JP4026428B2 - Multilayer preform and biaxial stretch blow bottle - Google Patents

Multilayer preform and biaxial stretch blow bottle Download PDF

Info

Publication number
JP4026428B2
JP4026428B2 JP2002190954A JP2002190954A JP4026428B2 JP 4026428 B2 JP4026428 B2 JP 4026428B2 JP 2002190954 A JP2002190954 A JP 2002190954A JP 2002190954 A JP2002190954 A JP 2002190954A JP 4026428 B2 JP4026428 B2 JP 4026428B2
Authority
JP
Japan
Prior art keywords
adhesive
resin layer
resin
layer
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002190954A
Other languages
Japanese (ja)
Other versions
JP2004034341A (en
Inventor
淳 菊地
俊樹 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2002190954A priority Critical patent/JP4026428B2/en
Publication of JP2004034341A publication Critical patent/JP2004034341A/en
Application granted granted Critical
Publication of JP4026428B2 publication Critical patent/JP4026428B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3008Preforms or parisons made of several components at neck portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3012Preforms or parisons made of several components at flange portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3016Preforms or parisons made of several components at body portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/302Preforms or parisons made of several components at bottom portion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3024Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique
    • B29C2949/3026Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components
    • B29C2949/3028Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components
    • B29C2949/303Preforms or parisons made of several components characterised by the number of components or by the manufacturing technique having two or more components having three or more components having more than three components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3032Preforms or parisons made of several components having components being injected
    • B29C2949/3034Preforms or parisons made of several components having components being injected having two or more components being injected
    • B29C2949/3036Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected
    • B29C2949/3038Preforms or parisons made of several components having components being injected having two or more components being injected having three or more components being injected having more than three components being injected
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • B29C2949/3058Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded
    • B29C2949/306Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/30Preforms or parisons made of several components
    • B29C2949/3056Preforms or parisons made of several components having components being compression moulded
    • B29C2949/3058Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded
    • B29C2949/306Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded
    • B29C2949/3062Preforms or parisons made of several components having components being compression moulded having two or more components being compression moulded having three or more components being compression moulded having more than three components being compression moulded

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル樹脂層を備えた多層プリフォーム及び該多層プリフォームを二軸延伸ブロー成形して得られるブローボトルに関する。
【0002】
【従来の技術】
ポリエチレンテレフタレートに代表されるポリエステル樹脂は、成形性、透明性、機械的強度、耐薬品性などの特性に優れており、また酸素バリヤー性も比較的高く、このため、フィルム、シート、ボトルなどの包装材料として種々の分野で使用されている。
一方、ポリエステル樹脂の酸素バリヤー性を更に高めるために、エチレン−酢酸ビニル共重合体ケン化物やポリアミド等の酸素バリヤー材からなる機能性樹脂層をポリエステル樹脂層に積層した積層体も提案されているが、このような積層体は、ポリエステル樹脂と酸素バリヤー材との接着強度が低いため、ポリエステル樹脂層と機能性樹脂層との間で剥離を生じ易いとの問題がある。
【0003】
上記のような問題を解決するために、機能性樹脂層とポリエステル樹脂層との間に接着性樹脂層を設けることも提案されており、例えば特開昭62−158043号公報には、(a)ポリエステル樹脂層、(b)中間層として、不飽和カルボン酸またはその誘導体でグラフト変性されたグラフト変性エチレン・α−オレフィンランダム共重合体層(グラフト量:0.01〜10重量%、MFR:0.1〜50g/10min,密度:0.850〜0.905g/cm,エチレン含有量:75〜95モル%、X線による結晶化度:30%未満)及び(c)オレフィン・酢酸ビニル共重合体ケン化物層またはポリアミド樹脂層とから構成されてなる積層体が開示されている。
上記先行技術に開示されている積層体は、ポリエステル樹脂層と酸素バリヤー材からなる機能性樹脂層との間に、接着性樹脂層として、グラフト変性エチレン・α−オレフィンランダム共重合体層を設けたものであり、ポリエステル樹脂層と機能性樹脂層との接着性が向上しているという点で極めて有意義なものである。
【0004】
【発明が解決しようとする課題】
しかしながら、上記先行技術の如き、ポリエステル樹脂層と機能性樹脂層との間に接着性樹脂層を設けた従来公知の積層体は、フィルムや延伸シートとしての用途に関しては、成形性や接着性の点で満足し得る特性を示すものの、二軸延伸ブローボトルの用途には不適当であり、その実用化が阻まれていた。
即ち、二軸延伸ブローボトルは、圧縮成形や射出成形等によりプリフォームを成形し、このプリフォーム内部に圧縮流体をブローして二軸延伸することにより製造されるが、プリフォームが上記のような多層構造を有している場合には、ブロー成形時に界面と垂直方向に圧力が働くため、ブロー成形時の層間剥離或いは、破断(バースト)を生じ、ブロー成形が困難となっていた。またバーストが抑えられた場合でも、落下などの衝撃により層間が剥離し、美観が損なわれるとの問題点があった。
【0005】
従って本発明の目的は、ポリエステル樹脂層と機能性樹脂層とを備え、両層の接着性が高いばかりか、二軸延伸ブロー成形時のバーストが有効に防止された多層プリフォーム及び該プリフォームから得られた二軸延伸ブローボトルを提供することにある。
【0006】
【課題を解決するための手段】
本発明によれば、ポリエステル樹脂層、接着性樹脂層及びガス遮断性樹脂層(以下、機能性樹脂層と呼ぶことがある)からなる多層プリフォームであって、該ガス遮断性樹脂層は、エチレンビニルアルコール共重合体またはポリアミドを酸素バリヤー性樹脂成分として含有する層であり、該接着性樹脂層は、105℃以上の融点と600%以上の破断点伸度を有するオレフィン系樹脂を接着性樹脂成分として形成されていることを特徴とする多層プリフォーム(第1の多層プリフォーム)が提供される。
本発明によれば、また、ポリエステル樹脂層、接着性兼ガス遮断性樹脂層(以下、接着性兼機能性樹脂層と呼ぶことがある)からなる多層プリフォームであって、該接着性兼ガス遮断性樹脂層は、酸素バリヤー性樹脂成分としてエチレンビニルアルコール共重合体またはポリアミドを含み且つ接着性樹脂成分としてオレフィン系樹脂を含有し、該オレフィン系樹脂は、105℃以上の融点と600%以上の破断点伸度を有するものであることを特徴とする多層プリフォーム(第2の多層プリフォーム)が提供される。
本発明によれば、さらに、上記第1及び第2の多層プリフォームを二軸延伸ブロー成形して得られるブローボトルが提供される。
【0008】
第1の多層プリフォームを例にとって説明すると、本発明においては、接着性樹脂或いはその基材として、融点が105℃以上のものを使用することが重要な特徴である。
即ち、プリフォームの二軸延伸ブロー成形は、プリフォームをポリエステル樹脂のガラス転移点(Tg)以上熱結晶化温度以下の延伸温度(例えば、100〜120℃程度の温度)に加熱し、この状態でエアー等を吹き込むことにより二軸方向に膨張延伸することにより行われるが、延伸温度に比して接着性樹脂の融点が低く、且つその温度差が大きいと、ブロー延伸時に接着性樹脂が溶融流動して層間が剥離してしまい、この結果、バーストを生じてしまうこととなる。また、一部に剥離のみが生じていても、ブロー成形後において落下等の衝撃により層間剥離が進行し、美観的に大きく損なわれることになる。
しかるに本発明は、後述する実施例からも明らかな通り、融点が105℃以上の接着性樹脂を使用することにより、ブロー延伸時の接着性樹脂の溶融流動を防止し、層間剥離、バーストを有効に抑制することが可能となる。例えば、比較例に示されているように、融点が105℃未満の接着性樹脂を用いた場合には、ブロー延伸時に層間剥離、バーストが発生してしまう。
【0009】
本発明においては、上記接着性樹脂或いはその基材は、オレフィン系樹脂からなるものであり、その融点は105℃以上であるが、その破断点伸度は600%以上であることが必要である。
即ち、このような破断点伸度を有している接着性樹脂を用いることにより、ブロー延伸時に接着性樹脂層がポリエステル樹脂層に追随しやすく、バースト抑制効果がさらに向上する。
【0010】
第1の多層プリフォームでは、接着性樹脂層を機能性樹脂層とは別個の独立した層として設けられており、かかる接着性樹脂層により、機能性樹脂層とポリエステル樹脂層との接着性が高められているが、本発明では、第2の多層プリフォームのように、接着性樹脂層と機能性樹脂層とを単一の層として、即ち接着性兼機能性樹脂層として設けることもできる。
このような接着性兼機能性樹脂層においては、上記と同様の理由により、基材成分として、105℃以上の融点と600%以上の破断点伸度を有するポリオレフィン系樹脂を含有している。
【0011】
【発明の実施形態】
図1は、本発明の多層プリフォーム(第1の多層プリフォーム)における層構成の代表例を示すものであり、この図1から明らかな通り、内外層として、ポリエステル樹脂層1、1を有しており、これらポリエステル樹脂層1、1の間の中間層として、機能性樹脂層2が設けられており、ポリエステル樹脂層1と機能性樹脂層2との間に接着剤層3が設けられる。
【0012】
[ポリエステル樹脂層1]
本発明において、ポリエステル樹脂層1を形成しているポリエステル樹脂としては、二軸延伸ブロー成形が可能であり且つ結晶化が可能なものであれば任意のものを使用することができ、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等の熱可塑性ポリエステルや、これらのポリエステルとポリカーボネートやアリレート樹脂等のブレンド物を用いることができる。本発明においては、エステル反復単位の大部分(一般に70モル%以上、特に80モル%以上)がエチレンテレフタレート単位であり、ガラス転移点(Tg)が50乃至90℃、特に55乃至80℃であり、且つ融点(Tm)が200乃至275℃、特に220乃至270℃のポリエチレンテレフタレート(PET)系ポリエステルが好適である。
【0013】
また、PET系ポリエステルとしては、ホモポリエチレンテレフタレートが耐熱性や耐熱圧性の点で好適であるが、エチレンテレフタレート単位以外のエステル単位を少量含む共重合ポリエステルも使用し得る。
かかる共重合ポリエステルにおいて、テレフタル酸以外の二塩基酸としては、イソフタル酸、フタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸;シクロヘキサンジカルボン酸等の脂環族ジカルボン酸;コハク酸、アジピン酸、セバチン酸、ドデカンジオン酸等の脂肪族ジカルボン酸;等の1種又は2種以上の組み合わせを例示することができ、エチレングリコール以外のジオール成分としては、プロピレングリコール、1,4−ブタンジオール、ジエチレングリコール、1,6−ヘキシレングリコール、シクロヘキサンジメタノール、ビスフェノールAのエチレンオキサイド付加物等の1種又は2種以上が挙げられる。
【0014】
上記のようなポリエステル樹脂は、少なくともフィルムを形成し得るに足る分子量を有しているべきであり、その固有粘度(I.V)は、0.6乃至1.40dl/g、特に0.63乃至1.30dl/gの範囲にあるのがよい。
【0015】
上記のポリエステル樹脂を用いて形成されるポリエステル樹脂層1には、必要により、滑剤、改質剤、顔料、紫外線吸収剤等が配合されていてよい。
【0016】
[機能性樹脂層2]
機能性樹脂層2は、ガス遮断機能を有するものであり、酸素バリヤー性樹脂や酸素バリヤー性樹脂に酸素吸収性を持たせたものが使用される。
【0017】
酸素バリヤー性樹脂としては、それ自体公知のものを使用することができ、好適には、エチレン−ビニルアルコール共重合体、例えば、エチレン含有量が20乃至60モル%、特に25乃至50モル%のエチレン−酢酸ビニル共重合体を、ケン化度が96%以上、特に99モル%以上となるようにケン化して得られる共重合体ケン化物が使用される。このエチレン−ビニルアルコール共重合体(エチレン−酢酸ビニル共重合体ケン化物)は、フィルムを形成し得るに足る分子量を有するべきであり、一般に、フェノール/水の重量比が85/15の混合溶媒中、30℃で測定して0.01dl/g以上、特に0.05dl/g以上の固有粘度を有することが望ましい。また、その融点(Tm)は、160乃至200℃の範囲にあるものがよい。
【0018】
また、エチレン−ビニルアルコール共重合体以外の酸素バリヤー性樹脂の例としては、例えば、ナイロン6、ナイロン6・6、ナイロン6/6・6共重合体、メタキシリレンジアジパミド、ナイロン6・10、ナイロン11、ナイロン12、ナイロン13等のポリアミドを挙げることができる。 これらのポリアミドの中でも、炭素数100個当りのアミド基の数が5乃至50個、特に6乃至20個の範囲にあるものが好適である。
これらのポリアミドもフィルムを形成するに足る分子量を有するべきであり、例えば、濃硫酸(濃度1.0g/dl)中、30℃で測定した相対粘度が1.1以上、特に1.5以上であることが望ましい。また、その融点(Tm)は、220乃至260℃の範囲にあるものがよい。
【0019】
また、上述した酸素バリヤー性樹脂に酸素吸収性を持たせるためには、この酸素バリヤー性樹脂に酸化性有機成分及び遷移金属触媒(酸化触媒)を配合すればよい。即ち、酸化性有機成分を酸化させることにより、酸素を吸収捕捉し、酸素バリヤー性樹脂の酸素バリヤー機能を高めるものであり、遷移金属触媒は、酸化性重合体の酸化を促進させるために配合される。
【0020】
酸素バリヤー樹脂に配合される酸化性有機成分としては、エチレン系不飽和基含有重合体が使用される。即ち、この重合体は、炭素−炭素二重結合を有しており、この二重結合部分が酸素により容易に酸化され、これにより酸素の吸収捕捉が行なわれる。
【0021】
このようなエチレン系不飽和基含有重合体は、例えば、ポリエンを単量体として誘導される。ポリエンの適当な例としては、これに限定されるものではないが、ブタジエン、イソプレン等の共役ジエン;1,4−ヘキサジエン、3−メチル−1,4−ヘキサジエン、4−メチル−1,4−ヘキサジエン、5−メチル−1,4−ヘキサジエン、4,5−ジメチル−1,4−ヘキサジエン、7−メチル−1,6−オクタジエン等の鎖状非共役ジエン;メチルテトラヒドロインデン、5−エチリデン−2−ノルボルネン、5−メチレン−2−ノルボルネン、5−イソプロピリデン−2−ノルボルネン、5−ビニリデン−2−ノルボルネン、6−クロロメチル−5−イソプロペニル−2−ノルボルネン、ジシクロペンタジエン等の環状非共役ジエン;2,3−ジイソプロピリデン−5−ノルボルネン、2−エチリデン−3−イソプロピリデン−5−ノルボルネン、2−プロペニル−2,2−ノルボルナジエン等のトリエン、クロロプレンなどを挙げることができる。
【0022】
即ち、上記ポリエンの単独重合体、或いは上記ポリエンを2種以上組み合わせ若しくは他の単量体と組み合わせてのランダム共重合体、ブロック共重合体等を酸化性重合体として用いることができる。また、上記ポリエンと共重合させる他の単量体としては、炭素数が2乃至20のα−オレフィン、例えばエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−ノナデセン、1−エイコセン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセン等を例示することができ、また、これら以外にも、スチレン、ビニルトリエン、アクリロニトリル、メタクリロニトリル、酢酸ビニル、メチルメタクリレート、エチルアクリレートなどを用いることもできる。
【0023】
本発明においては、上述したポリエンから誘導される重合体の中でも、ポリブタジエン(BR)、ポリイソプレン(IR)、天然ゴム、ニトリル−ブタジエンゴム(NBR)、スチレン−ブタジエンゴム(SBR)、クロロプレンゴム、エチレン−プロピレン−ジエンゴム(EPDM)等が好適であるが、勿論、これらに限定されない。また、そのヨウ素価は、100以上、特に120〜196程度であるのがよい。
【0024】
また、上述したエチレン系不飽和基含有重合体以外にも、それ自体酸化されやすい重合体、例えばポリプロピレン、エチレン・酸化炭素共重合体なども酸化性有機成分として使用することができる。
【0025】
本発明においては、成形性等の見地から、上述した酸化性重合体やそのグラフト共重合体の40℃での粘度は1乃至200Pa・sの範囲にあることが好適である。また、これらの酸化性重合体成分は、酸素バリヤー性樹脂100重量部当り1乃至15重量部、特に2乃至10重量部の量で配合される。
【0026】
上述した酸化性重合体と共に使用される遷移金属触媒において、遷移金属としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属が好適であるが、他に銅、銀等の第I族金属、錫、チタン、ジルコニウム等の第IV族金属、バナジウム等の第V族金属、クロム等の第VI族金属、マンガン等の第VII族金属等であってもよい。これらの中でも特にコバルトは、酸素吸収性(酸化性重合体の酸化)を著しく促進させ、本発明の目的に特に適している。
【0027】
遷移金属触媒は、一般に、上記遷移金属の低価数の無機塩、有機塩或いは錯塩の形で使用される。
無機塩としては、塩化物などのハライド、硫酸塩等のイオウのオキシ塩、硝酸塩などの窒素のオキシ酸塩、リン酸塩などのリンオキシ塩、ケイ酸塩等が挙げられる。
有機塩としては、カルボン酸塩、スルホン酸塩、ホスホン酸塩などが挙げられるが、本発明の目的にはカルボン酸塩が好適である。その具体例としては、酢酸、プロピオン酸、イソプロピオン酸、ブタン酸、イソブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、イソヘプタン酸、オクタン酸、2−エチルヘキサン酸、ノナン酸、3,5,5−トリメチルヘキサン酸、デカン酸、ネオデカン酸、ウンデカン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マーガリン酸、ステアリン酸、アラキン酸、リンデル酸、ツズ酸、ペトロセリン酸、オレイン酸、リノール酸、リノレン酸、アラキドン酸、ギ酸、シュウ酸、スルファミン酸、ナフテン酸等の遷移金属塩を挙げることができる。
また、遷移金属の錯体としては、β−ジケトンまたはβ−ケト酸エステルとの錯体が挙げられる。β−ジケトンやβ−ケト酸エステルとしては、例えば、アセチルアセトン、アセト酢酸エチル、1,3−シクロヘキサジオン、メチレンビス−1,3−シクロヘキサジオン、2−ベンジル−1,3−シクロヘキサジオン、アセチルテトラロン、パルミトイルテトラロン、ステアロイルテトラロン、ベンゾイルテトラロン、2−アセチルシクロヘキサノン、2−ベンゾイルシクロヘキサノン、2−アセチル−1,3−シクロヘキサジオン、ベンゾイル−p−クロルベンゾイルメタン、ビス(4−メチルベンゾイル)メタン、ビス(2−ヒドロキシベンゾイル)メタン、ベンゾイルアセトン、トリベンゾイルメタン、ジアセチルベンゾイルメタン、ステアロイルベンゾイルメタン、パルミトイルベンゾイルメタン、ラウロイルベンゾイルメタン、ジベンゾイルメタン、ビス(4−クロルベンゾイル)メタン、ベンゾイルアセチルフェニルメタン、ステアロイル(4−メトキシベンゾイル)メタン、ブタノイルアセトン、ジステアロイルメタン、ステアロイルアセトン、ビス(シクロヘキサノイル)メタン及びジピバロイルメタン等を用いることができる。
【0028】
本発明において、上記の遷移金属触媒は、酸素バリヤー性樹脂当り10乃至1000ppm、特に50乃至500ppmの量で配合されているのがよい。
【0029】
また、上述した機能性樹脂層2中には、射出、圧縮、延伸成形性を損なわない範囲で種々の配合剤、例えば充填剤、着色剤、耐熱安定剤、耐候安定剤、酸化防止剤、老化防止剤、光安定剤、紫外線吸収剤、帯電防止剤、金属石鹸やワックス等の滑剤、改質用樹脂乃至ゴム等を配合することもできる。
【0030】
[接着性樹脂層3]
本発明において、前述したポリエステル樹脂層1と機能性樹脂層2との間には、接着性樹脂層3が設けられており、これにより、層間の接着強度が高められている。
既に述べた通り、このような接着性樹脂層3は、融点(Tm)が105℃以上のオレフィン系樹脂を接着性樹脂とするものであり、或いは該オレフィン系樹脂を基材として含有している。融点が105℃未満の場合には、二軸延伸ブロー成形時に層間剥離やバーストが発生してしまう。また、延伸成形を有効に行うために、その破断点伸度が600%以上であることも必要である。
【0031】
接着性樹脂が単一化学種である場合、上記の融点、破断点伸度を有してれば、それ自体公知のものを用いることができる。例えば、マレイン酸、イタコン酸、フマル酸等のカルボン酸、或いは、これらカルボン酸の無水物、アミド、エステル等によりグラフト変性されたグラフト変性オレフィン樹脂を使用することができる。このようなグラフト変性オレフィン樹脂において、グラフト変性すべきオレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレン・α−オレフィン共重合体等が好ましい。また、このようなグラフト変性オレフィン樹脂以外にも、エチレン−アクリル酸共重合体、イオン架橋オレフィン系共重合体、エチレン−酢酸ビニル共重合体等のオレフィン系樹脂を接着性樹脂として使用することができる。
これらの接着性樹脂では、接着性の見地から、カルボニル基(>C=O)を主鎖又は側鎖に1乃至100meq/100g樹脂、特に10乃至100meq/100g樹脂の量で含有していることが好ましい。
【0033】
[接着性兼機能性樹脂層4]
図2は、本発明の多層プリフォーム(第2の多層プリフォーム)における層構成の代表例を示すものであり、この図2から明らかな通り、内外層として、ポリエステル樹脂層1、1を有しており、これらポリエステル樹脂層1、1の間の中間層として、図1に示した機能性樹脂層2と接着性樹脂層3に変えて単一の層、即ち接着性兼機能性樹脂層4として設けることもできる。
【0034】
このような接着性兼機能性樹脂層4は、接着性成分を含有している以外は、上述した機能性樹脂層2と同一の組成を有している。
この場合、接着性兼機能性樹脂の接着性成分は、融点が105℃以上で破断点伸度が600%以上のオレフィン系樹脂を基材とするものである。
また、接着性成分としては、接着性樹脂層3について説明したグラフト変性オレフィン樹脂や、エチレン−アクリル酸共重合体、イオン架橋オレフィン系共重合体、エチレン−酢酸ビニル共重合体、共重合ポリエステル(ポリエステル樹脂層1を形成しているポリエステルとは異なるもの)、共重合ポリアミド等が好適に使用される。この場合、これらの接着性成分は、酸素バリヤー樹脂100重量部当たり、10乃至90重量部、特に20乃至50重量部の量で配合されているのがよい。
【0035】
更に、上記の接着性成分としては、ポリエステル樹脂層1を形成しているポリエステル樹脂、例えばポリエチレンテレフタレート等を使用することができる。即ち、ポリエステル樹脂は、ポリエステル樹脂層1に対する接着性を示すものであるから、接着性成分として使用し得る。この場合において、接着性成分として使用されるポリエステル樹脂は、酸素バリヤー樹脂100重量部当たり、20乃至80重量部、特に40乃至70重量部の量で配合されるのがよい。
【0036】
[層構成等]
本発明における第1の多層プリフォームは、代表的には図1に示すような層構成を有するものであるが、勿論、このような層構成に限定されるものではなく、ポリエステル樹脂層1と機能性樹脂層2との間に接着性樹脂層3が介在している限り、任意の層構成を有することができる。
また、本発明における第2の多層プリフォームは、代表的には図2に示すような層構成を有するものであるが、勿論、このような層構成に限定されるものではなく、ポリエステル樹脂層1、1の間に接着性兼機能性樹脂層4が介在している限り、第1の多層プリフォームと同様に任意の層構成を有することができる。
【0037】
本発明において、多層プリフォームを構成する各層の厚みに制限はないが、一般に、全体の厚みは、500乃至7000μm、特に1000乃至5000μm、機能性樹脂層2或いは接着性兼機能性樹脂層4の厚みは、全体厚みの0.5乃至95%、特に1乃至50%の範囲にあるのがよく、接着性樹脂層3の厚みは、全体厚みの0.5乃至50%、特に1乃至20%の範囲にあるのがよい。
【0038】
[二軸延伸ブローボトルの製造]
本発明によれば、上述した多層プリフォームを用いて二軸延伸ブローボトルを成形する。
先ず、上述した多層プリフォーム(第1及び第2の多層プリフォーム)の成形は、例えば、各層に応じた数の押出機や射出成形機を用い、共圧縮成形法、共射出法、逐次射出法等により行うことができ、これにより、螺合部、嵌合部、支持リング等を備えた口頚部を有する有底プリフォームを成形する。射出成形法によりプリフォームを成形する場合、その条件等は特に制限されるものではないが、一般に、260乃至300℃の射出温度、3乃至6MPaの射出圧力で有底プリフォームを成形することができる。
【0039】
上記で得られたプリフォームに耐熱性を与えるため、通常、以下に述べる二軸延伸ブロー成形に先立って、プリフォームに形成されている口頚部を熱処理により結晶化して白化せしめる。この熱結晶化は、前述したポリエチレンテレフタレートの熱結晶化温度領域、特に140乃至200℃の範囲で行なうのがよい。この場合、2軸延伸ブロー成形完了後に、未延伸部分の口頚部を熱処理により結晶化させ、白化させることも可能である。
【0040】
以上のようにして得られた多層プリフォームの二軸延伸ブロー成形は、所定の延伸成形金型内で延伸成形温度に加熱し、プリフォーム内に加圧流体を吹き込み、延伸棒による軸方向引張延伸と周方向膨張延伸とを行なうことにより、二軸延伸ブロー成形が行なわれる。
このような二軸延伸ブロー成形は、一段ブロー成形或いは二段ブロー成形が知られているが、本発明においては、熱収縮等による層間剥離を回避するためには、一段ブロー成形で行うことが好ましい。
延伸成形温度は、ポリエステル樹脂のガラス転移点(Tg)以上熱結晶化温度以下であるが、一段ブローでは、通常、100〜120℃程度である。延伸成形温度への多層プリフォームの加熱は、赤外線加熱、高周波誘導加熱、熱風加熱等の公知の手段で行なわれ、また、射出機のプリフォームに与えた熱(即ち余熱)を利用して行なうこともできるし、コールドパリソンにあっては再加熱により行なわれる。
軸方向延伸倍率は、1.3乃至3.5倍、特に1.5乃至3倍とすることが好ましく、また、周方向延伸倍率は、2乃至5.5倍、特に3乃至5倍程度が好適である。更に、ブロー成形時に吹き込む加圧流体としては、プリフォーム温度よりも少なくとも10℃高い温度に保持されている高温流体を用いるのがよい。
本発明では、機能性樹脂層とポリエステル樹脂層との接着性を高めるために使用されている接着性樹脂もしくはその基材が、融点が105℃以上の樹脂であるため、上記のような延伸温度での二軸延伸ブロー成形に際して接着性樹脂層等のバーストが有効に回避される。
【0041】
上記のような二軸延伸ブロー成形後、ブロー用加圧流体を内部冷却用流体に切り換え、内部の冷却を行ない、冷却終了後に金型から延伸成形された二次延伸ブローボトルを取り出す。この冷却用流体としては、適当な温度に冷却された各種気体、例えば−40℃〜室温に保持された窒素、空気、炭酸ガスが好適に使用されるが、これ以外にも、化学的不活性な液化ガス、例えば液化窒素ガス、液化炭酸ガス、液化トリクロロフルオロメタンガス、液化ジクロロジフルオロメタンガス、その他の液化脂肪族炭化水素ガス等を使用することもできる。
【0042】
また、上記のブロー成形と同時に、或いはブロー成形終了後に、熱固定を行うことにより、得られるボトルの耐熱性を高めることができる。
即ち、ブロー成形と同時に熱固定を行う場合には、延伸成形金型(ブロー金型)で2軸延伸成形するにあたり、この金型を、ポリエステル樹脂の熱結晶化温度領域(例えば120乃至200℃)に加熱保持しておく。また、ブロー成形後に熱固定を行う場合には、得られたブローボトルを熱結晶化温度領域に保持された熱固定用金型内に保持し、器壁の外側が金型内面と接触させて熱固定(ヒートセット)を行なえばよい。
【0043】
このようにして得られた本発明の二軸延伸ブローボトルは、ポリエチレンテレフタレート等のポリエステル樹脂層と、酸素バリヤー性を有する機能性樹脂層とが高い接着力で積層されており、しかもブロー成形時におけるバーストも有効に抑制されている。
【0044】
【実施例】
DSC測定(融点の確認):
示差走査熱量計(PERKIN ELMER社製DSC7)を用いて、10℃/分の速度で20℃から290℃まで昇温測定を行い、融点を確認した。
【0045】
破断点伸度:
ASTMD638に準じた。
【0046】
落下試験:
成形したボトルに水500ml充填し、85cmの高さより3回落下させ、層間剥離の有無を観測した。
尚、本観測は、下述する成形時の層間剥離及びバーストの観測において、上記層間剥離、バーストが生じなかった残りボトルについて観測を行い、本数に係わらず生じなかった場合を○印、生じた場合を×印で表中に記載した。
【0047】
共圧縮成形:
内外層PET用押出機(A)、機能性樹脂或いは接着性兼機能性樹脂用押出機(B)、接着樹脂用押出機(C)の3台の押出機のうち、A、B或いはA、B、Cに所定の樹脂を供給し、多層ダイ温度270℃、樹脂圧力が7MPaの条件で共押出しを行い、一定重量の多層溶融樹脂塊に切断する。この多層溶融樹脂塊を圧縮金型内にセットして、型締め圧力10MPaの条件で多層圧縮成形を行い、層構成がPET/接着樹脂/機能性樹脂/接着樹脂/PETの3種5層プリフォーム、或いは層構成がPET/接着性兼機能性樹脂/PETである2種3層プリフォームを成形した。
【0048】
ブロー成形:
上記プリフォームを105℃に加熱し、金型温度が25℃の金型で二軸延伸ブロー成形を行い、同径64.3mm、高さ207.2mm、内容積500mlの横断面形状が円形のポリエステルボトルとし、成形時の層間剥離の観測、バースト率の算出を行った。
【0049】
尚、以下の実施例において、実施例1〜3及び実施例6が本発明例であり、実施例4及び5は、接着性成分として非オレフィン系樹脂が使用された参考例である。
(実施例1)
内外層のPET樹脂を日本ユニペット(株)製EFS7H、接着層として融点が120℃、破断点伸度が800%のエチレン−ブテン共重合体を基材としたオレフィン系接着樹脂、機能性樹脂としてポリメタキシリレンアジパミド(東洋紡績(株)製T−600を用い、層構成がPET層/接着層/機能層/接着層/PET層である重量25gの3種5層プリフォームを共圧縮成形した。
尚、この時の接着性樹脂及び機能性樹脂はいずれも6容量%とした。
このプリフォームの二軸延伸ブロー成形を行い、成形時の層間剥離の観測、バースト率の算出を行った。
【0050】
(実施例2)
接着層として、融点が125℃、破断点伸度が700%のポリエチレンを基材としたオレフィン系接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0051】
(実施例3)
接着層として、融点が110℃、破断点伸度が650%のポリエチレンを基材としたオレフィン系接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0052】
(実施例4)
接着層として、PET樹脂(RT543:日本ユニペット(株)製)とポリメタキシリレンアジパミド樹脂(T−660:東洋紡績(株)製)の6:4(重量)のドライブレンドし、融点が256℃、破断点伸度が250%の非オレフィン系樹脂を基材とした接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0053】
(実施例5)
二軸押出機(TEM−35東芝機械(株)製)を用い、防湿包装開封直後の末端アミノ基濃度が87eq/10gであるポリメタキシリレンアジパミド樹脂(T−600:東洋紡績(株)製)を基材とし、液状マレイン酸変性ポリブタジエン(M−2000−20:日本石油化学(株)製)を樹脂組成物に対し5重量%、ネオデカン酸コバルト(DICNATE5000:大日本インキ化学工業(株)製)を金属換算で350ppm含有する樹脂組成物を混練、ペレタイズし、酸素吸収ペレットを作成した。
この酸素吸収ペレットとPET(RT523:日本ユニペット(株))を4:6(重量)の組成にてドライブレンドして共圧縮成形の押出機Bに用い、融点が256℃、破断点伸度が250%の非オレフィン系樹脂を基材とした接着性兼機能樹脂層をPET(日本ユニペット(株)製EFS7H)の内外層の間に設け、層構成がPET層/接着性兼機能樹脂層/PET層の重量25gの2種3層の多層プリフォームを成形し、二軸延伸ブロー成形を行った。
尚、この時の接着性兼機能性樹脂は6容量%とした。
このプリフォームの二軸延伸ブロー成形を行い、成形時の層間剥離の観測、バースト率の算出を行った。
【0054】
(実施例6)
接着性兼機能性樹脂層として、実施例5の酸素吸収ペレットと実施例1の接着性樹脂を4:6(重量)の組成にてドライブレンドして共圧縮成形の押出機Bに用い、融点が120℃、破断点伸度が800%のオレフィン系樹脂を基材とした接着性兼機能性樹脂を用いた以外は、実施例5と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0055】
(比較例1)
接着層として、融点が102℃、破断点伸度が530%のオレフィン系接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0056】
(比較例2)
接着層として、融点が102℃、破断点伸度が620%のオレフィン系接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、に軸延伸ブロー成形を行った。
【0057】
(比較例3)
接着層として、融点が108℃、破断点伸度が550%のオレフィン系接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0058】
(比較例4)
接着層として、PET樹脂(RT543:日本ユニペット(株)製)とポリメタキシリレンアジパミド樹脂(T−660:東洋紡績(株)製)を1.5:8.5(重量)のドライブレンドを行い、融点が233℃、破断点伸度が20%の非オレフィン系樹脂を基材とした接着樹脂を用いた以外は、実施例1と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0059】
(比較例5)
接着性兼機能性樹脂層として、PET樹脂(RT543:日本ユニペット(株)製)と実施例5の酸素吸収ペレットを1.5:8.5(重量)のドライブレンドして共圧縮成形の押出機Bに用い、融点が235℃、破断点伸度が25%の非オレフィン系樹脂を基材とした接着性兼機能樹脂を用いた以外は、実施例5と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0060】
(比較例6)
実施例5の酸素吸収ペレットと、比較例1のオレフィン系接着性樹脂を4:6(重量)の組成にてドライブレンドして共圧縮成形の押出機Bに用い、融点が102℃、破断点伸度が530%の上記オレフィン系樹脂を基材とした接着性兼機能性樹脂を用いた以外は、実施例5と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0061】
(比較例7)
実施例5の酸素吸収ペレットと、融点が101℃、破断点伸度が620%のポリエチレンを基材としたオレフィン系接着樹脂を4:6(重量)の組成にてドライブレンドして共圧縮成形の押出機Bに用い、上記オレフィン系樹脂を基材とした接着性兼機能性樹脂を用いた以外は、実施例5と同様に共圧縮成形、二軸延伸ブロー成形を行った。
【0062】
以上の実施例及び比較例で得られた二軸延伸ブローボトルについて、層間剥離・バーストの発生率及び落下試験の評価を行った結果を、表1に示す。
【0063】
【表1】

Figure 0004026428
【0064】
【発明の効果】
本発明によれば、接着性樹脂或いはその基材として105℃以上の融点を有する樹脂から成る接着層を介してポリエステル樹脂層と機能性樹脂層とを積層することにより、二軸延伸ブロー成形時の層間剥離、バーストの発生を有効に防止することが可能となる。
また、基材として105℃以上の融点を有する樹脂を含有させた接着性兼機能性樹脂層をポリエステル樹脂層と積層することにより、二軸延伸ブロー成形時の層間剥離、バーストの発生を有効に防止することが可能となる。
【図面の簡単な説明】
【図1】本発明の第1の多層プリフォームの層構成を示す図。
【図2】本発明の第2の多層プリフォームの層構成を示す図。
【符号の説明】
1:ポリエステル樹脂層
2:機能性樹脂層
3:接着性樹脂層
4:接着性兼機能樹脂層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a multilayer preform provided with a polyester resin layer and a blow bottle obtained by biaxially stretching blow-molding the multilayer preform.
[0002]
[Prior art]
Polyester resins typified by polyethylene terephthalate have excellent properties such as moldability, transparency, mechanical strength, and chemical resistance, and relatively high oxygen barrier properties, which makes it possible to use films, sheets, bottles, etc. It is used in various fields as a packaging material.
On the other hand, in order to further enhance the oxygen barrier property of the polyester resin, a laminate in which a functional resin layer made of an oxygen barrier material such as saponified ethylene-vinyl acetate copolymer or polyamide is laminated on the polyester resin layer has also been proposed. However, such a laminate has a problem in that peeling between the polyester resin layer and the functional resin layer is likely to occur because the adhesive strength between the polyester resin and the oxygen barrier material is low.
[0003]
In order to solve the above problems, it has also been proposed to provide an adhesive resin layer between the functional resin layer and the polyester resin layer. For example, JP-A-62-158043 discloses (a ) Polyester resin layer, (b) Graft-modified ethylene / α-olefin random copolymer layer grafted with an unsaturated carboxylic acid or derivative thereof as an intermediate layer (graft amount: 0.01 to 10% by weight, MFR: 0.1-50 g / 10 min, density: 0.850-0.905 g / cm3, Ethylene content: 75 to 95 mol%, crystallinity by X-ray: less than 30%) and (c) a olefin / vinyl acetate copolymer saponified layer or a polyamide resin layer is disclosed. Has been.
In the laminate disclosed in the above prior art, a graft-modified ethylene / α-olefin random copolymer layer is provided as an adhesive resin layer between a polyester resin layer and a functional resin layer made of an oxygen barrier material. This is extremely significant in that the adhesion between the polyester resin layer and the functional resin layer is improved.
[0004]
[Problems to be solved by the invention]
However, as in the above prior art, a conventionally known laminate in which an adhesive resin layer is provided between a polyester resin layer and a functional resin layer has a moldability and adhesiveness for use as a film or a stretched sheet. Although satisfactory in terms of the point, it is unsuitable for the use of the biaxially stretched blow bottle, and its practical use has been hindered.
That is, the biaxially stretched blow bottle is manufactured by molding a preform by compression molding, injection molding, or the like, and blowing the compressed fluid into the preform to perform biaxial stretching. In such a multilayer structure, pressure acts in a direction perpendicular to the interface at the time of blow molding, resulting in delamination or rupture (burst) during blow molding, making blow molding difficult. Further, even when the burst is suppressed, there is a problem that the layers are peeled off by an impact such as dropping and the aesthetic appearance is impaired.
[0005]
Accordingly, an object of the present invention is to provide a multilayer preform having a polyester resin layer and a functional resin layer, in which both layers have high adhesion, and burst during biaxial stretch blow molding is effectively prevented, and the preform Is to provide a biaxially stretched blow bottle obtained from the above.
[0006]
[Means for Solving the Problems]
  According to the present invention, a polyester resin layer, an adhesive resin layer, andGas barrier resin layer (hereinafter sometimes referred to as functional resin layer)A multi-layer preform comprising:Gas barrier resin layerIs a layer containing an ethylene vinyl alcohol copolymer or polyamide as an oxygen barrier resin component, and the adhesive resin layer comprises an olefin resin having a melting point of 105 ° C. or higher and an elongation at break of 600% or higher. A multilayer preform (first multilayer preform) is provided which is formed as an adhesive resin component.
  According to the present invention, the polyester resin layer and the adhesiveGas barrier resin layer (hereinafter sometimes referred to as adhesive and functional resin layer)A multi-layer preform comprising the adhesive andGas barrier resin layerContains an ethylene vinyl alcohol copolymer or polyamide as an oxygen barrier resin component and an olefin resin as an adhesive resin component. The olefin resin has a melting point of 105 ° C. or higher and a elongation at break of 600% or higher. A multi-layered preform (second multi-layered preform) is provided.
  According to the present invention, there is further provided a blow bottle obtained by biaxially stretching blow-molding the first and second multilayer preforms.
[0008]
The first multilayer preform will be described as an example. In the present invention, it is an important feature that an adhesive resin or a base material thereof having a melting point of 105 ° C. or higher is used.
That is, in the biaxial stretch blow molding of a preform, the preform is heated to a stretching temperature (for example, a temperature of about 100 to 120 ° C.) not less than the glass transition point (Tg) of the polyester resin and not more than the thermal crystallization temperature. This is done by expanding and stretching in the biaxial direction by blowing air or the like, but if the melting point of the adhesive resin is lower than the stretching temperature and the temperature difference is large, the adhesive resin will melt during blow stretching. The fluid flows and delaminates, resulting in a burst. Moreover, even if only part of the peeling occurs, delamination proceeds due to an impact such as a drop after blow molding, and the appearance is greatly impaired.
However, as will be apparent from the examples described later, the present invention prevents the melt flow of the adhesive resin during blow-drawing by using an adhesive resin having a melting point of 105 ° C. or more, and makes delamination and burst effective. Can be suppressed. For example, as shown in the comparative example, when an adhesive resin having a melting point of less than 105 ° C. is used, delamination and burst occur during blow stretching.
[0009]
  In the present invention, the adhesive resin or its substrate is made of an olefin resin, and its melting point is 105 ° C. or higher, but its elongation at break needs to be 600% or higher. .
  That is, adhesive resin having such elongation at breakBy usingThe adhesive resin layer easily follows the polyester resin layer at the time of blow stretching, and the burst suppressing effect is further improved.
[0010]
  In the first multilayer preform, the adhesive resin layer is provided as an independent layer separate from the functional resin layer, and the adhesive resin layer provides adhesion between the functional resin layer and the polyester resin layer. In the present invention, as in the second multilayer preform, the adhesive resin layer and the functional resin layer can be provided as a single layer, that is, as an adhesive and functional resin layer. .
  In such an adhesive and functional resin layer, for the same reason as above, as a base material component,It contains a polyolefin resin having a melting point of 105 ° C. or higher and an elongation at break of 600% or higher.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a typical example of the layer structure in the multilayer preform (first multilayer preform) of the present invention. As is clear from FIG. 1, polyester resin layers 1 and 1 are provided as inner and outer layers. The functional resin layer 2 is provided as an intermediate layer between the polyester resin layers 1 and 1, and the adhesive layer 3 is provided between the polyester resin layer 1 and the functional resin layer 2. .
[0012]
[Polyester resin layer 1]
In the present invention, any polyester resin can be used as the polyester resin forming the polyester resin layer 1 as long as it can be biaxially stretch blow molded and crystallized. For example, polyethylene terephthalate Further, thermoplastic polyesters such as polybutylene terephthalate and polyethylene naphthalate, and blends of these polyesters with polycarbonates and arylate resins can be used. In the present invention, most of the ester repeating units (generally 70 mol% or more, particularly 80 mol% or more) are ethylene terephthalate units, and the glass transition point (Tg) is 50 to 90 ° C., particularly 55 to 80 ° C. Polyethylene terephthalate (PET) polyester having a melting point (Tm) of 200 to 275 ° C., particularly 220 to 270 ° C. is preferred.
[0013]
As the PET-based polyester, homopolyethylene terephthalate is suitable in terms of heat resistance and heat pressure resistance, but a copolyester containing a small amount of ester units other than ethylene terephthalate units can also be used.
In such a copolyester, dibasic acids other than terephthalic acid include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid and naphthalenedicarboxylic acid; alicyclic dicarboxylic acids such as cyclohexanedicarboxylic acid; succinic acid, adipic acid, and sebatin. Examples of the diol component other than ethylene glycol can include propylene glycol, 1,4-butanediol, diethylene glycol, and the like. One or two or more of 1,6-hexylene glycol, cyclohexanedimethanol, ethylene oxide adduct of bisphenol A and the like can be mentioned.
[0014]
The polyester resin as described above should have at least a molecular weight sufficient to form a film, and its intrinsic viscosity (IV) is 0.6 to 1.40 dl / g, particularly 0.63. It should be in the range of 1.30 dl / g.
[0015]
In the polyester resin layer 1 formed using the above-described polyester resin, a lubricant, a modifier, a pigment, an ultraviolet absorber and the like may be blended as necessary.
[0016]
[Functional resin layer 2]
The functional resin layer 2 has a gas barrier function, and an oxygen barrier resin or an oxygen barrier resin provided with oxygen absorption is used.
[0017]
As the oxygen barrier resin, those known per se can be used, and preferably an ethylene-vinyl alcohol copolymer, for example, having an ethylene content of 20 to 60 mol%, particularly 25 to 50 mol%. A saponified copolymer obtained by saponifying an ethylene-vinyl acetate copolymer so that the saponification degree is 96% or more, particularly 99 mol% or more is used. The ethylene-vinyl alcohol copolymer (saponified ethylene-vinyl acetate copolymer) should have a molecular weight sufficient to form a film, and is generally a mixed solvent having a phenol / water weight ratio of 85/15. In particular, it is desirable to have an intrinsic viscosity of 0.01 dl / g or more, particularly 0.05 dl / g or more, measured at 30 ° C. The melting point (Tm) is preferably in the range of 160 to 200 ° C.
[0018]
Examples of oxygen barrier resins other than the ethylene-vinyl alcohol copolymer include, for example, nylon 6, nylon 6/6, nylon 6/6/6 copolymer, metaxylylene adipamide, nylon 6 • 10, polyamides such as nylon 11, nylon 12, nylon 13 and the like. Among these polyamides, those having the number of amide groups per 100 carbon atoms in the range of 5 to 50, particularly 6 to 20 are preferable.
These polyamides should also have a molecular weight sufficient to form a film. For example, in concentrated sulfuric acid (concentration 1.0 g / dl), the relative viscosity measured at 30 ° C. is 1.1 or more, particularly 1.5 or more. It is desirable to be. The melting point (Tm) is preferably in the range of 220 to 260 ° C.
[0019]
Moreover, in order to give the oxygen barrier resin described above to oxygen absorption, an oxidizing organic component and a transition metal catalyst (oxidation catalyst) may be added to the oxygen barrier resin. That is, by oxidizing and oxidizing the oxidizable organic component, oxygen is absorbed and captured, and the oxygen barrier function of the oxygen barrier resin is enhanced. The transition metal catalyst is blended to promote the oxidation of the oxidizable polymer. The
[0020]
As the oxidizing organic component blended in the oxygen barrier resin, an ethylenically unsaturated group-containing polymer is used. That is, this polymer has a carbon-carbon double bond, and this double bond portion is easily oxidized by oxygen, whereby oxygen is absorbed and trapped.
[0021]
Such an ethylenically unsaturated group-containing polymer is derived, for example, using polyene as a monomer. Suitable examples of polyenes include, but are not limited to, conjugated dienes such as butadiene and isoprene; 1,4-hexadiene, 3-methyl-1,4-hexadiene, 4-methyl-1,4- Chain non-conjugated dienes such as hexadiene, 5-methyl-1,4-hexadiene, 4,5-dimethyl-1,4-hexadiene, 7-methyl-1,6-octadiene; methyltetrahydroindene, 5-ethylidene-2 -Cyclic non-conjugated such as norbornene, 5-methylene-2-norbornene, 5-isopropylidene-2-norbornene, 5-vinylidene-2-norbornene, 6-chloromethyl-5-isopropenyl-2-norbornene, dicyclopentadiene Diene; 2,3-diisopropylidene-5-norbornene, 2-ethylidene-3-isopropylidene- - norbornene, 2-propenyl-2,2-norbornadiene, etc. triene, chloroprene, and the like.
[0022]
That is, a homopolymer of the polyene, or a random copolymer, a block copolymer, or the like obtained by combining two or more of the polyenes with other monomers can be used as the oxidizing polymer. Examples of other monomers copolymerized with the polyene include α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, 1-hexene, Heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-nonadecene, 1-eicosene, Examples thereof include 9-methyl-1-decene, 11-methyl-1-dodecene, and 12-ethyl-1-tetradecene. Besides these, styrene, vinyltriene, acrylonitrile, methacrylonitrile, acetic acid Vinyl, methyl methacrylate, ethyl acrylate and the like can also be used.
[0023]
In the present invention, among the polymers derived from the polyene described above, polybutadiene (BR), polyisoprene (IR), natural rubber, nitrile-butadiene rubber (NBR), styrene-butadiene rubber (SBR), chloroprene rubber, Ethylene-propylene-diene rubber (EPDM) and the like are suitable, but of course not limited thereto. Moreover, the iodine value is good to be 100 or more, especially about 120-196.
[0024]
In addition to the above-mentioned ethylenically unsaturated group-containing polymer, a polymer that is easily oxidized, such as polypropylene and an ethylene / carbon oxide copolymer, can be used as the oxidizing organic component.
[0025]
In the present invention, from the standpoint of moldability and the like, it is preferable that the above-mentioned oxidizing polymer and the graft copolymer thereof have a viscosity at 40 ° C. in the range of 1 to 200 Pa · s. Further, these oxidizing polymer components are blended in an amount of 1 to 15 parts by weight, particularly 2 to 10 parts by weight, per 100 parts by weight of the oxygen barrier resin.
[0026]
In the transition metal catalyst used together with the above-mentioned oxidizing polymer, the transition metal is preferably a Group VIII metal of the periodic table such as iron, cobalt, nickel, etc., but also a Group I such as copper, silver, etc. It may be a metal, a Group IV metal such as tin, titanium or zirconium, a Group V metal such as vanadium, a Group VI metal such as chromium, a Group VII metal such as manganese, or the like. Of these, cobalt is particularly suitable for the purposes of the present invention because it significantly promotes oxygen absorption (oxidation of the oxidizing polymer).
[0027]
The transition metal catalyst is generally used in the form of a low-valent inorganic salt, organic salt or complex salt of the transition metal.
Examples of inorganic salts include halides such as chlorides, sulfur oxysalts such as sulfates, nitrogen oxysalts such as nitrates, phosphorus oxysalts such as phosphates, and silicates.
Examples of organic salts include carboxylates, sulfonates, phosphonates, and the like, and carboxylates are preferred for the purposes of the present invention. Specific examples thereof include acetic acid, propionic acid, isopropionic acid, butanoic acid, isobutanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, isoheptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid, 3, 5, 5 -Trimethylhexanoic acid, decanoic acid, neodecanoic acid, undecanoic acid, lauric acid, myristic acid, palmitic acid, margaric acid, stearic acid, arachidic acid, Linderic acid, tuzuic acid, petroceric acid, oleic acid, linoleic acid, linolenic acid And transition metal salts such as arachidonic acid, formic acid, oxalic acid, sulfamic acid, and naphthenic acid.
Examples of the transition metal complex include complexes with β-diketone or β-keto acid ester. Examples of β-diketone and β-keto acid ester include acetylacetone, ethyl acetoacetate, 1,3-cyclohexadione, methylenebis-1,3-cyclohexadione, 2-benzyl-1,3-cyclohexadione, Acetyltetralone, palmitoyltetralone, stearoyltetralone, benzoyltetralone, 2-acetylcyclohexanone, 2-benzoylcyclohexanone, 2-acetyl-1,3-cyclohexadione, benzoyl-p-chlorobenzoylmethane, bis (4- Methylbenzoyl) methane, bis (2-hydroxybenzoyl) methane, benzoylacetone, tribenzoylmethane, diacetylbenzoylmethane, stearoylbenzoylmethane, palmitoylbenzoylmethane, lauroylbenzoylmethane, di Benzoylmethane, bis (4-chlorobenzoyl) methane, benzoylacetylphenylmethane, stearoyl (4-methoxybenzoyl) methane, butanoylacetone, distearoylmethane, stearoylacetone, bis (cyclohexanoyl) methane and dipivaloylmethane Etc. can be used.
[0028]
In the present invention, the transition metal catalyst is preferably blended in an amount of 10 to 1000 ppm, particularly 50 to 500 ppm per oxygen barrier resin.
[0029]
In the functional resin layer 2 described above, various compounding agents, such as fillers, colorants, heat stabilizers, weathering stabilizers, antioxidants, aging, are used as long as injection, compression, and stretch moldability are not impaired. An inhibitor, a light stabilizer, an ultraviolet absorber, an antistatic agent, a lubricant such as metal soap or wax, a modifying resin or rubber, and the like can also be blended.
[0030]
[Adhesive resin layer 3]
  In the present invention, an adhesive resin layer 3 is provided between the polyester resin layer 1 and the functional resin layer 2 described above, thereby increasing the adhesive strength between the layers.
  As already described, such an adhesive resin layer 3 has a melting point (Tm) of 105 ° C. or higher.This olefin resin is an adhesive resin, or contains the olefin resin as a base material.When the melting point is lower than 105 ° C., delamination or burst occurs during biaxial stretch blow molding. In addition, in order to effectively perform the stretch molding,The elongation at break must be 600% or more.
[0031]
  In the case where the adhesive resin is a single chemical species, any known one can be used as long as it has the above melting point and elongation at break. For example, a carboxylic acid such as maleic acid, itaconic acid, fumaric acid or the like, or a graft-modified olefin resin graft-modified with an anhydride, amide, ester or the like of these carboxylic acids can be used. In such a graft-modified olefin resin, the olefin resin to be graft-modified is preferably polyethylene, polypropylene, ethylene / α-olefin copolymer or the like. In addition to such graft-modified olefin resins, ethylene-acrylic acid copolymers, ion-crosslinked olefin copolymers, ethylene-vinyl acetate copolymersOlefin resin such asIt can be used as an adhesive resin.
  These adhesive resins contain a carbonyl group (> C═O) in the main chain or side chain in an amount of 1 to 100 meq / 100 g resin, particularly 10 to 100 meq / 100 g resin from the viewpoint of adhesiveness. Is preferred.
[0033]
[Adhesive and functional resin layer 4]
FIG. 2 shows a typical example of the layer structure in the multilayer preform (second multilayer preform) of the present invention. As is clear from FIG. 2, polyester resin layers 1 and 1 are provided as inner and outer layers. As an intermediate layer between the polyester resin layers 1 and 1, a single layer, that is, an adhesive / functional resin layer, is used instead of the functional resin layer 2 and the adhesive resin layer 3 shown in FIG. 4 can also be provided.
[0034]
  Such an adhesive and functional resin layer 4 has the same composition as the functional resin layer 2 described above except that it contains an adhesive component.
  in this case,The adhesive component of the adhesive and functional resin is based on an olefin resin having a melting point of 105 ° C. or higher and an elongation at break of 600% or higher.
  In addition, as an adhesive component,The graft-modified olefin resin described for the adhesive resin layer 3, an ethylene-acrylic acid copolymer, an ion-crosslinked olefin copolymer, an ethylene-vinyl acetate copolymer, a copolymerized polyester (by forming the polyester resin layer 1) A different one from the polyester used), a copolyamide and the like are preferably used. In this case, these adhesive components are preferably blended in an amount of 10 to 90 parts by weight, particularly 20 to 50 parts by weight, per 100 parts by weight of the oxygen barrier resin.
[0035]
Furthermore, as said adhesive component, the polyester resin which forms the polyester resin layer 1, for example, a polyethylene terephthalate etc., can be used. That is, since the polyester resin exhibits adhesiveness to the polyester resin layer 1, it can be used as an adhesive component. In this case, the polyester resin used as the adhesive component is preferably blended in an amount of 20 to 80 parts by weight, particularly 40 to 70 parts by weight per 100 parts by weight of the oxygen barrier resin.
[0036]
[Layer structure, etc.]
The first multilayer preform in the present invention typically has a layer structure as shown in FIG. 1, but of course is not limited to such a layer structure, and the polyester resin layer 1 and As long as the adhesive resin layer 3 is interposed between the functional resin layer 2, it can have an arbitrary layer configuration.
In addition, the second multilayer preform in the present invention typically has a layer structure as shown in FIG. 2, but of course is not limited to such a layer structure. As long as the adhesive and functional resin layer 4 is interposed between 1 and 1, it can have an arbitrary layer structure as in the first multilayer preform.
[0037]
In the present invention, the thickness of each layer constituting the multilayer preform is not limited, but generally the total thickness is 500 to 7000 μm, particularly 1000 to 5000 μm, the functional resin layer 2 or the adhesive / functional resin layer 4. The thickness should be in the range of 0.5 to 95%, especially 1 to 50% of the total thickness, and the thickness of the adhesive resin layer 3 is 0.5 to 50%, particularly 1 to 20% of the total thickness. It is good to be in the range.
[0038]
[Manufacture of biaxially stretched blow bottles]
According to the present invention, a biaxial stretch blow bottle is formed using the multilayer preform described above.
First, the above-described multilayer preforms (first and second multilayer preforms) are molded using, for example, a number of extruders or injection molding machines corresponding to each layer, a co-compression molding method, a co-injection method, and a sequential injection. This can be performed by a method or the like, thereby forming a bottomed preform having a mouth-and-neck portion provided with a screwing portion, a fitting portion, a support ring and the like. When a preform is molded by an injection molding method, the conditions and the like are not particularly limited, but generally a bottomed preform can be molded at an injection temperature of 260 to 300 ° C. and an injection pressure of 3 to 6 MPa. it can.
[0039]
In order to impart heat resistance to the preform obtained above, the neck and neck formed in the preform is usually crystallized and whitened by heat treatment prior to the biaxial stretch blow molding described below. This thermal crystallization is preferably performed in the above-described thermal crystallization temperature region of polyethylene terephthalate, particularly in the range of 140 to 200 ° C. In this case, after completion of the biaxial stretch blow molding, the neck portion of the unstretched portion can be crystallized by heat treatment and whitened.
[0040]
The biaxial stretch blow molding of the multilayer preform obtained as described above is performed by heating to a stretch molding temperature in a predetermined stretch molding die, blowing a pressurized fluid into the preform, and axial stretching by a stretch rod. Biaxial stretch blow molding is performed by performing stretching and circumferential expansion stretching.
Such biaxial stretch blow molding is known as single-stage blow molding or two-stage blow molding, but in the present invention, in order to avoid delamination due to heat shrinkage, etc., it can be performed by single-stage blow molding. preferable.
The stretch molding temperature is not less than the glass transition point (Tg) of the polyester resin and not more than the thermal crystallization temperature, but is usually about 100 to 120 ° C. in the single-stage blow. The multilayer preform is heated to the stretch molding temperature by known means such as infrared heating, high-frequency induction heating, hot air heating, etc., and is performed using heat (that is, residual heat) applied to the preform of the injection machine. It can also be done, and in the cold parison, it is done by reheating.
The axial stretch ratio is preferably 1.3 to 3.5 times, particularly preferably 1.5 to 3 times, and the circumferential stretch ratio is 2 to 5.5 times, particularly about 3 to 5 times. Is preferred. Furthermore, as the pressurized fluid to be blown at the time of blow molding, it is preferable to use a high-temperature fluid that is maintained at a temperature that is at least 10 ° C. higher than the preform temperature.
In the present invention, since the adhesive resin used for enhancing the adhesion between the functional resin layer and the polyester resin layer or the base material thereof is a resin having a melting point of 105 ° C. or higher, the stretching temperature as described above is used. Burst of the adhesive resin layer or the like can be effectively avoided during biaxial stretch blow molding.
[0041]
After the biaxial stretch blow molding as described above, the pressurized pressurized fluid is switched to the internal cooling fluid, the inside is cooled, and the secondary stretch blow bottle stretched from the mold is taken out after the cooling is completed. As the cooling fluid, various gases cooled to an appropriate temperature, for example, nitrogen, air and carbon dioxide gas maintained at -40 ° C. to room temperature are preferably used. Other liquefied gases such as liquefied nitrogen gas, liquefied carbon dioxide gas, liquefied trichlorofluoromethane gas, liquefied dichlorodifluoromethane gas, and other liquefied aliphatic hydrocarbon gases can also be used.
[0042]
Moreover, the heat resistance of the obtained bottle can be improved by performing heat setting simultaneously with the above blow molding or after completion of the blow molding.
That is, when heat setting is performed simultaneously with blow molding, when biaxial stretch molding is performed with a stretch mold (blow mold), the mold is subjected to a thermal crystallization temperature region (for example, 120 to 200 ° C.) of a polyester resin. ) Heat and hold. When heat setting is performed after blow molding, the obtained blow bottle is held in a heat setting mold held in the thermal crystallization temperature region, and the outer side of the vessel wall is in contact with the inner surface of the mold. What is necessary is just to perform heat setting (heat setting).
[0043]
The biaxially stretched blow bottle of the present invention thus obtained has a polyester resin layer such as polyethylene terephthalate and a functional resin layer having oxygen barrier properties laminated with high adhesive force, and at the time of blow molding The burst in is also effectively suppressed.
[0044]
【Example】
DSC measurement (confirmation of melting point):
Using a differential scanning calorimeter (DSK7 manufactured by PERKIN ELMER), the temperature was increased from 20 ° C. to 290 ° C. at a rate of 10 ° C./min to confirm the melting point.
[0045]
Elongation at break:
According to ASTM D638.
[0046]
Drop test:
The molded bottle was filled with 500 ml of water and dropped three times from a height of 85 cm, and the presence or absence of delamination was observed.
In addition, in this observation, in the observation of delamination and burst at the time of molding described below, the above-mentioned delamination and burst were observed for the remaining bottles. Cases are indicated in the table with x marks.
[0047]
Co-compression molding:
Of the three extruders, the inner and outer layer PET extruder (A), the functional resin or adhesive / functional resin extruder (B), and the adhesive resin extruder (C), A, B or A, A predetermined resin is supplied to B and C, and co-extrusion is performed under the conditions of a multilayer die temperature of 270 ° C. and a resin pressure of 7 MPa, and cut into a multilayer molten resin mass having a constant weight. This multilayer molten resin lump is set in a compression mold, and multilayer compression molding is performed under the condition of a clamping pressure of 10 MPa, and the layer structure is PET / adhesive resin / functional resin / adhesive resin / PET. A reforming or two-layer / three-layer preform having a layer configuration of PET / adhesive and functional resin / PET was molded.
[0048]
Blow molding:
The preform is heated to 105 ° C., biaxially stretched and blow molded with a mold having a mold temperature of 25 ° C., and has a circular cross-sectional shape having the same diameter of 64.3 mm, a height of 207.2 mm, and an internal volume of 500 ml. A polyester bottle was used to observe delamination during molding and to calculate the burst rate.
[0049]
  In the following examples, Examples 1 to 3 and Example 6 are examples of the present invention, and Examples 4 and 5 are reference examples in which a non-olefin resin is used as an adhesive component.
Example 1
  Olefin-based adhesive resin and functional resin based on EFS7H manufactured by Nippon Unipet Co., Ltd., an ethylene-butene copolymer whose melting point is 120 ° C. and elongation at break is 800%. As a polymetaxylylene adipamide (T-600 manufactured by Toyobo Co., Ltd.), a three-layer five-layer preform having a layer structure of PET layer / adhesive layer / functional layer / adhesive layer / PET layer and having a weight of 25 g was used. Compression molded.
  In this case, both the adhesive resin and the functional resin were 6% by volume.
The preform was subjected to biaxial stretch blow molding, delamination during molding, and the burst rate was calculated.
[0050]
(Example 2)
As the adhesive layer, co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 1 except that an olefin-based adhesive resin based on polyethylene having a melting point of 125 ° C. and an elongation at break of 700% was used. It was.
[0051]
(Example 3)
As the adhesive layer, co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 1 except that an olefin-based adhesive resin based on polyethylene having a melting point of 110 ° C. and an elongation at break of 650% was used. It was.
[0052]
Example 4
As an adhesive layer, a 6: 4 (weight) dry blend of PET resin (RT543: manufactured by Nippon Unipet Co., Ltd.) and polymetaxylylene adipamide resin (T-660: manufactured by Toyobo Co., Ltd.), melting point Co-compression molding and biaxial stretch blow molding were carried out in the same manner as in Example 1 except that an adhesive resin based on a non-olefin resin having a temperature of 256 ° C. and an elongation at break of 250% was used.
[0053]
(Example 5)
Using a twin screw extruder (TEM-35 manufactured by Toshiba Machine Co., Ltd.), the terminal amino group concentration immediately after opening the moisture-proof packaging was 87 eq / 10.6Resin composition comprising polymetaxylylene adipamide resin (T-600: manufactured by Toyobo Co., Ltd.) and liquid maleic acid-modified polybutadiene (M-2000-20: manufactured by Nippon Petrochemical Co., Ltd.) An oxygen-absorbing pellet was prepared by kneading and pelletizing a resin composition containing 5% by weight of cobalt neodecanoate (DICNATE 5000: manufactured by Dainippon Ink & Chemicals, Inc.) in terms of metal in terms of metal.
This oxygen-absorbing pellet and PET (RT523: Nippon Unipet Co., Ltd.) were dry blended at a composition of 4: 6 (weight) and used for co-compression molding extruder B, melting point 256 ° C., elongation at break An adhesive / functional resin layer based on 250% non-olefin resin is provided between the inner and outer layers of PET (EFS7H manufactured by Nippon Unipet Co., Ltd.), and the layer structure is PET layer / adhesive / functional resin. A two-layer / three-layer multilayer preform having a weight of 25 g of layer / PET layer was molded, and biaxial stretch blow molding was performed.
The adhesive and functional resin at this time was 6% by volume.
The preform was subjected to biaxial stretch blow molding, delamination during molding, and the burst rate was calculated.
[0054]
(Example 6)
As an adhesive and functional resin layer, the oxygen-absorbing pellets of Example 5 and the adhesive resin of Example 1 were dry blended with a composition of 4: 6 (weight) and used in co-compression molding extruder B, melting point Was subjected to co-compression molding and biaxial stretch blow molding in the same manner as in Example 5 except that an adhesive and functional resin based on an olefin resin having an elongation at break of 800% and a base material of 120% was used. .
[0055]
(Comparative Example 1)
Co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 1 except that an olefin adhesive resin having a melting point of 102 ° C. and an elongation at break of 530% was used as the adhesive layer.
[0056]
(Comparative Example 2)
As the adhesive layer, co-compression molding and axial stretch blow molding were performed in the same manner as in Example 1 except that an olefin adhesive resin having a melting point of 102 ° C. and an elongation at break of 620% was used.
[0057]
(Comparative Example 3)
Co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 1 except that an olefin adhesive resin having a melting point of 108 ° C. and an elongation at break of 550% was used as the adhesive layer.
[0058]
(Comparative Example 4)
As an adhesive layer, PET resin (RT543: manufactured by Nihon Unipet Co., Ltd.) and polymetaxylylene adipamide resin (T-660: manufactured by Toyobo Co., Ltd.) were dried at 1.5: 8.5 (weight). Co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 1 except that blending was performed and an adhesive resin based on a non-olefin resin having a melting point of 233 ° C. and an elongation at break of 20% was used. went.
[0059]
(Comparative Example 5)
As an adhesive and functional resin layer, PET resin (RT543: manufactured by Nippon Unipet Co., Ltd.) and the oxygen-absorbing pellet of Example 5 were dry blended at 1.5: 8.5 (weight) and co-compression molded. Co-compression molding as in Example 5 except that an adhesive and functional resin based on a non-olefin resin having a melting point of 235 ° C. and an elongation at break of 25% was used for the extruder B. Axial stretch blow molding was performed.
[0060]
(Comparative Example 6)
The oxygen-absorbing pellets of Example 5 and the olefin-based adhesive resin of Comparative Example 1 were dry blended at a composition of 4: 6 (weight) and used for co-compression molding extruder B. Melting point was 102 ° C., breaking point Co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 5 except that the adhesive and functional resin based on the olefin resin having an elongation of 530% was used.
[0061]
(Comparative Example 7)
Co-compression molding by dry blending the oxygen-absorbing pellets of Example 5 and an olefin-based adhesive resin based on polyethylene having a melting point of 101 ° C. and an elongation at break of 620% in a composition of 4: 6 (weight). Co-compression molding and biaxial stretch blow molding were performed in the same manner as in Example 5 except that the above-described extruder B was used and an adhesive and functional resin based on the olefin resin was used.
[0062]
Table 1 shows the evaluation results of delamination / burst occurrence rate and drop test for the biaxially stretched blow bottles obtained in the above Examples and Comparative Examples.
[0063]
[Table 1]
Figure 0004026428
[0064]
【The invention's effect】
According to the present invention, by laminating a polyester resin layer and a functional resin layer through an adhesive resin or an adhesive layer made of a resin having a melting point of 105 ° C. or more as a base material, a biaxial stretch blow molding is performed. It is possible to effectively prevent the occurrence of delamination and burst.
Also, by laminating an adhesive and functional resin layer containing a resin having a melting point of 105 ° C. or higher as a base material with a polyester resin layer, it is possible to effectively generate delamination and burst during biaxial stretch blow molding. It becomes possible to prevent.
[Brief description of the drawings]
FIG. 1 is a diagram showing a layer structure of a first multilayer preform of the present invention.
FIG. 2 is a view showing a layer structure of a second multilayer preform of the present invention.
[Explanation of symbols]
1: Polyester resin layer
2: Functional resin layer
3: Adhesive resin layer
4: Adhesive and functional resin layer

Claims (4)

ポリエステル樹脂層、接着性樹脂層及びガス遮断性樹脂層からなる多層プリフォームであって、該ガス遮断性樹脂層は、エチレンビニルアルコール共重合体またはポリアミドを酸素バリヤー性樹脂成分として含有する層であり、該接着性樹脂層は、105℃以上の融点と600%以上の破断点伸度を有するオレフィン系樹脂を接着性樹脂成分として形成されていることを特徴とする多層プリフォーム。A multilayer preform comprising a polyester resin layer, an adhesive resin layer and a gas barrier resin layer , wherein the gas barrier resin layer is a layer containing ethylene vinyl alcohol copolymer or polyamide as an oxygen barrier resin component. And the adhesive resin layer is formed of an olefin resin having a melting point of 105 ° C. or higher and an elongation at break of 600% or higher as an adhesive resin component. 請求項1に記載の多層プリフォームを一段の二軸延伸ブロー成形して得られる二軸延伸ブローボトル。  A biaxially stretched blow bottle obtained by subjecting the multilayer preform according to claim 1 to a single biaxially stretched blow molding. ポリエステル樹脂層、接着性兼ガス遮断性樹脂層からなる多層プリフォームであって、該接着性兼ガス遮断性樹脂層は、酸素バリヤー性樹脂成分としてエチレンビニルアルコール共重合体またはポリアミドを含み且つ接着性樹脂成分としてオレフィン系樹脂を含有し、該オレフィン系樹脂は、105℃以上の融点と600%以上の破断点伸度を有するものであることを特徴とする多層プリフォーム。Polyester resin layer, a multilayer preform comprising an adhesive and gas-barrier resin layer, said adhesive and gas barrier resin layer, and comprising ethylene vinyl alcohol copolymer or polyamide as an oxygen barrier resin component adhesive A multilayer preform comprising an olefin resin as a functional resin component, the olefin resin having a melting point of 105 ° C. or higher and an elongation at break of 600% or higher. 請求項3に記載の多層プリフォームを一段の二軸延伸ブロー成形して得られる二軸延伸ブローボトル。  A biaxially stretched blow bottle obtained by subjecting the multilayer preform according to claim 3 to a single biaxially stretched blow molding.
JP2002190954A 2002-06-28 2002-06-28 Multilayer preform and biaxial stretch blow bottle Expired - Fee Related JP4026428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002190954A JP4026428B2 (en) 2002-06-28 2002-06-28 Multilayer preform and biaxial stretch blow bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002190954A JP4026428B2 (en) 2002-06-28 2002-06-28 Multilayer preform and biaxial stretch blow bottle

Publications (2)

Publication Number Publication Date
JP2004034341A JP2004034341A (en) 2004-02-05
JP4026428B2 true JP4026428B2 (en) 2007-12-26

Family

ID=31700719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002190954A Expired - Fee Related JP4026428B2 (en) 2002-06-28 2002-06-28 Multilayer preform and biaxial stretch blow bottle

Country Status (1)

Country Link
JP (1) JP4026428B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223667A (en) * 2006-02-27 2007-09-06 Dainippon Printing Co Ltd Plastic container having gas barrier layer
WO2017033810A1 (en) * 2015-08-26 2017-03-02 倉敷紡績株式会社 Packaging film and multilayered film for packaging
JP2017202860A (en) * 2016-05-13 2017-11-16 倉敷紡績株式会社 Film for packaging, molding for packaging, and method for producing them

Also Published As

Publication number Publication date
JP2004034341A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
JP4082023B2 (en) Oxygen-absorbing resin composition, packaging material and multilayer container for packaging
JP4241382B2 (en) Multi-layer structure with excellent gas barrier properties
KR20020046197A (en) Packaging material and multi-layer container
JP3864709B2 (en) Oxygen-absorbing container with excellent storage stability in an empty container
JP2003012944A (en) Resin composition having excellent moldability and gas barrier property, and packaging material
JP2012171155A (en) Coextruded laminate film for deep drawing, bottom material and deep drawn vessel
KR101113398B1 (en) Multilayer structure for packaging
JP3685187B2 (en) Plastic packaging
JP4186592B2 (en) Resin composition and packaging material excellent in moldability and gas barrier properties
JP4192478B2 (en) Multi-layer packaging material
JP4462304B2 (en) Multi-layer structure for packaging
JP4026428B2 (en) Multilayer preform and biaxial stretch blow bottle
JP3882802B2 (en) Package
JP3788442B2 (en) Multi-layer structure for packaging
JP2003012023A (en) Multi-layered plastic container with good conservative ability
JP3951752B2 (en) Plastic multilayer container
JP2006027701A (en) Plastic multilayered container filled with fruit beverage
JP4873110B2 (en) Plastic multilayer container
JP4278954B2 (en) Single layer container made of polyethylene terephthalate
JP4878720B2 (en) Multi-layer structure with excellent oxygen barrier properties
JP3912143B2 (en) Plastic multilayer container
JP4258303B2 (en) Package
JP4026417B2 (en) Resin composition and multilayer packaging material using the same
JP2004034340A (en) Multilayered structure for packaging
JP4019737B2 (en) Multilayer structure with excellent oxygen absorption and oxygen barrier properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4026428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees