the minimum necessary power supply voltage is performed.
  • the control unit 10 inserts a pilot signal into the drive control signal S2 and the pilot signal inserted from the monitor light detection signal S3 input from the light detection unit 6 at the time of intensity modulation as well as at the time of phase modulation. Extract. Then, the inserted pilot signal and the extracted pilot signal are synchronously detected, and the bias supply circuit 5 is controlled so that the synchronous detection signal becomes 0V. Thereby, there exists an effect
  • the optical modulator 2 may be formed using a material other than LN, for example, a material having an electro-optic effect such as LiTaO 3 or KTiOPO 4 .
  • a DP-QPSK (Dual Polarization / Quadrature / Phase / Shift / Keying) modulation system that assigns 4-bit data to the optical modulator 2 may be employed.
  • the effect of reducing power consumption is further increased.
  • ABC control may be obtained by any method as long as the operating point of the optical modulator can be stabilized.
  • training is performed to calculate the intermediate point from the minimum and maximum values of the operating point bias set value, and the calculated intermediate value is used as an appropriate operation of the external modulator. It can also be a point.
  • the light source, the optical modulator, the feedback unit, the power supply circuit, the bias supply circuit, and the control unit are the light source 1, the optical modulator 2, the light detection unit 6, the power supply circuit 4, and the bias shown in FIG. It may be configured by the supply circuit 5 and the control unit 10.
  • [Appendix 1] A light source; An optical modulator that takes a drive signal and a bias voltage as inputs, modulates light from the light source according to the drive signal, and changes the intensity of output light according to the bias voltage; A feedback unit that outputs feedback information indicating a deviation amount of the bias voltage with respect to an operating point of the optical modulator in which the intensity of the output light is set to a predetermined value; A power supply circuit that outputs a power supply voltage; A bias supply circuit that operates by receiving the power supply voltage and supplies the bias voltage to the optical modulator; A control unit for controlling the supply operation of the bias voltage of the bias supply circuit and the output operation of the power supply voltage of the power supply circuit, The said control part is an optical transmission apparatus which changes the said power supply voltage according to the value of this bias voltage while changing the said bias voltage based on the said feedback information.
  • Appendix 2 The optical transmitter according to appendix 1, wherein a difference between the power supply voltage and the bias voltage is constant.
  • Appendix 3 The optical transmission device according to appendix 1 or 2, wherein the power supply circuit includes a DC-DC converter having a variable output voltage.
  • the feedback unit includes a light detection unit that detects the intensity of the output light and supplies the detection value to the control unit as the feedback information.
  • the control unit superimposes a predetermined pilot signal on the bias voltage, and changes the bias voltage so that a synchronous detection result between the pilot signal extracted from the detection value and the pilot signal becomes 0. 4.
  • the optical transmission device according to any one of 3.
  • Appendix 5 The optical transmission device according to appendix 4, wherein the light detection unit is incorporated in the optical modulator.
  • optical transmitter The optical transmitter according to any one of appendices 1 to 5, wherein the optical modulator is made of lithium niobate.
  • the driving signal and the bias voltage are input, respectively, and the light from the light source is modulated according to the driving signal, and the optical modulator that changes the intensity of the output light in accordance with the bias voltage, operates in response to the power supply voltage, and
  • a power supply voltage control method for an optical transmission device comprising a bias supply circuit for supplying a bias voltage to the optical modulator, Based on feedback information indicating the amount of deviation of the bias voltage with respect to the operating point of the optical modulator where the intensity of the output light is a predetermined value, the bias voltage is changed, and according to the value of the bias voltage, A power supply voltage control method for changing the power supply voltage.
  • the present invention can be applied to all optical modulators in which bias voltage control is performed.

Abstract

Provided is an optical transmission device capable of achieving a reduction in power consumption. The optical transmission device comprises: a light source; an optical modulator for modulating light from the light source; a feedback unit for outputting feedback information representing the deviation in a bias voltage from the operating point of the optical modulator; a power supply circuit for outputting a power supply voltage; a bias supply circuit operating responsive to the power supply voltage to supply the optical modulator with a bias voltage; and a control unit for controlling the operation supplying the bias voltage from the bias supply circuit and the operation outputting the power supply voltage from the power supply circuit. The control unit changes the bias voltage on the basis of the feedback information, while changing the power supply voltage in accordance with the value of the bias voltage.

Description

光送信装置及び電源電圧制御方法Optical transmitter and power supply voltage control method
 本発明は、外部光変調方式の光送信装置及びその電源電圧制御方法に関する。 The present invention relates to an external optical modulation type optical transmission apparatus and a power supply voltage control method thereof.
 最近の光送信装置、例えば、デジタルコヒーレント光送信器には、外部光変調方式を採用しているものが多い。外部光変調方式は、光源(例えばレーザ光源)からの光を光変調器で変調する方式である。 Recent optical transmitters, for example, digital coherent optical transmitters, often employ an external optical modulation method. The external light modulation method is a method in which light from a light source (for example, a laser light source) is modulated by an optical modulator.
 外部光変調方式の光送信装置では、光変調器として、LiNbO3(ニオブ酸リチウム:略称LN)などの誘電体材料による電気光学効果を利用した変調器や、InP(リン化インジウム)などの半導体材料による電界吸収効果を利用した変調器が用いられている。LiNbO3を用いたものをLN変調器と呼び、InPを用いたものをInP変調器と呼ぶ。 In an optical transmitter of an external light modulation system, as an optical modulator, a modulator using an electro-optic effect by a dielectric material such as LiNbO 3 (lithium niobate: abbreviation LN), or a semiconductor such as InP (indium phosphide) A modulator using an electroabsorption effect of a material is used. A device using LiNbO 3 is called an LN modulator, and a device using InP is called an InP modulator.
 LN変調器は、高速変調が可能である。しかし、LN変調器に特有な現象として、LN変調器の動作点が温度変化や経時変化により変化するドリフト現象が知られている。温度変化がもたらす焦電効果によるものを熱(温度)ドリフトと呼び、経時変化によるものをDCドリフトと呼ぶ。 The LN modulator can perform high-speed modulation. However, as a phenomenon peculiar to the LN modulator, a drift phenomenon is known in which the operating point of the LN modulator changes due to a temperature change or a change with time. A phenomenon caused by a pyroelectric effect caused by a temperature change is called a thermal (temperature) drift, and a thing caused by a change with time is called a DC drift.
 通常、LN変調器を備えた光送信装置では、ドリフト現象の影響を補償するため、LN変調器の動作点が一定となるようにフィードバック制御が行われる。 Usually, in an optical transmission apparatus equipped with an LN modulator, feedback control is performed so that the operating point of the LN modulator becomes constant in order to compensate for the influence of the drift phenomenon.
 図4に、フィードバック制御が行われる光送信装置の構成を示す。図4を参照すると、光送信装置は、光源101、光変調器102、RF(Radio Frequency)駆動回路103、電源回路104、バイアス供給回路105、光検出部106及び制御部100を有する。 FIG. 4 shows a configuration of an optical transmission apparatus that performs feedback control. Referring to FIG. 4, the optical transmission apparatus includes a light source 101, an optical modulator 102, an RF (Radio Frequency) drive circuit 103, a power supply circuit 104, a bias supply circuit 105, a light detection unit 106, and a control unit 100.
 光源101は、レーザー光源であって、制御信号S1に従ってレーザー光を出力する。
光変調器102は、LN位相変調器である。LN位相変調器は、LN基板上に、一本の光導波路を形成し、さらに、この光導波路に近接して、RF駆動用電極及びバイアス調整用電極を形成したものである。
The light source 101 is a laser light source and outputs laser light according to the control signal S1.
The optical modulator 102 is an LN phase modulator. In the LN phase modulator, one optical waveguide is formed on an LN substrate, and an RF driving electrode and a bias adjusting electrode are formed in the vicinity of the optical waveguide.
 光検出部106は、光変調器102の出力光(モニタ光)の光強度を検出し、その光強度の大きさに応じた電気信号をモニタ光検出信号S3として制御部100へ出力する。RF駆動回路103は、入力された情報に応じたデジタル信号をアナログの駆動信号に変換し、光変調器102に供給する。具体的には、RF駆動回路103は、入力された変調信号(デジタル信号)であるRF電気信号(高周波信号)をアナログ信号の駆動信号に変換し、その駆動信号を光変調器102に供給する。 The light detection unit 106 detects the light intensity of the output light (monitor light) of the light modulator 102, and outputs an electric signal corresponding to the magnitude of the light intensity to the control unit 100 as a monitor light detection signal S3. The RF drive circuit 103 converts a digital signal corresponding to the input information into an analog drive signal and supplies the analog drive signal to the optical modulator 102. Specifically, the RF drive circuit 103 converts an RF electric signal (high frequency signal) that is an input modulation signal (digital signal) into an analog signal, and supplies the drive signal to the optical modulator 102. .
 電源回路104は、電源電圧をバイアス供給回路105に供給する。バイアス供給回路105は、電源回路104からの電源電圧を受けて動作し、駆動制御信号S2に従ってバイアス電圧VBを光変調器102に供給する。 The power supply circuit 104 supplies a power supply voltage to the bias supply circuit 105. The bias supply circuit 105 operates by receiving the power supply voltage from the power supply circuit 104 and supplies the bias voltage V B to the optical modulator 102 in accordance with the drive control signal S2.
 制御部100は、制御信号S1を光源101に供給し、駆動制御信号S2をバイアス供給回路105に供給する。制御部100は、光検出部106からのモニタ光検出信号S3に基づいて、バイアス電圧VBが光変調器102の動作点である電圧値(最適値)になるようにバイアス供給回路105を制御する(ABC制御:Auto Bias Control)。制御部100は、位相変調時のABC動作として、例えば、駆動制御信号S2にパイロット信号を挿入すると共に、光検出部106から入力したモニタ光検出信号S3から挿入されているパイロット信号を抽出する。そして、挿入したパイロット信号と抽出したパイロット信号とを同期検波し、同期検波信号が0Vとなるようにバイアス供給回路105を制御する。なお、位相変調時のABC動作の詳細は、例えば、特許文献1、2に開示されている。 The control unit 100 supplies the control signal S1 to the light source 101 and supplies the drive control signal S2 to the bias supply circuit 105. The control unit 100 controls the bias supply circuit 105 so that the bias voltage V B becomes a voltage value (optimum value) that is the operating point of the optical modulator 102 based on the monitor light detection signal S 3 from the light detection unit 106. (ABC control: Auto Bias Control). As an ABC operation at the time of phase modulation, for example, the control unit 100 inserts a pilot signal into the drive control signal S2 and extracts a pilot signal inserted from the monitor light detection signal S3 input from the light detection unit 106. Then, the inserted pilot signal and the extracted pilot signal are synchronously detected, and the bias supply circuit 105 is controlled so that the synchronous detection signal becomes 0V. Details of ABC operation during phase modulation are disclosed in, for example, Patent Documents 1 and 2.
 図5は、光変調器102の変調曲線及び動作点を説明するための図である。縦軸に光強度をとり、横軸にバイアス電圧値をとった2次元座標系に、光変調器102の変調曲線が示されている。 FIG. 5 is a diagram for explaining a modulation curve and an operating point of the optical modulator 102. The modulation curve of the optical modulator 102 is shown in a two-dimensional coordinate system in which the vertical axis represents the light intensity and the horizontal axis represents the bias voltage value.
 光変調器102の変調曲線は、COS2乗の関数曲線であり、この変調曲線上に光変調器102の動作点を設定する。光変調器102の動作点は、変調方式に応じて適宜に設定する。ここでは、位相変調であるため、変調曲線上の極小点を動作点(丸印で示した点)とする。 The modulation curve of the optical modulator 102 is a COS square function curve, and the operating point of the optical modulator 102 is set on this modulation curve. The operating point of the optical modulator 102 is appropriately set according to the modulation method. Here, since it is phase modulation, the minimum point on the modulation curve is set as an operating point (a point indicated by a circle).
 光変調器102では、動作点を基準にして、RF駆動回路103からの駆動信号に基づく位相変調が行われる。具体的には、RF電気信号が「0」であるときは、駆動電圧VがRF駆動用電極に供給され、RF電気信号が「1」であるときは、駆動電圧VがRF駆動用電極に供給される。ここで、駆動電圧V、Vはそれぞれ、動作点を基準にした電圧値であって、変調曲線上の動作点の左右に位置する極大点の電圧値に設定される。駆動電圧Vは-Vπであり、駆動電圧Vは+Vπである。「Vπ」は導波路中を伝搬する光の位相を半波長だけ変化させる半波長電圧である。例えば、駆動電圧V(-Vπ)を供給した場合の光の位相と、駆動電圧V(+Vπ)を供給した場合の光の位相との間には、2πの位相変化量が生じる。 The optical modulator 102 performs phase modulation based on the drive signal from the RF drive circuit 103 with the operating point as a reference. Specifically, when the RF electric signal is “0”, the driving voltage V 1 is supplied to the RF driving electrode, and when the RF electric signal is “1”, the driving voltage V 2 is for RF driving. Supplied to the electrode. Here, each of the drive voltages V 1 and V 2 is a voltage value based on the operating point, and is set to a voltage value at a maximum point located on the left and right of the operating point on the modulation curve. The drive voltage V 1 is −Vπ, and the drive voltage V 2 is + Vπ. “Vπ” is a half-wave voltage that changes the phase of light propagating in the waveguide by a half wavelength. For example, a phase change amount of 2π occurs between the phase of light when the drive voltage V 1 (−Vπ) is supplied and the phase of light when the drive voltage V 2 (+ Vπ) is supplied.
 しかし、図5に示すように、時間の経過とともに光変調器102の動作点はドリフト(変化)する。 However, as shown in FIG. 5, the operating point of the optical modulator 102 drifts (changes) over time.
 実線で示した曲線が電源投入時の変調曲線であり、動作点Aの電圧値はVB1である。制御部100は、バイアス電圧VBが電圧値VB1になるようにバイアス供給回路105を制御する。これにより、光変調器102では、動作点Aを基準にして、RF駆動回路103からの駆動信号に基づく位相変調が行われる。 A curve indicated by a solid line is a modulation curve when the power is turned on, and the voltage value at the operating point A is V B 1. The control unit 100 controls the bias supply circuit 105 so that the bias voltage V B becomes the voltage value V B 1. As a result, the optical modulator 102 performs phase modulation based on the drive signal from the RF drive circuit 103 with the operating point A as a reference.
 破線で示した曲線が電源投入後、ある時間を経過した後の変調曲線であり、動作点Bの電圧値VB2は、動作点Aの電圧VB1と異なる。すなわち、動作点の電圧値がVB1からVB2にシフトしている。この場合、バイアス電圧VBを電圧値VB1に設定した状態では、バイアス電圧VBが最適値である電圧値VB2から外れるため、光変調器102の出力波形に波形歪が生じる。 A curve indicated by a broken line is a modulation curve after a certain time has elapsed since the power was turned on, and the voltage value V B 2 at the operating point B is different from the voltage V B 1 at the operating point A. That is, the voltage value of the operating point is shifted from V B 1 to V B 2. In this case, in the state where a bias voltage V B to the voltage value V B 1, since the bias voltage V B deviates from the voltage value V B 2 is the optimum value, waveform distortion occurs in the output waveform of the optical modulator 102.
 バイアス電圧VBが最適値である場合に、上述した同期検波信号が0Vになる。制御部100は、同期検波信号が0Vになるように、バイアス電圧VBを変化させる。これにより、バイアス電圧VBは、最適値である電圧値VB2に設定され、その結果、光変調器102では、動作点Bを基準にして、RF駆動回路103からの駆動信号に基づく位相変調が行われる。 When the bias voltage V B is an optimum value, the synchronous detection signal described above becomes 0V. The control unit 100 changes the bias voltage V B so that the synchronous detection signal becomes 0V. As a result, the bias voltage V B is set to the optimum voltage value V B 2, and as a result, the optical modulator 102 uses the operating point B as a reference and the phase based on the drive signal from the RF drive circuit 103. Modulation is performed.
 図4に示した光送信装置において、長期信頼性を確保するためには、例えば、±50Vといった広範囲な動作点の変動にも対応する必要がある。このため、電源回路104は、光変調器102のバイアス電圧仕様の上限値をカバーできるように、50Vの電源電圧を固定的に出力する。 In the optical transmitter shown in FIG. 4, in order to ensure long-term reliability, it is necessary to cope with a wide range of operating point fluctuations, for example, ± 50V. For this reason, the power supply circuit 104 outputs a fixed power supply voltage of 50 V so that the upper limit value of the bias voltage specification of the optical modulator 102 can be covered.
 ここで、外部変調方式の光送信装置のバイアス電圧制御に関連する技術は上述の特許文献1、2の他、特許文献3-7等にも記載されている。 Here, techniques relating to bias voltage control of an optical transmitter of an external modulation type are described in Patent Documents 3-7 and the like in addition to Patent Documents 1 and 2 described above.
 特許文献1には、マッハツェンダ型LN変調器を備えた光送信装置が記載されている。この光送信装置では、低周波数のディザ信号を重畳した駆動信号によりマッハツェンダ型LN変調器を駆動する。そして、マッハツェンダ型LN変調器の出力信号から抽出したディザ信号と重畳前のディザ信号との位相比較結果に基づいて、マッハツェンダ型LN変調器の動作点ドリフトを補償するバイアス電圧を発生する。 Patent Document 1 describes an optical transmission device including a Mach-Zehnder type LN modulator. In this optical transmitter, a Mach-Zehnder LN modulator is driven by a drive signal on which a low-frequency dither signal is superimposed. Then, based on the phase comparison result between the dither signal extracted from the output signal of the Mach-Zehnder LN modulator and the dither signal before superposition, a bias voltage for compensating for the operating point drift of the Mach-Zehnder LN modulator is generated.
 特許文献2には、マッハツェンダ型LN変調器の出力光(モニタ光)をフォトディテクタで検出し、フォトディテクタの出力値に基づいてバイアス電圧を制御するフィードバック制御が記載されている。また、特許文献3には、トレーニングを実施して動作点バイアス設定値の最小値と最大値からその中間点を算出し、算出した中間値を外部変調器の適正な動作点とすることが開示されている。 Patent Document 2 describes feedback control in which output light (monitor light) of a Mach-Zehnder LN modulator is detected by a photodetector and a bias voltage is controlled based on the output value of the photodetector. Patent Document 3 discloses that training is performed to calculate an intermediate point from the minimum and maximum values of the operating point bias set value, and the calculated intermediate value is set as an appropriate operating point of the external modulator. Has been.
特開2004-37647号公報JP 2004-37647 A 特開2003-233047号公報JP 2003-233047 A 特開2006-314003号公報JP 2006-31003 A 特開2011-221370号公報JP 2011-221370 A 特開2008-282057号公報JP 2008-282057 A 特開2003-233042号公報JP 2003-233042 A 特開平4-337707号公報JP-A-4-337707
 しかしながら、図4に示した光送信装置においては、電源回路104は、光変調器102のバイアス電圧仕様の上限値をカバーできる電圧(図5のVmax)を固定的に出力する。例えば、電源回路104は、常時、50Vの電源電圧をバイアス供給回路105に供給する。この場合、以下のような問題が生じる。 However, in the optical transmission device shown in FIG. 4, the power supply circuit 104 outputs a voltage (V max in FIG. 5) that can cover the upper limit value of the bias voltage specification of the optical modulator 102. For example, the power supply circuit 104 always supplies a power supply voltage of 50 V to the bias supply circuit 105. In this case, the following problems occur.
 電源投入から短期的な期間(数時間や数日)においては、光変調器102の動作点の変動量は数Vであるにも関わらず、図4に示した光送信装置では、光変調器102のバイアス電圧仕様の上限値をカバーできる電源電圧Vmaxがバイアス供給回路105に供給される。すなわち、図4に示した光送信装置では、光変調器102に供給されるバイアス電圧に対して、必要以上に大きな電源電圧がバイアス供給回路105に供給される。このため、消費電力が増大するという問題を生じる。 In the short-term period (several hours or several days) after the power is turned on, the optical modulator shown in FIG. A power supply voltage V max that can cover the upper limit value of the bias voltage specification 102 is supplied to the bias supply circuit 105. That is, in the optical transmission device shown in FIG. 4, a power supply voltage larger than necessary with respect to the bias voltage supplied to the optical modulator 102 is supplied to the bias supply circuit 105. For this reason, the problem that power consumption increases arises.
 特許文献1-3に記載の光送信装置も、電源電圧が固定であるため、上記の消費電力増大の問題を生じる。 The optical transmission devices described in Patent Documents 1-3 also have the above-described problem of increased power consumption because the power supply voltage is fixed.
 本発明の目的は、上記問題を解決し、低消費電力化を図ることができる光送信装置およびその電源電圧制御方法を提供することにある。 An object of the present invention is to provide an optical transmission apparatus and a power supply voltage control method thereof that can solve the above-described problems and can reduce power consumption.
 上記目的を達成するために本発明に係る光送信装置は、光を出力する光出力手段と、駆動信号及びバイアス電圧をそれぞれ入力とし、前記駆動信号に従って前記光出力手段からの光を変調するとともに、前記バイアス電圧に応じて出力光の強度が変化する光変調手段と、前記出力光の強度に基づいて、所定値とされる前記光変調手段の動作点に対する前記バイアス電圧のずれ量を示すフィードバック情報を生成するフィードバック手段と、電源電圧を出力する電源供給手段と、前記電源電圧を受けて動作し、前記バイアス電圧を前記光変調手段に供給するバイアス供給手段と、前記バイアス供給手段の前記バイアス電圧の供給動作及び前記電源供給手段の前記電源電圧の出力動作を制御する制御手段と、を有し、前記制御手段は、前記フィードバック情報に基づいて、前記バイアス電圧を変化させるとともに、該バイアス電圧の値に応じて前記電源電圧を変化させる。 To achieve the above object, an optical transmission apparatus according to the present invention receives light output means for outputting light, a drive signal and a bias voltage as inputs, and modulates light from the light output means according to the drive signal. A light modulation means for changing the intensity of the output light in accordance with the bias voltage, and a feedback indicating a deviation amount of the bias voltage with respect to an operating point of the light modulation means set to a predetermined value based on the intensity of the output light. Feedback means for generating information; power supply means for outputting a power supply voltage; bias supply means that operates in response to the power supply voltage and supplies the bias voltage to the light modulation means; and the bias of the bias supply means Control means for controlling the supply operation of the voltage and the output operation of the power supply voltage of the power supply means. Based on Dobakku information, along with changing the bias voltage, to vary the power supply voltage according to the value of the bias voltage.
 上記目的を達成するために本発明に係る電源電圧制御方法は、駆動信号及びバイアス電圧をそれぞれ入力とし、前記駆動信号に従って光源からの光を変調するとともに、前記バイアス電圧に応じて出力光の強度が変化する光変調器と、電源電圧を受けて動作し、前記バイアス電圧を前記光変調器に供給するバイアス供給回路とを備えた光送信装置の電源電圧制御方法であって、前記出力光の強度に基づいて生成され、所定値とされる前記光変調器の動作点に対する前記バイアス電圧のずれ量を示すフィードバック情報に基づいて、前記バイアス電圧を変化させるとともに、該バイアス電圧の値に応じて、前記電源電圧を変化させる。 In order to achieve the above object, a power supply voltage control method according to the present invention receives a drive signal and a bias voltage as input, modulates light from a light source according to the drive signal, and outputs light intensity according to the bias voltage. A power supply voltage control method for an optical transmission device, comprising: an optical modulator that changes, and a bias supply circuit that operates by receiving a power supply voltage and supplies the bias voltage to the optical modulator, The bias voltage is changed based on feedback information indicating a deviation amount of the bias voltage with respect to the operating point of the optical modulator that is generated based on the intensity and is set to a predetermined value, and according to the value of the bias voltage The power supply voltage is changed.
 本発明によれば、バイアス電圧を供給するのに必要最低限の電源電圧がバイアス供給回路に供給されるので、消費電力を削減することができる。 According to the present invention, since the minimum power supply voltage necessary for supplying the bias voltage is supplied to the bias supply circuit, the power consumption can be reduced.
本発明の一実施形態による光送信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmitter by one Embodiment of this invention. 図1に示す光送信装置の光変調器の電源投入時の動作点ドリフトとバイアス電圧及び電源電圧の関係を説明するための図である。FIG. 2 is a diagram for explaining a relationship among an operating point drift, a bias voltage, and a power supply voltage when the optical modulator of the optical transmission device shown in FIG. 1 is turned on. 図1に示す光送信装置の光変調器の電源投入後、ある時間を経過した時の動作点ドリフトとバイアス電圧及び電源電圧の関係を説明するための図である。FIG. 2 is a diagram for explaining a relationship between an operating point drift, a bias voltage, and a power supply voltage when a certain time has elapsed after the optical modulator of the optical transmission device shown in FIG. 1 is turned on. 図1に示す光送信装置におけるバイアス電圧の最適値と電源電圧の変化を説明するための図である。FIG. 2 is a diagram for explaining an optimum value of a bias voltage and a change in power supply voltage in the optical transmission device shown in FIG. 1. フィードバック制御が行われる光送信装置の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmitter with which feedback control is performed. 図4に示す光送信装置の光変調器の変調曲線及び動作点を説明するための図である。FIG. 5 is a diagram for explaining a modulation curve and an operating point of an optical modulator of the optical transmission device shown in FIG. 4.
 次に、本発明の実施形態について図面を参照して説明する。図1は、本発明の一実施形態による光送信装置の構成を示すブロック図である。図1を参照すると、光送信装置は、光源1、光変調器2、RF駆動回路3、電源回路4、バイアス供給回路5、光検出部6及び制御部10を有する。 Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an optical transmission apparatus according to an embodiment of the present invention. Referring to FIG. 1, the optical transmission apparatus includes a light source 1, an optical modulator 2, an RF drive circuit 3, a power supply circuit 4, a bias supply circuit 5, a light detection unit 6, and a control unit 10.
 光源1、RF駆動回路3及びバイアス供給回路5は、図4に示した光源101、RF駆動回路103及びバイアス供給回路105と同じである。すなわち、光源1は、制御部10から入力された制御信号S1に従ってレーザー光を出力する。また、RF駆動回路3は、入力された情報に応じたデジタル信号をアナログの駆動信号に変換し、光変調器2に供給する。バイアス供給回路5は、電源回路4からの電源電圧を受けて動作し、駆動制御信号S2に従ってバイアス電圧VBを光変調器2に供給する。 The light source 1, the RF drive circuit 3, and the bias supply circuit 5 are the same as the light source 101, the RF drive circuit 103, and the bias supply circuit 105 shown in FIG. That is, the light source 1 outputs laser light according to the control signal S1 input from the control unit 10. The RF drive circuit 3 converts a digital signal corresponding to the input information into an analog drive signal and supplies the analog drive signal to the optical modulator 2. Bias supply circuit 5 operates receiving the power supply voltage from the power supply circuit 4 supplies a bias voltage V B to the optical modulator 2 according to the driving control signal S2.
 光変調器2は、LN変調器であって、光源1からの光を変調する。LN変調器には、強度変調、位相変調、偏波変調といった変調方式のものがあり、光変調器2は、いずれの変調方式のものも適用することができる。ここでは、光変調器2として、LN位相変調器を用いている。 The light modulator 2 is an LN modulator and modulates light from the light source 1. LN modulators include modulation schemes such as intensity modulation, phase modulation, and polarization modulation, and the optical modulator 2 can employ any modulation scheme. Here, an LN phase modulator is used as the optical modulator 2.
 LN位相変調器は、LN基板上に、一本の光導波路を形成し、さらに、この光導波路に近接して、RF駆動用電極及びバイアス調整用電極を形成したものである。光源1からの光が光導波路の一端より入射する。入射した光は、光導波路内を伝搬し、光導波路の他端より出射される。光導波路内を伝搬する光に対して、RF駆動用電極に供給される駆動電圧に応じた位相変化を生じさせる。 In the LN phase modulator, one optical waveguide is formed on an LN substrate, and an RF driving electrode and a bias adjusting electrode are formed in the vicinity of the optical waveguide. Light from the light source 1 enters from one end of the optical waveguide. The incident light propagates in the optical waveguide and is emitted from the other end of the optical waveguide. A phase change corresponding to the drive voltage supplied to the RF drive electrode is caused to the light propagating in the optical waveguide.
 光検出部6は、光変調器2の出力光を検出するものであって、例えば、PD(フォトダイオード)を備える。Y分岐導波路又は3dB方向性結合器を用いて光変調器2の出力光を2つに分岐し、一方の分岐光をモニタ光としてPDに供給する。PDは、入力されたモニタ光の光強度に応じた電気信号を、モニタ光検出信号S3として制御部10に供給する。なお、光検出部6は光変調器2に組み込まれてもよい。 The light detection unit 6 detects the output light of the light modulator 2 and includes, for example, a PD (photodiode). The output light of the optical modulator 2 is branched into two using a Y-branch waveguide or a 3 dB directional coupler, and one of the branched lights is supplied to the PD as monitor light. The PD supplies an electrical signal corresponding to the light intensity of the input monitor light to the control unit 10 as a monitor light detection signal S3. Note that the light detection unit 6 may be incorporated in the light modulator 2.
 電源回路4は、電源電圧をバイアス供給回路5に供給するものであって、電源制御信号S4に従って電源電圧を増減するように構成されている。このような電源電圧が可変の電源回路4は、例えば、出力電圧可変のDC-DCコンバータにより構成することができる。 The power supply circuit 4 supplies a power supply voltage to the bias supply circuit 5, and is configured to increase or decrease the power supply voltage according to the power supply control signal S4. Such a power supply circuit 4 with a variable power supply voltage can be constituted by, for example, a DC-DC converter with a variable output voltage.
 制御部10は、制御信号S1を光源1に供給し、駆動制御信号S2をバイアス供給回路5に供給し、電源制御信号S4を電源回路4に供給する。制御部10は、光検出部6からのモニタ光検出信号S3に基づいて、バイアス電圧VBが光変調器2の動作点の電圧値になるようにABC制御を行う。本実施形態に係る制御部10はさらに、決定した電圧値に応じた必要最小限の電源電圧がバイアス供給回路5に供給されるように、電源電圧制御を行う。 The control unit 10 supplies the control signal S 1 to the light source 1, supplies the drive control signal S 2 to the bias supply circuit 5, and supplies the power control signal S 4 to the power circuit 4. The control unit 10 performs ABC control based on the monitor light detection signal S 3 from the light detection unit 6 so that the bias voltage V B becomes the voltage value of the operating point of the optical modulator 2. The control unit 10 according to the present embodiment further performs power supply voltage control so that a necessary minimum power supply voltage corresponding to the determined voltage value is supplied to the bias supply circuit 5.
 例えば、制御部10は、駆動制御信号S2にパイロット信号を挿入すると共に、光検出部6から入力したモニタ光検出信号S3から挿入されているパイロット信号を抽出する。そして、挿入したパイロット信号と抽出したパイロット信号とを同期検波し、同期検波信号が0Vとなるようにバイアス供給回路5を制御する。 For example, the control unit 10 inserts a pilot signal into the drive control signal S2 and extracts the inserted pilot signal from the monitor light detection signal S3 input from the light detection unit 6. Then, the inserted pilot signal and the extracted pilot signal are synchronously detected, and the bias supply circuit 5 is controlled so that the synchronous detection signal becomes 0V.
 ここで、バイアス供給回路5に供給される電源電圧としては、光変調器2の動作点の電圧値よりも少し大きな電圧(例えば、VB+α)を供給できれば、動作点の電圧値に調整することが出来る。RF駆動回路3からのRF信号の印加については、外部からAC(Alternating Current)結合で印加するため、AC振幅分まで考慮したバイアス電圧を印加する必要はない。 Here, the power supply voltage supplied to the bias supply circuit 5 is adjusted to the voltage value at the operating point if a voltage (for example, V B + α) that is slightly larger than the voltage value at the operating point of the optical modulator 2 can be supplied. I can do it. The application of the RF signal from the RF drive circuit 3 is performed by AC (Alternating Current) coupling from the outside, so that it is not necessary to apply a bias voltage considering the AC amplitude.
 すなわち、バイアス供給回路5がバイアス電圧VBを供給するのに必要な最低限の電源電圧V0は、V0=VB+αで与えられる。ここで、「α」は、バイアス供給回路5の構成等を考慮して予め設定されたマージン(固定値)である。例えば、電源回路4が電源電圧V0(=VB+α)をバイアス供給回路5に供給している状態で、バイアス電圧VBをΔVだけ変化させる場合は、電源電圧V0もΔVだけ変化させる。これにより、バイアス供給回路5がバイアス電圧VBを供給するのに必要な最低限の電源電圧V0を供給することが可能である。 That is, the minimum power supply voltage V 0 necessary for the bias supply circuit 5 to supply the bias voltage V B is given by V 0 = V B + α. Here, “α” is a margin (fixed value) set in advance in consideration of the configuration of the bias supply circuit 5 and the like. For example, when the power supply circuit 4 supplies the power supply voltage V 0 (= V B + α) to the bias supply circuit 5, when the bias voltage V B is changed by ΔV, the power supply voltage V 0 is also changed by ΔV. . Thereby, it is possible to supply the minimum power supply voltage V 0 necessary for the bias supply circuit 5 to supply the bias voltage V B.
 図2Aおよび図2Bは、光変調器2の動作点ドリフトとバイアス電圧の最適値及び最低必要な電源電圧の関係を説明するための図である。図2Aは電源投入時、図2Bは電源投入後、ある時間を経過した時である。縦軸に光強度をとり、横軸にバイアス電圧値をとった2次元座標系に、光変調器2の変調曲線が示されている。なお、図2Bに電源投入時の変調曲線を破線で示した。光変調器2のバイアス電圧仕様上限値はVmaxである。 2A and 2B are diagrams for explaining the relationship between the operating point drift of the optical modulator 2, the optimum value of the bias voltage, and the minimum required power supply voltage. 2A shows the time when the power is turned on, and FIG. 2B shows the time when a certain time has passed after the power is turned on. The modulation curve of the optical modulator 2 is shown in a two-dimensional coordinate system in which the vertical axis represents the light intensity and the horizontal axis represents the bias voltage value. In FIG. 2B, the modulation curve at power-on is shown by a broken line. The upper limit value of the bias voltage specification of the optical modulator 2 is V max .
 光変調器2の変調曲線は、COS2乗の関数曲線であり、この変調曲線上に光変調器2の動作点を設定する。光変調器2の動作点は、変調方式に応じて適宜に設定する。ここでは、位相変調であるため、変調曲線上の極小点を動作点(丸印で示した点)とする。 The modulation curve of the optical modulator 2 is a COS square function curve, and the operating point of the optical modulator 2 is set on this modulation curve. The operating point of the optical modulator 2 is appropriately set according to the modulation method. Here, since it is phase modulation, the minimum point on the modulation curve is set as an operating point (a point indicated by a circle).
 光変調器2では、動作点を基準にして、RF駆動回路3からの駆動信号に基づく位相変調が行われる。具体的には、RF電気信号が「0」であるときは、駆動電圧VがRF駆動用電極に供給され、RF電気信号が「1」であるときは、駆動電圧VがRF駆動用電極に供給される。ここで、駆動電圧V、Vはそれぞれ、動作点を基準にした電圧値であって、変調曲線上の動作点の左右に位置する極大点の電圧値に設定される。駆動電圧Vは-Vπであり、駆動電圧Vは+Vπである。「Vπ」は導波路中を伝搬する光の位相を半波長だけ変化させる半波長電圧である。例えば、駆動電圧V(-Vπ)を供給した場合の光の位相と、駆動電圧V(+Vπ)を供給した場合の光の位相との間には、2πの位相変化量が生じる。 In the optical modulator 2, phase modulation based on the drive signal from the RF drive circuit 3 is performed with the operating point as a reference. Specifically, when the RF electric signal is “0”, the driving voltage V 1 is supplied to the RF driving electrode, and when the RF electric signal is “1”, the driving voltage V 2 is for RF driving. Supplied to the electrode. Here, each of the drive voltages V 1 and V 2 is a voltage value based on the operating point, and is set to a voltage value at a maximum point located on the left and right of the operating point on the modulation curve. The drive voltage V 1 is −Vπ, and the drive voltage V 2 is + Vπ. “Vπ” is a half-wave voltage that changes the phase of light propagating in the waveguide by a half wavelength. For example, a phase change amount of 2π occurs between the phase of light when the drive voltage V 1 (−Vπ) is supplied and the phase of light when the drive voltage V 2 (+ Vπ) is supplied.
 電源投入時は、光変調器2の動作点(図2A中の動作点A)の電圧値はVB1である。バイアス供給回路5が、電圧値VB1のバイアス電圧VBを光変調器2に供給するのに最低必要な電源電圧値はVmin1=VB1+αである。 When the power is turned on, the voltage value of the operating point of the optical modulator 2 (the operating point A in FIG. 2A) is V B 1. The minimum power supply voltage value required for the bias supply circuit 5 to supply the bias voltage V B having the voltage value V B 1 to the optical modulator 2 is V min 1 = V B 1 + α.
 制御部10は、バイアス電圧VBが電圧値VB1になるようにバイアス供給回路5を制御すると同時に、電源電圧V0が電圧値Vmin1になるように電源回路4を制御する。これにより、バイアス供給回路5では、必要な電圧制御範囲を確保でき、光変調器2では、動作点Aを基準にして、RF駆動回路3からの駆動信号に基づく位相変調が行われる。この場合、図5に示した例と比較して、電源電圧は[Vmax-Vmin1]だけ低いので、バイアス供給回路5による消費電力を削減することができる。 The controller 10 controls the bias supply circuit 5 so that the bias voltage V B becomes the voltage value V B 1, and at the same time controls the power supply circuit 4 so that the power supply voltage V 0 becomes the voltage value V min 1. Thereby, the bias supply circuit 5 can secure a necessary voltage control range, and the optical modulator 2 performs phase modulation based on the drive signal from the RF drive circuit 3 with the operating point A as a reference. In this case, compared with the example shown in FIG. 5, the power supply voltage is lower by [V max −V min 1], so that the power consumption by the bias supply circuit 5 can be reduced.
 電源投入後、時間の経過とともに、光変調器2の動作点は、動作点Aから動作点Bに変化する。図2Bにおいて、動作点Bの電圧値はVB2(>VB1)である。バイアス供給回路5が、電圧値VB2のバイアス電圧VBを光変調器2に供給するのに最低必要な電源電圧値はVmin2=VB2+αである。 After the power is turned on, the operating point of the optical modulator 2 changes from the operating point A to the operating point B over time. In FIG. 2B, the voltage value at the operating point B is V B 2 (> V B 1). The minimum power supply voltage value required for the bias supply circuit 5 to supply the bias voltage V B having the voltage value V B 2 to the optical modulator 2 is V min 2 = V B 2 + α.
 制御部10は、バイアス電圧VBが電圧値VB2になるようにバイアス供給回路5を制御すると同時に、電源電圧V0が電圧値Vmin2になるように電源回路4を制御する。これにより、バイアス供給回路5では、必要な電圧制御範囲を確保でき、光変調器2では、動作点Bを基準にして、RF駆動回路3からの駆動信号に基づく位相変調が行われる。この場合、図5に示した例と比較して、電源電圧は[Vmax-Vmin2]だけ低いので、バイアス供給回路5による消費電力を削減することができる。 The control unit 10 controls the power supply circuit 4 so that the power supply voltage V 0 becomes the voltage value V min 2 at the same time as controlling the bias supply circuit 5 so that the bias voltage V B becomes the voltage value V B 2. Thereby, the bias supply circuit 5 can secure a necessary voltage control range, and the optical modulator 2 performs phase modulation based on the drive signal from the RF drive circuit 3 with the operating point B as a reference. In this case, compared with the example shown in FIG. 5, the power supply voltage is lower by [V max −V min 2], so that the power consumption by the bias supply circuit 5 can be reduced.
 図3は、バイアス電圧の最適値(動作点の電圧)の変化とバイアス供給回路5へ供給する電源電圧の変化を説明するための図である。縦軸はバイアス電圧を示し、横軸は時間を示す。グラフG1は、バイアス電圧の最適値(動作点の電圧)の変化を示す。グラフG2は、電源電圧の変化を示す。斜線の領域Sは、電源電圧の削減量を示す。電源電圧の削減量が大きいほど、消費電力の削減量が大きくなる。 FIG. 3 is a diagram for explaining the change in the optimum value (voltage at the operating point) of the bias voltage and the change in the power supply voltage supplied to the bias supply circuit 5. The vertical axis represents the bias voltage, and the horizontal axis represents time. A graph G1 shows a change in the optimum value (voltage at the operating point) of the bias voltage. A graph G2 shows a change in the power supply voltage. A hatched area S indicates a reduction amount of the power supply voltage. As the power supply voltage reduction amount increases, the power consumption reduction amount increases.
 グラフG1に示すように、バイアス電圧VBは動作点の変化に伴って徐々に増大する。また、グラフG2に示すように、電源電圧V0はバイアス電圧VBの変化に伴って徐々に増大する。バイアス電圧VBと電源電圧V0の差は、上記「α」に相当する。斜線の領域Sから分かるように、消費電力の削減効果は、電源投入時が最も大きく、その後、時間の経過とともに徐々に小さくなっていく。 As shown in the graph G1, the bias voltage V B gradually increases as the operating point changes. Further, as shown in the graph G2, the power supply voltage V 0 gradually increases as the bias voltage V B changes. The difference between the bias voltage V B and the power supply voltage V 0 corresponds to the above “α”. As can be seen from the hatched area S, the power consumption reduction effect is greatest when the power is turned on, and then gradually decreases with time.
 なお、固定割合で電源電圧を徐々に増大させる手法も考えられる。しかし、この手法の場合は、光変調器2の動作点ドリフトの速度は一定ではなく、動作条件や光変調器2の特性(固有な特性)によって異なるため、バイアス電圧VBを最適値とするのに必要な電源電圧を得られない場合がある。本実施形態では、バイアス電圧VBの変化に応じて電源電圧V0を変化させているので、バイアス電圧VBを最適値とするのに必要な電源電圧を確実に確保することができる。 A method of gradually increasing the power supply voltage at a fixed rate is also conceivable. However, in this method, the speed of the operating point drift of the optical modulator 2 is not constant, and varies depending on the operating conditions and the characteristics (inherent characteristics) of the optical modulator 2, so that the bias voltage V B is set to an optimum value. However, there are cases where the power supply voltage necessary for this cannot be obtained. In the present embodiment, since by changing the power supply voltage V 0 in accordance with a change in the bias voltage V B, it is possible to reliably secure the power supply voltage required to the optimum value bias voltage V B.
 以上のように、本実施形態の光送信装置によれば、光変調器2の動作点が変動してもバイアス電圧VBを最適値で維持できるので、光変調器2の出力光の波形に歪が生じるといった問題は生じない。 As described above, according to the optical transmission device of the present embodiment, the bias voltage V B can be maintained at an optimum value even when the operating point of the optical modulator 2 fluctuates. There is no problem of distortion.
 加えて、バイアス供給回路5を光変調器2の動作点の電圧値よりも少し大きな電源電圧(必要最低限の電源電圧)で動作させるので、消費電力の削減が可能である。なお、前述のように、RF電気信号に基づく駆動電圧はAC結合での印加であるため、AC振幅分まで考慮して、バイアス電圧を印加する必要はない。 In addition, since the bias supply circuit 5 is operated at a power supply voltage (minimum required power supply voltage) slightly higher than the voltage value at the operating point of the optical modulator 2, power consumption can be reduced. As described above, since the drive voltage based on the RF electrical signal is applied by AC coupling, it is not necessary to apply the bias voltage in consideration of the AC amplitude.
 消費電力の削減効果は、光変調器2の構成によって異なるが、長期信頼性を考慮した仕様のものと比較して、例えば、消費電力量を半分以下に削減できる。例えば、バイアス電圧仕様が±50Vの変調器を用いた場合、長期信頼性を考慮した仕様のものは電源電圧を50Vに設定する必要があるのに対して、本実施形態においては、動作点が10V程度であれば、バイアス供給回路5の電源電圧は12V程度(1/4程度)でよい。すなわち、電源電圧を38V程度低くすることができ、消費電力量が電源電圧に比例すると見なせる場合、消費電力量を1/4程度に削減できる。 Although the effect of reducing power consumption differs depending on the configuration of the optical modulator 2, for example, the power consumption can be reduced to half or less as compared with the specification considering long-term reliability. For example, when a modulator with a bias voltage specification of ± 50 V is used, the specification with consideration for long-term reliability needs to set the power supply voltage to 50 V, whereas in this embodiment, the operating point is If it is about 10V, the power supply voltage of the bias supply circuit 5 may be about 12V (about 1/4). That is, when the power supply voltage can be lowered by about 38 V and the power consumption can be considered to be proportional to the power supply voltage, the power consumption can be reduced to about ¼.
 また、光変調器2の特性上、一度、マイナス方向へ動作点がドリフトした後、プラス方向に動作点がドリフトする場合がある。本実施形態によれば、モニタ光検出信号S3に応じてバイアス電圧VBを変化させ、さらに、バイアス電圧VBの変化に応じて電源電圧V0を変化させている。このため、動作点がプラス方向及びマイナス方向のいずれの方向に移動しても、バイアス電圧VB及び電源電圧V0を追随させることができる。 In addition, due to the characteristics of the optical modulator 2, the operating point may drift once in the minus direction and then drift in the plus direction. According to this embodiment, the bias voltage V B is changed according to the monitor light detection signal S3, and the power supply voltage V 0 is changed according to the change of the bias voltage V B. For this reason, even if the operating point moves in either the plus direction or the minus direction, it is possible to follow the bias voltage V B and the power supply voltage V 0 .
 ここで、光変調器2は、LN位相変調器に限定されない。例えば、光変調器2は、LN強度変調器であってもよい。以下に、変形例として、光変調器2をLN強度変調器で構成した光送信装置を説明する。 Here, the optical modulator 2 is not limited to the LN phase modulator. For example, the optical modulator 2 may be an LN intensity modulator. Hereinafter, as a modification, an optical transmission device in which the optical modulator 2 is configured by an LN intensity modulator will be described.
 LN強度変調器は、LN基板上に、マッハツェンダ型干渉計を構成する第1及び第2の光導波路を形成し、さらに、これら第1及び第2の光導波路に近接して、RF駆動用電極及びバイアス調整用電極を形成したものである。 The LN intensity modulator is formed with first and second optical waveguides constituting a Mach-Zehnder interferometer on an LN substrate, and in addition to the first and second optical waveguides, an RF driving electrode In addition, a bias adjusting electrode is formed.
 第1及び第2の光導波路の一端は、第1のY分岐導波路に結合され、他端は第2のY分岐導波路に結合されている。光源1からの光は、第1のY分岐導波路を介して第1及び第2の光導波路に供給される。第1及び第2の光導波路をそれぞれ伝搬した光は、第2のY分岐導波路にて合波される。光検出部6は、第2のY分岐導波路を介して出力される出力光の一部をモニタ光として検出する。 One end of the first and second optical waveguides is coupled to the first Y branch waveguide, and the other end is coupled to the second Y branch waveguide. Light from the light source 1 is supplied to the first and second optical waveguides via the first Y branch waveguide. The light propagated through each of the first and second optical waveguides is multiplexed by the second Y branch waveguide. The light detection unit 6 detects a part of the output light output through the second Y-branch waveguide as monitor light.
 光変調器2の動作点は、図2A等に示した変調曲線の極大点と極小点の中間に設定される。RF電気信号が「0」であるときの駆動電圧Vが極小点の電圧値とされ、RF電気信号が「1」であるときの駆動電圧Vが極大点の電圧値とされる。 The operating point of the optical modulator 2 is set between the maximum point and the minimum point of the modulation curve shown in FIG. 2A and the like. The drive voltage V 1 when the RF electrical signal is “0” is a minimum voltage value, and the drive voltage V 2 when the RF electrical signal is “1” is a maximum voltage value.
 駆動電圧Vが供給された場合、第1及び第2の光導波路それぞれを伝搬する光の間に位相差は生じない。この場合、第2のY分岐導波路では、第1の光導波路からの光と第2の光導波路からの光は互いに打ち消し合うことなく合波されて光変調器2より出力される。 If the drive voltage V 1 is supplied, there is no phase difference between the lights propagated through the respective first and second optical waveguides. In this case, in the second Y-branch waveguide, the light from the first optical waveguide and the light from the second optical waveguide are combined without canceling each other and output from the optical modulator 2.
 一方、駆動電圧Vが供給された場合、第1及び第2の光導波路それぞれを伝搬する光の間には180°の位相差が生じる。この場合、第2のY分岐導波路では、第1の光導波路からの光と第2の光導波路からの光は互いに打ち消し合うため、光変調器2から光は出力されない。 On the other hand, when the driving voltage V 2 is supplied, the phase difference of 180 ° between light propagating in the respective first and second optical waveguides is produced. In this case, in the second Y-branch waveguide, the light from the first optical waveguide and the light from the second optical waveguide cancel each other, so that no light is output from the optical modulator 2.
 LN強度変調器を用いた本変形例においても、制御部10は、光検出部6からのモニタ光検出信号S3に基づいて、バイアス電圧VBが光変調器2の動作点の電圧値になるようにバイアス電圧制御を行うとともに、必要最小限の電源電圧でバイアス電圧の供給動作を行わせる電源電圧制御を行う。 Also in this modification using the LN intensity modulator, the control unit 10 determines that the bias voltage V B becomes the voltage value of the operating point of the optical modulator 2 based on the monitor light detection signal S3 from the light detection unit 6. Thus, the bias voltage control is performed, and the power supply voltage control for performing the bias voltage supply operation with the minimum necessary power supply voltage is performed.
 制御部10は、強度変調時も位相変調時と同様に、例えば、駆動制御信号S2にパイロット信号を挿入すると共に、光検出部6から入力したモニタ光検出信号S3から挿入されているパイロット信号を抽出する。そして、挿入したパイロット信号と抽出したパイロット信号とを同期検波し、同期検波信号が0Vとなるようにバイアス供給回路5を制御する。これにより、LN位相変調器を用いた場合と同様の作用及び効果を奏する。 The control unit 10 inserts a pilot signal into the drive control signal S2 and the pilot signal inserted from the monitor light detection signal S3 input from the light detection unit 6 at the time of intensity modulation as well as at the time of phase modulation. Extract. Then, the inserted pilot signal and the extracted pilot signal are synchronously detected, and the bias supply circuit 5 is controlled so that the synchronous detection signal becomes 0V. Thereby, there exists an effect | action and effect similar to the case where an LN phase modulator is used.
 さらに、光変調器2は、LN以外の材料、例えばLiTaO3やKTiOPO4などの電気光学効果を有する材料を用いて形成してもよい。 Further, the optical modulator 2 may be formed using a material other than LN, for example, a material having an electro-optic effect such as LiTaO 3 or KTiOPO 4 .
 また、光変調器2に、4ビットのデータを割り当てるDP-QPSK(Dual Polarization Quadrature Phase Shift Keying)の変調方式等を採用してもよい。この場合は、消費電力の削減効果はさらに大きくなる。例えば、制御対象端子数が6個、各端子を制御するためのオペアンプ等の消費電流10mA程度のIC(integrated circuit)の数が6個であると仮定すると、消費電力の削減量は、38V(電圧降下分)×6(端子)×10(mA)=2.3Wとなる。 Also, a DP-QPSK (Dual Polarization / Quadrature / Phase / Shift / Keying) modulation system that assigns 4-bit data to the optical modulator 2 may be employed. In this case, the effect of reducing power consumption is further increased. For example, assuming that the number of terminals to be controlled is six and the number of ICs (integrated circuits) with a current consumption of about 10 mA, such as an operational amplifier for controlling each terminal, is six, the power consumption reduction amount is 38 V ( (Voltage drop) × 6 (terminal) × 10 (mA) = 2.3 W.
 上記光送信装置及び電源電圧制御方法において、光変調器の動作点を安定化できるのであれば、ABC制御はどのような手法で取得してもよい。例えば、特許文献3に記載された手法を用いて、トレーニングを実施して動作点バイアス設定値の最小値と最大値からその中間点を算出し、算出した中間値を外部変調器の適正な動作点とすることもできる。 In the optical transmitter and the power supply voltage control method, ABC control may be obtained by any method as long as the operating point of the optical modulator can be stabilized. For example, using the method described in Patent Document 3, training is performed to calculate the intermediate point from the minimum and maximum values of the operating point bias set value, and the calculated intermediate value is used as an appropriate operation of the external modulator. It can also be a point.
 上記光送信装置において、光源、光変調器、フィードバック部、電源回路、バイアス供給回路及び制御部は、それぞれ図1に示した光源1、光変調器2、光検出部6、電源回路4、バイアス供給回路5及び制御部10により構成されてもよい。 In the above optical transmitter, the light source, the optical modulator, the feedback unit, the power supply circuit, the bias supply circuit, and the control unit are the light source 1, the optical modulator 2, the light detection unit 6, the power supply circuit 4, and the bias shown in FIG. It may be configured by the supply circuit 5 and the control unit 10.
 なお、本願発明は上記実施形態に限定されるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。また、上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。 It should be noted that the present invention is not limited to the above-described embodiment, and any design change or the like within a range not departing from the gist of the present invention is included in the present invention. Moreover, although a part or all of said embodiment can be described also as the following additional remarks, it is not restricted to the following.
 [付記1]
 光源と、
 駆動信号及びバイアス電圧をそれぞれ入力とし、前記駆動信号に従って前記光源からの光を変調するとともに、前記バイアス電圧に応じて出力光の強度が変化する光変調器と、
 前記出力光の強度が所定値とされる前記光変調器の動作点に対する前記バイアス電圧のずれ量を示すフィードバック情報を出力するフィードバック部と、
 電源電圧を出力する電源回路と、
 前記電源電圧を受けて動作し、前記バイアス電圧を前記光変調器に供給するバイアス供給回路と、
 前記バイアス供給回路の前記バイアス電圧の供給動作及び前記電源回路の前記電源電圧の出力動作を制御する制御部と、を有し、
 前記制御部は、前記フィードバック情報に基づいて、前記バイアス電圧を変化させるとともに、該バイアス電圧の値に応じて前記電源電圧を変化させる、光送信装置。
[Appendix 1]
A light source;
An optical modulator that takes a drive signal and a bias voltage as inputs, modulates light from the light source according to the drive signal, and changes the intensity of output light according to the bias voltage;
A feedback unit that outputs feedback information indicating a deviation amount of the bias voltage with respect to an operating point of the optical modulator in which the intensity of the output light is set to a predetermined value;
A power supply circuit that outputs a power supply voltage;
A bias supply circuit that operates by receiving the power supply voltage and supplies the bias voltage to the optical modulator;
A control unit for controlling the supply operation of the bias voltage of the bias supply circuit and the output operation of the power supply voltage of the power supply circuit,
The said control part is an optical transmission apparatus which changes the said power supply voltage according to the value of this bias voltage while changing the said bias voltage based on the said feedback information.
 [付記2]
 前記電源電圧と前記バイアス電圧の差が一定である、付記1に記載の光送信装置。
[Appendix 2]
The optical transmitter according to appendix 1, wherein a difference between the power supply voltage and the bias voltage is constant.
 [付記3]
 前記電源回路は、出力電圧可変のDC-DCコンバータよりなる、付記1または2に記載の光送信装置。
[Appendix 3]
The optical transmission device according to appendix 1 or 2, wherein the power supply circuit includes a DC-DC converter having a variable output voltage.
 [付記4]
 前記フィードバック部は、前記出力光の強度を検出し、該検出値を前記フィードバック情報として前記制御部に供給する光検出部よりなり、
 前記制御部は、所定のパイロット信号を前記バイアス電圧に重畳させ、前記検出値から抽出したパイロット信号と前記パイロット信号との同期検波結果が0になるように前記バイアス電圧を変化させる、付記1から3のいずれか1つに記載の光送信装置。
[Appendix 4]
The feedback unit includes a light detection unit that detects the intensity of the output light and supplies the detection value to the control unit as the feedback information.
The control unit superimposes a predetermined pilot signal on the bias voltage, and changes the bias voltage so that a synchronous detection result between the pilot signal extracted from the detection value and the pilot signal becomes 0. 4. The optical transmission device according to any one of 3.
 [付記5]
 前記光検出部は、前記光変調器に組み込まれている、付記4に記載の光送信装置。
[Appendix 5]
The optical transmission device according to appendix 4, wherein the light detection unit is incorporated in the optical modulator.
 [付記6]
 前記光変調器は、ニオブ酸リチウムよりなる、付記1から5のいずれか1つに記載の光送信装置。
[Appendix 6]
The optical transmitter according to any one of appendices 1 to 5, wherein the optical modulator is made of lithium niobate.
 [付記7]
 駆動信号及びバイアス電圧をそれぞれ入力とし、前記駆動信号に従って光源からの光を変調するとともに、前記バイアス電圧に応じて出力光の強度が変化する光変調器と、電源電圧を受けて動作し、前記バイアス電圧を前記光変調器に供給するバイアス供給回路とを備えた光送信装置の電源電圧制御方法であって、
 前記出力光の強度が所定値とされる前記光変調器の動作点に対する前記バイアス電圧のずれ量を示すフィードバック情報に基づいて、前記バイアス電圧を変化させるとともに、該バイアス電圧の値に応じて、前記電源電圧を変化させる、電源電圧制御方法。
[Appendix 7]
The driving signal and the bias voltage are input, respectively, and the light from the light source is modulated according to the driving signal, and the optical modulator that changes the intensity of the output light in accordance with the bias voltage, operates in response to the power supply voltage, and A power supply voltage control method for an optical transmission device comprising a bias supply circuit for supplying a bias voltage to the optical modulator,
Based on feedback information indicating the amount of deviation of the bias voltage with respect to the operating point of the optical modulator where the intensity of the output light is a predetermined value, the bias voltage is changed, and according to the value of the bias voltage, A power supply voltage control method for changing the power supply voltage.
 本願発明は、バイアス電圧制御が行われる光変調器全般に適用可能である。 The present invention can be applied to all optical modulators in which bias voltage control is performed.
 この出願は、2014年4月17日に出願された日本出願特願2014-085223を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2014-085223 filed on April 17, 2014, the entire disclosure of which is incorporated herein.
 1  光源
 2  光変調器
 3  RF駆動回路
 4  電源回路
 5  バイアス供給回路
 6  光検出部
 10  制御部
DESCRIPTION OF SYMBOLS 1 Light source 2 Optical modulator 3 RF drive circuit 4 Power supply circuit 5 Bias supply circuit 6 Optical detection part 10 Control part

Claims (8)

  1.  光を出力する光出力手段と、
     駆動信号及びバイアス電圧をそれぞれ入力とし、前記駆動信号に従って前記光出力手段からの光を変調するとともに、前記バイアス電圧に応じて出力光の強度が変化する光変調手段と、
     前記出力光の強度に基づいて、所定値とされる前記光変調手段の動作点に対する前記バイアス電圧のずれ量を示すフィードバック情報を生成するフィードバック手段と、
     電源電圧を出力する電源供給手段と、
     前記電源電圧を受けて動作し、前記バイアス電圧を前記光変調手段に供給するバイアス供給手段と、
     前記バイアス供給手段の前記バイアス電圧の供給動作及び前記電源供給手段の前記電源電圧の出力動作を制御する制御手段と、を有し、
     前記制御手段は、前記フィードバック情報に基づいて、前記バイアス電圧を変化させるとともに、該バイアス電圧の値に応じて前記電源電圧を変化させる、
    光送信装置。
    Light output means for outputting light;
    A light modulation unit that receives a drive signal and a bias voltage as input, modulates the light from the light output unit according to the drive signal, and changes the intensity of the output light according to the bias voltage;
    Feedback means for generating feedback information indicating a deviation amount of the bias voltage with respect to an operating point of the light modulation means set to a predetermined value based on the intensity of the output light;
    Power supply means for outputting a power supply voltage;
    A bias supply means that operates by receiving the power supply voltage and supplies the bias voltage to the light modulation means;
    Control means for controlling the supply operation of the bias voltage of the bias supply means and the output operation of the power supply voltage of the power supply means,
    The control means changes the bias voltage based on the feedback information, and changes the power supply voltage according to the value of the bias voltage.
    Optical transmitter.
  2.  前記制御手段は、前記電源電圧と前記バイアス電圧の差が一定となるように、前記電源電圧を変化させる、請求項1に記載の光送信装置。 The optical transmission device according to claim 1, wherein the control unit changes the power supply voltage so that a difference between the power supply voltage and the bias voltage is constant.
  3.  前記電源供給手段は、出力電圧可変のDC-DCコンバータよりなる、請求項1または2に記載の光送信装置。 3. The optical transmission device according to claim 1, wherein the power supply means comprises a DC-DC converter with variable output voltage.
  4.  前記フィードバック手段は、前記出力光の強度を検出し、該検出値を前記フィードバック情報として前記制御手段に供給する光検出部よりなり、
     前記制御手段は、所定のパイロット信号を前記バイアス電圧に重畳させ、前記検出値から抽出したパイロット信号と前記パイロット信号との同期検波結果が0になるように前記バイアス電圧を変化させる、請求項1から3のいずれか1項に記載の光送信装置。
    The feedback unit includes a light detection unit that detects the intensity of the output light and supplies the detected value to the control unit as the feedback information.
    The control means superimposes a predetermined pilot signal on the bias voltage, and changes the bias voltage so that a synchronous detection result between the pilot signal extracted from the detection value and the pilot signal becomes zero. 4. The optical transmission device according to any one of items 1 to 3.
  5.  前記光検出部は、前記光変調手段に組み込まれている、請求項4に記載の光送信装置。 The optical transmission device according to claim 4, wherein the optical detection unit is incorporated in the optical modulation means.
  6.  前記光変調手段は、ニオブ酸リチウムを用いた変調器によって構成される、請求項1から5のいずれか1項に記載の光送信装置。 The optical transmitter according to any one of claims 1 to 5, wherein the optical modulation means is configured by a modulator using lithium niobate.
  7.  入力された情報に応じたデジタル信号をアナログの駆動信号に変換し、前記光変調手段に供給するRF駆動手段をさらに備える、請求項1から6のいずれか1項に記載の光送信装置。 The optical transmission device according to any one of claims 1 to 6, further comprising an RF drive unit that converts a digital signal corresponding to the input information into an analog drive signal and supplies the analog drive signal to the optical modulation unit.
  8.  駆動信号及びバイアス電圧をそれぞれ入力とし、前記駆動信号に従って光源からの光を変調するとともに、前記バイアス電圧に応じて出力光の強度が変化する光変調器と、電源電圧を受けて動作し、前記バイアス電圧を前記光変調器に供給するバイアス供給回路とを備えた光送信装置の電源電圧制御方法であって、
     前記出力光の強度に基づいて生成され、所定値とされる前記光変調器の動作点に対する前記バイアス電圧のずれ量を示すフィードバック情報に基づいて、前記バイアス電圧を変化させるとともに、該バイアス電圧の値に応じて、前記電源電圧を変化させる、
    電源電圧制御方法。
    The driving signal and the bias voltage are input, respectively, and the light from the light source is modulated according to the driving signal, and the optical modulator that changes the intensity of the output light in accordance with the bias voltage, operates in response to the power supply voltage, and A power supply voltage control method for an optical transmission device comprising a bias supply circuit for supplying a bias voltage to the optical modulator,
    The bias voltage is changed based on feedback information that is generated based on the intensity of the output light and indicates a deviation amount of the bias voltage with respect to the operating point of the optical modulator that is set to a predetermined value. Changing the power supply voltage according to a value;
    Power supply voltage control method.
PCT/JP2015/002026 2014-04-17 2015-04-10 Optical transmission device and power supply voltage control method WO2015159528A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014085223A JP2017125867A (en) 2014-04-17 2014-04-17 Light transmitter, and source voltage control method
JP2014-085223 2014-04-17

Publications (1)

Publication Number Publication Date
WO2015159528A1 true WO2015159528A1 (en) 2015-10-22

Family

ID=54323752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002026 WO2015159528A1 (en) 2014-04-17 2015-04-10 Optical transmission device and power supply voltage control method

Country Status (2)

Country Link
JP (1) JP2017125867A (en)
WO (1) WO2015159528A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073706B2 (en) 2016-07-15 2021-07-27 Nec Corporation Transmitter and bias adjustment method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213426A (en) * 1998-01-27 1999-08-06 Hitachi Ltd Optical disk device
JP2003168232A (en) * 2001-11-29 2003-06-13 Toshiba Corp Optical disk drive and method of controlling power supply voltage for driving laser beam
JP2004037647A (en) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp Optical transmitting device
JP2004287330A (en) * 2003-03-25 2004-10-14 Anritsu Corp Optical modulation apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11213426A (en) * 1998-01-27 1999-08-06 Hitachi Ltd Optical disk device
JP2003168232A (en) * 2001-11-29 2003-06-13 Toshiba Corp Optical disk drive and method of controlling power supply voltage for driving laser beam
JP2004037647A (en) * 2002-07-01 2004-02-05 Mitsubishi Electric Corp Optical transmitting device
JP2004287330A (en) * 2003-03-25 2004-10-14 Anritsu Corp Optical modulation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11073706B2 (en) 2016-07-15 2021-07-27 Nec Corporation Transmitter and bias adjustment method

Also Published As

Publication number Publication date
JP2017125867A (en) 2017-07-20

Similar Documents

Publication Publication Date Title
US9069224B2 (en) Optical modulator and optical modulation control method
EP1776608B1 (en) Bias-control for optical mach-zehnder modulators with voltage-induced optical absorption
EP2624484B1 (en) Optical transmitter and method for controlling bias for optical modulator
US7215894B2 (en) Optical transmitter device
US9853736B2 (en) Optical transmitter and bias control method for optical modulator
US10122507B2 (en) Optical transmitter and method of controlling optical modulator
JP5506575B2 (en) Optical modulator, optical transmitter, and bias adjustment method
JP6271106B1 (en) Light modulation device and method for controlling light modulation device
US9645469B2 (en) Electro-optic (E/O) device with an E/O amplitude modulator and associated methods
US10498457B2 (en) Optical carrier-suppressed signal generator
US20180088359A1 (en) Optical module that includes optical modulator and bias control method for optical modulator
JP2016045340A (en) Optical communication device and optical modulator control method
JP4935093B2 (en) Light modulator
JP2013088702A (en) Optical modulator drive controller
WO2015159528A1 (en) Optical transmission device and power supply voltage control method
JP4719811B2 (en) External modulator control apparatus and method
US20170170907A1 (en) Optical transmission device and optical transmission method
JP2002328348A (en) Optical modulator and device for generating pulse made alternating phase
JP2011150052A (en) Optical transmitter
JP2015191130A (en) Light generating device, and control method of light generating device
JP2016075880A (en) Optical transmitter and control method thereof
JPH07120710A (en) Optical modulator and optical modulation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15780327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15780327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP