JP4025696B2 - Method of melting molten steel that can prevent nozzle clogging - Google Patents

Method of melting molten steel that can prevent nozzle clogging Download PDF

Info

Publication number
JP4025696B2
JP4025696B2 JP2003207719A JP2003207719A JP4025696B2 JP 4025696 B2 JP4025696 B2 JP 4025696B2 JP 2003207719 A JP2003207719 A JP 2003207719A JP 2003207719 A JP2003207719 A JP 2003207719A JP 4025696 B2 JP4025696 B2 JP 4025696B2
Authority
JP
Japan
Prior art keywords
rem
molten steel
concentration
nozzle
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003207719A
Other languages
Japanese (ja)
Other versions
JP2005060739A (en
Inventor
光彦 太田
明人 清瀬
渡 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003207719A priority Critical patent/JP4025696B2/en
Publication of JP2005060739A publication Critical patent/JP2005060739A/en
Application granted granted Critical
Publication of JP4025696B2 publication Critical patent/JP4025696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物、橋梁、海洋構造物や造船などの分野で使用されるREM含有鋼材の製造に際し、鋳造時におけるノズル閉塞を防止する溶鋼の溶製方法に関する。
【0002】
【従来の技術】
結晶粒成長抑制や粒内フェライト変態の促進などに用いられる非金属介在物 (以下、介在物と記す)を生成させる手段として、鋼中にREMを添加することはよく知られている。
例えば特許文献1には、質量%で、
C:0.06〜0.15%、Si:0.01〜0.70%、Mn:0.50〜2.0%、P:0.03%以下、S:0.015%以下、Al:0.005〜0.07%、V:0.04〜0.10%、B:0.0005〜0.0020%、N:0.0040〜0.0100%、REM:0.0020〜0.010%、O:0.0025〜0.0070%を含有させた溶接構造用高張力鋼において、REMオキシサルファイドをピン止め粒子として利用することにより、結晶粒の微細化を図っていることが開示されている。
【0003】
また特許文献2では、質量%で、
C:0.01〜0.18%、Si:0.02〜0.60%、Mn:0.60〜2.00%、P:0.030%以下、S:0.015%以下、Ti:0.005〜0.08%、REM:0.0010〜0.0200%、Ca:0.0010〜0.0200%、Al:(Ti%)/5を含有した鋼に対し、質量%でTi酸化物:90%以下、Ca酸化物およびREM酸化物の合計:5〜50%、Al2 3 :70%以下からなる介在物組成を有する酸化物系介在物を200nm以上の円相当径を有するものの個数で1×103 個/mm2 以上1×105 個/mm2 未満分散させ、これをフェライト変態核として結晶粒の微細化を図っていることが開示されている。さらに、分散させた介在物が低融点に制御されていることから、ノズル閉塞の原因となる高融点酸化物の生成を防止できると記載されている。
【0004】
【特許文献1】
特開平10−88276号公報
【特許文献2】
特開2001−20033号公報
【0005】
【発明が解決しようとする課題】
しかし、特許文献1に記載された組成に溶鋼を制御すると、REM硫化物が生成する場合があり、それにより、鋳造時に取鍋あるいは浸漬ノズル閉塞を引き起こし、鋳造不能になることがある。
また特許文献2に記載された方法によると、REM酸化物の生成を回避することはできるものの、REM酸化物の生成がノズル閉塞の原因ではなく、実際にはこの方法によりREM硫化物が生成する場合があり、それにより、ノズル閉塞を回避できないことがある。
【0006】
本発明は、REM添加鋼を溶製するにあたり、REM硫化物生成を抑制または防止し、ノズル等の閉塞を防止する方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明の要旨は以下の通りである
【0008】
鋼の鋳造に際してREM含有溶鋼を溶製するにあたり、REM添加前の溶鋼中酸素濃度及び硫黄濃度に応じて、REM添加後の溶鋼中REM濃度が、下記(1)式に示す関係を満足する様に、REM添加量を調整してREM硫化物を生成させないことを特徴とするノズル閉塞防止可能な溶鋼の溶製方法。
[%REM] ≦ −0.61[%S]+1.63 [%O] +0.0073・・・(1)
ここで、[%REM]:質量%で表したREM添加後の溶鋼中REM濃度
[%S]:質量%で表したREM添加前の溶鋼中S濃度
[%O]:質量%で表したREM添加前の溶鋼中O濃度
【0009】
) 上記(1)式において、[%O] ≦0.010とすることを特徴とする前記)に記載のノズル閉塞防止可能な溶鋼の溶製方法。
) さらに上記(1)式において、右辺≦0.020とすることを特徴とする前記)に記載のノズル閉塞防止可能な溶鋼の溶製方法。
) 溶鋼中Al濃度を0.15質量%以下に調整することを特徴とする前記1)〜)のいずれかに記載のノズル閉塞防止可能な溶鋼の溶製方法。
【0010】
【発明の実施の形態】
本発明者らは、溶鋼組成を広範囲に変化させた実験を行った結果として、少なくともSを含有する溶鋼にREMを添加した場合、REM硫化物によってノズル閉塞が引き起こされることを明らかにした。すなわち、REM硫化物を生成させないことにより、ノズル閉塞を回避できることを見出した。
従って、生成する介在物をREM硫化物ではなく、例えばREMオキシサルファイド等にすることで、ノズル閉塞を回避できることを見出した。
【0011】
ちなみにノズル閉塞とは、取鍋ノズル、連続鋳造時の浸漬ノズル若しくは造塊工程での注入管における詰まりを意味している。
またREMとは、Ce,La,Ndなどの希土類元素のうち一種又は二種以上により構成される合金を指している。
【0012】
以下に本発明の実施形態について詳細に説明する。
本発明者らは、ノズル閉塞の原因となるREM硫化物を生成させないためには、所望の酸素濃度及び硫黄濃度に調整された溶鋼に対して、この酸素濃度及び硫黄濃度に応じてREM添加量を適切に調整することにより、達成できることを見出し、本発明に至った。
【0013】
一般的に含REM介在物は、溶鋼中REM,O,及びS濃度に従ってその組成が変化する。従って、溶鋼中O,S濃度に応じてREM添加量を調整することにより、生成する介在物の組成を変化させることができる。
前記の通り、介在物の組成のうちREM硫化物はノズル閉塞の原因となることを明らかにした。そこで、REM硫化物を生成させない様に、すなわちREM硫化物以外の介在物が生成する様に、溶鋼中O,S濃度に応じてREM添加量を調整する必要がある。
尚、REM硫化物以外の介在物とは、REMオキシサルファイドやREM酸化物等が挙げられる。
【0014】
但し、REM添加量が多すぎる場合、得られる鋼の機械的な特性が損なわれるということがあるため、製造する品種に応じて、所望のREM添加量を予め設定することが重要である。従って、所望のREM添加量の範囲で、REM硫化物以外の介在物が生成する様な溶鋼中O,S濃度に予め調整しておき、その後REMを添加すれば良い。
【0015】
この様にすることで、ノズル閉塞の原因となるREM硫化物は生成しないことから、ノズル閉塞防止可能な溶鋼を溶製することができる。
溶鋼中O及びS濃度については、適宜サンプリングを行った溶鋼を、例えば酸素センサー、スパーク発光分光分析法などを用いて分析することができる。
【0016】
次に、生成する介在物をREM硫化物以外の介在物に制御するための、溶鋼中酸素、硫黄濃度およびREM添加後の溶鋼中REM濃度の関係は、下記(1)式を満たす範囲とすることで実施できる。
[%REM] ≦−0.61[%S] +1.63[%O] +0.0073……(1)
【0017】
上記(1)式の右辺とREM濃度の関係を図1に示す。この様に、図1に示した発明範囲内に溶鋼組成を制御することにより、REM硫化物の介在物が生成せず、すなわちREM化物以外の介在物が生成するため、ノズル閉塞を回避することができる。
【0018】
また、OはREM硫化物の生成を回避するために必要な元素であるが、溶鋼中に0.010質量%を超えて存在していた場合、粗大な酸化物が生成し、鋼の清浄性が低下する傾向がある。従って、O濃度の上限は0.010質量%とするのが好ましい。なお、O濃度が0.0025質量%未満である場合、清浄性がさらに向上するため、より好ましい。
【0019】
また、REMは結晶粒微細化などを目的とした介在物生成のために鋼に添加される。しかし、0.020質量%を超える添加により、鋼の機械的な特性が損なわれる傾向があるため、上限を0.020質量%とするのが好ましい。
なお、REMはFe−REM合金やミッシュメタルと呼ばれる複数種のREMにより構成される合金として鋼に添加されるが、いずれの形態によっても効果は同等である。
【0020】
Alは脱酸元素として溶鋼に添加するが、0.150質量%を超えて添加した場合には生成する介在物がREMオキシサルファイドからAl2 3 へと変化する傾向がある。また、Al濃度が高いほどAl2 3 の生成量が増加する。
介在物がAl2 3 の場合、あまり生成量が多過ぎると、凝集合体して粗大化した介在物が溶鋼に残留する場合があるため、ノズル閉塞の原因となる。従って、Al濃度の上限は0.150質量%とするのが好ましい。
【0021】
さらに、REM硫化物以外の介在物において、少なくともREMオキシサルファイドについては、介在物が大きくなるほどノズルに付着し易くなり、ノズル閉塞の原因となることがある。従って、含有する介在物の組成がREMオキシサルファイドの場合、粗大な介在物を少なくすることで、より確実にノズルの閉塞を防止できるため、好ましい。
【0022】
以下に、含有するREMオキシサルファイド介在物の、好ましいサイズ及びその個数密度の好ましい範囲について説明する。
具体的には、含有するREMオキシサルファイド介在物の円相当径10μm以上のREM2 2 S個数を10個/cm2 未満とすることで、より確実にノズルの閉塞を防止できるため、好ましい。
介在物のサイズ及びその個数密度の測定は、SEM−EDXで行うことができる。
【0023】
また、上記の通り、REMオキシサルファイド介在物の円相当径10μm以上のREM2 2 S個数を10個/cm2 未満とするには、真空精錬装置(RH)における還流時間を長くしてREM2 2 を凝集合体させて浮上させるか、もしくは連続鋳造時に溶鋼の流路に堰を設けてREM2 2 が鋳片に混入するのを防止する等の方策により実施することができる。
【0024】
【実施例】
転炉で脱炭吹錬を行って出鋼時に合金を添加し、さらに真空精錬装置(RH)を用いて、表1に示す成分に調整した種々の鋼を溶製した。このとき、スパーク放電発光分光分析法(JIS G1253:2002)により溶鋼中S濃度を、通常鉄鋼業で用いられるジルコニア固体電解質による酸素センサーを用いて溶鋼中O濃度を測定し、この値に従ってREM濃度を調整した。
また、サンプリング装置により溶鋼を採取し、溶鋼中介在物種の同定と介在物のサイズおよび個数密度の定量を、SEM−EDXにより実施した。
【0025】
ノズルについては、鉄鋼業で一般に用いられるアルミナ・グラファイト質のものを使用して連続鋳造を行い、鋳片を製造した。
鋳造時の取鍋ノズルと浸漬ノズルのいずれか、又は両方の詰まり傾向、さらに鋳造後のノズルへの付着物を調査した。調査結果を表1に併せて示す。
【0026】
ここで、ノズル閉塞あり(×)というのは、取鍋ノズルと浸漬ノズルのいずれか一方でも閉塞により、操業が困難になった状況を意味している。
また、ノズルへの付着物が観察される(△)というのは、取鍋ノズル若しくは浸漬ノズルのいずれかに介在物の付着が観察されたものの、操業には悪影響がなかった場合を意味している。
さらに、ノズル閉塞なし(○)は、取鍋ノズル若しくは浸漬ノズルのいずれにも介在物の付着がほとんど観察されなかった場合を意味している。
【0027】
【表1】

Figure 0004025696
【0028】
本発明例である No.1〜6では、全て%REM(calc.) に対して鋼中REM濃度が低くなっていて、前記(1)式を満足している場合であり、介在物としてREM硫化物が生成していなかった。
従って、ノズルへの介在物の著しい付着、及びノズル閉塞はおこらず、介在物の組成制御によってノズル閉塞を回避することができた。
【0029】
一方、比較例 No.7〜9では、%REM(calc.) に対して、鋼中REM濃度が高くなっていて、(1)式を満足していない場合であり、介在物としてREM硫化物が生成していた。従って、REM硫化物によるノズル閉塞が起こったために、操業が困難になった。
【0030】
【発明の効果】
本発明によれば、REM含有鋼の製造にあたり、鋳造ノズルの閉塞を防止し、鋼の機械的な特性を確保しながら、操業上の重大な障害を回避することができる。
【図面の簡単な説明】
【図1】REM硫化物を生成させないための溶鋼組成の範囲を示す図である。[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a molten steel melting method for preventing nozzle clogging during casting in the production of REM-containing steel materials used in the fields of building structures, bridges, offshore structures, shipbuilding, and the like.
[0002]
[Prior art]
It is well known that REM is added to steel as a means for producing non-metallic inclusions (hereinafter referred to as inclusions) used for suppressing grain growth and promoting intragranular ferrite transformation.
For example, Patent Document 1 includes mass%,
C: 0.06 to 0.15%, Si: 0.01 to 0.70%, Mn: 0.50 to 2.0%, P: 0.03% or less, S: 0.015% or less, Al : 0.005-0.07%, V: 0.04-0.10%, B: 0.0005-0.0020%, N: 0.0040-0.0100%, REM: 0.0020-0 In high-tensile steel for welded structures containing 0.010% and O: 0.0025 to 0.0070%, REM oxysulfide is used as pinning particles to refine crystal grains. It is disclosed.
[0003]
Moreover, in patent document 2, it is the mass%,
C: 0.01 to 0.18%, Si: 0.02 to 0.60%, Mn: 0.60 to 2.00%, P: 0.030% or less, S: 0.015% or less, Ti : 0.005 to 0.08%, REM: 0.0010 to 0.0200%, Ca: 0.0010 to 0.0200%, Al: (Ti%) / 5% by mass relative to the steel containing Ti oxide: 90% or less, total of Ca oxide and REM oxide: 5 to 50%, Al 2 O 3 : 70% or less of oxide inclusions having an inclusion composition of 200 nm or more It is disclosed that 1 × 10 3 pieces / mm 2 or more and less than 1 × 10 5 pieces / mm 2 are dispersed in the number of those having the above, and this is used as a ferrite transformation nucleus to refine crystal grains. Further, it is described that since the dispersed inclusions are controlled to have a low melting point, generation of a high melting point oxide that causes nozzle clogging can be prevented.
[0004]
[Patent Document 1]
JP-A-10-88276 [Patent Document 2]
Japanese Patent Laid-Open No. 2001-20033
[Problems to be solved by the invention]
However, when the molten steel is controlled to have the composition described in Patent Document 1, REM sulfide may be generated, which may cause clogging of a ladle or a dipping nozzle during casting, which may make casting impossible.
Further, according to the method described in Patent Document 2, although the generation of REM oxide can be avoided, the generation of REM oxide is not the cause of nozzle clogging, and REM sulfide is actually generated by this method. In some cases, nozzle blockage may not be avoided.
[0006]
An object of the present invention is to provide a method for suppressing or preventing REM sulfide formation and preventing clogging of nozzles and the like when melting REM-added steel.
[0007]
[Means for Solving the Problems]
The gist of the present invention is as follows .
[0008]
1 ) When melting molten steel containing REM during casting of steel, the REM concentration in molten steel after REM addition satisfies the relationship shown in the following formula (1) according to the oxygen concentration and sulfur concentration in molten steel before REM addition. as to the method of melting of the nozzle clogging preventable molten steel, characterized in that by adjusting the REM addition amount does not produce a REM sulfides.
[% REM] ≦ −0.61 [% S] +1.63 [% O] +0.0073 (1)
Here, [% REM]: REM concentration in molten steel after REM addition expressed in mass%
[% S]: S concentration in molten steel before REM addition expressed in mass%
[% O]: O concentration in molten steel before REM addition expressed in mass%
2 ) In the above formula (1), [% O] ≦ 0.010, wherein the molten steel can be prevented from being clogged, according to 1 ).
3 ) Further, in the formula (1), the right side ≦ 0.020, wherein the molten steel can be prevented from being clogged, according to 2 ).
4 ) The method for melting molten steel capable of preventing nozzle clogging according to any one of 1) to 3 ) above, wherein the Al concentration in the molten steel is adjusted to 0.15% by mass or less.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
As a result of conducting experiments in which the molten steel composition was changed over a wide range, the present inventors have clarified that when REM is added to molten steel containing at least S, nozzle clogging is caused by REM sulfide. That is, it was found that nozzle clogging can be avoided by not generating REM sulfide.
Therefore, it has been found that nozzle clogging can be avoided by using, for example, REM oxysulfide instead of REM sulfide as the inclusions to be generated.
[0011]
Incidentally, the nozzle clogging means clogging in the ladle nozzle, the immersion nozzle at the time of continuous casting, or the injection pipe in the ingot forming process.
REM refers to an alloy composed of one or more of rare earth elements such as Ce, La, and Nd.
[0012]
Hereinafter, embodiments of the present invention will be described in detail.
In order to prevent the generation of REM sulfide that causes nozzle clogging, the present inventors have added REM to the molten steel adjusted to a desired oxygen concentration and sulfur concentration in accordance with the oxygen concentration and sulfur concentration. The present inventors have found that it can be achieved by appropriately adjusting the above, and have reached the present invention.
[0013]
Generally, the composition of the REM-containing inclusions changes according to the REM, O, and S concentrations in the molten steel. Therefore, the composition of the inclusions to be generated can be changed by adjusting the amount of REM added according to the O and S concentrations in the molten steel.
As described above, it was clarified that REM sulfide in the composition of inclusions causes nozzle clogging. Therefore, it is necessary to adjust the amount of REM added according to the O and S concentrations in the molten steel so that REM sulfide is not generated, that is, inclusions other than REM sulfide are generated.
Examples of inclusions other than REM sulfide include REM oxysulfide and REM oxide.
[0014]
However, if the amount of REM added is too large, the mechanical properties of the resulting steel may be impaired. Therefore, it is important to set a desired amount of REM added in advance according to the type to be manufactured. Therefore, it is sufficient to adjust the O and S concentrations in the molten steel so that inclusions other than REM sulfide are generated within a desired REM addition amount, and then add REM.
[0015]
By doing in this way, since REM sulfide which causes nozzle blockage is not generated, molten steel capable of preventing nozzle blockage can be produced.
About the O and S concentration in molten steel, the molten steel which sampled suitably can be analyzed using an oxygen sensor, a spark emission spectrometry, etc., for example.
[0016]
Next, in order to control the inclusions to be generated to inclusions other than REM sulfide, the relationship among oxygen, sulfur concentration in molten steel and REM concentration in molten steel after addition of REM is within a range satisfying the following formula (1). Can be implemented.
[% REM] ≦ −0.61 [% S] +1.63 [% O] +0.0073 (1)
[0017]
The relationship between the right side of the above equation (1) and the REM concentration is shown in FIG. In this way, by controlling the molten steel composition within the scope of the invention shown in FIG. 1, REM sulfide inclusions are not generated, that is, inclusions other than REM products are generated, so nozzle blockage is avoided. Can do.
[0018]
In addition, O is an element necessary for avoiding the formation of REM sulfide, but if it is present in the molten steel in an amount exceeding 0.010% by mass, a coarse oxide is generated, and the cleanliness of the steel. Tends to decrease. Therefore, the upper limit of the O concentration is preferably 0.010% by mass. In addition, since O cleanliness improves further when O concentration is less than 0.0025 mass%, it is more preferable.
[0019]
Further, REM is added to steel for inclusion generation for the purpose of grain refinement. However, since the addition of more than 0.020% by mass tends to impair the mechanical properties of the steel, the upper limit is preferably 0.020% by mass.
In addition, although REM is added to steel as an alloy comprised by multiple types of REM called an Fe-REM alloy or Misch metal, an effect is equivalent by any form.
[0020]
Al is added to molten steel as a deoxidizing element, but when it is added in an amount exceeding 0.150% by mass, the generated inclusions tend to change from REM oxysulfide to Al 2 O 3 . Further, the higher the Al concentration, the more Al 2 O 3 is generated.
When the inclusions are Al 2 O 3 , if the amount of production is too large, the inclusions that are agglomerated and coarsened may remain in the molten steel, causing nozzle clogging. Therefore, the upper limit of the Al concentration is preferably 0.150% by mass.
[0021]
Furthermore, in inclusions other than REM sulfide, at least REM oxysulfide is likely to adhere to the nozzle as the inclusion increases, which may cause nozzle blockage. Therefore, when the composition of the inclusions contained is REM oxysulfide, it is preferable to reduce the coarse inclusions to prevent the clogging of the nozzles more reliably.
[0022]
Below, the preferable range of the preferable size and the number density of the REM oxysulfide inclusion to contain is demonstrated.
Specifically, it is preferable that the number of REM 2 O 2 S having an equivalent circle diameter of 10 μm or more of the REM oxysulfide inclusions to be contained is less than 10 / cm 2 because the nozzle can be more reliably prevented from clogging.
The size of inclusions and the number density thereof can be measured by SEM-EDX.
[0023]
Further, as described above, in order to reduce the number of REM 2 O 2 S having an equivalent circle diameter of 10 μm or more of the REM oxysulfide inclusions to less than 10 / cm 2 , the reflux time in the vacuum refining apparatus (RH) is increased and the REM is increased. It can be carried out by measures such as agglomerating and coalescing 2 O 2 or by providing a weir in the flow path of molten steel during continuous casting to prevent REM 2 O 2 from being mixed into the slab.
[0024]
【Example】
Decarburization blowing was performed in a converter, an alloy was added at the time of steel production, and various steels adjusted to the components shown in Table 1 were melted using a vacuum refining apparatus (RH). At this time, the S concentration in molten steel was measured by spark discharge optical emission spectrometry (JIS G1253: 2002), and the O concentration in molten steel was measured using an oxygen sensor with a zirconia solid electrolyte usually used in the steel industry, and the REM concentration was determined according to this value. Adjusted.
Moreover, molten steel was extract | collected with the sampling apparatus, and the identification of the inclusion kind in molten steel, and the fixed_quantity | quantitative_quantity of the size and number density of inclusion were implemented by SEM-EDX.
[0025]
As for the nozzle, continuous casting was performed using an alumina / graphite material generally used in the steel industry to produce a slab.
The clogging tendency of either or both of the ladle nozzle and the immersion nozzle during casting, and the deposits on the nozzle after casting were investigated. The survey results are also shown in Table 1.
[0026]
Here, nozzle clogging (x) means a situation in which operation becomes difficult due to clogging of either the ladle nozzle or the immersion nozzle.
In addition, the fact that the deposit on the nozzle is observed (△) means that the inclusion was observed on either the ladle nozzle or the immersion nozzle, but the operation was not adversely affected. Yes.
Furthermore, no nozzle clogging (O) means that almost no inclusions were observed on either the ladle nozzle or the immersion nozzle.
[0027]
[Table 1]
Figure 0004025696
[0028]
In Nos. 1 to 6 which are examples of the present invention, the REM concentration in the steel is low with respect to% REM (calc.) And satisfies the above formula (1). Sulfide was not generated.
Therefore, the remarkable inclusion of the inclusion to the nozzle and the nozzle clogging did not occur, and the nozzle clogging could be avoided by controlling the composition of the inclusion.
[0029]
On the other hand, Comparative Examples No. 7 to 9 are cases where the REM concentration in the steel is higher than% REM (calc.) And does not satisfy the formula (1). Was generated. Therefore, nozzle clogging due to REM sulfide has occurred, making operation difficult.
[0030]
【The invention's effect】
According to the present invention, in the production of REM-containing steel, it is possible to prevent a clogging of a casting nozzle and avoid a serious operational obstacle while ensuring mechanical properties of the steel.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a range of a molten steel composition not to generate REM sulfide.

Claims (4)

鋼の鋳造に際してREM含有溶鋼を溶製するにあたり、REM添加前の溶鋼中酸素濃度及び硫黄濃度に応じて、REM添加後の溶鋼中REM濃度が、下記(1)式に示す関係を満足する様に、REM添加量を調整してREM硫化物を生成させないことを特徴とするノズル閉塞防止可能な溶鋼の溶製方法。
[%REM] ≦ −0.61[%S]+1.63 [%O] +0.0073・・・(1)
ここで、[%REM]:質量%で表したREM添加後の溶鋼中REM濃度
[%S]:質量%で表したREM添加前の溶鋼中S濃度
[%O]:質量%で表したREM添加前の溶鋼中O濃度
Upon for melting the REM-containing molten steel during casting of steel, depending on the oxygen concentration and sulfur concentration in the molten steel before the REM addition, the molten steel during REM concentration after REM addition, as to satisfy the relationship shown in equation (1) below the method melting of nozzle clogging preventable molten steel, characterized in that by adjusting the REM addition amount does not produce a REM sulfides.
[% REM] ≦ −0.61 [% S] +1.63 [% O] +0.0073 (1)
Here, [% REM]: REM concentration in molten steel after REM addition expressed in mass%
[% S]: S concentration in molten steel before REM addition expressed in mass%
[% O]: O concentration in molten steel before REM addition expressed in mass%
上記(1)式において、[%O] ≦0.010とすることを特徴とする請求項に記載のノズル閉塞防止可能な溶鋼の溶製方法。In the above (1), [% O] ≦ 0.010 and methods melting of nozzle clogging preventable molten steel according to claim 1, characterized in that. さらに上記(1)式において、右辺≦0.020とすることを特徴とする請求項に記載のノズル閉塞防止可能な溶鋼の溶製方法。Furthermore, in said Formula (1), it is set as the right side <= 0.020, The melting method of the molten steel which can prevent nozzle obstruction | occlusion of Claim 2 characterized by the above-mentioned. 溶鋼中Al濃度を0.15質量%以下に調整することを特徴とする請求項1〜のいずれかに記載のノズル閉塞防止可能な溶鋼の溶製方法。The method for melting molten steel capable of preventing nozzle clogging according to any one of claims 1 to 3 , wherein the Al concentration in the molten steel is adjusted to 0.15 mass% or less.
JP2003207719A 2003-08-18 2003-08-18 Method of melting molten steel that can prevent nozzle clogging Expired - Fee Related JP4025696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003207719A JP4025696B2 (en) 2003-08-18 2003-08-18 Method of melting molten steel that can prevent nozzle clogging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003207719A JP4025696B2 (en) 2003-08-18 2003-08-18 Method of melting molten steel that can prevent nozzle clogging

Publications (2)

Publication Number Publication Date
JP2005060739A JP2005060739A (en) 2005-03-10
JP4025696B2 true JP4025696B2 (en) 2007-12-26

Family

ID=34364084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003207719A Expired - Fee Related JP4025696B2 (en) 2003-08-18 2003-08-18 Method of melting molten steel that can prevent nozzle clogging

Country Status (1)

Country Link
JP (1) JP4025696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353526B2 (en) * 2009-07-24 2013-11-27 新日鐵住金株式会社 Method for controlling lanthanoid concentration in molten steel, method for simultaneously controlling lanthanoid concentration in molten steel and non-metallic inclusion composition in molten steel, and method for processing molten steel
BR112015026523B1 (en) 2013-04-24 2020-02-11 Nippon Steel Corporation CLEAN STEEL WITH LOW OXYGEN CONTENT AND CLEAN STEEL PRODUCT WITH LOW OXYGEN CONTENT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497519A (en) * 1978-01-18 1979-08-01 Sumitomo Metal Ind Ltd Production of steel resistant to hydrogen sulfide cracking
JP2749267B2 (en) * 1994-08-18 1998-05-13 株式会社神戸製鋼所 Method for producing Fe-Cr-Al-REM alloy powder
JP2000001748A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp Steel sheet for deep drawing, excellent in surface characteristic and stretch-flange formability, and its manufacture
JP3890748B2 (en) * 1998-06-19 2007-03-07 Jfeスチール株式会社 High strength steel plate with excellent stretch flangeability and delayed fracture resistance
JP2000119803A (en) * 1998-10-08 2000-04-25 Kawasaki Steel Corp Steel sheet for drum can good in surface property and drum can made of steel

Also Published As

Publication number Publication date
JP2005060739A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
EP1257673B1 (en) Method for grain refining of steel, grain refining alloy for steel and method for producing grain refining alloy
JP2011068949A (en) High-toughness steel plate
TWI394843B (en) Melt Method of Ti - containing Very Low Carbon Steel and Manufacturing Method of Ti - containing Very Low Carbon Steel Casting
JP2010248611A (en) Steel having excellent toughness in weld heat-affected zone
JP7260731B2 (en) High purity steel and its refining method
JP4561575B2 (en) Continuous casting method of low alloy steel and steel slab with suppressed austenite grain growth during reheating
JP4025696B2 (en) Method of melting molten steel that can prevent nozzle clogging
JP5167628B2 (en) Steel slab with fine solidification structure
JP3896650B2 (en) Method for producing Ti-containing ultra-low carbon steel
JP2008264802A (en) Method of continuous casting
JP4569458B2 (en) Continuous casting method of steel material with finely dispersed precipitates and slab for steel material
JP7492118B2 (en) Steel product with low ductile MnS, steel slab, and manufacturing method thereof
JP3395699B2 (en) Method for producing ferritic stainless steel
JP5056826B2 (en) Steel for continuous casting and method for producing the same
KR20050092263A (en) Method for refining aluminum killed steel
JP2003342630A (en) Method for continuous casting molten steel containing added rare earth element
JP4369267B2 (en) Cold-rolled steel sheet, hot-rolled steel sheet, and cast steel ingot with high ductility
JP3450777B2 (en) Manufacturing method of stainless steel containing rare earth element
JPH07300611A (en) Production of molten steel for continuous casting
JPH0763821B2 (en) Finer and more uniform dispersion of inclusions in steel
WO2024106225A1 (en) S-containing stainless steel with excellent surface properties and producing method thereof
JPH08238544A (en) Production of steel excellent in toughness at welding heat affected zone
JP4477971B2 (en) Low carbon steel sheet, low carbon steel slab and method for producing the same
JP3070417B2 (en) Production method of steel ingot with extremely small Mn segregation
JP3502758B2 (en) Steel for strips and its production method by continuous casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071005

R151 Written notification of patent or utility model registration

Ref document number: 4025696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees