JP4023432B2 - Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor - Google Patents

Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor Download PDF

Info

Publication number
JP4023432B2
JP4023432B2 JP2003378024A JP2003378024A JP4023432B2 JP 4023432 B2 JP4023432 B2 JP 4023432B2 JP 2003378024 A JP2003378024 A JP 2003378024A JP 2003378024 A JP2003378024 A JP 2003378024A JP 4023432 B2 JP4023432 B2 JP 4023432B2
Authority
JP
Japan
Prior art keywords
protective layer
phase change
layer
recording medium
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003378024A
Other languages
Japanese (ja)
Other versions
JP2005141841A (en
Inventor
裕二 高塚
昌二 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003378024A priority Critical patent/JP4023432B2/en
Publication of JP2005141841A publication Critical patent/JP2005141841A/en
Application granted granted Critical
Publication of JP4023432B2 publication Critical patent/JP4023432B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、相変化型光記録媒体、その製造方法及びそれに用いる保護層形成用スパッタリングターゲットに関し、さらに詳しくは、光特性と耐候性の良好な膜特性を有する保護層を形成してなる高速記録に好適でかつ耐候性の良好な相変化型光記録媒体、その保護層を工業的に十分な成膜速度で形成する製造方法及びそれに用いる保護層形成用スパッタリングターゲットに関する。   The present invention relates to a phase change optical recording medium, a method for producing the same, and a sputtering target for forming a protective layer used therefor, and more particularly, high-speed recording formed by forming a protective layer having good optical characteristics and weather resistance film characteristics. In particular, the present invention relates to a phase change optical recording medium having good weather resistance, a production method for forming the protective layer at an industrially sufficient film formation rate, and a sputtering target for forming the protective layer used therefor.

近年、相変化型光記録媒体は書き換え可能な光記録ディスクとして、盛んに研究開発がなされており。書き換え可能なDVDに応用されている。相変化型光記録媒体は、単層記録層で光変調オーバーライトが可能であり、相変化による反射率の変化により信号を読みとるので、CD−ROMなどの既存の光ディスクとの互換性が高い等の特徴を有する。   In recent years, phase-change optical recording media have been actively researched and developed as rewritable optical recording disks. It is applied to rewritable DVDs. The phase change type optical recording medium is capable of optical modulation overwriting with a single recording layer and reads a signal due to a change in reflectivity due to a phase change, so that it is highly compatible with an existing optical disc such as a CD-ROM. It has the characteristics.

相変化型光記録媒体は、透明基板上に、保護層、記録層、保護層及び反射層が順次積層され、構成される。ここで、情報の記録および消去は、前記記録層の可逆的な相変化、例えば、結晶とアモルファス(非晶質)間の相変化によって行なわれる。すなわち、レーザービーム等を照射することによって、記録層に結晶相と非晶質相の相変化を生じさせる。一般に、相変化は、レーザービームの強弱にともなう記録層の温度変化を利用して行われる。レーザーの強い時に非晶質相の記録マークを形成し、弱い時に結晶相を形成することによって記録を行ない、結晶相とアモルファス相との反射率の差を検出することによって再生信号を得る。ここで、非晶質相の形成にはレーザー光照射により溶解した記録層が、臨界結晶化速度よりも速く冷却されることが必要となる。また、結晶相の形成には非晶質相が融点以下の温度で結晶化することが必要である。   The phase change optical recording medium is configured by sequentially stacking a protective layer, a recording layer, a protective layer, and a reflective layer on a transparent substrate. Here, recording and erasing of information are performed by a reversible phase change of the recording layer, for example, a phase change between crystal and amorphous (amorphous). That is, irradiation with a laser beam or the like causes a phase change between a crystalline phase and an amorphous phase in the recording layer. In general, the phase change is performed by utilizing the temperature change of the recording layer accompanying the intensity of the laser beam. Recording is performed by forming an amorphous phase recording mark when the laser is strong, and forming a crystalline phase when the laser is weak, and a reproduction signal is obtained by detecting a difference in reflectance between the crystalline phase and the amorphous phase. Here, the formation of the amorphous phase requires that the recording layer dissolved by laser light irradiation be cooled faster than the critical crystallization rate. In addition, the formation of the crystal phase requires the amorphous phase to be crystallized at a temperature below the melting point.

このように、相変化型光記録媒体では、非晶質化及び結晶化に際して、記録層の最高温度と温度変化率を制御することが重要である。そのために、相変化型光記録媒体を構成する各層の熱伝導率と熱容量を最適化することが不可欠である。また、前記光記録媒体を用いて高速記録を行うためには、記録層を急熱急冷構造にすることが重要であり、そのためには、反射層を高熱伝導率化することが望まれている。   As described above, in the phase change type optical recording medium, it is important to control the maximum temperature and the rate of temperature change of the recording layer during amorphization and crystallization. Therefore, it is essential to optimize the thermal conductivity and heat capacity of each layer constituting the phase change optical recording medium. In order to perform high-speed recording using the optical recording medium, it is important that the recording layer has a rapid thermal quenching structure. For this purpose, it is desired to increase the thermal conductivity of the reflective layer. .

従来、高熱伝導率を有する反射層材料としてAgが用いられており、また、相変化型光記録媒体の保護層としては、屈折率が高く可視光領域で吸収が小さく透明な膜特性が求められ、通常、[ZnS+SiO](ZnSとSiOの混合物)層等のZnS系の硫化物を含む層が使われている(例えば特許文献1参照。)。そのため、反射層のAgが硫化され、反射率が低下するという問題があった。この解決策として、Agの耐硫化性を向上させるため、Agに希土類元素を添加する方法(例えば特許文献2参照。)がある。ところが、耐硫化性が改善される程度まで希土類を添加すると、熱伝導率及び反射率が低下するなどの問題が生じ、高熱伝導率かつ高反射率であるAgの反射層としての性能が失われる。 Conventionally, Ag is used as a reflective layer material having high thermal conductivity, and a protective layer for a phase change optical recording medium is required to have a transparent film characteristic with a high refractive index and low absorption in the visible light region. Usually, a layer containing a ZnS-based sulfide such as a [ZnS + SiO 2 ] (ZnS and SiO 2 mixture) layer is used (see, for example, Patent Document 1). Therefore, there is a problem that Ag in the reflective layer is sulfided and the reflectance is lowered. As a solution, there is a method of adding a rare earth element to Ag in order to improve the sulfidation resistance of Ag (see, for example, Patent Document 2). However, when rare earth is added to such an extent that sulfidation resistance is improved, problems such as a decrease in thermal conductivity and reflectivity occur, and the performance as a reflective layer of Ag having high thermal conductivity and high reflectivity is lost. .

また、ZnS系以外の保護層としては、相変化型光記録ディスクより以前に実用化されている光磁気ディスクでは、SiN、Ta等の窒化物または酸化物が検討されていた。例えば、光磁気ディスクへTa−Nb系酸化物(例えば特許文献3参照。)が提案されている。しかしながら、保護層の成膜方法として一般に用いられるスパッタリング法で酸化物を成膜すると、ZnS系よりも成膜速度が遅く、生産効率が悪くなるという問題があった。さらに、保護層として従来の酸化物膜を用いた場合には、スパッタリングに際して酸素を適量添加しないと可視光領域での光学的吸収が大きいこと、記録消去の際に記録層との密着性が低下すること等の問題があった。 Further, as a protective layer other than the ZnS-based layer, nitrides or oxides such as SiN x and Ta 2 O 5 have been studied for magneto-optical disks that have been put into practical use before the phase change optical recording disk. For example, Ta 2 O 5 —Nb 2 O 5 -based oxides (see, for example, Patent Document 3) have been proposed for magneto-optical disks. However, when an oxide is formed by a sputtering method that is generally used as a method for forming a protective layer, there is a problem that the film formation rate is slower than that of a ZnS system, and the production efficiency is deteriorated. In addition, when a conventional oxide film is used as the protective layer, optical absorption in the visible light region is large unless oxygen is added in an appropriate amount during sputtering, and adhesion to the recording layer is reduced during recording erasure. There was a problem of doing.

一方、光用に用いられる高屈折率の透明膜として、Ta、Nb、Mo、W、Zr及びHfからなる群から選ばれる少なくとも1種の酸化物、又はNb−SiOを還元処理して導電性を持たせたターゲットを用いて、RF(高周波)スパッタリングよりも成膜速度の大きいDC(直流)スパッタリングで成膜する方法(例えば、特許文献4または5参照。)が提案されている。しかしながら、化学量論組成より酸素が不足しているスパッタリングターゲットを用いて、透明な酸化物層を成膜する際には、スパッタリングガス中に酸素を添加して反応性スパッタリングを行うが、酸素の添加量を増やすほど成膜速度が低下してしまい、DCスパッタリングでの成膜速度向上の効果が薄れて成膜速度が遅く、生産性が悪いという問題があった。また、SiNxは、記録層が相変化する500℃から600℃の温度で安定でないので相変化型光記録媒体の保護層には使用できない。 On the other hand, as a high refractive index transparent film used for light, at least one oxide selected from the group consisting of Ta, Nb, Mo, W, Zr and Hf, or Nb 2 O 5 —SiO 2 is reduced. Then, a method of forming a film by DC (direct current) sputtering, which has a film formation rate higher than that of RF (high frequency) sputtering, using a conductive target is proposed (for example, see Patent Document 4 or 5). Yes. However, when a transparent oxide layer is formed using a sputtering target in which oxygen is less than the stoichiometric composition, oxygen is added to the sputtering gas and reactive sputtering is performed. As the addition amount is increased, the film formation rate is lowered, and the effect of improving the film formation rate by DC sputtering is reduced, so that the film formation rate is low and productivity is poor. SiNx cannot be used as a protective layer of a phase change optical recording medium because it is not stable at a temperature of 500 ° C. to 600 ° C. at which the recording layer changes phase.

以上の状況から、光特性が良好な、すなわち屈折率が高く、可視光領域で吸収が小さく透明で、かつ硫化物による反射層の特性劣化及び記録層との密着性不良が起きない耐候性の良好な膜特性を有し、さらに高い成膜速度で形成できる保護層を形成してなる相変化型光記録媒体が望まれていた。   From the above situation, the optical characteristics are good, that is, the refractive index is high, the absorption in the visible light region is small and transparent, and the weather resistance of the reflective layer due to the sulfide is not deteriorated and the adhesion to the recording layer does not occur. There has been a demand for a phase change optical recording medium having a protective layer that has good film characteristics and can be formed at a higher film formation rate.

特開昭63−103453公報(第1頁、第2頁、第3図)JP-A-63-103453 (first page, second page, FIG. 3) 特開2002−323611号公報(第1頁、第2頁)JP 2002-323611 A (first page, second page) 特開昭62−281139号公報(第1頁)JP 62-281139 A (first page) 特開平8−283935号公報(第1頁、第2頁)JP-A-8-283935 (first page, second page) 特開2000−160331号公報(第1頁、第2頁)Japanese Unexamined Patent Publication No. 2000-160331 (first page, second page)

本発明の目的は、上記の従来技術の問題点に鑑み、光特性と耐候性の良好な膜特性を有する保護層を形成してなる高速記録に好適でかつ耐候性の良好な相変化型光記録媒体、その保護層を工業的に十分な成膜速度で形成する製造方法及びそれに用いる保護層形成用スパッタリングターゲットを提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is a phase change type light suitable for high-speed recording and having good weather resistance formed by forming a protective layer having film characteristics with good optical characteristics and weather resistance. It is an object of the present invention to provide a recording medium, a production method for forming the protective layer at an industrially sufficient film formation rate, and a sputtering target for forming a protective layer used therefor.

本発明者らは、上記目的を達成するために、相変化型光記録媒体において記録層と反射層の間に形成される保護層について、鋭意検討を重ねた結果、該保護層として、特定の組成の酸化物保護層を形成したところ、光特性と耐候性の良好な膜特性を有すること、また、特定の条件で成膜したところ、工業的に十分な成膜速度が得られること、さらに、これを用いた相変化型光記録媒体は高速記録に好適でかつ耐候性が良好であることを見出し、本発明を完成した。   In order to achieve the above object, the present inventors have conducted extensive studies on a protective layer formed between a recording layer and a reflective layer in a phase change optical recording medium. When an oxide protective layer with a composition is formed, it has film characteristics with good optical characteristics and weather resistance, and when film formation is performed under specific conditions, an industrially sufficient film formation speed can be obtained. The present inventors have found that a phase change optical recording medium using the same is suitable for high-speed recording and has good weather resistance, and the present invention has been completed.

すなわち、本発明の第1の発明によれば、透明基板上に、保護層、記録層、保護層および反射層を順次積層してなる相変化型光記録媒体であって、
前記記録層と反射層との間に形成される保護層は、非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる混合体であり、該混合体中のガラス質の濃度が10〜35モル%であるとともに、非晶質酸化セリウムの濃度が1〜30モル%であり、かつ可視光領域で透明性を有することを特徴とする相変化型光記録媒体が提供される。
That is, according to the first aspect of the present invention, there is provided a phase change optical recording medium in which a protective layer, a recording layer, a protective layer, and a reflective layer are sequentially laminated on a transparent substrate,
The protective layer formed between the recording layer and the reflective layer is a mixture of amorphous niobium oxide and / or amorphous tantalum oxide, amorphous cerium oxide, and glass, Phase change characterized by having a glassy concentration in the mixture of 10 to 35 mol%, an amorphous cerium oxide concentration of 1 to 30 mol%, and transparency in the visible light region A type optical recording medium is provided.

また、本発明の第2の発明によれば、第1の発明において、前記非晶質酸化セリウムの濃度は、5〜30モル%であることを特徴とする相変化型光記録媒体が提供される。   According to a second aspect of the present invention, there is provided the phase change type optical recording medium according to the first aspect, wherein the concentration of the amorphous cerium oxide is 5 to 30 mol%. The

また、本発明の第3の発明によれば、第1の発明において、前記記録層と反射層の間に形成される保護層の屈折率は、2.1〜2.3であることを特徴とする相変化光記録媒体が提供される。   According to a third aspect of the present invention, in the first aspect, the protective layer formed between the recording layer and the reflective layer has a refractive index of 2.1 to 2.3. A phase change optical recording medium is provided.

また、本発明の第4の発明によれば、第1の発明において、前記ガラス質は、二酸化ケイ素及び/又は一酸化ケイ素であることを特徴とする相変化光記録媒体が提供される。   According to a fourth aspect of the present invention, there is provided the phase change optical recording medium according to the first aspect, wherein the vitreous material is silicon dioxide and / or silicon monoxide.

また、本発明の第5の発明によれば、第1〜4いずれかの発明において、前記反射層は、Ag単独、又はそれにPd、Cu、Au、Nd及びBiからなる群から選ばれる少なくとも1種の金属元素を0.5モル%以下の濃度で添加したAg合金から形成されることを特徴とする相変化型光記録媒体が提供される。   According to a fifth invention of the present invention, in any one of the first to fourth inventions, the reflective layer is at least one selected from the group consisting of Ag alone or Pd, Cu, Au, Nd and Bi. There is provided a phase change optical recording medium formed from an Ag alloy to which a seed metal element is added at a concentration of 0.5 mol% or less.

また、本発明の第6の発明によれば、透明基板上に保護層、記録層、保護層および反射層を順次積層して相変化型光記録媒体を製造する方法であって、
前記記録層と反射層の間に保護層を形成するにあたり酸化ニオブ及び/又は酸化タンタルと、酸化セリウムと、ガラス質とを含むターゲットを用い、かつ0.003〜0.010Paの酸素分圧下でスパッタリングすることを特徴する相変化型光記録媒体の製造方法が提供される。
According to a sixth aspect of the present invention, there is provided a method for producing a phase change optical recording medium by sequentially laminating a protective layer, a recording layer, a protective layer and a reflective layer on a transparent substrate,
In forming a protective layer between the recording layer and the reflective layer, a target containing niobium oxide and / or tantalum oxide, cerium oxide, and glass is used, and under an oxygen partial pressure of 0.003 to 0.010 Pa. A method for producing a phase change optical recording medium characterized by sputtering is provided.

また、本発明の第7の発明によれば、酸化ニオブ及び/又は酸化タンタルと、酸化セリウム及びガラス質とを含む混合焼結体からなることを特徴とする、第6の発明の製造方法に用いられる保護層形成用スパッタリングターゲットが提供される。   According to a seventh aspect of the present invention, in the manufacturing method of the sixth aspect of the present invention, the method comprises a mixed sintered body containing niobium oxide and / or tantalum oxide, cerium oxide and vitreous. A sputtering target for forming a protective layer to be used is provided.

本発明の相変化型光記録媒体は、光特性と耐候性の良好な膜特性を有する酸化物保護層を形成してなる高速記録に好適でかつ耐候性の良好な光記録媒体であり、その製造方法は、酸化物保護層を工業的に十分な成膜速度で形成することができ、さらに保護層形成用スパッタリングターゲットはそれに好適に用いることができるターゲットであり、その工業的価値は極めて大きい。   The phase change type optical recording medium of the present invention is an optical recording medium suitable for high-speed recording and having good weather resistance formed by forming an oxide protective layer having film characteristics with good optical characteristics and weather resistance. In the production method, the oxide protective layer can be formed at an industrially sufficient film formation rate, and the sputtering target for forming the protective layer is a target that can be suitably used for it, and its industrial value is extremely large. .

以下、本発明の相変化型光記録媒体、その製造方法及びそれに用いる保護層形成用スパッタリングターゲットを詳細に説明する。
本発明の相変化型光記録媒体は、透明基板上に、保護層、記録層、保護層および反射層を順次積層してなる相変化型光記録媒体であって、前記記録層と反射層との間に形成される保護層は、非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる混合体であり、該混合体中のガラス質の濃度が10〜35モル%であるとともに、非晶質酸化セリウムの濃度が1〜30モル%であり、かつ可視光領域で透明性を有する。
Hereinafter, the phase change optical recording medium of the present invention, the production method thereof and the sputtering target for forming a protective layer used therein will be described in detail.
The phase change optical recording medium of the present invention is a phase change optical recording medium in which a protective layer, a recording layer, a protective layer, and a reflective layer are sequentially laminated on a transparent substrate, and the recording layer, the reflective layer, The protective layer formed between the layers is a mixture of amorphous niobium oxide and / or amorphous tantalum oxide, amorphous cerium oxide, and vitreous, and the vitreous in the mixture The concentration is 10 to 35 mol%, the concentration of amorphous cerium oxide is 1 to 30 mol%, and it has transparency in the visible light region.

本発明の相変化型光記録媒体において、前記記録層と反射層との間に形成される保護層が非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる3ないし4種の酸化物の混合体であることが重要な意義を持つ。これによって光特性が良好な、すなわち屈折率が高く、可視光領域(波長350nmから800nm)で吸収が小さく透明で、かつ硫化物による特性劣化のない耐候性の良好な膜特性を有し、さらに工業的に十分な成膜速度で形成される酸化物保護層が得られる。   In the phase change optical recording medium of the present invention, the protective layer formed between the recording layer and the reflective layer is amorphous niobium oxide and / or amorphous tantalum oxide, amorphous cerium oxide, and glass. It is important to be a mixture of 3 to 4 types of oxides. As a result, the optical characteristics are good, that is, the refractive index is high, the absorption is small and transparent in the visible light region (wavelength 350 nm to 800 nm), and the film characteristics are excellent in weather resistance with no characteristic deterioration due to sulfide. An oxide protective layer formed at an industrially sufficient film formation rate is obtained.

一般に、記録層と反射層の間に形成される保護層としては、干渉特性と薄膜化のために屈折率2.0以上が望ましく、2.2以上がより好ましいが、上記非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる混合体で所望の屈折率が達成される。   In general, the protective layer formed between the recording layer and the reflective layer preferably has a refractive index of 2.0 or more, more preferably 2.2 or more for interference characteristics and thinning. A desired refractive index can be achieved with a mixture of amorphous tantalum oxide, amorphous cerium oxide, and glass.

これに対して、従来の酸化物保護層では、屈折率、透明性又は成膜速度のいずれかに問題がある。例えば、非晶質の酸化ニオブをスパッタリング法で成膜した場合、スパッタリング中の酸素分圧が0.003〜0.010Paであるとき得られる膜の屈折率は2.3以上となる。これは膜組成としてNbとNbOの混合物が形成されたためと思われる。しかしながら、前記酸素分圧が0.003Pa未満では可視光領域で光吸収が増加するので好ましくない。前記酸素分圧が0.010Paを超えると、屈折率は2.1〜2.2になるが、成膜速度が低下するので好ましくない。 On the other hand, the conventional oxide protective layer has a problem in any one of refractive index, transparency, and film formation speed. For example, when amorphous niobium oxide is formed by sputtering, the refractive index of the obtained film is 2.3 or more when the oxygen partial pressure during sputtering is 0.003 to 0.010 Pa. This is probably because a mixture of Nb 2 O 5 and NbO was formed as a film composition. However, if the oxygen partial pressure is less than 0.003 Pa, light absorption increases in the visible light region, which is not preferable. If the oxygen partial pressure exceeds 0.010 Pa, the refractive index is 2.1 to 2.2, but this is not preferable because the film formation rate is reduced.

また、例えば非晶質酸化タンタル層をスパッタリング法で成膜した場合、非晶質酸化タンタル層の屈折率は2.1〜2.2で、その酸素分圧依存性は小さい。しかしながら、熱容量が高く、記録消去に要するレーザーパワーが増加するので好ましくない。
また、酸化ニオブと酸化タンタルを同時にスパッタリング法で成膜した場合、得られる非晶質酸化ニオブと非晶質酸化タンタルからなる酸化物保護層は、耐候性が改善され、また、酸化タンタルの濃度30モル%以下では熱容量の増加が抑えられる。
For example, when an amorphous tantalum oxide layer is formed by sputtering, the refractive index of the amorphous tantalum oxide layer is 2.1 to 2.2, and its oxygen partial pressure dependency is small. However, this is not preferable because the heat capacity is high and the laser power required for recording / erasing increases.
When niobium oxide and tantalum oxide are simultaneously formed by sputtering, the resulting oxide protective layer made of amorphous niobium oxide and amorphous tantalum oxide has improved weather resistance, and the concentration of tantalum oxide. If it is 30 mol% or less, an increase in heat capacity can be suppressed.

しかしながら、成膜速度を上げるためRFスパッタリングでパワーを増加させて、投入パワーを3W/cm以上まで大きくすると、得られる膜の透過率が低下する問題が生じる。すなわち、非晶質酸化ニオブと非晶質酸化タンタルは、スパッタリング中にプラズマで還元されやすいので、得られる膜組成が化学量論組成より酸素が不足して透明性が低下するためである。 However, if the power is increased by RF sputtering to increase the deposition rate and the input power is increased to 3 W / cm 2 or more, there arises a problem that the transmittance of the obtained film is lowered. That is, since amorphous niobium oxide and amorphous tantalum oxide are easily reduced by plasma during sputtering, the resulting film composition has less oxygen than the stoichiometric composition, and transparency is lowered.

本発明の相変化型光記録媒体において記録層と反射層の間に形成される保護層のガラス質の濃度は、非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる混合体の10〜35モル%であり、15〜30モル%が好ましい。すなわち、前記濃度が10モル%未満では、膜の透過率の向上効果が小さい。一方、前記濃度が35モル%を超えると、膜の屈折率が2.1未満に低下する。なお、上記保護層において、ガラス質は、可視光領域での光吸収を抑えて膜の透過率の向上に作用する。   The glassy concentration of the protective layer formed between the recording layer and the reflective layer in the phase change type optical recording medium of the present invention includes amorphous niobium oxide and / or amorphous tantalum oxide, and amorphous cerium oxide. And 10 to 35 mol% of the mixture composed of glassy material, and preferably 15 to 30 mol%. That is, when the concentration is less than 10 mol%, the effect of improving the transmittance of the film is small. On the other hand, when the concentration exceeds 35 mol%, the refractive index of the film decreases to less than 2.1. In the protective layer, the vitreous acts to improve the transmittance of the film by suppressing light absorption in the visible light region.

上記ガラス質の材質は、特に限定されるものでは無く、膜に透過性を高めることが出来るガラス質が用いられるが、この中で、特に二酸化ケイ素(SiO)及び/又は一酸化ケイ素(SiO)が好ましい。 The glassy material is not particularly limited, and a glassy material that can enhance the permeability of the film is used, and among these, silicon dioxide (SiO 2 ) and / or silicon monoxide (SiO ) Is preferred.

上記保護層の非晶質酸化セリウムの濃度は、上記混合体の1〜30モル%であり、5〜30モル%が好ましく、15〜30モル%がより好ましい。すなわち、前記濃度が1モル%未満では、記録層との密着性向上の効果が小さい。一方、前記濃度が30モル%を超えると、波長400nm近傍の吸収が増加するので好ましくない。なお、上記保護層において、非晶質酸化セリウムは、非晶質の酸化ニオブ及び酸化タンタルとともに高屈折率材料として作用するが、その他に上記混合体の熱膨張率を向上させて、相変化型光記録媒体の記録消去の際に記録層との密着性が低下することを防止する作用がある。 The density | concentration of the amorphous cerium oxide of the said protective layer is 1-30 mol% of the said mixture, 5-30 mol% is preferable and 15-30 mol% is more preferable. That is, when the concentration is less than 1 mol%, the effect of improving the adhesion with the recording layer is small. On the other hand, if the concentration exceeds 30 mol%, absorption near a wavelength of 400 nm increases, which is not preferable. In the protective layer, amorphous cerium oxide acts as a high refractive index material together with amorphous niobium oxide and tantalum oxide, but in addition to improving the thermal expansion coefficient of the mixture, the phase change type This has the effect of preventing the adhesiveness with the recording layer from being lowered when recording and erasing the optical recording medium.

すなわち、相変化型光記録媒体を用いた光ディスクの情報の記録、消去及び読み出しにレーザーを用いるので、記録層の温度は、記録時に600℃程度、消去時に400〜500℃、及び読み出し時に100〜250℃まで上がる。したがって、記録層と保護層の熱膨張率が大きく異なると、層間に応力が働き記録消去の繰り返しによって剥離を生ずる。
例えば、AgInSbTe系の記録層の熱膨張率が8〜12×10−6/℃(室温〜400℃)であるのに対して、30モル%CeO−Nb系の熱膨張率は1.8〜3.4×10−6/℃(室温〜500℃)である。これは、Nb系の熱膨張率0.8〜1×10−6/℃(室温〜500℃)に比べて大きくなり、記録層の熱膨張率に近づき、密着性が上昇する。
That is, since a laser is used for recording, erasing and reading information on an optical disk using a phase change optical recording medium, the temperature of the recording layer is about 600 ° C. during recording, 400 to 500 ° C. during erasing, and 100 to 100 at reading. It rises to 250 ° C. Therefore, when the thermal expansion coefficients of the recording layer and the protective layer are greatly different, stress is applied between the layers, and peeling occurs due to repeated recording erasure.
For example, the thermal expansion coefficient of the AgInSbTe-based recording layer is 8 to 12 × 10 −6 / ° C. (room temperature to 400 ° C.), whereas the thermal expansion coefficient of the 30 mol% CeO 2 —Nb 2 O 5 system is It is 1.8 to 3.4 × 10 −6 / ° C. (room temperature to 500 ° C.). This is larger than the thermal expansion coefficient of the Nb 2 O 5 system of 0.8 to 1 × 10 −6 / ° C. (room temperature to 500 ° C.), approaches the thermal expansion coefficient of the recording layer, and increases the adhesion.

上記保護層の膜厚は、特に限定されるものではなく、多層膜の光学的設計から10〜100nmが好ましく、20〜50nmがより好ましい。   The film thickness of the protective layer is not particularly limited, and is preferably 10 to 100 nm, more preferably 20 to 50 nm, from the optical design of the multilayer film.

以上から明らかなように、本発明の相変化型光記録媒体に設けられる記録層と反射層の間に形成される保護層は、非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる混合体からなり、屈折率が2.1〜2.3で、可視光領域で吸収がほとんどなく透明で、記録層との密着性も良好で、かつ硫化物による反射層の特性劣化がない耐候性の良好な保護層である。   As is clear from the above, the protective layer formed between the recording layer and the reflective layer provided in the phase change optical recording medium of the present invention is composed of amorphous niobium oxide and / or amorphous tantalum oxide, It consists of a mixture of crystalline cerium oxide and glass, has a refractive index of 2.1 to 2.3, is transparent with little absorption in the visible light region, and has good adhesion to the recording layer, and It is a protective layer with good weather resistance without deterioration of the properties of the reflective layer due to sulfide.

上記相変化型光記録媒体に用いる透明基板としては、特に限定されるものではなく、ガラス板、プラスチックフィルム等の基板が用いられるが、特に加工性、光学特性から溝付ポリカーボネイト基板が好ましい。   The transparent substrate used for the phase change optical recording medium is not particularly limited, and a substrate such as a glass plate or a plastic film is used, but a grooved polycarbonate substrate is particularly preferable from the viewpoint of processability and optical characteristics.

上記相変化型光記録媒体で用いる透明基板上の保護層としては、特に限定されるものではなく、一般的に用いられている[ZnS+SiO]膜が形成される。この膜厚は、特に限定されるものではなく、例えば、50〜150nmの間で、相変化型光記録媒体の光学的な干渉が最適になるように選ばれる。すなわち、膜厚が50nm未満では、ポリカーボネイト基板を使用した場合に、熱的な劣化及び長期保管での記録層の劣化が起こりやすくなる。一方、膜厚が150nmを超えると、成膜時間が長くなり生産性が落ちる。 The protective layer on the transparent substrate used in the phase change optical recording medium is not particularly limited, and a commonly used [ZnS + SiO 2 ] film is formed. The film thickness is not particularly limited, and is selected so that, for example, the optical interference of the phase change optical recording medium is optimized between 50 and 150 nm. That is, when the film thickness is less than 50 nm, when a polycarbonate substrate is used, thermal deterioration and recording layer deterioration during long-term storage are likely to occur. On the other hand, when the film thickness exceeds 150 nm, the film formation time becomes longer and the productivity is lowered.

上記相変化型光記録媒体で用いる記録層としては、特に限定されるものではなく、相変化材料が用いられるが、この中で、用途に応じて、AgInSbTe系、GeSbTe系、GaSb系等が用いられる。この膜厚は、特に限定されるものではなく、100〜500nmが好ましい。すなわち、膜厚が100nm未満では、反射率が低くなりすぎて信号強度が不足しやすい。一方、膜厚が500nmを超えると、記録消去に要するレーザ出力が大きくなりすぎるためコスト高となる。   The recording layer used in the phase change optical recording medium is not particularly limited, and phase change materials are used. Among them, AgInSbTe system, GeSbTe system, GaSb system, etc. are used depending on the application. It is done. The film thickness is not particularly limited and is preferably 100 to 500 nm. That is, when the film thickness is less than 100 nm, the reflectance is too low and the signal intensity tends to be insufficient. On the other hand, if the film thickness exceeds 500 nm, the laser output required for recording / erasing becomes too large, resulting in an increase in cost.

上記相変化型光記録媒体で用いる反射層としては、特に限定されるものではなく、Al、Al合金、Au、Ag又はそれにPd、Cu、Au、Nd及びBiから選ばれる少なくとも1種の金属元素を含むAg合金が用いられるが、この中で、特に、相変化型光記録媒体を急熱急冷構造とするために熱伝導率の高い材料であるAg又はそれにPd,Cu,Au,Nd及びBiから選ばれる少なくとも1種の金属元素を0.5モル%以下の濃度で添加したAg合金が選ばれる。これによって、高速記録に好適な相変化型光記録媒体が得られる。この膜厚は、特に限定されるものではなく、50〜150nmが好ましい。すなわち、膜厚が50nm未満では、厚みが薄いため平面方向の熱伝導が不十分でレーザー照射後の急冷効果が小さく信号マーク(非晶質相)の形成が難しくなる。一方、膜厚が150nmを超えると、熱伝導が大きくなりすぎて記録感度が低下する。   The reflective layer used in the phase change optical recording medium is not particularly limited, and is at least one metal element selected from Al, Al alloy, Au, Ag, or Pd, Cu, Au, Nd and Bi. In particular, Ag, which is a material having high thermal conductivity, and Pd, Cu, Au, Nd, and Bi are used to make the phase change optical recording medium have a rapid thermal quenching structure. An Ag alloy to which at least one metal element selected from 1 is added at a concentration of 0.5 mol% or less is selected. As a result, a phase change optical recording medium suitable for high-speed recording can be obtained. The film thickness is not particularly limited and is preferably 50 to 150 nm. That is, when the film thickness is less than 50 nm, since the thickness is small, the heat conduction in the planar direction is insufficient, the quenching effect after laser irradiation is small, and the formation of the signal mark (amorphous phase) becomes difficult. On the other hand, when the film thickness exceeds 150 nm, the heat conduction becomes too large and the recording sensitivity is lowered.

以上より明らかなように、上記相変化型記録媒体の耐候性は、上記酸化物保護層を用いることで大きく上昇するので、反射率の経時変化が小さくなる。また、さらに上記組成の反射層を用いることは、高速記録に好適である。   As is clear from the above, the weather resistance of the phase change recording medium is greatly increased by using the oxide protective layer, so that the change in reflectance with time is reduced. Further, the use of a reflective layer having the above composition is suitable for high-speed recording.

本発明の相変化型光記録媒体の製造方法は、透明基板上に保護層、記録層、保護層及び反射層を順次積層して相変化型光記録媒体を形成する方法において、前記記録層と反射層の間に保護層を形成するにあたり、酸化ニオブ及び/又は酸化タンタルと、酸化セリウムと、ガラス質とを含むターゲットを用い、かつ、0.003〜0.010Paの酸素分圧下でスパッタリングする方法である。これによって、硫化物による反射層の劣化のない酸化物保護層を、工業的に十分な成膜速度で形成することができる。   The method for producing a phase change optical recording medium of the present invention is a method for forming a phase change optical recording medium by sequentially laminating a protective layer, a recording layer, a protective layer and a reflective layer on a transparent substrate. In forming the protective layer between the reflective layers, sputtering is performed using a target containing niobium oxide and / or tantalum oxide, cerium oxide, and glass, and under an oxygen partial pressure of 0.003 to 0.010 Pa. Is the method. Thereby, an oxide protective layer in which the reflective layer is not deteriorated by sulfide can be formed at an industrially sufficient film formation rate.

すなわち、酸素分圧が0.003〜0.010Paでスパッタリングすることで、従来の[ZnS+SiO2]層を形成する場合の30%程度の工業的に十分な成膜速度が確保できる。なお、酸素分圧が0.003Pa未満では、得られた酸化物保護層の可視光領域での光吸収率が増加し透明性が低下する。一方、酸素分圧が0.010Paを超えると、成膜速度が低下し生産性が落ちる。   That is, by sputtering at an oxygen partial pressure of 0.003 to 0.010 Pa, an industrially sufficient film formation rate of about 30% when forming a conventional [ZnS + SiO 2] layer can be secured. When the oxygen partial pressure is less than 0.003 Pa, the light absorption rate in the visible light region of the obtained oxide protective layer is increased and the transparency is lowered. On the other hand, when the oxygen partial pressure exceeds 0.010 Pa, the film formation rate decreases and productivity decreases.

上記製造方法で酸化物保護層を形成する際に用いるスパッタリング装置としては、特に限定されるものではないが、RFスパッタリング装置が好ましい。上記スパッタリング方法は、特に限定されるものではないが、例えば、酸化ニオブ及び/又は酸化タンタルと、酸化セリウムと、ガラス質とを含むターゲットを前記スパッタリング装置に取り付けた後、装置内を真空処理し所定の酸素分圧とアルゴン分圧の真空中でスパッタリングして、基板上に既に積層された記録層の表面上に保護層を所定の膜厚で成膜する。   A sputtering apparatus used for forming the oxide protective layer by the above manufacturing method is not particularly limited, but an RF sputtering apparatus is preferable. The sputtering method is not particularly limited. For example, after a target containing niobium oxide and / or tantalum oxide, cerium oxide, and glass is attached to the sputtering apparatus, the inside of the apparatus is vacuum-treated. Sputtering is performed in a vacuum with a predetermined oxygen partial pressure and an argon partial pressure to form a protective layer with a predetermined film thickness on the surface of the recording layer already laminated on the substrate.

上記製造方法で用いる酸化ニオブ及び/又は酸化タンタルと、酸化セリウムと、ガラス質とを含むターゲットとしては、特に限定されるものではなく、所定の組成の酸化物保護層を形成することができる酸化物が用いられるが、この中で、特に、酸化タンタル、酸化ニオブ、酸化セリウム及びガラス質を、上記酸化物保護層の組成、すなわち酸化ニオブ及び/又は酸化タンタルと、酸化セリウムと、ガラス質とを含み、該ガラス質の濃度が10〜35モル%であるとともに、該酸化セリウムの濃度が1〜30モル%である組成に調整して得られる混合焼結体が好ましい。   The target containing niobium oxide and / or tantalum oxide, cerium oxide, and vitreous used in the above production method is not particularly limited, and an oxide that can form an oxide protective layer having a predetermined composition. Among them, in particular, tantalum oxide, niobium oxide, cerium oxide and vitreous are used, and the composition of the oxide protective layer, that is, niobium oxide and / or tantalum oxide, cerium oxide, and vitreous A mixed sintered body obtained by adjusting the composition so that the glassy concentration is 10 to 35 mol% and the cerium oxide concentration is 1 to 30 mol% is preferable.

前記混合焼結体の製造方法としては、特に限定されるものではなく、酸化物粉末を原料として焼結体を製造する種々の方法が用いられるが、この中で、特に、酸化セリウムと酸化ニオブを反応させることなく、かつ所望の密度及び強度を有する焼結体を得るため、低温で焼結することができるホットプレス(高温高圧プレス)法が好ましい。ホットプレス法としては、例えば、市販の酸化タンタル粉末、酸化ニオブ粉末、酸化セリウム粉末及びガラス質粉末が所定の組成割合に配合された原料を、蒸留水を分散剤として粉砕装置で混合し乾燥し解砕した後、ホットプレス用型に充填し、ホットプレス装置を用いて、真空下所定温度と所定圧力で焼結を行う。   The method for producing the mixed sintered body is not particularly limited, and various methods for producing a sintered body using an oxide powder as a raw material are used. Among these, cerium oxide and niobium oxide are particularly preferable. In order to obtain a sintered body having a desired density and strength without causing reaction, a hot press (high temperature high pressure press) method capable of sintering at a low temperature is preferable. As a hot press method, for example, a raw material in which commercially available tantalum oxide powder, niobium oxide powder, cerium oxide powder and glassy powder are blended in a predetermined composition ratio is mixed with a pulverizer using distilled water as a dispersant and dried. After crushing, it is filled into a hot press mold and sintered at a predetermined temperature and a predetermined pressure under a vacuum using a hot press apparatus.

前記ホットプレス法に用いる原料粉末の粒度は、特に限定されるものではなく、レーザ散乱法(マイクロトラック X100)による平均粒径0.5〜30μmが好ましい。また、その条件は、特に限定されるものではなく、温度としては、原料粉末が化合物を形成しない温度領域である800〜1200℃、また、圧力としては、15〜50MPaが好ましい。得られた焼結体から所定の寸法に機械加工され、ターゲットが得られる。さらに、ターゲットは割れの防止のため、銅製バッキングプレートにメタルボンディングされて用いられる。   The particle size of the raw material powder used in the hot pressing method is not particularly limited, and an average particle size of 0.5 to 30 μm by a laser scattering method (Microtrac X100) is preferable. The conditions are not particularly limited, and the temperature is preferably 800 to 1200 ° C. in which the raw material powder does not form a compound, and the pressure is preferably 15 to 50 MPa. The obtained sintered body is machined to a predetermined size to obtain a target. Further, the target is used by being metal bonded to a copper backing plate in order to prevent cracking.

以上より明らかなように、上記相変化型記録媒体の製造方法によって酸化物保護層を形成することで、屈折率が2.1〜2.3と高く、可視光領域で透明な保護層を工業的に十分な成膜速度で作成することができる。   As is clear from the above, by forming the oxide protective layer by the method for producing the phase change recording medium, a protective layer having a high refractive index of 2.1 to 2.3 and transparent in the visible light region can be produced. Therefore, the film can be formed at a sufficient film formation rate.

また、上記製造方法において、透明基板上に保護層、記録層、保護層及び反射層を順次積層する方法としては、特に限定されるものではなく、各層をスパッタリング法で順次行う方法が好ましい。前記透明基板上に保護層、記録層及び反射層の形成に用いるスパッタリング装置は、特に限定されるものではなく、RFスパッタリング装置、DCスパッタリング装置等が用いられる。   Moreover, in the said manufacturing method, it does not specifically limit as a method of laminating | stacking a protective layer, a recording layer, a protective layer, and a reflection layer in order on a transparent substrate, The method of performing each layer sequentially by sputtering method is preferable. The sputtering apparatus used for forming the protective layer, the recording layer, and the reflective layer on the transparent substrate is not particularly limited, and an RF sputtering apparatus, a DC sputtering apparatus, or the like is used.

前記各層のスパッタリング法としては、特に限定されるものではなく、例えば、所定の膜組成を形成できるターゲットを前記スパッタリング装置に取り付けた後、装置内を真空処理し所定の雰囲気下でスパッタリングして、所定の膜厚で成膜することで行える。
上記製造方法において得られる相変化型記録媒体は、特に、反射層の特性劣化及び記録層との密着性不良が起きない、高速記録に好適な記録媒体である。
The sputtering method of each layer is not particularly limited. For example, after attaching a target capable of forming a predetermined film composition to the sputtering apparatus, the inside of the apparatus is vacuum-processed and sputtered in a predetermined atmosphere. This can be done by forming a film with a predetermined thickness.
The phase change type recording medium obtained by the above production method is a recording medium suitable for high-speed recording, in particular, without causing deterioration of characteristics of the reflective layer and poor adhesion with the recording layer.

以下に、本発明の実施例及び比較例によって本発明をさらに詳細に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。なお、実施例及び比較例で用いた金属の分析方法と酸化物保護層の屈折率、光学的吸収率及び成膜速度の評価方法は、以下の通りである。
(1)金属の分析:ICP発光分析法で行った。
(2)酸化物保護層の屈折率の測定:エリプソメーター(溝尻光学製)を用いて、波長633nmの光で行った。
(3)酸化物保護層の光学的吸収率の測定:膜の透過率と反射率を分光光度計(島津製作
所製 UV−4000)を用いて波長250〜1000nmの間で測定した。
(4)成膜速度の評価:所定の成膜時間での膜厚を触針式の表面粗さ計(東京精密製 S
URFCOM)を用いて測定し算出した。
Hereinafter, the present invention will be described in more detail by way of examples and comparative examples of the present invention, but the present invention is not limited to these examples. In addition, the analysis method of the metal used in the Example and the Comparative Example and the evaluation method of the refractive index, the optical absorption rate, and the film formation rate of the oxide protective layer are as follows.
(1) Metal analysis: ICP emission analysis was performed.
(2) Measurement of refractive index of oxide protective layer: Using an ellipsometer (manufactured by Mizojiri Optics), the measurement was performed with light having a wavelength of 633 nm.
(3) Measurement of optical absorptance of oxide protective layer: The transmittance and reflectance of the film were measured between 250 and 1000 nm using a spectrophotometer (UV-4000 manufactured by Shimadzu Corporation).
(4) Evaluation of film formation rate: The film thickness at a predetermined film formation time is measured using a stylus type surface roughness meter (S
Measured and calculated using URFCOM).

また、実施例及び比較例では、表1に示す酸化物の原料配合A〜Iによって作成したターゲットと、ZnS粉末にSiO粉末を30モル%配合して得たターゲットを用いた。なお、Nb粉末は多木化学製(平均粒径3μm)、Ta粉末は多木化学製(平均粒径0.8μm)、CeO粉末は阿南化学製(平均粒径0.8μm)、SiO粉末は旭硝子製(商品名SILDEX−H121、平均粒径12μm)、及びZnS粉末は堺化学製(平均粒径0.75μm)のそれぞれ市販品を用いた。 Further, in Examples and Comparative Examples were used and the target created by the raw material-blended A~I oxides shown in Table 1, a target obtained by blending SiO 2 powder 30 mol% ZnS powder. Nb 2 O 5 powder is manufactured by Taki Chemical (average particle size 3 μm), Ta 2 O 5 powder is manufactured by Taki Chemical (average particle size 0.8 μm), and CeO 2 powder is manufactured by Anan Chemical (average particle size 0). 0.8 μm), SiO 2 powder manufactured by Asahi Glass (trade name SILDEX-H121, average particle size 12 μm), and ZnS powder manufactured by Sakai Chemical (average particle size 0.75 μm) were used.

Figure 0004023432
Figure 0004023432

(実施例1)
所定の組成のターゲットを作製し、これを用いて成膜を行い、その後得られた酸化物の膜特性を評価した。
(1)ターゲットの作製
表1の原料配合Aの割合で原料を配合し、蒸留水を分散剤としてボールミルで混合後、乾燥した。次に、この乾燥物を黒鉛製のホットプレス型に充填し、ホットプレス装置中で真空下1000℃にて1時間保持して焼結した。このときのホットプレス圧力は19.6MPaであった。このときに得られた焼結体の密度は3.55g/cmであった。
得られた焼結体を直径102mm、厚さ5mmの寸法に機械加工し、ターゲットを作製した。ターゲットは銅製のバッキングプレートにボンディングした。
Example 1
A target having a predetermined composition was prepared, a film was formed using the target, and then the film characteristics of the obtained oxide were evaluated.
(1) Preparation of target The raw material was mix | blended in the ratio of the raw material mixing | blending A of Table 1, and it dried after mixing with a ball mill by using distilled water as a dispersing agent. Next, the dried product was filled in a graphite hot press mold and sintered in a hot press apparatus at 1000 ° C. for 1 hour under vacuum. The hot press pressure at this time was 19.6 MPa. The density of the sintered body obtained at this time was 3.55 g / cm 3 .
The obtained sintered body was machined to dimensions of 102 mm in diameter and 5 mm in thickness to produce a target. The target was bonded to a copper backing plate.

(2)成膜
つぎに、前記ターゲットをマグネトロンRFスパッタリング装置(アネルバ製 SPF210H)に取り付けて、成膜を行った。スパッタリング条件としては、投入電力がDC250W(3.3W/cm)、到達真空度が8×10−4Pa、酸素分圧を0.005Paとして残りはArを入れてスパッタリング全圧力が0.12Paであった。
基板には、スライドガラス(MATUNAMI製 S−1111)を用いた。また、基板に対しては意図的な加熱は行わなかった。なお、得られる酸化物膜の膜厚が約100nmとなるまで成膜を行った。
(2) Film formation Next, the target was attached to a magnetron RF sputtering apparatus (SPF210H manufactured by Anelva) to form a film. As sputtering conditions, the input power is DC 250 W (3.3 W / cm 2 ), the ultimate vacuum is 8 × 10 −4 Pa, the oxygen partial pressure is 0.005 Pa, the remainder is Ar, and the total sputtering pressure is 0.12 Pa. Met.
A slide glass (S-1111 made by MATUNAMI) was used for the substrate. In addition, the substrate was not intentionally heated. The film formation was performed until the thickness of the obtained oxide film was about 100 nm.

(3)酸化物膜の評価
その後、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。なお、成膜速度は、ZnSにSiOを30モル%配合して得られたターゲットを用いて、酸素を添加しないでスパッタリングを行った以外は上記と同様に行って得られた成膜速度を1として相対値で表す。
(3) Evaluation of oxide film Thereafter, the refractive index, the optical absorption rate, and the deposition rate of the obtained oxide film were determined. The results are shown in Table 2. The film formation rate was the same as that described above except that sputtering was performed without adding oxygen using a target obtained by mixing 30 mol% of SiO 2 with ZnS. 1 is expressed as a relative value.

(実施例2)
ターゲットの作成において原料配合を表1のBの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Example 2)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio B in Table 1, and the refractive index, optical absorption rate, and film formation rate of the obtained oxide film were determined. The results are shown in Table 2.

(実施例3)
ターゲットの作成において原料配合を表1のCの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Example 3)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio of C in Table 1, and the refractive index, optical absorption rate, and film formation rate of the obtained oxide film were determined. The results are shown in Table 2.

(実施例4)
ターゲットの作成において原料配合を表1のDの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Example 4)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio of D in Table 1, and the refractive index, optical absorption rate, and film formation rate of the obtained oxide film were determined. The results are shown in Table 2.

(実施例5)
ターゲットの作成において原料配合を表1のEの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Example 5)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio E in Table 1, and the refractive index, optical absorption rate, and film formation rate of the obtained oxide film were determined. The results are shown in Table 2.

(比較例1)
ターゲットの作成において原料配合を表1のFの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Comparative Example 1)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio of F in Table 1, and the refractive index, optical absorption rate, and deposition rate of the obtained oxide film were determined. The results are shown in Table 2.

(比較例2)
ターゲットの作成において原料配合を表1のGの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Comparative Example 2)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio of G in Table 1, and the refractive index, optical absorption rate, and film formation rate of the obtained oxide film were determined. The results are shown in Table 2.

(比較例3)
ターゲットの作成において原料配合を表1のHの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Comparative Example 3)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio of H in Table 1, and the refractive index, optical absorption rate, and deposition rate of the obtained oxide film were determined. The results are shown in Table 2.

(比較例4)
ターゲットの作成において原料配合を表1のIの割合とした以外は実施例1と同様に行い、得られた酸化物膜の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Comparative Example 4)
The preparation of the target was carried out in the same manner as in Example 1 except that the raw material composition was changed to the ratio I in Table 1, and the refractive index, optical absorption rate, and deposition rate of the obtained oxide film were determined. The results are shown in Table 2.

Figure 0004023432
Figure 0004023432

表2から明らかなように、実施例1〜5では、保護層とその形成方法が本発明に従っているので、光学特性の良好な膜特性を有し、かつ工業的に十分な成膜速度で保護層を形成することができることが分かる。すなわち、相変化型光記録媒体の記録層と反射層の間に形成される保護層として好適であることが分かる。これに対して、比較例1〜4では、保護層の組成がこれら条件に合わないため、保護層の屈折率又は光学的吸収率のいずれかに満足すべき結果が得られないものであることがわかる。   As is clear from Table 2, in Examples 1 to 5, the protective layer and the method for forming the protective layer are in accordance with the present invention, so that the film has good optical characteristics and is protected at an industrially sufficient film forming speed. It can be seen that a layer can be formed. In other words, it can be seen that it is suitable as a protective layer formed between the recording layer and the reflective layer of the phase change optical recording medium. On the other hand, in Comparative Examples 1-4, since the composition of the protective layer does not meet these conditions, a satisfactory result cannot be obtained in either the refractive index or the optical absorptance of the protective layer. I understand.

(比較例5〜9)
成膜においてスパッタリング時の酸素分圧を0.001Pa未満にしたこと以外は、それぞれ実施例1〜5と同様に行い、得られた酸化物膜の光学的吸収率を求めた。結果を表3に示す。
(Comparative Examples 5-9)
The film was formed in the same manner as in Examples 1 to 5 except that the oxygen partial pressure during sputtering was less than 0.001 Pa, and the optical absorptance of the obtained oxide film was determined. The results are shown in Table 3.

Figure 0004023432
Figure 0004023432

表3から明らかなように、比較例5〜9では、成膜においてスパッタリングの酸素分圧が低いので、保護層は600〜800nmの吸収が増加することが分かる。   As is apparent from Table 3, in Comparative Examples 5 to 9, since the oxygen partial pressure of sputtering is low in the film formation, it is understood that the absorption of the protective layer is increased to 600 to 800 nm.

(実施例6〜10)
耐候性評価として特に反射層と保護層との反応による性能劣化を評価するため、完全なバリア層としてガラスを用いて、その上に所定組成の反射層を成膜し、さらに所定組成の保護層を成膜して得られた試料を用いて耐候性試験を行った。
まず、RFマグネトロンスパッタ装置(アネルバ製 SPF210H)に直径102mmのAgターゲットを取り付けて、スライドガラス(MATUNAMI製 S−1111)上に膜厚100nmになるように反射層を成膜した。次に、上記原料配合A、B、C、D、Eの酸化物保護層用スパッタリングターゲットを取り付けて、この表面上に膜厚100nmに保護層を成膜した。その後、得られた試料を恒温恒湿槽に入れて、温度80℃、湿度80%の条件で500時間保持して、保持前後の反射率を測定して保持後の反射率から保持前の反射率を引いた差を求めた。結果を表4に示す。
(Examples 6 to 10)
In order to evaluate performance deterioration due to the reaction between the reflective layer and the protective layer, particularly as a weather resistance evaluation, a glass having a predetermined composition is formed thereon using a glass as a complete barrier layer, and a protective layer having a predetermined composition is further formed. A weather resistance test was performed using a sample obtained by forming a film.
First, an Ag target having a diameter of 102 mm was attached to an RF magnetron sputtering apparatus (SPF210H manufactured by Anelva), and a reflective layer was formed on a slide glass (S-1111 manufactured by MATUNAMI) so as to have a film thickness of 100 nm. Next, a sputtering target for an oxide protective layer of the above raw material blends A, B, C, D, and E was attached, and a protective layer was formed on the surface to a film thickness of 100 nm. After that, the obtained sample is put in a constant temperature and humidity chamber, held at a temperature of 80 ° C. and a humidity of 80% for 500 hours, the reflectance before and after holding is measured, and the reflectance before holding is reflected from the reflectance after holding. The difference minus the rate was determined. The results are shown in Table 4.

(実施例11〜15)
反射層の成膜において濃度0.1モル%AuのAg合金ターゲットを用いた以外は、それぞれ実施例6〜10と同様に行い。その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表4に示す。
(Examples 11 to 15)
Except that an Ag alloy target having a concentration of 0.1 mol% Au was used in the formation of the reflective layer, it was performed in the same manner as in Examples 6 to 10, respectively. Thereafter, the reflectance before and after holding the constant temperature and humidity chamber was measured to obtain the difference. The results are shown in Table 4.

(実施例16〜20)
反射層の成膜において濃度0.1モル%AuのPd合金ターゲットを用いた以外は、それぞれ実施例6〜10と同様に行い。その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表4に示す。
(Examples 16 to 20)
Except for using a Pd alloy target having a concentration of 0.1 mol% Au in the formation of the reflective layer, the same procedure as in Examples 6 to 10 was performed. Thereafter, the reflectance before and after holding the constant temperature and humidity chamber was measured to obtain the difference. The results are shown in Table 4.

(比較例10)
保護層の成膜において、ZnS粉末にSiO粉末を30モル%を配合したターゲットを用いた以外は、実施例6と同様に行い、その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表4に示す。
(Comparative Example 10)
The protective layer was formed in the same manner as in Example 6 except that a target containing 30 mol% of SiO 2 powder in ZnS powder was used. Thereafter, the reflectance before and after holding the constant temperature and humidity chamber was measured. The difference was determined. The results are shown in Table 4.

(比較例11)
保護層の成膜において、ZnS粉末にSiO粉末を30モル%を配合したターゲットを用いた以外は、実施例11と同様に行い、その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表4に示す。
(Comparative Example 11)
In forming the protective layer, except for using a target containing a combination of 30 mol% of SiO 2 powder ZnS powder were performed in the same manner as in Example 11, then measuring the reflectance before and after the constant temperature and humidity chamber maintained its The difference was determined. The results are shown in Table 4.

(比較例12)
保護層の成膜において、ZnS粉末にSiO粉末を30モル%を配合したターゲットを用いた以外は、実施例16と同様に行い、その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表4に示す。
(Comparative Example 12)
The protective layer was formed in the same manner as in Example 16 except that a target in which 30 mol% of SiO 2 powder was blended with ZnS powder was used, and then the reflectance before and after holding the constant temperature and humidity chamber was measured. The difference was determined. The results are shown in Table 4.

Figure 0004023432
Figure 0004023432

表4から明らかなように、実施例6〜20では、Ag又は所定組成のAg合金の反射層を形成し、かつ保護層が本発明に従っているとき、反射率の変化は0.5%以下と小さいことがわかる。すなわち、相変化型光記録媒体の記録層と反射層の間に形成される保護層として、また反射層として好適であることが分かる。これに対して、比較例10〜12では、保護層がこれらの条件に合わないため、反射率の低下が大きく耐候性に劣り、満足すべき結果が得られないことが分かる。   As is clear from Table 4, in Examples 6 to 20, when a reflective layer of Ag or an Ag alloy having a predetermined composition is formed and the protective layer is in accordance with the present invention, the change in reflectance is 0.5% or less. I understand that it is small. That is, it can be seen that it is suitable as a protective layer formed between the recording layer and the reflective layer of the phase change optical recording medium and as a reflective layer. On the other hand, in Comparative Examples 10-12, since a protective layer does not match these conditions, it turns out that the fall of a reflectance is large and is inferior to a weather resistance, and a satisfactory result is not obtained.

Claims (7)

透明基板上に、保護層、記録層、保護層および反射層を順次積層してなる相変化型光記録媒体であって、
前記記録層と反射層との間に形成される保護層は、非晶質酸化ニオブ及び/又は非晶質酸化タンタルと、非晶質酸化セリウムと、ガラス質とからなる混合体であり、該混合体中のガラス質の濃度が10〜35モル%であるとともに、非晶質酸化セリウムの濃度が1〜30モル%であり、かつ可視光領域で透明性を有することを特徴とする相変化型光記録媒体。
A phase change optical recording medium in which a protective layer, a recording layer, a protective layer and a reflective layer are sequentially laminated on a transparent substrate,
The protective layer formed between the recording layer and the reflective layer is a mixture of amorphous niobium oxide and / or amorphous tantalum oxide, amorphous cerium oxide, and glass, Phase change characterized by having a glassy concentration in the mixture of 10 to 35 mol%, an amorphous cerium oxide concentration of 1 to 30 mol%, and transparency in the visible light region Type optical recording medium.
前記非晶質酸化セリウムの濃度は、5〜30モル%であることを特徴とする請求項1に記載の相変化型光記録媒体。   The phase change optical recording medium according to claim 1, wherein the concentration of the amorphous cerium oxide is 5 to 30 mol%. 前記記録層と反射層の間に形成される保護層の屈折率は、2.1〜2.3であること特徴とする請求項1に記載の相変化型光記録媒体。   The phase change optical recording medium according to claim 1, wherein the protective layer formed between the recording layer and the reflective layer has a refractive index of 2.1 to 2.3. 前記ガラス質は、二酸化ケイ素及び/又は一酸化ケイ素であることを特徴とする請求項1に記載の相変化型光記録媒体。   2. The phase change optical recording medium according to claim 1, wherein the vitreous material is silicon dioxide and / or silicon monoxide. 前記反射層は、Ag単独、又はそれにPd、Cu、Au、Nd及びBiからなる群から選ばれる少なくとも1種の金属元素を0.5モル%以下の濃度で添加したAg合金から形成されることを特徴とする請求項1〜4のいずれか1項に記載の相変化型光記録媒体。   The reflective layer is formed of Ag alone or an Ag alloy to which at least one metal element selected from the group consisting of Pd, Cu, Au, Nd and Bi is added at a concentration of 0.5 mol% or less. The phase change optical recording medium according to claim 1, wherein: 透明基板上に保護層、記録層、保護層および反射層を順次積層して相変化型光記録媒体を製造する方法であって、
前記記録層と反射層の間に保護層を形成するにあたり、酸化ニオブ及び/又は酸化タンタルと、酸化セリウムと、ガラス質とを含むターゲットを用い、かつ0.003〜0.010Paの酸素分圧下でスパッタリングすることを特徴する相変化型光記録媒体の製造方法。
A method for producing a phase change optical recording medium by sequentially laminating a protective layer, a recording layer, a protective layer and a reflective layer on a transparent substrate,
In forming a protective layer between the recording layer and the reflective layer, a target containing niobium oxide and / or tantalum oxide, cerium oxide, and glass is used, and the oxygen partial pressure is 0.003 to 0.010 Pa. A method of manufacturing a phase change optical recording medium, characterized by sputtering at
酸化ニオブ及び/又は酸化タンタルと、酸化セリウム及びガラス質とを含む混合焼結体からなることを特徴とする、請求項6に記載の製造方法に用いられる保護層形成用スパッタリングターゲット。   The sputtering target for protective layer formation used for the manufacturing method of Claim 6 which consists of a mixed sintered compact containing niobium oxide and / or a tantalum oxide, a cerium oxide, and a glassy material.
JP2003378024A 2003-11-07 2003-11-07 Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor Expired - Fee Related JP4023432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003378024A JP4023432B2 (en) 2003-11-07 2003-11-07 Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003378024A JP4023432B2 (en) 2003-11-07 2003-11-07 Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor

Publications (2)

Publication Number Publication Date
JP2005141841A JP2005141841A (en) 2005-06-02
JP4023432B2 true JP4023432B2 (en) 2007-12-19

Family

ID=34688546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003378024A Expired - Fee Related JP4023432B2 (en) 2003-11-07 2003-11-07 Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor

Country Status (1)

Country Link
JP (1) JP4023432B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6770258B1 (en) * 2019-08-22 2020-10-14 住友金属鉱山株式会社 Optical film, sputtering target and film formation method of optical film
JP6788236B1 (en) * 2019-11-25 2020-11-25 住友金属鉱山株式会社 Optical film, sputtering target and film formation method of optical film

Also Published As

Publication number Publication date
JP2005141841A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
TWI469143B (en) Information recording medium and method for producing the same
US8758497B2 (en) Sputtering target of sintered Ti—Nb based oxide, thin film of Ti—Nb based oxide, and method of producing the thin film
TW200820252A (en) Sputtering target and manufacturing method therefor, and recordable optical recording medium
JP3533333B2 (en) Sputtering target for interference film of optical recording medium and method of manufacturing the same
JP4023432B2 (en) Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor
JP2003166052A (en) Sputtering target
US8105673B2 (en) Sputtering target for optical media, method of manufacturing same, optical medium, and method of manufacturing same
JP4179188B2 (en) Protective film for optical disc and sputtering target for forming protective film
JP2002373459A (en) Sputtering target for optical disk protecting film, and the optical disk protecting film formed by using the same
JP2005317093A (en) Sputtering target for forming protection layer and its manufacturing method
JP2003013201A (en) Titanium oxide-based thin film and optical logging medium therewith
JP2005116038A (en) Phase change optical recording medium, its manufacturing method, and sputtering target for forming protective layer in the method
JP2005174402A (en) Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer
JP5185406B2 (en) Sputtering target, interface layer film for phase change optical recording medium using the same, method for producing the same, and phase change optical recording medium
US8105674B2 (en) Sputtering target for making optical medium, method of making same, optical medium, and method of making same
JP4093913B2 (en) Phase change optical recording medium
JP5012984B2 (en) Sputtering target for reflective layer of optical media and method for producing the same
JP4306988B2 (en) Information recording medium
JP4817895B2 (en) Sputtering target, interface layer film for phase change optical recording medium using the same, method for producing the same, and phase change optical recording medium
TW200303931A (en) Sputtering target and method for producing the same
JP2003003222A (en) Sputtering target, its manufacturing method, optical recording medium using the target, and method for manufacturing the optical recording medium
JP2967948B2 (en) Optical information recording medium
JP3173177B2 (en) Optical recording medium and manufacturing method thereof
JP2000144397A (en) Sputtering target for forming dielectric protective film of optical recording medium, dielectric protective film of optical recording medium and target production zinc sulfide powder
JP2001331973A (en) Medium for optical information recording, method for manufacturing the same and sputtering target

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees