JP4025267B2 - Method for producing alumina film mainly composed of α-type crystal structure - Google Patents

Method for producing alumina film mainly composed of α-type crystal structure Download PDF

Info

Publication number
JP4025267B2
JP4025267B2 JP2003287101A JP2003287101A JP4025267B2 JP 4025267 B2 JP4025267 B2 JP 4025267B2 JP 2003287101 A JP2003287101 A JP 2003287101A JP 2003287101 A JP2003287101 A JP 2003287101A JP 4025267 B2 JP4025267 B2 JP 4025267B2
Authority
JP
Japan
Prior art keywords
film
alumina
film formation
crystal structure
type crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003287101A
Other languages
Japanese (ja)
Other versions
JP2004091920A (en
Inventor
利光 小原
浩 玉垣
賀充 碇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003287101A priority Critical patent/JP4025267B2/en
Publication of JP2004091920A publication Critical patent/JP2004091920A/en
Application granted granted Critical
Publication of JP4025267B2 publication Critical patent/JP4025267B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、α型結晶構造主体のアルミナ皮膜の製造方法に関し、詳細には、切削工具、摺動部材、金型等の如き耐摩耗部材に被覆されるα型結晶構造主体のアルミナ皮膜を効率よく形成することのできる有用な方法に関するものである。尚、本発明によって得られるアルミナ皮膜は、上記した様々な用途に適用できるが、以下では代表例として切削工具に適用する場合を中心に説明を進める。   The present invention relates to a method for producing an α-type crystal structure-based alumina film, and more particularly, an α-type crystal structure-based alumina film that is coated on a wear-resistant member such as a cutting tool, a sliding member, or a die. It relates to a useful method that can be well formed. The alumina coating obtained by the present invention can be applied to the various uses described above, but the following description will be focused on the case where it is applied to a cutting tool as a representative example.

一般に、優れた耐摩耗性や摺動特性が求められる切削工具や摺動部材として、高速度鋼製や超硬合金製等の基材表面に、チタン窒化物やチタンアルミニウム窒化物等の硬質皮膜を、物理蒸着法(以下、PVD法という)や化学蒸着法(以下、CVD法という)等の方法で形成したものが用いられている。特に切削工具として使用する場合、前記硬質皮膜には耐摩耗性と耐熱性(高温での耐酸化性)が要求され、例えば前記チタンアルミニウム窒化物(TiAlN)などは、800℃程度の高温まで安定して前記両特性を維持しうることから、切削時の刃先温度が高温となる超硬工具等への被覆材料として近年多く使用されている。   In general, as a cutting tool or sliding member that requires excellent wear resistance and sliding characteristics, a hard film such as titanium nitride or titanium aluminum nitride is formed on the surface of a base material such as high-speed steel or cemented carbide. Are formed by a method such as physical vapor deposition (hereinafter referred to as PVD) or chemical vapor deposition (hereinafter referred to as CVD). In particular, when used as a cutting tool, the hard coating is required to have wear resistance and heat resistance (oxidation resistance at high temperature). For example, the titanium aluminum nitride (TiAlN) is stable up to a high temperature of about 800 ° C. Since both of the above characteristics can be maintained, it has been frequently used in recent years as a coating material for carbide tools and the like in which the cutting edge temperature at the time of cutting becomes high.

ところで切削工具等の刃先は、切削時に1000℃以上の高温となる場合がある。この様な状況下、上記硬質皮膜のみでは十分な耐熱性を確保できないため、例えば、特許文献1に示されるように、硬質皮膜を形成した上に、更にアルミナ層を形成して耐熱性を確保することが行われている。   By the way, the cutting edge of a cutting tool or the like may become a high temperature of 1000 ° C. or higher during cutting. Under these circumstances, sufficient heat resistance cannot be ensured only with the hard film. For example, as shown in Patent Document 1, after forming a hard film, an alumina layer is further formed to ensure heat resistance. To be done.

アルミナは、形成される温度によって結晶構造が異なり、基板温度が約500℃以下の場合にはアモルファス構造が主体となり、約500〜1000℃の範囲ではγ型結晶構造が主体となり、いずれの結晶構造も熱的に準安定状態にある。しかし切削工具の如く、切削時における刃先の温度が常温から1000℃以上にわたる広範囲で著しく変動する場合、アルミナの結晶構造が著しく変化して、皮膜に亀裂が生じたり剥離する等の問題を生じる。   Alumina has a crystal structure that varies depending on the temperature at which it is formed. When the substrate temperature is about 500 ° C. or lower, the amorphous structure is mainly used, and within the range of about 500 to 1000 ° C., the γ-type crystal structure is mainly used. Is also thermally metastable. However, when the temperature of the cutting edge at the time of cutting fluctuates widely over a wide range from room temperature to 1000 ° C. or more like a cutting tool, the crystal structure of alumina changes significantly, causing problems such as cracking or peeling of the coating.

ところが、CVD法等を採用して基材温度を1000℃以上に高めた状態で形成されるα型結晶構造(コランダム構造)のアルミナだけは、一旦形成されると、以後は、温度に関係なく熱的に安定な構造を維持する。したがって、切削工具等に耐熱性を付与するには、α型結晶構造のアルミナで被覆することが非常に有効な手段とされている。   However, only the α-type crystal structure (corundum structure) alumina formed by using the CVD method or the like with the substrate temperature raised to 1000 ° C. or higher is once formed, regardless of the temperature. Maintain a thermally stable structure. Therefore, in order to impart heat resistance to a cutting tool or the like, coating with alumina having an α-type crystal structure is an extremely effective means.

しかしながら、上述した通りα型結晶構造のアルミナは、基材を1000℃以上に加熱しなければ形成できないため、適用できる基材が限られる。基材の種類によっては、1000℃以上の高温にさらされると軟質化し、耐摩耗部材用基材としての適性が失われるからである。また、超硬合金の様な高温用基材であっても、この様な高温にさらされると変形等の問題が生じる。更に、耐摩耗性を発揮する膜として基材上に形成されるTiAlN膜等の硬質皮膜の実用温度域は、一般に最高でも800℃程度であることから、1000℃以上の高温に加熱すると、該皮膜の変質が生じて耐摩耗性が劣化するおそれがある。   However, as described above, alumina having an α-type crystal structure cannot be formed unless the substrate is heated to 1000 ° C. or higher, and therefore, applicable substrates are limited. This is because, depending on the type of base material, when it is exposed to a high temperature of 1000 ° C. or higher, it becomes soft and loses its suitability as a base material for wear-resistant members. Further, even a high temperature base material such as a cemented carbide causes problems such as deformation when exposed to such a high temperature. Furthermore, since the practical temperature range of a hard film such as a TiAlN film formed on a substrate as a film exhibiting wear resistance is generally at most about 800 ° C., when heated to a high temperature of 1000 ° C. or higher, Deterioration of the film may occur and wear resistance may deteriorate.

こうした問題に対処するため、基板温度をより低温にしてα型結晶構造のアルミナ皮膜を形成することのできる方法が提案されている。例えばO.Zywitzki,G.Hoetzschらは、高出力(11−17kW)のパルス電源を用いた反応性スパッタリング(Pulsed Magnetron Sputtering)を行えば、750℃でもコランダム構造(α型結晶構造)の酸化アルミニウム皮膜が形成される旨報告している(非特許文献1参照)。   In order to deal with these problems, a method has been proposed that can form an alumina film having an α-type crystal structure at a lower substrate temperature. For example, O.Zywitzki, G.Hoetzsch et al. Show that aluminum oxide with a corundum structure (α-type crystal structure) can be obtained even at 750 ° C. by performing reactive sputtering (Pulsed Magnetron Sputtering) using a high power (11-17 kW) pulse power source. It has been reported that a film is formed (see Non-Patent Document 1).

また特許文献2には、格子定数が4.779Å以上5.000Å以下で、膜厚が少なくとも0.005μmであるコランダム構造(α型結晶構造)の酸化物皮膜を下地層とし、該下地層の上にα型結晶構造のアルミナ被膜を形成する方法が有効である旨開示されている。   In Patent Document 2, an oxide film having a corundum structure (α-type crystal structure) having a lattice constant of 4.779 mm or more and 5.000 mm or less and a film thickness of at least 0.005 μm is used as a base layer. It is disclosed that a method for forming an alumina film having an α-type crystal structure is effective.

ところでPVD法は、CVD法よりも温和な条件で種々の化合物層を形成しやすく、その中でも、金属ターゲットをスパッタリング蒸発源として使用し、反応性ガス雰囲気中で金属化合物を基材上に形成するスパッタリング法は、様々な種類の化合物層をより容易に形成できることから汎用されている。アルミナ皮膜の形成は、アルミニウム金属ターゲットを用いて、反応性ガスである酸素雰囲気中でスパッタリングさせ、基板上にアルミナ皮膜を形成して行われる。   By the way, the PVD method is easy to form various compound layers under milder conditions than the CVD method. Among them, a metal target is used as a sputtering evaporation source, and a metal compound is formed on a substrate in a reactive gas atmosphere. The sputtering method is widely used because various types of compound layers can be easily formed. The formation of the alumina film is performed by sputtering with an aluminum metal target in an oxygen atmosphere as a reactive gas to form an alumina film on the substrate.

この様な成膜工程におけるスパッタリング時の放電状態は、放電電力を一定とした場合に、酸素ガス導入流量と放電電圧の関係が図1に概略的に示す様なヒステリシス曲線を描く。詳細には、図1に示す通り、酸素流量を低流量から除々に増加させると、ある酸素流量で放電電圧が急激に減少し、逆に、酸素流量を高流量から除々に減少させていくと、ある酸素流量で放電電圧が急激に増加する。   The discharge state during sputtering in such a film forming process draws a hysteresis curve such that the relationship between the oxygen gas introduction flow rate and the discharge voltage is schematically shown in FIG. 1 when the discharge power is constant. Specifically, as shown in FIG. 1, when the oxygen flow rate is gradually increased from the low flow rate, the discharge voltage is rapidly decreased at a certain oxygen flow rate, and conversely, when the oxygen flow rate is gradually decreased from the high flow rate. The discharge voltage increases rapidly at a certain oxygen flow rate.

そして上記放電状態は、一般に、図1に概示するように、放電電圧が比較的高く、導入された酸素ガスが、スパッタリングで生じたアルミニウム原子と反応してほとんど消費される状態にあるメタルモードと、放電電圧が比較的低く、導入された酸素ガスが、スパッタリングで生じたアルミニウム原子と反応してなお過剰に存在するため、アルミニウムターゲット表面も酸化される状態にあるポイゾニングモードと、放電電圧がこれらの放電状態の中間値を示す遷移モードとに分類される。   The discharge state is generally a metal mode in which the discharge voltage is relatively high and the introduced oxygen gas reacts with the aluminum atoms generated by sputtering and is almost consumed as shown in FIG. Since the discharge voltage is relatively low and the introduced oxygen gas reacts with the aluminum atoms generated by sputtering and still exists in excess, the poisoning mode in which the aluminum target surface is also oxidized, and the discharge voltage is These are classified into transition modes indicating intermediate values of these discharge states.

それぞれの放電状態でアルミナの成膜を行うと、放電状態がメタルモードの場合には、成膜速度は速いが、アルミナの原子比(Al:O=2:3)よりもAl量の比率が高く金属Alを含む皮膜が形成される。また、放電状態がポイゾニングモードの場合には、形成される皮膜は金属Alを含有せず、ほぼアルミナのみからなる皮膜が形成されるが、上述の通りアルミニウム金属ターゲット自体も酸化されるためAl蒸発量が少なく、成膜速度は極端に遅くなる。   When the alumina film is formed in each discharge state, when the discharge state is the metal mode, the film formation rate is fast, but the ratio of the Al amount is higher than the atomic ratio of alumina (Al: O = 2: 3). A film containing high Al metal is formed. When the discharge state is poisoning mode, the film to be formed does not contain metal Al, and a film made of only alumina is formed. However, as described above, the aluminum metal target itself is also oxidized, so that Al evaporation occurs. The amount is small, and the film formation rate becomes extremely slow.

従って、メタルモードとポイゾニンモードのそれぞれの長所を活かし、金属Al含有量の少ないアルミナ主体の皮膜を、高い成膜速度で効率よく形成すべく、放電状態を遷移モードにして成膜することが試みられている。   Therefore, taking advantage of each of the metal mode and the poison mode, it is attempted to form a film with a discharge state in a transition mode in order to efficiently form an alumina-based film having a low metal Al content at a high film formation rate. ing.

しかしながら遷移モードは、上記図1に示した如く、制御因子の一つである酸素流量の僅かな変化で、急激にメタルモード側またはポイゾニングモード側へ大きく変化するため、安定した放電状態を維持することができない。そこで、これまでに、安定した遷移モードを確保すべく下記のような方法が提案されている。   However, as shown in FIG. 1 above, the transition mode suddenly changes greatly to the metal mode side or the poisoning mode side with a slight change in the oxygen flow rate, which is one of the control factors, so that a stable discharge state is maintained. I can't. So far, the following methods have been proposed to ensure a stable transition mode.

その一つは、酸素流量をほぼ一定とし、放電電圧を制御する方法である。図2は、Arガスと酸素ガス(いずれも流量一定)中で電圧を変化させてアルミニウム金属ターゲットをスパッタリングさせたときの、放電電圧と放電電流との関係を示したものである。この場合も、図2に概示する如く、上記3パタンの放電状態(メタルモード、遷移モード、およびポイゾニングモード)が存在するが、図1の場合と異なり、放電電圧を適切に制御すれば遷移モードの状態をほぼ安定に維持できることがわかる。   One of them is a method of controlling the discharge voltage while keeping the oxygen flow rate substantially constant. FIG. 2 shows the relationship between the discharge voltage and the discharge current when the aluminum metal target is sputtered by changing the voltage in Ar gas and oxygen gas (both at a constant flow rate). Also in this case, as schematically shown in FIG. 2, the three patterns of discharge states (metal mode, transition mode, and poisoning mode) exist, but unlike FIG. 1, the transition occurs if the discharge voltage is controlled appropriately. It can be seen that the mode state can be maintained almost stably.

また、遷移モードを安定に維持する他の方法として、特許文献3には、デュアルマグネトロンスパッタリング(DMS)法を採用して成膜する際に、スパッタリングカソードの測定電圧が目標電圧となるよう酸素ガス流量を制御することで放電状態を遷移モードに調節できることが示されている。更に特許文献4には、成膜室内の反応性ガスの分圧、例えば酸素の分圧を制御することで放電状態を安定させ、膜質の安定な皮膜を得ることができる旨示されている。   In addition, as another method for stably maintaining the transition mode, Patent Document 3 discloses that oxygen gas is used so that the measurement voltage of the sputtering cathode becomes a target voltage when a film is formed by using a dual magnetron sputtering (DMS) method. It has been shown that the discharge state can be adjusted to the transition mode by controlling the flow rate. Further, Patent Document 4 discloses that a discharge state can be stabilized and a film having a stable film quality can be obtained by controlling a partial pressure of a reactive gas in the film formation chamber, for example, a partial pressure of oxygen.

しかし、この様なアルミナ皮膜形成に適した放電状態を確保できる場合であっても、α型結晶構造を主体とするアルミナの形成は難しく、γ型結晶構造のアルミナの混入を避けることができない。特に、生産性を確保すべく成膜速度を高めた場合や、基材等の特性を損なわないよう比較的低温域で成膜を行う場合には、γ型結晶構造のアルミナが形成されやすい傾向にあり、α型結晶構造を主体とするアルミナ皮膜を得るには、更なる検討が必要となる。   However, even when a discharge state suitable for the formation of such an alumina film can be secured, it is difficult to form alumina mainly composed of an α-type crystal structure, and mixing of alumina having a γ-type crystal structure cannot be avoided. In particular, when the film formation rate is increased to ensure productivity, or when film formation is performed at a relatively low temperature so as not to impair the properties of the substrate, alumina having a γ-type crystal structure tends to be formed. Therefore, in order to obtain an alumina film mainly composed of an α-type crystal structure, further studies are required.

また、α型結晶構造のアルミナ形成条件の範囲内では、皮膜の高硬度化を図ることが難しい。一方、より硬度の高いアルミナ皮膜を得るべく、例えば絶対値のより大きな負のバイアス電圧を印加した場合には、α型結晶構造のアルミナとγ型結晶構造のアルミナの混合相となるなど、α型結晶構造主体のアルミナ皮膜が得られない。従って、皮膜硬度のより高いα型結晶構造のアルミナ皮膜を得るには更なる検討が必要となる。
特許第2742049号公報 特開2002−53946号公報 特開平4−325680号公報 特開平4−136165号公報 Surf.Coat.Technol. 86-87 1996 p. 640-647
In addition, it is difficult to increase the hardness of the coating within the range of the conditions for forming an alumina having an α-type crystal structure. On the other hand, in order to obtain a harder alumina film, for example, when a negative bias voltage having a larger absolute value is applied, a mixed phase of alumina having an α-type crystal structure and alumina having a γ-type crystal structure is formed. An alumina film mainly composed of a type crystal structure cannot be obtained. Therefore, further investigation is required to obtain an alumina film having an α-type crystal structure with higher film hardness.
Japanese Patent No. 2742049 JP 2002-53946 A JP-A-4-325680 JP-A-4-136165 Surf.Coat.Technol. 86-87 1996 p. 640-647

本発明はこの様な事情に鑑みてなされたものであって、その目的は、基材や前記TiAlN等の硬質皮膜上に、優れた耐熱性を発揮するα型結晶構造主体のアルミナ皮膜を、効率よくかつ基材や装置等に熱的負荷のかからない比較的低温域で形成したり、より硬度の高いα型結晶構造主体のアルミナ皮膜を形成することのできる有用なα型結晶構造主体のアルミナ皮膜の製造方法を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to form an alumina film mainly composed of an α-type crystal structure that exhibits excellent heat resistance on a hard film such as a base material and TiAlN. Useful α-type crystal structure-based alumina that can be formed in a relatively low temperature range that is not subject to thermal load on the substrate or equipment, or can form an α-type crystal structure-based alumina film with higher hardness It is in providing the manufacturing method of a membrane | film | coat.

本発明に係るα型結晶構造主体のアルミナ皮膜の製造方法とは、酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を形成するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらを成膜速度によって切り替えるものであって、成膜初期段階としてα型結晶構造のアルミナ形成に適した低速条件で成膜した後、それ以降は初期段階よりも高速成膜条件に切り替えて成膜を行うところに特徴を有する。 The method for producing an α-type crystal structure- based alumina film according to the present invention includes an initial stage and subsequent processes in forming an alumina film on a substrate by sputtering an aluminum metal target in an oxidizing gas-containing atmosphere. In the initial stage of film formation , the film is formed under a low-speed condition suitable for forming an alumina having an α-type crystal structure , and thereafter, the film-forming conditions are higher than those in the initial stage. It is characterized in that film formation is performed by switching to

この方法においては、(1)成膜初期に、放電状態をポイゾニングモードにして成膜した後、放電状態を遷移モードまたはメタルモードに切り替えて成膜する方法や、(2)成膜初期に、1nm/min以下の成膜速度で成膜した後、3nm/min以上の成膜速度で成膜する方法等が、好ましい実施形態として挙げられる。In this method, (1) in the initial stage of film formation, the film is formed by changing the discharge state to the poisoning mode, and then the discharge state is switched to the transition mode or the metal mode. A preferred embodiment includes a method of forming a film at a film formation rate of 3 nm / min or more after forming a film at a film formation rate of 1 nm / min or less.

本発明に係るα型結晶構造主体のアルミナ皮膜の他の製造方法とは、酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を製造するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらを成膜温度によって切り替えるものであって、成膜初期段階としてはα型結晶構造のアルミナ形成に適した高温条件で成膜した後、それ以降は初期段階よりも低温条件に切り替えて成膜を行うところに特徴を有する。The other method for producing an α-type crystal structure-based alumina film according to the present invention is to produce an alumina film on a substrate by sputtering an aluminum metal target in an oxidizing gas-containing atmosphere. After that, the film is switched according to the film formation temperature. In the initial stage of film formation, the film is formed under a high temperature condition suitable for formation of alumina having an α-type crystal structure, and thereafter, the temperature is lower than that in the initial stage. It is characterized in that film formation is performed by switching to

この方法においては、成膜初期に、基板温度を800℃を下回らない温度にして成膜した後、該基板温度を650〜750℃に下げて成膜する方法が、好ましい実施形態として挙げられる。 In this method, a method of forming a film by setting the substrate temperature to a temperature not lower than 800 ° C. at the initial stage of film formation and then reducing the substrate temperature to 650 to 750 ° C. is a preferred embodiment.

本発明に係るα型結晶構造主体のアルミナ皮膜の更に他の製造方法とは、酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を製造するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらをバイアス電圧によって切り替えるものであって、成膜初期段階としては、負のバイアス電圧を印加しないかまたは絶対値の小さな負のバイアス電圧を印加する条件でα型結晶構造のアルミナを成膜した後、それ以降は初期段階よりも絶対値のより大きな負のバイアス電圧を印加して高硬度皮膜の形成可能な条件に切り替えて成膜を行うところに特徴を有する。Another method for producing an α-type crystal structure-based alumina film according to the present invention is an initial stage in producing an alumina film on a substrate by sputtering an aluminum metal target in an oxidizing gas-containing atmosphere. In the initial stage of film formation, the α-type crystal structure is applied under the condition that a negative bias voltage is not applied or a negative bias voltage having a small absolute value is applied. Thereafter, after the alumina film is formed, a negative bias voltage having a larger absolute value than that in the initial stage is applied to change the conditions so that a high-hardness film can be formed.

この方法においては、成膜初期に、絶対値100V以下の負のバイアス電圧を基板に印加して成膜した後、負のバイアス電圧を絶対値200V以上にして成膜する方法が、好ましい実施形態として挙げられる。In this method, a method of forming a film by applying a negative bias voltage having an absolute value of 100 V or less to the substrate in the initial stage of film formation and then forming the film by setting the negative bias voltage to an absolute value of 200 V or more is preferable. As mentioned.

本発明によれば、耐熱性に優れたα型結晶構造主体のアルミナ皮膜を、基材や装置等に熱的負荷をかけることなく、効率よく形成することができる。この様なα型結晶構造主体のアルミナ皮膜の製造方法の実現により、従来よりも耐摩耗性および耐熱性に優れた切削工具等を量産的に提供できる。   According to the present invention, an α-type crystal structure-based alumina film having excellent heat resistance can be efficiently formed without applying a thermal load to a substrate, an apparatus, or the like. By realizing such a method for producing an α-type crystal structure-based alumina coating, it is possible to mass-produce a cutting tool or the like that is superior in wear resistance and heat resistance compared to conventional methods.

また、硬度のより高いα型結晶構造主体のアルミナ皮膜を形成することができ、更に耐摩耗性および耐熱性に優れた切削工具等を提供できる。   In addition, an α-type crystal structure-based alumina film having a higher hardness can be formed, and a cutting tool having excellent wear resistance and heat resistance can be provided.

本発明者らは、前述した様な状況の下、酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングする方法を採用し、基材や硬質皮膜、装置等に対する熱負荷の少ない条件で、α型結晶構造主体のアルミナ皮膜(以下、単に「α型主体アルミナ皮膜」ということがある)を、効率よく形成するための方法について研究を進めた。その結果、特に成膜初期の成膜条件を制御すればよいことを見出し、上記本発明に想到した。   The inventors have adopted a method of sputtering an aluminum metal target in an oxidizing gas-containing atmosphere under the above-described circumstances, and under the condition that the thermal load on the substrate, hard coating, apparatus, etc. is low, α type Research has been conducted on a method for efficiently forming an alumina coating mainly composed of a crystal structure (hereinafter sometimes simply referred to as “α-type principal alumina coating”). As a result, it has been found that the film formation conditions in the initial stage of film formation may be controlled, and the present invention has been conceived.

即ち、成膜初期に、α型結晶構造のアルミナ形成に適した条件で成膜することで、下地としてα型結晶構造のアルミナを形成しておけば、成膜中期以降の成膜条件として、(i)より生産性を高めるための条件や、(ii)基材等の特性を維持するために設定する低温条件、または(iii)硬度のより高いアルミナ皮膜を生成するための製造条件に切り替えても、確実にα型主体のアルミナ皮膜を形成させることができ、その結果、α型主体のアルミナ皮膜を高速で効率よく成膜したり、基材や既に形成されている硬質皮膜、装置等に対する熱負荷を抑えて成膜したり、または、硬度のより高いα型主体のアルミナ皮膜が得られることがわかった。   That is, by forming the film under conditions suitable for forming an α-type crystal structure alumina at the initial stage of film formation, if the α-type crystal structure alumina is formed as a base, Switch to (i) conditions for increasing productivity, (ii) low temperature conditions set to maintain the properties of the substrate, etc., or (iii) production conditions for producing a higher hardness alumina film. However, it is possible to reliably form an α-type-alumina-based alumina film, and as a result, form an α-type-alumina-alumina film at high speed and efficiently, or to form a base material, a hard film already formed, an apparatus, etc. It was found that an α-based alumina film having a higher hardness can be obtained by suppressing the heat load on the film.

尚、成膜初期に形成する前記「α型結晶構造のアルミナ」は、少なくとも1nm程度形成されていることが望ましい。   The “α-type crystal structure alumina” formed at the initial stage of film formation is preferably formed to be at least about 1 nm.

この様にα型主体のアルミナ皮膜が効率よく形成される機構は定かではないが、成膜の初期段階で、基板上にα型構造のアルミナ結晶核を下地として形成しておけば、その後、製造条件を多少変更したとしても、既に形成されているα型構造の結晶核をベースとして引き続きα型結晶構造のアルミナが成長すると考えられる。   In this way, the mechanism by which the α-type-based alumina film is efficiently formed is not clear, but if an α-type alumina crystal nucleus is formed on the substrate as an underlayer at the initial stage of film formation, Even if the manufacturing conditions are slightly changed, it is considered that alumina having an α-type crystal structure continues to grow on the basis of crystal nuclei having an α-type structure already formed.

そして本発明者らは、この様な成膜機構を有効に活かすため、成膜初期の上記α型結晶構造のアルミナ形成に適した条件、および成膜中期以降の成膜条件について具体的に検討した結果、特に、下記(I)〜(III)に示す方法で行うことが有効であることをつきとめた。即ち、
(I)成膜中期以降に成膜速度を高めて成膜する場合
(I−1)成膜初期に、放電状態をポイゾニングモードにしてα型結晶構造のアルミナを形成した後、より高速で成膜を行うべく、放電状態を遷移モードまたはメタルモードに切り替えて成膜する。
In order to make effective use of such a film formation mechanism, the present inventors specifically examined conditions suitable for forming the alumina of the α-type crystal structure at the initial stage of film formation and film formation conditions after the middle stage of film formation. As a result, it was found that it is particularly effective to carry out by the methods shown in the following (I) to (III). That is,
(I) When the film formation rate is increased after the middle stage of film formation (I-1) After forming the α-type crystal structure alumina with the discharge state in the poisoning mode at the initial stage of film formation, the film is formed at a higher speed. In order to form a film, the film is formed by switching the discharge state to the transition mode or the metal mode.

(I−2)成膜初期に、1nm/min以下の成膜速度で成膜してα型結晶構造のアルミナを形成した後、より高速で成膜を行うべく、3nm/min以上の成膜速度で成膜する。   (I-2) In the initial stage of film formation, after forming an alumina having an α-type crystal structure by film formation at a film formation speed of 1 nm / min or less, film formation of 3 nm / min or more is performed in order to perform film formation at a higher speed. Film is formed at a speed.

(II)成膜中期以降に基板温度を下げて成膜する場合
成膜初期に、800℃を下回らない基板温度でα型結晶構造のアルミナを形成した後、基板温度を650〜750℃にして成膜する。
(II) In the case where the substrate temperature is lowered after the middle stage of film formation After forming the α-type crystal structure alumina at a substrate temperature not lower than 800 ° C. at the initial stage of film formation, the substrate temperature is set to 650-750 ° C. Form a film.

(III)硬度のより高いα型主体アルミナ皮膜を形成する場合
成膜初期に、負のバイアス電圧を印加しないか、印加する場合でもα型結晶構造以外の結晶相が形成されないよう負のバイアス電圧を制御しながら印加してα型結晶構造のアルミナを形成した後、負のバイアス電圧を印加するか若しくは絶対値のより大きな負のバイアス電圧を印加して成膜を行う。
(III) In the case of forming an α-type main alumina film having a higher hardness, a negative bias voltage is applied so that a negative bias voltage is not applied at the initial stage of film formation, or a crystal phase other than the α-type crystal structure is not formed even when it is applied After forming α-type crystal structure alumina while controlling the film thickness, a negative bias voltage is applied or a negative bias voltage having a larger absolute value is applied to form a film.

以下では、上記(I)〜(III)の方法が好ましい理由について詳述する。   Hereinafter, the reason why the methods (I) to (III) are preferable will be described in detail.

まず本発明者らは、上記(I−1)の方法に関し、前掲の公知技術に基づいて、放電状態をポイゾニングモードにしてCr23皮膜上へのアルミナ皮膜形成を試みた。その結果、前述した通り、基材温度を約760℃として成膜を行うとα型主体アルミナは形成されるものの、成膜速度が極端に遅く実用性に欠いている。一方、成膜速度を高めるため、放電状態を遷移モードまたはメタルモードにして成膜を行うと、形成されるアルミナ皮膜は、実質的にγ型のみの結晶構造、若しくはγ型を多量に含むα型との混合結晶構造となり、本発明で意図する皮膜が得られない。 First, the present inventors tried to form an alumina film on the Cr 2 O 3 film by setting the discharge state to a poisoning mode based on the above-mentioned known technique with respect to the method (I-1). As a result, as described above, when film formation is performed at a substrate temperature of about 760 ° C., α-type main alumina is formed, but the film formation rate is extremely slow and lacks practicality. On the other hand, when film formation is performed with the discharge state set to the transition mode or the metal mode in order to increase the film formation speed, the formed alumina film has a crystal structure that is substantially only γ-type or α containing a large amount of γ-type. It becomes a mixed crystal structure with the mold, and the film intended by the present invention cannot be obtained.

そこで本発明者らは、成膜時の放電状態と形成されるアルミナ皮膜の結晶構造との関係を追究したところ、成膜初期段階のみをポイゾニングモードで行い、下地としてα型結晶構造のアルミナを形成しておけば、成膜中期以降の放電状態を、より高速で成膜することのできる遷移モードまたはメタルモードに切り替えても、確実にα型主体アルミナ皮膜を形成できることがわかった。これは、成膜初期時に下地としてα型構造のアルミナ結晶核が形成しているため、その後、α型結晶構造のアルミナが形成されにくい遷移モードまたはメタルモードに切り替えても、既に形成されているα型構造の結晶核をベースとして引き続きα型結晶構造のアルミナが成長していくためと考えられる。   Therefore, the present inventors investigated the relationship between the discharge state during film formation and the crystal structure of the alumina film to be formed, and performed only the initial stage of film formation in the poisoning mode. It has been found that if it is formed, the α-type alumina film can be reliably formed even when the discharge state after the middle stage of film formation is switched to the transition mode or metal mode in which film formation can be performed at a higher speed. This is because α-type alumina crystal nuclei are formed as a base layer at the initial stage of film formation, and after that, even if switching to transition mode or metal mode where α-type crystal structure alumina is difficult to form is already formed. This is probably because the alumina of the α-type crystal structure continues to grow based on the crystal nucleus of the α-type structure.

先に述べた様に、ポイゾニングモードでの成膜は長時間を要するが、本発明では、上記の通り成膜初期段階のみをポイゾニングモードで成膜し、成膜中期以降は、より成膜速度の速い遷移モードまたはメタルモードに切り替えて成膜するので、全成膜時間は著しく短縮されるのである。   As described above, the film formation in the poisoning mode takes a long time, but in the present invention, as described above, only the initial film formation stage is formed in the poisoning mode. Since the film is formed by switching to the fast transition mode or metal mode, the total film formation time is remarkably shortened.

また、成膜の初期段階から放電状態を遷移モードにして成膜する場合には、基板温度を約800℃以上にしなければα型結晶構造のアルミナを形成することは困難であるが、上記(I−1)の方法でアルミナ皮膜を形成する場合には、成膜中期以降の基板温度が700℃を下回らない様に制御すれば、α型結晶構造のアルミナを確実に形成することができ、基材や装置等への熱負荷も低減できることがわかった。   In addition, when the film is formed in the transition mode from the initial stage of film formation, it is difficult to form alumina having an α-type crystal structure unless the substrate temperature is set to about 800 ° C. or higher. In the case of forming an alumina film by the method of I-1), if the substrate temperature after the middle stage of film formation is controlled so as not to be lower than 700 ° C., an alumina having an α-type crystal structure can be reliably formed. It was found that the heat load on the substrate and the apparatus can be reduced.

尚、メタルモードでの成膜は、上述した通り、アルミナ皮膜に金属Alが混入し易いので、成膜中期以降の成膜は、放電状態を遷移モードにして行うことが好ましい。   In addition, as described above, since metal Al is likely to be mixed into the alumina film in the metal mode, it is preferable that the film formation after the middle stage of the film formation is performed in the transition mode.

次に上記(I−2)の方法について述べる。放電状態が遷移モードまたはメタルモードの場合であっても、放電電力を小さくして成膜速度を低下させ、より温和な条件で成膜を行えば、α型結晶構造のアルミナを形成させることができる。しかし、全成膜工程を通してこの様な成膜速度でアルミナ皮膜を形成するのでは、生産効率が非常に悪く実用的でない。そこで、成膜初期のみ1nm/min以下の成膜速度で成膜してα型結晶構造のアルミナを形成し、その後、成膜速度を3nm/min以上に速めて成膜したところ、一貫して1nm/min以下の低速度で成膜する場合とほぼ同様に、純粋なα型結晶構造のアルミナ皮膜を得ることができた。   Next, the method (I-2) will be described. Even when the discharge state is the transition mode or the metal mode, if the discharge power is reduced to lower the film formation rate and the film is formed under milder conditions, an α-type crystal structure of alumina can be formed. it can. However, forming an alumina coating at such a deposition rate throughout the entire deposition process is very impractical and impractical. Therefore, when the film was formed at an initial film formation rate of 1 nm / min or less to form an alumina with an α-type crystal structure, and then the film formation rate was increased to 3 nm / min or more, consistently, Almost as in the case of film formation at a low speed of 1 nm / min or less, an alumina film having a pure α-type crystal structure could be obtained.

これは、成膜初期にα型構造のアルミナ結晶核が下地として形成されているため、その後、α型結晶構造のアルミナが形成されにくい高速成膜条件に切り替えて成膜を続けた場合でも、既に形成されているα型構造の結晶核をベースとして引き続きα型結晶構造のアルミナが成長するためと考えられる。   This is because the α-type alumina crystal nuclei are formed as an underlayer at the beginning of film formation, and after that, even when the film formation is continued by switching to high-speed film formation conditions where the α-type crystal structure alumina is difficult to form. This is probably because the alumina of the α-type crystal structure continues to grow on the basis of the crystal nucleus of the α-type structure that has already been formed.

成膜初期の成膜速度を0.5nm/min以下とすれば、下地となるα型結晶構造のアルミナをより確実に形成することができる。また、成膜中期以降の成膜速度を、10nm/min以上とすれば、より効率よく成膜できるので望ましい。尚、(I−2)の方法を実施する際の放電状態は特に限定されないが、効率よく成膜するには遷移モードまたはメタルモードを採用するのが好ましく、上述した通り、金属Al含有量の極力少ないアルミナ皮膜を形成するには遷移モードで成膜することが望ましい。   If the film formation rate at the initial stage of film formation is 0.5 nm / min or less, an alumina having an α-type crystal structure as a base can be more reliably formed. In addition, it is desirable that the film formation rate after the middle of the film formation is 10 nm / min or more because the film can be formed more efficiently. In addition, although the discharge state at the time of implementing the method of (I-2) is not specifically limited, In order to form a film efficiently, it is preferable to employ | adopt a transition mode or a metal mode. In order to form an alumina film as few as possible, it is desirable to form a film in a transition mode.

次に上記(II)の方法について述べる。成膜初期に基板温度を高めると、放電状態が遷移モードやメタルモードであっても、α型結晶構造のアルミナが形成され易い。そこで本発明者らは、成膜初期のみ基板温度を高めることによってα型結晶構造のアルミナを下地として形成し、その後に基板温度を下げて成膜を行ったところ、確実にα型主体アルミナ皮膜が形成されることを知った。この場合も、成膜初期段階でα型構造のアルミナ結晶核が下地として形成されているため、その後に、基板温度を下げてα型結晶構造のアルミナが形成されにくい条件に切り替えても、既に形成されているα型構造の結晶核をベースとして引き続きα型結晶構造のアルミナが成長するものと考えられる。   Next, the method (II) will be described. When the substrate temperature is increased at the initial stage of film formation, alumina having an α-type crystal structure is easily formed even if the discharge state is a transition mode or a metal mode. Therefore, the inventors of the present invention formed an α-type crystal structure alumina as a base by raising the substrate temperature only at the initial stage of film formation, and then lowered the substrate temperature to form a film. Knew that would be formed. Also in this case, since the α-type alumina crystal nuclei are formed as a base in the initial stage of film formation, even if the substrate temperature is lowered to a condition where it is difficult to form the α-type crystal structure alumina, It is considered that the alumina having the α-type crystal structure continues to grow on the basis of the formed crystal nucleus of the α-type structure.

具体的には、初期の成膜を、基板温度が800℃を下回らない温度、より好ましくは850℃以上で行うと確実にα型主体アルミナを形成できるので好ましく、またその上限は、本発明の目的に照らして1000℃未満に抑えるべきである。   Specifically, it is preferable to perform the initial film formation at a temperature at which the substrate temperature does not fall below 800 ° C., more preferably at 850 ° C. or more, since it is possible to reliably form α-type main alumina, and the upper limit is defined by the present invention. It should be kept below 1000 ° C for the purpose.

この様に成膜の初期段階でα型結晶構造のアルミナを形成しておけば、成膜中期以降の基板温度を約650〜750℃に低下させたとしても、確実にα型結晶構造のアルミナ皮膜を形成することができ、基材や既に形成された硬質皮膜、更には装置等への熱的負荷を低減し得る他、加熱機構もより簡素化できる。尚、成膜中期以降の成膜温度が低すぎても、γ型結晶構造のアルミナの比率が高くなることから、基板温度を700℃以上にして行うことが望ましい。   If the α-type crystal structure of alumina is formed at the initial stage of film formation in this way, even if the substrate temperature after the middle stage of film formation is lowered to about 650 to 750 ° C., the alumina of α-type crystal structure is surely obtained. A film can be formed, the thermal load on the substrate, the already formed hard film, and the apparatus can be reduced, and the heating mechanism can be further simplified. Even when the film formation temperature after the middle of the film formation is too low, the ratio of alumina having a γ-type crystal structure is increased, so that the substrate temperature is preferably set to 700 ° C. or higher.

尚、(II)の方法を採用する際の放電状態も、特に限定されないが、効率よく成膜するには遷移モードまたはメタルモードを採用するのが好ましく、また前記と同様の理由で、金属Al含有量の極力少ないアルミナ皮膜の形成には、遷移モードでの成膜が有用である。   The discharge state when adopting the method (II) is not particularly limited, but it is preferable to adopt a transition mode or a metal mode for efficient film formation, and for the same reason as described above, a metal Al Film formation in the transition mode is useful for forming an alumina film having as little content as possible.

次に上記(III)の方法について述べる。前記(I)および(II)の方法で成膜を行うにあたっては、いずれも基板にバイアス電圧を印加することなく成膜を行った。例えば、上記(I−1)の方法で得られた皮膜の硬さを後述するナノインデンテーション法で評価したところ、約22〜23GPaであった。   Next, the method (III) will be described. In film formation by the methods (I) and (II), film formation was performed without applying a bias voltage to the substrate. For example, when the hardness of the film obtained by the method (I-1) was evaluated by a nanoindentation method described later, it was about 22 to 23 GPa.

本発明者らは、硬度のより高いα型主体アルミナを得るべく様々な成膜条件について検討したところ、特に、成膜中に負のバイアス電圧を印加することが有効であることがわかった。即ち、高硬度皮膜を得る方法として、具体的に、形成するアルミナ皮膜の緻密化を図ることや、形成する皮膜に圧縮応力を付与することが挙げられるが、この様にアルミナ皮膜の緻密化等を図るにあたっては、成膜中に負のバイアス電圧を印加するのが有効なのである。これは、負のバイアス電圧を印加すると、成膜中の皮膜が、バイアス電圧に相当するエネルギーのイオンのボンバードメントを受けながら成長するために、成長する皮膜が緻密化したり、皮膜が有する圧縮応力が高くなる作用によると考えられる。   The inventors of the present invention have studied various film forming conditions in order to obtain an α-type main alumina having higher hardness, and found that it is particularly effective to apply a negative bias voltage during film formation. That is, as a method for obtaining a high hardness film, specifically, densification of the alumina film to be formed, and imparting compressive stress to the film to be formed, such as densification of the alumina film, etc. In order to achieve this, it is effective to apply a negative bias voltage during film formation. This is because when a negative bias voltage is applied, the film being formed grows while being subjected to ion bombardment of energy corresponding to the bias voltage, so that the growing film becomes dense or the compressive stress of the film This is considered to be due to the effect of increasing the value.

まず本発明者らは、全成膜工程において、絶対値で300Vの負のバイアス電圧を印加しながら成膜を行って、アルミナ皮膜を形成し、該皮膜の硬度を調べた。尚、アルミナ皮膜は絶縁性の皮膜であるので、バイアス電圧は10kHz以上の高周波数で間欠的に印加した(以下、実施例を含めて、この様にバイアス電圧を間欠的に印加した)。上記の様にして得られた皮膜は、硬度が約27GPaと高いものであったが、該アルミナ皮膜の結晶構造が少量のγ型を含むものであることをX線回折で確認した。   First, the present inventors performed film formation while applying a negative bias voltage of 300 V in absolute value in all film formation processes, formed an alumina film, and examined the hardness of the film. Since the alumina film is an insulating film, the bias voltage was intermittently applied at a high frequency of 10 kHz or higher (hereinafter, the bias voltage was intermittently applied in this manner including the examples). The film obtained as described above had a hardness as high as about 27 GPa, but it was confirmed by X-ray diffraction that the crystal structure of the alumina film contained a small amount of γ-type.

そこで本発明者らは、前記(I−1)の方法において、まずバイアス電圧を印加することなくα型主体アルミナ皮膜を形成した後、絶対値300Vの負のバイアス電圧を基板に印加する以外は条件を一定にして成膜を行ったところ、X線回折ではα型結晶構造のみが観察され、α型結晶構造のアルミナ皮膜が形成されていることを確認した。また硬度も約26GPaと高い値が得られた。   Therefore, the inventors of the method (I-1) except that the α-type main alumina film is first formed without applying a bias voltage, and then a negative bias voltage having an absolute value of 300 V is applied to the substrate. When film formation was performed under constant conditions, only an α-type crystal structure was observed by X-ray diffraction, and it was confirmed that an alumina film having an α-type crystal structure was formed. Further, a high value of about 26 GPa was obtained.

該方法(III)においても、成膜初期段階でα型構造のアルミナ結晶核が下地として形成されているため、その後に、負のバイアス電圧を印加するか、若しくは絶対値のより大きい負のバイアス電圧を印加するといったγ型アルミナの形成されやすい条件に切り替えても、既に形成されているα型構造の結晶核をベースとして、引き続き高硬度のα型結晶構造のアルミナが成長するものと考えられる。   Also in the method (III), since an α-type alumina crystal nucleus is formed as a base in the initial stage of film formation, a negative bias voltage is applied after that or a negative bias having a larger absolute value is applied. Even when switching to conditions where γ-type alumina is easily formed, such as when voltage is applied, it is considered that high-hardness α-type crystal structure alumina will continue to grow based on the α-type crystal nucleus that has already been formed. .

即ち、アルミナ皮膜の形成において、成膜初期に負のバイアス電圧を印加しないか、印加する場合でもα型結晶構造以外の結晶相が形成されないよう負のバイアス電圧を制御しながら印加してα型結晶構造のアルミナを形成する工程と、それ以後に、負のバイアス電圧を印加するか、若しくは絶対値のより大きい負のバイアス電圧を印加して高硬度のα型アルミナを形成する工程を含めばよいことを見出した。   That is, in forming an alumina film, a negative bias voltage is not applied at the initial stage of film formation, or even when it is applied, a negative bias voltage is applied while controlling the negative bias voltage so that a crystal phase other than the α-type crystal structure is not formed. Including a step of forming alumina having a crystal structure and a step of forming a high-hardness α-type alumina by applying a negative bias voltage or applying a negative bias voltage having a larger absolute value thereafter. I found a good thing.

尚、本発明者らの実験では、アルミナ皮膜の形成において、成膜初期にα型アルミナを形成するには、負のバイアス電圧を絶対値100V以下(バイアス電圧の印加なしの場合を含む)にして成膜するのが好ましく、成膜途中から、絶対値200V以上の負のバイアス電圧を印加して成膜すれば、高硬度とするのに好適であった。   In the experiments of the present inventors, in forming the alumina film, in order to form α-type alumina at the initial stage of film formation, the negative bias voltage is set to an absolute value of 100 V or less (including the case where no bias voltage is applied). It is preferable to form a film by applying a negative bias voltage having an absolute value of 200 V or more in the middle of the film formation.

しかし上記バイアス電圧の好適範囲は、装置の構成や他の諸条件によって変動し得ることから、上記数値範囲に制限されるものでなく、上述の通り、成膜初期に負のバイアス電圧を印加しないか、印加する場合でもα型結晶構造以外の結晶相が形成されないよう該バイアス電圧を制御しながら印加してα型結晶構造のアルミナを形成し、その後に、負のバイアス電圧を印加するか、若しくは絶対値のより大きな負のバイアス電圧を印加して高硬度のα型アルミナを形成すればよい。   However, since the preferred range of the bias voltage may vary depending on the configuration of the apparatus and other various conditions, it is not limited to the above numerical range, and as described above, a negative bias voltage is not applied at the initial stage of film formation. Or, even when it is applied, the bias voltage is controlled so as not to form a crystal phase other than the α-type crystal structure to form α-type crystal structure alumina, and then a negative bias voltage is applied, Alternatively, a high hardness α-type alumina may be formed by applying a negative bias voltage having a larger absolute value.

上記方法(III)において、成膜時の放電状態は特に限定されないが、皮膜形成の高速化や成膜温度の低温化を併せて図るには、上記(I)および(II)の方法と組み合わせてもよい。   In the method (III), the discharge state at the time of film formation is not particularly limited. However, in order to increase the speed of film formation and lower the film formation temperature, it is combined with the methods (I) and (II) above. May be.

例えば、上記(I−1)の方法を採用し、バイアス電圧を印加せずにポイゾニングモードでαアルミナ結晶成長を促進し、その後、放電状態をポイゾニングモードから遷移モードにかえて遷移モードでαアルミナ結晶の成長を確実にした後に、同一の放電状態(即ち、遷移モード)を維持しながら負のバイアス電圧を印加すれば、高硬度のα型主体アルミナを効率良く形成することができる。   For example, the method (I-1) is adopted to promote α-alumina crystal growth in the poisoning mode without applying a bias voltage, and then the discharge state is changed from the poisoning mode to the transition mode, and the α-alumina in the transition mode. If a negative bias voltage is applied while maintaining the same discharge state (that is, transition mode) after the crystal growth is ensured, an α-type main alumina with high hardness can be formed efficiently.

本発明にかかる方法は、放電電圧を変化させて放電状態を制御する他、酸素流量や酸素分圧、放電電力、放電電流等のその他の因子を制御して放電状態を制御する場合など、あらゆる方法で放電状態を制御した場合にも適用することができる。また、本発明法を適用することのできるスパッタリング法としては、パルスDCスパッタリング法の他、高周波スパッタリング法、マグネトロンスパッタリング法、イオンビームスパッタリング法等が挙げられる。   The method according to the present invention controls the discharge state by changing the discharge voltage, and also controls the discharge state by controlling other factors such as the oxygen flow rate, oxygen partial pressure, discharge power, discharge current, etc. It can also be applied when the discharge state is controlled by the method. Further, examples of the sputtering method to which the method of the present invention can be applied include a high frequency sputtering method, a magnetron sputtering method, an ion beam sputtering method, and the like in addition to a pulse DC sputtering method.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. It is also possible to implement, and they are all included in the technical scope of the present invention.

<上記方法(I)および(II)に関する実施例>
実施には、サイズが12.7mm×12.7mm×5mmで超硬合金製の基材を、鏡面研磨(Ra=0.02μm程度)し、アルカリ槽と純水槽中で超音波洗浄して乾燥させた後、予めアークイオンプレーティング法でCrN皮膜を形成したものを用いた。
<Examples relating to the above methods (I) and (II)>
For the implementation, a substrate made of cemented carbide having a size of 12.7 mm × 12.7 mm × 5 mm is mirror-polished (Ra = 0.02 μm), ultrasonically cleaned in an alkali bath and a pure water bath, and then dried. Then, a CrN film previously formed by arc ion plating was used.

本実施例では、上記CrN皮膜の酸化およびα型主体アルミナ皮膜の形成を、図3に示す如く、マグネトロンスパッタリングカソード、ヒータ、基材回転機構等を備えた真空成膜装置[(株)神戸製鋼所製 AIP-S40複合機]を用いて、次の様にして行った。   In this example, the oxidation of the CrN film and the formation of the α-type main alumina film were carried out by using a vacuum film forming apparatus equipped with a magnetron sputtering cathode, a heater, a substrate rotating mechanism, etc. [Kobe Steel Co., Ltd. Using the AIP-S40 multifunction machine], the following procedure was performed.

即ち、試料(CrN皮膜の被覆された超硬合金製基材)2を装置1内の回転テーブル3上の遊星回転治具(基材ホルダ)4にセットし、装置内がほぼ真空状態となるまで排気した後、表1に示す成膜初期の基板温度となるまでヒータ5で試料を加熱した。試料の温度が所定の温度となった時点で、装置1内に酸素ガスを導入し、試料表面のCrN皮膜を酸化して、α型主体アルミナ皮膜形成用の基板とした。   That is, a sample (a cemented carbide base material coated with a CrN film) 2 is set on a planetary rotating jig (base material holder) 4 on a rotary table 3 in the apparatus 1, and the inside of the apparatus is almost in a vacuum state. Then, the sample was heated with the heater 5 until the initial substrate temperature shown in Table 1 was reached. When the temperature of the sample reached a predetermined temperature, oxygen gas was introduced into the apparatus 1 to oxidize the CrN film on the surface of the sample to obtain a substrate for forming an α-type main alumina film.

次に、α型結晶構造を主体とするアルミナ皮膜を前記酸化層上に形成した。該アルミナ皮膜の形成は、アルゴンと酸素雰囲気中で、図3に示したスパッタリングカソード6にアルミニウム金属ターゲットを装着した後、パルスDCスパッタリング法で行った。尚、後述する本発明例2は、1台のスパッタリングカソード6を用いて放電を行い、その他の実施例は、2台のスパッタリングカソード6を用いて行った。また放電電力は、1台のスパッタリングカソード6につき約2〜3.2kWとし、後述する本発明例3での成膜初期のみ、スパッタリングカソード6の放電電力を1台につき約300Wとした。   Next, an alumina film mainly composed of an α-type crystal structure was formed on the oxide layer. The alumina coating was formed by pulsed DC sputtering in an argon and oxygen atmosphere after an aluminum metal target was mounted on the sputtering cathode 6 shown in FIG. In addition, Example 2 of this invention mentioned later discharged using one sputtering cathode 6, and the other Example was performed using two sputtering cathodes 6. FIG. The discharge power was about 2 to 3.2 kW for each sputtering cathode 6, and the discharge power for the sputtering cathode 6 was about 300 W per unit only in the initial stage of film formation in Invention Example 3 described later.

成膜中、Arガス流量は120sccmで一定とし、酸素ガス流量および放電電圧は、所定の放電状態となるよう適宜調節した。即ち成膜中は、所定の放電状態とすべく、ターゲットのスパッタリング表面から約20mm離れて位置するプラズマ発光分光分析装置で蒸発ガスの分析を行い、アルミニウムと酸素の発光強度を目安として放電電圧を調節した。また成膜は、前記図3に示すように基材テーブル3および遊星回転治具(基材ホルダ)4を回転させながら行った。成膜時の放電状態、基板温度、成膜初期および成膜中期以降の成膜時間は、表1に示す通りである。   During the film formation, the Ar gas flow rate was kept constant at 120 sccm, and the oxygen gas flow rate and discharge voltage were adjusted as appropriate to achieve a predetermined discharge state. In other words, during the film formation, the evaporative gas is analyzed with a plasma emission spectroscopic analyzer located approximately 20 mm away from the sputtering surface of the target in order to obtain a predetermined discharge state, and the discharge voltage is set based on the emission intensity of aluminum and oxygen. Adjusted. Film formation was performed while rotating the substrate table 3 and the planetary rotating jig (substrate holder) 4 as shown in FIG. Table 1 shows the discharge state, the substrate temperature, the initial stage of film formation, and the film formation time after the middle stage of film formation.

この様にして形成されたアルミナ皮膜の膜厚を、シリコン基板上で段差を測定して求めた。またアルミナ皮膜の表面を、薄膜X線回折分析(薄膜XRD分析)を行って結晶構造を特定した。α型結晶構造のアルミナ形成の程度は、X線回折測定結果から、α型結晶構造のアルミナを示すピークおよびγ型結晶構造のアルミナを示すピークの有無を調べて判断した。これらの結果を、成膜条件とともに表1に併記する。   The film thickness of the alumina film thus formed was determined by measuring the level difference on the silicon substrate. Further, the surface of the alumina film was subjected to thin film X-ray diffraction analysis (thin film XRD analysis) to identify the crystal structure. The degree of formation of alumina having an α-type crystal structure was judged by examining the presence or absence of a peak indicating alumina having an α-type crystal structure and a peak indicating alumina having a γ-type crystal structure from the results of X-ray diffraction measurement. These results are shown in Table 1 together with the film forming conditions.

Figure 0004025267
Figure 0004025267

表1より次のように考察することができる。即ち、比較例1は、放電状態をポイゾニングモードのみとして成膜を行ったものである。この場合、α型主体のアルミナ皮膜を形成することはできるが、成膜速度が非常に遅く実用的でないことがわかる。   From Table 1, it can be considered as follows. That is, in Comparative Example 1, the film was formed with the discharge state only in the poisoning mode. In this case, an α-type mainly alumina coating can be formed, but it can be seen that the deposition rate is very slow and impractical.

また比較例2および比較例3は、放電状態を遷移モードで一定とし、基板温度を比較例2では比較例1と同様の750〜780℃で成膜し、比較例3では比較的低温の650〜680℃で成膜したものである。比較例2および比較例3はいずれも遷移モードで成膜を行っているので、比較例1の場合より約10倍の速度で成膜することができている。しかし得られたアルミナ皮膜は、比較例2ではα型とγ型とが混合した結晶構造となり(α型結晶構造のアルミナを代表するX線回折ピークとして2θ=25.5761°のピーク強度Iαを選択し、γ型結晶構造のアルミナを代表するX線回折ピークとして2θ=19.4502°のピーク強度Iγを選択したときの、Iα/Iγ値の大きさが6.8)、比較例2よりも低い基板温度で成膜を行った比較例3ではγ型結晶構造のみのアルミナしか形成されていない。   In Comparative Example 2 and Comparative Example 3, the discharge state is constant in the transition mode, the substrate temperature is set at 750 to 780 ° C. as in Comparative Example 1 in Comparative Example 2, and the comparative example 3 has a relatively low temperature of 650. The film was formed at ˜680 ° C. Since both Comparative Example 2 and Comparative Example 3 are formed in the transition mode, the film can be formed at a speed about 10 times that of Comparative Example 1. However, the obtained alumina film has a crystal structure in which α-type and γ-type are mixed in Comparative Example 2 (a peak intensity Iα of 2θ = 25.5761 ° is selected as an X-ray diffraction peak representing alumina of the α-type crystal structure). When the peak intensity Iγ of 2θ = 19.4502 ° is selected as the X-ray diffraction peak representative of alumina with a γ-type crystal structure, the magnitude of the Iα / Iγ value is 6.8), which is a substrate temperature lower than that of Comparative Example 2 In Comparative Example 3 in which the film was formed in step 1, only alumina having a γ-type crystal structure was formed.

これらの結果より、放電状態を遷移モードにして行う成膜は、ポイゾニングモードで行う場合より成膜速度を高めることができるが、得られるアルミナ皮膜の結晶構造は、ポイゾニングモードのときよりα型結晶構造のアルミナが形成されにくく、成膜時の基板温度が低下するとその傾向がより顕著になることがわかる。   From these results, the film formation performed with the discharge state in the transition mode can increase the film formation rate compared with the case of the poisoning mode, but the crystal structure of the obtained alumina film is more α-type crystal than in the poisoning mode. It can be seen that alumina having a structure is difficult to form, and that the tendency becomes more prominent when the substrate temperature during film formation decreases.

これらに対し、以下に示す本発明の方法で成膜を行なえば、α型結晶構造のアルミナが効率よく形成されることを確認できる。   On the other hand, if film formation is performed by the method of the present invention described below, it can be confirmed that alumina having an α-type crystal structure is efficiently formed.

即ち本発明例1は、成膜初期のみポイゾニングモードで成膜し、その後、遷移モードに放電状態を切り替えて成膜を行ったものである。本発明例1での成膜速度は、前記比較例1に比べて著しく速く、前記比較例2や比較例3とほぼ同じ速度で成膜を行っているが、前記比較例2や比較例3と異なり、α型結晶構造のみからなるアルミナ皮膜が得られている。   That is, Example 1 of the present invention is a film formed in the poisoning mode only at the initial stage of film formation, and then the film was formed by switching the discharge state to the transition mode. The film formation speed in Example 1 of the present invention was remarkably faster than that in Comparative Example 1, and film formation was performed at almost the same speed as in Comparative Example 2 and Comparative Example 3. However, Comparative Example 2 and Comparative Example 3 were used. Unlike the above, an alumina film consisting only of an α-type crystal structure is obtained.

また本発明例2は、全成膜期間を通して本発明例1よりも低温域で成膜を行ったものである。放電状態を遷移モードのみとし、本発明例2と同温度域で成膜した比較例3では、α型結晶構造のアルミナは全く形成されず、γ型のみしか形成されなかったのに対し、本発明例2では、若干γ型が形成されているものの(前記2θ=19.4502°のピークは検出されなかったが、γ型結晶構造を示すその他のピーク有り)、α型主体のアルミナが形成されていることがわかる。これら本発明例1および本発明例2の結果より、成膜初期にポイゾニングモードで下地としてα型のアルミナ結晶核を形成すれば、その後に遷移モードで成膜を行ったときでも、α型が形成されやすいことがわかる。   Inventive Example 2 was formed in a lower temperature region than Inventive Example 1 throughout the entire film formation period. In Comparative Example 3 in which the discharge state was only the transition mode and the film was formed in the same temperature range as Example 2 of the present invention, alumina having an α-type crystal structure was not formed at all, but only γ-type was formed. In Invention Example 2, although the γ-type is formed slightly (the peak of 2θ = 19.4502 ° was not detected, but there were other peaks indicating the γ-type crystal structure), the α-type alumina was formed. I understand that. From these results of Invention Example 1 and Invention Example 2, if α-type alumina crystal nuclei are formed as a base in the poisoning mode at the initial stage of film formation, α-type can be obtained even when film formation is performed in transition mode thereafter. It turns out that it is easy to form.

本発明例3は、成膜初期のみ、酸素流量と放電電圧を調節して放電電力を下げ、成膜速度を0.5nm/min程度として10分間成膜し、その後の成膜は、放電電力を上げて、成膜速度を5nm/min程度で行ったものであり、全成膜期間での放電状態は遷移モードとしている。比較例2では、放電状態を遷移モードとしかつ成膜速度を5.0nm/minとした場合にγ型の混合したアルミナ皮膜が形成されているのに対し、本発明例3では、成膜を遷移モードで行った場合でも、成膜初期のみ成膜速度を低下させて成膜することで、下地としてα型結晶構造のアルミナが形成され、その後に成膜速度を速めても、α型主体のアルミナ皮膜を形成できることが分かる。   In Invention Example 3, only in the initial stage of film formation, the discharge power was decreased by adjusting the oxygen flow rate and discharge voltage, and the film formation rate was set to about 0.5 nm / min. And the film formation rate is about 5 nm / min, and the discharge state in the entire film formation period is the transition mode. In Comparative Example 2, a gamma-type mixed alumina film is formed when the discharge state is the transition mode and the film formation rate is 5.0 nm / min, whereas in Example 3 of the present invention, film formation is performed. Even in the transition mode, by forming the film by reducing the film formation speed only at the initial stage of film formation, an α-type crystal structure of alumina is formed as a base, and even if the film formation speed is subsequently increased, It can be seen that an alumina film can be formed.

本発明例4は、本発明例3の場合よりも成膜初期の基材温度を高めにして成膜を行い、成膜中期以降の基板温度を本発明例3よりも低温域で行ったものであるが、この場合も、初期に高温で成膜したときにα型のアルミナ結晶核が形成され、その後、基板温度を下げて成膜を行った場合でも、α型のアルミナが選択的に形成され、α型主体のアルミナ皮膜が形成されている。   In Invention Example 4, film formation was performed with the substrate temperature at the initial stage of film formation being higher than that in Invention Example 3, and the substrate temperature after the middle stage of film formation was lower than that in Invention Example 3. However, also in this case, α-type alumina crystal nuclei are formed when the film is initially formed at a high temperature, and even when the film is formed at a lower substrate temperature, the α-type alumina is selectively used. Thus, an α-type mainly alumina film is formed.

<上記方法(III)に関する実施例>
実施には、サイズが12.7mm×12.7mm×5mmで超硬合金製の基材を、鏡面研磨(Ra=0.02μm程度)し、アルカリ槽と純水槽中で超音波洗浄して乾燥させた後、予めアークイオンプレーティング法でCrN皮膜を形成したものを用いた。
<Examples relating to the method (III)>
For the implementation, a substrate made of cemented carbide having a size of 12.7 mm × 12.7 mm × 5 mm is mirror-polished (Ra = 0.02 μm), ultrasonically cleaned in an alkali bath and a pure water bath, and then dried. Then, a CrN film previously formed by arc ion plating was used.

本実施例では、上記CrN皮膜の酸化およびα型主体アルミナ皮膜の形成を、前記図3に示す如く、マグネトロンスパッタリングカソード、ヒータ、基材回転機構等を備えた真空成膜装置[(株)神戸製鋼所製 AIP-S40複合機]を用いて、次の様にして行った。   In this example, the oxidation of the CrN film and the formation of the α-type main alumina film were performed as shown in FIG. 3 by a vacuum film forming apparatus equipped with a magnetron sputtering cathode, a heater, a substrate rotating mechanism, etc. [Kobe Corporation Using a steelworks AIP-S40 multifunction machine], the following was performed.

即ち、試料(CrN皮膜の被覆された超硬合金製基材)2を装置1内の回転テーブル3上の遊星回転治具(基材ホルダ)4にセットし、装置内がほぼ真空状態となるまで排気した後、基板温度が750℃となるまでヒータ5で試料を加熱した。試料の温度が所定の温度となった時点で、装置1内に酸素ガスを導入し、試料表面のCrN皮膜を酸化して、α型主体アルミナ皮膜形成用の基板とした。   That is, a sample (a cemented carbide base material coated with a CrN film) 2 is set on a planetary rotating jig (base material holder) 4 on a rotary table 3 in the apparatus 1, and the inside of the apparatus is almost in a vacuum state. The sample was heated with the heater 5 until the substrate temperature reached 750 ° C. When the temperature of the sample reached a predetermined temperature, oxygen gas was introduced into the apparatus 1 to oxidize the CrN film on the surface of the sample to obtain a substrate for forming an α-type main alumina film.

次に、α型結晶構造を主体とするアルミナ皮膜を前記酸化層上に形成した。該アルミナ皮膜の形成は、アルゴンと酸素雰囲気中で、図3に示したスパッタリングカソード6にアルミニウム金属ターゲットを装着した後、2台のスパッタリングカソード6を用い、パルスDCスパッタリング法で行った。また放電電力は、1台のスパッタリングカソード6につき約2〜3.2kWとした。また成膜中、Arガス流量は120sccmで一定とし、酸素ガス流量および放電電圧は、所定の放電状態となるよう適宜調節した。即ち成膜中は、所定の放電状態とすべく、ターゲットのスパッタリング表面から約20mm離れて位置するプラズマ発光分光分析装置で蒸発ガスの分析を行い、アルミニウムと酸素の発光強度を目安として放電電圧を調節した。また成膜は、前記図3に示すように回転テーブル3および遊星回転治具(基材ホルダ)4を回転させながら行った。   Next, an alumina film mainly composed of an α-type crystal structure was formed on the oxide layer. The alumina coating was formed by pulsed DC sputtering using two sputtering cathodes 6 after mounting an aluminum metal target on the sputtering cathode 6 shown in FIG. 3 in an atmosphere of argon and oxygen. The discharge power was about 2 to 3.2 kW per sputtering cathode 6. Further, during the film formation, the Ar gas flow rate was kept constant at 120 sccm, and the oxygen gas flow rate and discharge voltage were appropriately adjusted so as to obtain a predetermined discharge state. In other words, during the film formation, the evaporative gas is analyzed with a plasma emission spectroscopic analyzer located approximately 20 mm away from the sputtering surface of the target in order to obtain a predetermined discharge state, and the discharge voltage is set based on the emission intensity of aluminum and oxygen. Adjusted. The film formation was performed while rotating the rotary table 3 and the planetary rotating jig (base material holder) 4 as shown in FIG.

本実施例の比較例11として、前記実施例1における本発明例1と同様にして成膜を行った。即ち、成膜初期段階は、放電状態をポイゾニングモードとし、かつ基板温度を750℃に保持して10分間の成膜を行った。そしてその後に、基板温度はそのままとし、放電状態のみ遷移モードに変更して成膜を2時間50分行った。尚、この比較例11の全成膜工程では、基板にバイアス電圧を印加せずに成膜を行った。   As Comparative Example 11 of this example, a film was formed in the same manner as Example 1 of the present invention in Example 1. That is, in the initial stage of film formation, the film was formed for 10 minutes while the discharge state was set to the poisoning mode and the substrate temperature was maintained at 750 ° C. After that, the substrate temperature was left as it was, and only the discharge state was changed to the transition mode, and film formation was performed for 2 hours and 50 minutes. In all film forming steps of Comparative Example 11, the film was formed without applying a bias voltage to the substrate.

前記実施例の実験結果に基づき、遷移モードとするための実施条件のなかでも、より高速で成膜できる条件に設定して成膜を行ったため、この方法(III)に関する実施例では、約2μmのアルミナ皮膜を全成膜時間3時間で形成できた。   Based on the experimental results of the above embodiment, the film was formed under the conditions that enable the film to be formed at a higher speed among the execution conditions for setting the transition mode. This alumina film could be formed in a total deposition time of 3 hours.

得られた皮膜の結晶構造を上記実施例1と同様に薄膜X線回折で調べたところ、α型アルミナの単相であることを確認した。また、ナノインデンテーション法で確認した皮膜硬さは22GPaであった。   When the crystal structure of the obtained film was examined by thin film X-ray diffraction in the same manner as in Example 1, it was confirmed to be a single phase of α-type alumina. Moreover, the film hardness confirmed by the nanoindentation method was 22 GPa.

尚、上記ナノインデンテーションによる硬度の測定方法は次の通りである。即ち、皮膜の表面を研磨後に、エリオニクス社製の装置「ENT−1100a」を用いて、ベルコビッチ圧子を用い、30〜200mNの間の5水準の異なる荷重をかけて、荷重−押込み深さ特性を測定した。そして皮膜硬さを、Sawaらが「J.Mater.Res.」(16,2001,p.3084-3096)で提案した方法を用い、フレームコンプライアンスと押込み深さを補正する計算を行って求めた。   In addition, the measuring method of the hardness by the said nanoindentation is as follows. That is, after polishing the surface of the film, using an apparatus "ENT-1100a" manufactured by Elionix, using a Belkovic indenter, applying different loads of 5 levels between 30 to 200 mN, the load-indentation depth characteristics are obtained. It was measured. The film hardness was obtained by calculating the frame compliance and the indentation depth using the method proposed by Sawa et al. In "J. Mater. Res." (16,2001, p.3084-3096). .

比較例12は、上記比較例11の全成膜工程において、絶対値300Vの負のバイアス電圧を印加して成膜を行ったものである。得られた皮膜の硬度を上記ナノインデンテーション法で確認したところ、27GPaであった。しかし薄膜X線回折で皮膜の結晶構造を調べたところ、α型主体であるがγ型のアルミナの混入も確認された。   In Comparative Example 12, film formation was performed by applying a negative bias voltage having an absolute value of 300 V in all film forming steps of Comparative Example 11 described above. It was 27 GPa when the hardness of the obtained film was confirmed by the nanoindentation method. However, when the crystal structure of the film was examined by thin film X-ray diffraction, it was confirmed that γ-type alumina was mixed, although it was mainly α-type.

本発明例11は、次の様にして成膜を行ったものである。即ち、成膜初期段階として、放電状態をポイゾニングモードに維持して、基板温度750℃で10分間の成膜を行った後、放電状態を遷移モードに移行させて30分間の成膜を行った。以上の工程はバイアスを印加せずに行った。その後、前記条件を維持したまま絶対値300Vの負のバイアス電圧を印加して2時間20分の成膜を行った。全成膜時間は3時間であり、得られたアルミナ皮膜の厚さは約1.8μmであった。   Invention Example 11 is a film formed as follows. That is, as the initial stage of film formation, the discharge state was maintained in the poisoning mode, film formation was performed at a substrate temperature of 750 ° C. for 10 minutes, and then the discharge state was shifted to transition mode to perform film formation for 30 minutes. . The above steps were performed without applying a bias. Thereafter, a negative bias voltage having an absolute value of 300 V was applied while maintaining the above conditions, and film formation was performed for 2 hours and 20 minutes. The total film formation time was 3 hours, and the thickness of the obtained alumina film was about 1.8 μm.

この本発明例11で得られた皮膜の結晶構造を薄膜X線回折法で確認したところ、α型結晶構造のアルミナ単相であった。また、上記ナノインデンテーション法でアルミナ皮膜の硬度を測定したところ、26GPaであった。   When the crystal structure of the film obtained in Example 11 of the present invention was confirmed by a thin film X-ray diffraction method, it was an alumina single phase having an α-type crystal structure. Moreover, it was 26 GPa when the hardness of the alumina membrane | film | coat was measured by the said nanoindentation method.

これらの結果から、成膜初期にはバイアス電圧を印加せず、成膜途中からバイアス電圧を印加すれば硬度の高いα型結晶構造のアルミナ皮膜が得られることがわかる。   From these results, it is understood that an alumina film having a high hardness α-type crystal structure can be obtained by applying a bias voltage in the middle of film formation without applying a bias voltage in the initial stage of film formation.

酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングしたときの、酸素導入流量と放電電圧との関係を概略的に示した図である。It is the figure which showed schematically the relationship between oxygen introduction | transduction flow volume and discharge voltage when sputtering an aluminum metal target in oxidizing gas containing atmosphere. 酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングしたときの、放電電圧と放電電流との関係を概略的に示した図である。It is the figure which showed roughly the relationship between a discharge voltage and a discharge current when sputtering an aluminum metal target in oxidizing gas containing atmosphere. 本発明の実施に用いる装置例を示す概略説明図(上面図)である。It is a schematic explanatory drawing (top view) which shows the example of an apparatus used for implementation of this invention.

符号の説明Explanation of symbols

1 成膜用装置
2 試料(基材)
3 回転テーブル
4 遊星回転治具(基材ホルダ)
5 ヒータ
6 スパッタリングカソード
DESCRIPTION OF SYMBOLS 1 Film-forming apparatus 2 Sample (base material)
3 Rotary table 4 Planetary rotating jig (base material holder)
5 Heater 6 Sputtering cathode

Claims (4)

酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を形成するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらを成膜速度によって切り替えるものであって、成膜初期に、放電状態をポイゾニングモードにして成膜した後、放電状態を遷移モードまたはメタルモードに切り替えて成膜することを特徴とするα型結晶構造主体のアルミナ皮膜の製造方法。 In forming the alumina film on by sputtering aluminum metal target in an atmosphere containing an oxidizing gas on the substrate, there is switching between them depending on the film forming rate by dividing the manufacturing process in the early stages and later, the film formation initial A method for producing an alumina film mainly composed of an α-type crystal structure, characterized in that the film is formed by changing the discharge state to the transition mode or the metal mode after forming the film in the poisoning mode . 酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を形成するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらを成膜速度によって切り替えるものであって、成膜初期に、1nm/min以下の成膜速度で成膜した後、3nm/min以上の成膜速度で成膜することを特徴とするα型結晶構造主体のアルミナ皮膜の製造方法。 In forming the alumina film on by sputtering aluminum metal target in an atmosphere containing an oxidizing gas on the substrate, there is switching between them depending on the film forming rate by dividing the manufacturing process in the early stages and later, the film formation initial And forming an alumina film mainly composed of an α-type crystal structure , wherein the film is formed at a film formation rate of 3 nm / min or more after being formed at a film formation rate of 1 nm / min or less . 酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を製造するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらを成膜温度によって切り替えるものであって、成膜初期に、基板温度を800℃を下回らない温度にして成膜した後、該基板温度を650〜750℃に下げて成膜することを特徴とするα型結晶構造主体のアルミナ皮膜の製造方法。 In producing an alumina coating an aluminum metal target is sputtered onto the substrate in an atmosphere containing an oxidizing gas, there is switching between them depending on the film forming temperature by dividing the manufacturing process in the early stages and later, the film formation initial And forming the film at a temperature not lower than 800 ° C., and then lowering the substrate temperature to 650-750 ° C. to produce an alumina film mainly comprising an α-type crystal structure. 酸化性ガス含有雰囲気下でアルミニウム金属ターゲットをスパッタリングして基板上にアルミナ皮膜を製造するに当たり、製造プロセスを初期段階とそれ以降に分けてそれらをバイアス電圧によって切り替えるものであって、成膜初期に、絶対値100V以下の負のバイアス電圧を基板に印加して成膜した後、負のバイアス電圧を絶対値200V以上にして成膜することを特徴とするα型結晶構造主体のアルミナ皮膜の製造方法。 In producing an alumina film on a substrate by sputtering an aluminum metal target in an atmosphere containing an oxidizing gas, they divide the manufacturing process in the early stages and later be one that switches the bias voltage, the initial stage of deposition The film is formed by applying a negative bias voltage having an absolute value of 100 V or less to the substrate, and then forming the film by setting the negative bias voltage to an absolute value of 200 V or more. Method.
JP2003287101A 2002-08-09 2003-08-05 Method for producing alumina film mainly composed of α-type crystal structure Expired - Fee Related JP4025267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003287101A JP4025267B2 (en) 2002-08-09 2003-08-05 Method for producing alumina film mainly composed of α-type crystal structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002233847 2002-08-09
JP2003287101A JP4025267B2 (en) 2002-08-09 2003-08-05 Method for producing alumina film mainly composed of α-type crystal structure

Publications (2)

Publication Number Publication Date
JP2004091920A JP2004091920A (en) 2004-03-25
JP4025267B2 true JP4025267B2 (en) 2007-12-19

Family

ID=32072378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003287101A Expired - Fee Related JP4025267B2 (en) 2002-08-09 2003-08-05 Method for producing alumina film mainly composed of α-type crystal structure

Country Status (1)

Country Link
JP (1) JP4025267B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173762B2 (en) * 2003-04-04 2008-10-29 株式会社神戸製鋼所 Method for producing alumina film mainly composed of α-type crystal structure and method for producing laminated film-coated member
CN102027563B (en) * 2007-12-07 2013-04-03 Oc欧瑞康巴尔斯公司 Reactive sputtering with HIPIMS
JP5558359B2 (en) * 2008-09-30 2014-07-23 Hoya株式会社 Photomask blank, photomask and method for manufacturing the same, and method for manufacturing a semiconductor device
JP2010150594A (en) * 2008-12-25 2010-07-08 Asahi Glass Co Ltd Reactive sputtering method and optical member
JP2014114497A (en) * 2012-12-12 2014-06-26 Ulvac Japan Ltd Sputtering equipment
JPWO2023032582A1 (en) * 2021-08-31 2023-03-09

Also Published As

Publication number Publication date
JP2004091920A (en) 2004-03-25

Similar Documents

Publication Publication Date Title
JP4427271B2 (en) Alumina protective film and method for producing the same
JP4205546B2 (en) Method for producing a laminated film having excellent wear resistance, heat resistance and adhesion to a substrate
JP2006028600A (en) Stacked film having excellent wear resistance and heat resistance
JP5321975B2 (en) Surface coated cutting tool
US20060219325A1 (en) Method for producing alpha-alumina layer-formed member and surface treatment
JP6844705B2 (en) Cover cutting tool
CN102534493B (en) V-Al-N hard coating with nano composite structure and preparation method thereof
JP2011127165A (en) Coating, cutting tool and method for manufacturing coating
JP4975906B2 (en) Method for producing cutting tool coated with PVD aluminum oxide
US20110220486A1 (en) Method of producing alpha crystal structure-based alumina films
CN111647851A (en) Zr-B-N nano composite coating with high hardness and high toughness and preparation method thereof
JP4025267B2 (en) Method for producing alumina film mainly composed of α-type crystal structure
JP2006307318A (en) Method for producing alpha-alumina layer-formed member and surface treatment
JP2012228735A (en) Coated tool excellent in wear resistance and method for manufacturing the same
JP3971336B2 (en) Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure
JP3971293B2 (en) Laminated film excellent in wear resistance and heat resistance, production method thereof, and multilayer film coated tool excellent in wear resistance and heat resistance
CN110484870B (en) Multicomponent nitride hard coating and preparation method and application thereof
JP6844704B2 (en) Cover cutting tool
WO2024065970A1 (en) Composite deposition method for hard oxide coating, and coated cutting tool
JP3971337B2 (en) Method for producing alumina film mainly composed of α-type crystal structure, member coated with alumina film mainly composed of α-type crystal structure, and method for producing the same
JP4142370B2 (en) Method for producing alumina film mainly composed of α-type crystal structure
JP5297267B2 (en) Oxide film coating material with excellent wear resistance for cutting tools or molds
CN111471973A (en) Process for preparing Zr-B-N nano composite coating in reducing atmosphere
JP5229826B2 (en) Coating, cutting tool, and manufacturing method of coating
JP2004332007A (en) ALUMINA FILM WITH alpha TYPE CRYSTAL STRUCTURE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Ref document number: 4025267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees