JP2005174402A - Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer - Google Patents

Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer Download PDF

Info

Publication number
JP2005174402A
JP2005174402A JP2003409799A JP2003409799A JP2005174402A JP 2005174402 A JP2005174402 A JP 2005174402A JP 2003409799 A JP2003409799 A JP 2003409799A JP 2003409799 A JP2003409799 A JP 2003409799A JP 2005174402 A JP2005174402 A JP 2005174402A
Authority
JP
Japan
Prior art keywords
protective layer
layer
phase change
recording medium
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003409799A
Other languages
Japanese (ja)
Inventor
Yuji Takatsuka
裕二 高塚
Shoji Takanashi
昌二 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2003409799A priority Critical patent/JP2005174402A/en
Publication of JP2005174402A publication Critical patent/JP2005174402A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a protecting layer of a phase change optical recording medium which is a stable film not to react with a recording layer or a reflecting layer and has a high refractive index (≥1.9) and transparent optical characteristics. <P>SOLUTION: The protecting layer which is mainly composed of a zinc oxide, a niobium oxide and a tantalum oxide but not of a zinc-sulfide system and has a zinc-oxide content of 50 to 90 mol% is formed by sputtering without gaseous oxygen addition. The thus obtained protecting layer has a high refractive index, is transparent and stable with low reactivity with the recording layer or the reflecting layer and has film characteristics of excellent weather resistance in long-term storage. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、酸化亜鉛及び酸化二オブ、酸化タンタルから成る、相変化型光記録媒体の保護層及びその製造方法に関するものである。   The present invention relates to a protective layer for a phase change optical recording medium comprising zinc oxide, niobium oxide and tantalum oxide, and a method for producing the same.

近年、相変化型光記録媒体は書き換え可能な光記録ディスクとして、盛んに研究開発がなされており、書換え型DVD(DVD-RW,DVD-RAMなど)に応用されている。相変化型光記録媒体は、単層記録膜で光変調オーバーライトが可能であり、相変化による反射率の変化により信号を読みとるので、CD−ROMなどの既存の光ディスクとの互換性が高い等の特徴を有する。   In recent years, phase change optical recording media have been actively researched and developed as rewritable optical recording disks, and are applied to rewritable DVDs (DVD-RW, DVD-RAM, etc.). The phase change type optical recording medium is capable of optical modulation overwriting with a single layer recording film, and reads a signal due to a change in reflectivity due to a phase change, so that it is highly compatible with existing optical discs such as a CD-ROM. It has the characteristics of.

一般に相変化型光記録媒体は、Ge−Sb−Te系等の記録層の両側を硫化亜鉛−ケイ酸化物(ZnS−SiO2)系の保護層ではさみ、さらに合金系の反射層を積層した四層構造を形成している。 In general, a phase change type optical recording medium has a Ge-Sb-Te-based recording layer sandwiched on both sides by a zinc sulfide-silica oxide (ZnS-SiO 2 ) -based protective layer, and an alloy-based reflective layer is further laminated. A four-layer structure is formed.

ここで、情報の記録・再生の原理を簡単に説明する。相変化型光記録媒体は、記録層をレーザー光の照射によって加熱昇温させ、その記録層の結晶学的構造に可逆的な相変化(結晶とアモルファス間の相変化)を起こさせて情報の記録・再生を行う。相変化は、レーザービームの強弱にともなう記録層の温度変化を利用して行われる。レーザビームの強い時に非晶質相の記録マークを形成し、弱い時に結晶相を形成することによって記録を行い、結晶相とアモルファス相との反射率の差を検出することによって再生信号を得る。その際、非晶質相の形成にはレーザビーム照射により溶解した記録層が、臨界結晶化速度よりも速く冷却される事や、結晶相の形成には非晶質相が融点以下の温度により結晶化する事が必要である。従って、光記録媒体を用いて高速記録を行うためには、記録層を急熱急冷構造にする事が重要であり、そのためには、反射層を高熱伝導率化することが望まれている。   Here, the principle of recording / reproducing information will be briefly described. In a phase change optical recording medium, a recording layer is heated and heated by laser light irradiation to cause a reversible phase change (phase change between crystal and amorphous) in the crystallographic structure of the recording layer. Record and play back. The phase change is performed by utilizing the temperature change of the recording layer according to the intensity of the laser beam. Recording is performed by forming an amorphous phase recording mark when the laser beam is strong, and forming a crystalline phase when the laser beam is weak, and a reproduction signal is obtained by detecting a difference in reflectance between the crystalline phase and the amorphous phase. At that time, the amorphous phase is formed by cooling the recording layer melted by laser beam irradiation faster than the critical crystallization rate, or the crystalline phase is formed by the temperature of the amorphous phase below the melting point. It is necessary to crystallize. Therefore, in order to perform high-speed recording using an optical recording medium, it is important that the recording layer has a rapid thermal quenching structure. For this purpose, it is desired to increase the thermal conductivity of the reflective layer.

高熱伝導率を有する反射層材料としてはAgなどが用いられる。また保護層としては、屈折率が高く可視光領域で吸収が小さく透明な膜特性が求められるため、ZnS系の一つである硫化亜鉛−ケイ酸化物(ZnS・SiO2)を高融点誘電体の保護層に使っている(特許文献1参照)。ところが、ZnS系の保護層を相変化型光記録媒体に使用した場合、Ge−Sb−Te系等の記録層にSが拡散してオーバーライトの回数が数100回程度しかできないという問題や反射層のAgが硫化され反射率が低下するという問題があった。 Ag or the like is used as the reflective layer material having high thermal conductivity. As the protective layer, a transparent film characteristic having a high refractive index and low absorption in the visible light region is required. Therefore, zinc sulfide-silicate (ZnS · SiO 2 ), which is one of ZnS, is used as a high melting point dielectric. (See Patent Document 1). However, when a ZnS-based protective layer is used for a phase-change optical recording medium, S diffuses into the Ge-Sb-Te-based recording layer and the overwriting can be performed only about several hundred times. There was a problem that Ag of the layer was sulfided and the reflectance was lowered.

そこで、ZnS系以外の保護層としては、相変化型光記録媒体より以前に実用化されている光磁気ディスクでは窒化物(SiNx)、酸化物などが検討されていた。   Therefore, as the protective layer other than the ZnS-based layer, nitride (SiNx), oxide, and the like have been studied for magneto-optical disks put to practical use before the phase change optical recording medium.

SiNxは、記録層が相変化する500℃から600℃の温度で不安定なので相変化型光記録媒体の保護層には使用できない。   Since SiNx is unstable at a temperature of 500 ° C. to 600 ° C. at which the recording layer changes phase, it cannot be used for the protective layer of the phase change optical recording medium.

光用に検討された酸化物膜の例では、Ta、Nb、Mo、W、Zr、及びHfからなる群から選ばれる少なくとも一種の酸化物のターゲットを用いて、RF(高周波)よりも成膜速度の大きいDC(直流)スパッタリングで成膜する方法(特許文献2参照)が提案されている。しかしながら、透明な酸化物層を成膜する際には化学量論組成より酸素が不足しているスパッタリングターゲットを用いて、スパッタリングガス中に酸素を添加して反応性スパッタリングを行うため、酸素の添加量を増やすほど成膜速度が低下してしまい、DCスパッタリングでの成膜速度向上の効果が薄れて成膜速度が遅く、工業的量産性が悪いという問題があった。   In the example of the oxide film studied for light, the film is formed more than RF (high frequency) using at least one oxide target selected from the group consisting of Ta, Nb, Mo, W, Zr, and Hf. A method of forming a film by DC (direct current) sputtering having a high speed has been proposed (see Patent Document 2). However, when forming a transparent oxide layer, reactive sputtering is performed by adding oxygen to the sputtering gas using a sputtering target in which oxygen is insufficient compared to the stoichiometric composition. As the amount is increased, the film formation rate is lowered, the effect of improving the film formation rate by DC sputtering is reduced, the film formation rate is low, and industrial mass productivity is poor.

その他の例として、Nb酸化物−Si酸化物系のDCスパッタリング成膜方法(特許文献3参照)が提案されている。しかし、この系では相変化型光記録媒体に要求される高屈折率(1.9以上)が得られない問題があった。
特開昭63−103453公報 特開平8−283935号公報 特開2000−160331号公報
As another example, an Nb oxide-Si oxide-based DC sputtering film forming method (see Patent Document 3) has been proposed. However, this system has a problem that a high refractive index (1.9 or more) required for a phase change optical recording medium cannot be obtained.
JP 63-103453 A JP-A-8-283935 JP 2000-160331 A

本発明の目的は1)Ge−Sb−Te系記録層及びAg系反射層と反応を起こさない安定な膜で2)高屈折率(1.9以上)で3)透明な光学特性をもった保護層を提供することにある。また工業的量産性で成膜できる製造方法であることも重要である。   The object of the present invention is 1) a stable film that does not react with the Ge—Sb—Te-based recording layer and Ag-based reflective layer, 2) high refractive index (1.9 or more), and 3) transparent optical characteristics. It is to provide a protective layer. It is also important that the production method allows film formation with industrial mass productivity.

本発明者らは、上記目的を達成するために、鋭意検討を重ねた結果、SによるAgの硫化という問題を起こさない酸化亜鉛、酸化ニオブ、酸化タンタルを主成分とした酸化物保護層を酸素ガス添加無しスパッタ法により成膜したところ、高屈折率で透明な光学特性をもち、記録層や反射層との反応を起こさず、長期保管時の耐候性の優れた膜特性を有すること、更に工業的に十分な成膜速度が得られることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above object, the inventors of the present invention have developed an oxide protective layer mainly composed of zinc oxide, niobium oxide, and tantalum oxide that does not cause the problem of sulfurization of Ag by S. When deposited by sputtering without gas addition, it has a high refractive index and transparent optical properties, does not cause a reaction with the recording layer and the reflective layer, and has excellent weather characteristics during long-term storage. The inventors found that an industrially sufficient film formation rate can be obtained and completed the present invention.

すなわち、本発明の第1の発明によれば、記録層の両側に形成される保護層は酸化亜鉛と酸化ニオブ及び/又は酸化タンタルを含む混合体からなり、混合体中の酸化亜鉛含有量が50モル%〜90モル%であり、高屈折率かつ可視光領域で透明であることを特徴とする保護層が提供される。   That is, according to the first aspect of the present invention, the protective layer formed on both sides of the recording layer is composed of a mixture containing zinc oxide and niobium oxide and / or tantalum oxide, and the zinc oxide content in the mixture is Provided is a protective layer characterized by having a high refractive index and being transparent in the visible light region.

また、本発明の第2の発明によれば、透明基板上に保護層、記録層、保護層および反射層を順次積層して得られる相変化型光記録媒体において、保護層として本第1の発明の保護層を用いたことを特徴とする相変化型記録媒体が提供される。   According to the second aspect of the present invention, in the phase change optical recording medium obtained by sequentially laminating a protective layer, a recording layer, a protective layer and a reflective layer on a transparent substrate, the first layer is used as the protective layer. There is provided a phase change recording medium using the protective layer of the invention.

また、本発明の第3の発明によれば、酸化亜鉛と酸化ニオブ及び/又は酸化タンタルを含むスパッタリングターゲットを用いて酸素ガス添加無しでスパッタリングすることにより工業的量産性で成膜できることを特徴とする相変化型光記録媒体の保護層の製造方法が提供される。   Further, according to the third invention of the present invention, it is possible to form a film with industrial mass productivity by sputtering without adding oxygen gas using a sputtering target containing zinc oxide and niobium oxide and / or tantalum oxide. A method for producing a protective layer for a phase change optical recording medium is provided.

本発明の相変化型光記録媒体の保護層は、高速記録に必要な保護層の要求特性である高屈折率かつ可視高領域で吸収が少ない透明性を備えている。また、記録層・反射層と反応による特性劣化の少ない熱安定性および長期保管時の耐候性の高い保護層が得られるという顕著な効果をもつ。更にその保護層の製造方法においても、工業的量産性が十分な成膜速度で成膜することができ、その工業的価値は極めて大きい。   The protective layer of the phase change type optical recording medium of the present invention has a high refractive index and a transparency with low absorption in the visible high region, which are required characteristics of the protective layer necessary for high-speed recording. In addition, there is a remarkable effect that a protective layer having high thermal stability with little deterioration in characteristics due to reaction with the recording layer / reflection layer and high weather resistance during long-term storage can be obtained. Furthermore, in the manufacturing method of the protective layer, it is possible to form a film at a sufficient film forming speed with sufficient industrial mass productivity, and its industrial value is extremely large.

以下、本発明の相変化型光記録媒体の保護層、保護層を得る方法、及びこの保護層を有する相変化型光記録媒体について詳細に説明する。   The protective layer of the phase change optical recording medium of the present invention, the method for obtaining the protective layer, and the phase change optical recording medium having this protective layer will be described in detail below.

保護層は、酸化亜鉛と酸化ニオブ又は酸化タンタルを含む混合体からなり、混合体中の酸化亜鉛含有量が50〜90モル%であり、残部が酸化ニオブ又は酸化タンタルである。   The protective layer is made of a mixture containing zinc oxide and niobium oxide or tantalum oxide, the zinc oxide content in the mixture is 50 to 90 mol%, and the balance is niobium oxide or tantalum oxide.

相変化型光記録媒体の保護層の膜特性には、高屈折率であることと可視光領域で吸収が少なく透明であることが要求される。保護層の光学的干渉特性と薄膜化のために屈折率が高いことが望ましく、1.9以上が要求される。本発明の上記組成の混合体で1.9以上の高屈折率及び可視光領域(波長350nmから800nm)における十分な透明性が得られる。   The film characteristics of the protective layer of the phase change optical recording medium are required to have a high refractive index and be transparent with little absorption in the visible light region. A high refractive index is desirable for the optical interference properties and thinning of the protective layer, and 1.9 or more is required. The mixture having the above composition of the present invention provides a high refractive index of 1.9 or more and sufficient transparency in the visible light region (wavelength 350 nm to 800 nm).

本発明に係る相変化型光記録媒体の保護層の酸化亜鉛含有量は、50〜90モル%であり、特に60〜85モル%がさらに好ましい。保護層は安定な酸化亜鉛が主成分のため、還元されにくく、透明かつ安定な膜となる。   The zinc oxide content of the protective layer of the phase change optical recording medium according to the present invention is 50 to 90 mol%, and more preferably 60 to 85 mol%. Since the protective layer is mainly composed of stable zinc oxide, it is difficult to be reduced and becomes a transparent and stable film.

このようなスパッタ法により成膜した保護層のX線回折測定を行うと、ZnO以外の新たな回折線が2θで14〜15°付近(X線源Cu)に現れる。この回折線が現れた保護層の光の吸収端はZnOの吸収端より短波長にシフトしている知見を得た。   When X-ray diffraction measurement of the protective layer formed by such a sputtering method is performed, new diffraction lines other than ZnO appear at around 14 to 15 ° (X-ray source Cu) at 2θ. It was found that the light absorption edge of the protective layer where the diffraction line appeared shifted to a shorter wavelength than the ZnO absorption edge.

一方、酸化亜鉛の含有量が50モル%未満では、膜の熱安定性が少なく耐還元性が不十分になり、スパッタリングガスに酸素添加が必要となるため成膜速度が遅くなるので好ましくない。また酸化亜鉛の含有量が90モル%を越えると前記の回折線か現れなくなり、保護層の光吸収端がZnOの吸収端に近づき波長400nm周辺の光吸収が増加するため好ましくない。   On the other hand, if the content of zinc oxide is less than 50 mol%, the thermal stability of the film is low and the reduction resistance is insufficient, and oxygen addition is required for the sputtering gas, which is not preferable because the film formation rate becomes slow. On the other hand, if the zinc oxide content exceeds 90 mol%, the above diffraction lines do not appear, and the light absorption edge of the protective layer approaches the absorption edge of ZnO, and the light absorption around the wavelength of 400 nm increases.

本発明の相変化型光記録媒体で用いられる記録層としては、特に限定されるものでは無く、相変化材料が用いられるが、この中で用途に応じて、AgInSbTe系やGeSbTe系、GaSb系などが用いられる。   The recording layer used in the phase change optical recording medium of the present invention is not particularly limited, and phase change materials are used. Among them, AgInSbTe system, GeSbTe system, GaSb system, and the like are used. Is used.

また反射層としては、特に限定されるものでは無く、Al、Al合金、Au、Ag又はそれにPd,Cu,Au,Nd及びBiから選ばれる少なくとも1種の金属元素を添加したAg合金が用いられる。この中で、特に、相変化型光記録媒体を急熱急冷構造とするために熱伝導率の高い材料であるAg又はそれにPd,Cu,Au,Nd及びBiから選ばれる少なくとも1種の金属元素を0.5モル%以下の濃度で添加したAg合金がより好ましい。   The reflective layer is not particularly limited, and an Al alloy, an Al alloy, Au, Ag, or an Ag alloy to which at least one metal element selected from Pd, Cu, Au, Nd, and Bi is added is used. . Among them, in particular, at least one metal element selected from Ag, which is a material having high thermal conductivity, and Pd, Cu, Au, Nd, and Bi, in order to make the phase change optical recording medium have a rapid thermal quenching structure. An Ag alloy to which is added at a concentration of 0.5 mol% or less is more preferable.

次に本発明に係る相変化型光記録媒体保護層の製造方法について説明する。本発明の相変化型光記録媒体の構造で説明したように透明基板上に保護層、記録層、保護層及び反射層を順次積層する。   Next, a method for manufacturing the phase change optical recording medium protective layer according to the present invention will be described. As described in the structure of the phase change optical recording medium of the present invention, a protective layer, a recording layer, a protective layer, and a reflective layer are sequentially laminated on a transparent substrate.

まず保護層の成膜に使用するスパッタリングターゲットについて説明する。本発明に係る保護層の成分である酸化亜鉛粉末、酸化ニオブ粉末、酸化タンタル粉末を原料として焼結体を製造する。一般に焼結体の製造には種々の方法が用いられるが、この中で所望の密度及び強度を有する焼結体を得るためには、低温で焼結できるホットプレス(高温高圧プレス)法が好ましい。市販の酸化亜鉛粉末、酸化ニオブ粉末、酸化タンタル粉末を所定の組成割合に配合し、蒸留水を分散剤として粉砕装置で混合、乾燥、解砕した後、ホットプレス用黒鉛型に充填し、ホットプレス装置を用いて、真空下所定温度と所定圧力で焼結を行う。   First, a sputtering target used for forming a protective layer will be described. A sintered body is produced using zinc oxide powder, niobium oxide powder, and tantalum oxide powder, which are components of the protective layer according to the present invention, as raw materials. In general, various methods are used for producing a sintered body, and in order to obtain a sintered body having a desired density and strength, a hot press (high temperature and high pressure press) method capable of sintering at a low temperature is preferable. . Commercially available zinc oxide powder, niobium oxide powder, and tantalum oxide powder are blended in the prescribed composition ratio, mixed with a pulverizer using distilled water as a dispersant, dried and pulverized, then filled into a graphite mold for hot press, Sintering is performed at a predetermined temperature and a predetermined pressure in a vacuum using a pressing device.

上記ホットプレス法に用いる原料粉末の粒度は、特に限定されるものでは無いが、レーザー散乱法(マイクロトラック X100)による平均粒径0.5〜30μmが好ましい。また、その条件は、特に限定されるものではないが、温度は原料粉末が化合物を形成しない温度領域、800〜1200℃、また、圧力は、15〜50MPaが好ましい。この様にして得られたターゲットは酸素不足状態とはなっていない。   Although the particle size of the raw material powder used for the said hot press method is not specifically limited, The average particle diameter of 0.5-30 micrometers by a laser scattering method (Microtrac X100) is preferable. The conditions are not particularly limited, but the temperature is preferably a temperature region where the raw material powder does not form a compound, 800 to 1200 ° C., and the pressure is preferably 15 to 50 MPa. The target thus obtained is not in an oxygen-deficient state.

次にこのようにして得られた保護層成膜用スパッタリングターゲットを使用して保護層をスパッタ法で形成する方法について説明する。一般に、透明な酸化物層を成膜するときには化学量論組成より酸素不足のスパッタリングターゲットを用いて、スパッタリングガス中に酸素を添加する反応性スパッタリングを行うが、酸素ガス添加により成膜速度は著しく低下する。本発明では、酸素不足状態になっていないターゲットを用い、スパッタリングガス中に酸素ガスを添加することなく、スパッタリングするため、工業的量産性のある成膜速度が得られる。   Next, a method for forming a protective layer by sputtering using the protective layer-forming sputtering target thus obtained will be described. In general, when forming a transparent oxide layer, reactive sputtering is performed by adding oxygen to the sputtering gas using a sputtering target that is oxygen-deficient than the stoichiometric composition. descend. In the present invention, sputtering is performed using a target that is not in an oxygen-deficient state without adding oxygen gas to the sputtering gas, so that a film formation rate with industrial mass productivity can be obtained.

上記成膜に使用できるスパッタリング装置は、特に限定されるものでは無く、RFスパッタ装置、DCスパッタ装置等が用いられる。   A sputtering apparatus that can be used for the film formation is not particularly limited, and an RF sputtering apparatus, a DC sputtering apparatus, or the like is used.

以下に、実施例及び比較例によって本発明を更に詳細に説明するが、本発明はこれら実施例によってなんら限定されるものでは無い。なお、実施例及び比較例で用いた金属の分析法、及び酸化物の屈折率と光学的吸収率の評価法は、以下の通りである。
(1)金属の分析:ICP発光分析法で行った。
(2)酸化物保護層の屈折率測定:エリプソメータ(溝尻光学製)を用いて、波長633 nmの光で行った。
(3)酸化物保護層の光学的吸収率の測定:膜の透過率と反射率を分光光度計(島津製作 所製 UV−4000)を用いて波長250〜1000nmの間で測定した。
(4)成膜速度の評価:所定の成膜時間での膜厚を触針式の表面粗さ計(東京精密製 S URFCOM)を用いて測定し、算出した。
(5)熱安定性の評価:Si基板上に酸化物保護層を2000Å積層し、その上に5mm 角に成形したAgInSbTeを置いて、RTA処理炉(真空理工製、mila− 3000)を用いて窒素雰囲気中で720℃10分の加熱を行ってAg4In6S b60Te30を溶融させた。アニール後の界面の状態を目視で反応痕が殆ど無い ものを◎、反応痕が接触面積の30%以下を○、反応痕が接触面積の30%を越え るものを×として熱安定性を判定した。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. In addition, the analysis method of the metal used by the Example and the comparative example, and the evaluation method of the refractive index and optical absorptance of an oxide are as follows.
(1) Metal analysis: ICP emission analysis was performed.
(2) Refractive index measurement of oxide protective layer: Using an ellipsometer (manufactured by Mizojiri Optical Co., Ltd.), the measurement was performed with light having a wavelength of 633 nm.
(3) Measurement of optical absorptance of oxide protective layer: The transmittance and reflectance of the film were measured between 250 and 1000 nm using a spectrophotometer (UV-4000 manufactured by Shimadzu Corporation).
(4) Evaluation of film formation rate: The film thickness at a predetermined film formation time was measured and calculated using a stylus type surface roughness meter (SURFCOM manufactured by Tokyo Seimitsu).
(5) Evaluation of thermal stability: 2,000 oxide protective layers were laminated on a Si substrate, and AgInSbTe formed into a 5 mm square was placed thereon, using an RTA treatment furnace (manufactured by Vacuum Riko, mila-3000). Ag4In6Sb60Te30 was melted by heating at 720 ° C. for 10 minutes in a nitrogen atmosphere. Thermal stability is judged by visually observing the interface after annealing with almost no reaction mark ◎, reaction mark 30% or less of contact area ○, reaction mark exceeding 30% of contact area × did.

実施例及び比較例では、表1に記載した原料配合A〜Lによって作成したターゲットを用いた。Nb25粉末は多木化学製(平均粒径は3μm)、Ta25粉末は多木化学製(平均粒径は0.8μm)、ZnO粉末は白水化学製(JIS1種、比面積5m2/g)、及びZnS粉末は堺化学製(平均粒径0.75μm)の市販品を用いた。 In the examples and comparative examples, the targets prepared by the raw material blends A to L described in Table 1 were used. Nb 2 O 5 powder is manufactured by Taki Chemical (average particle size is 3 μm), Ta 2 O 5 powder is manufactured by Taki Chemical (average particle size is 0.8 μm), ZnO powder is manufactured by Hakusui Chemical (JIS Class 1, specific area) 5m2 / g) and ZnS powders were commercially available from Sakai Chemical (average particle size of 0.75 μm).

Figure 2005174402
(実施例1)
表1に従い、所定の組成のターゲットを作製し、これを用いて成膜を行い、その後得られた酸化物保護層の膜特性を評価した。
(1)ターゲットの作製
表1に示したとおり原料配合Aの割合で酸化亜鉛粉末、酸化タンタル粉末、酸化ニオブ粉末を配合し、蒸留水を分散剤としてボールミルで混合後、混合物を乾燥した。次に、この乾燥物を黒鉛製のホットプレス型に充填し、ホットプレス装置中で真空下1000℃にて1時間保持して焼結した。このときのホットプレス圧力は19.6MPaであった。このときに得られた焼結体密度は5.45g/cm3であった。得られた焼結体を直径102mm、厚さ5mmの寸法に機械加工し、ターゲットを作製した。ターゲットは銅製のバッキングプレートにボンディングした。
Figure 2005174402
(Example 1)
According to Table 1, a target having a predetermined composition was prepared, and a film was formed using the target, and then the film properties of the obtained oxide protective layer were evaluated.
(1) Preparation of target As shown in Table 1, zinc oxide powder, tantalum oxide powder, and niobium oxide powder were blended in the proportion of raw material blend A, mixed with distilled water using a ball mill as a dispersant, and then the mixture was dried. Next, the dried product was filled in a graphite hot press mold and sintered by holding it at 1000 ° C. for 1 hour in a hot press apparatus. The hot press pressure at this time was 19.6 MPa. The density of the sintered body obtained at this time was 5.45 g / cm 3. The obtained sintered body was machined to dimensions of 102 mm in diameter and 5 mm in thickness to produce a target. The target was bonded to a copper backing plate.

(2)酸化物保護層の成膜
つぎに、前記ターゲットをマグネトロンRFスパッタリング装置(アネルバ製SPF210H)に取り付けて、成膜を行った。このときの条件は投入電力をDC250W(3.3W/cm2)、到達真空度は2×10-4Pa、酸素ガスを添加することなくArを入れてスパッタリング全圧力を0.71Paとした。尚、基板にはスライドガラス(MATUNAMI製S−1111)とSi(100)基板を用いた。また、基板に対しては意図的な加熱は行わなかった。得られる酸化物保護層の膜厚が約100nmとなるように行った。
(2) Formation of oxide protective layer Next, the target was attached to a magnetron RF sputtering apparatus (SPF210H manufactured by Anelva) to form a film. The conditions at this time were DC250 W (3.3 W / cm 2) input power, the ultimate vacuum was 2 × 10 −4 Pa, Ar was added without adding oxygen gas, and the total sputtering pressure was 0.71 Pa. Note that a slide glass (S-1111 manufactured by MATUNAMI) and a Si (100) substrate were used as the substrate. In addition, the substrate was not intentionally heated. The thickness of the obtained oxide protective layer was set to about 100 nm.

(3)酸化物保護層の評価
得られた酸化物保護層の屈折率、光学的吸収率、及び成膜速度を求めた。その結果を表2に示す。なお、成膜速度はZnSにSiO2を30モル%配合して得られたターゲットを用いて、上記と同様に行って得られた成膜速度を1として相対値で表す。
(3) Evaluation of oxide protective layer The refractive index of the obtained oxide protective layer, the optical absorption factor, and the film-forming speed | rate were calculated | required. The results are shown in Table 2. The film formation rate is expressed as a relative value with the film formation rate obtained in the same manner as described above using a target obtained by blending 30 mol% of SiO2 with ZnS.

(実施例2〜6、比較例1〜5)
ターゲットの作成において原料粉末の配合を前記表1のB〜Lの割合とした以外は実施例1と同様に行い、得られた保護層の屈折率、光学的吸収率、及び成膜速度を求めた。結果を表2に示す。
(Examples 2-6, Comparative Examples 1-5)
The target powder was prepared in the same manner as in Example 1 except that the raw material powder was blended in the proportions B to L in Table 1 above, and the refractive index, optical absorption rate, and film formation rate of the obtained protective layer were determined. It was. The results are shown in Table 2.

Figure 2005174402
表2の実施例1〜6において、酸化亜鉛含有量が50モル%〜90モル%で残りが酸化ニオブ、酸化タンタルである本発明の保護層は、高屈折率で可視光領域の吸収が少なく透明性の高いの良好な膜特性を有し、また十分な工業的量産性で保護層を成膜することができることがわかる。
Figure 2005174402
In Examples 1 to 6 in Table 2, the protective layer of the present invention having a zinc oxide content of 50 mol% to 90 mol% and the remainder being niobium oxide and tantalum oxide has a high refractive index and little absorption in the visible light region. It can be seen that the protective layer can be formed with high transparency and good film characteristics and sufficient industrial mass productivity.

これに対して、比較例1〜5のように酸化亜鉛含有量が50モル%未満あるいは90モル%より多い保護層は、可視光領域の波長400nmにおける光学的吸収率が5%以上あり透明性が低下してしまうことがわかる。また、比較例3〜5のようにZnO含有量が50%未満と少なくなると記録層との反応が発生し、膜の安定性が不十分となることがわかる。
(実施例7〜9)
長期保管による保護層性能劣化を評価するため耐候性評価を行った。完全なバリア層となるガラスを用いて、その上に反射層さらに保護層を成膜して試料を作成した。
On the other hand, the protective layer having a zinc oxide content of less than 50 mol% or more than 90 mol% as in Comparative Examples 1 to 5 has an optical absorptance of 5% or more at a wavelength of 400 nm in the visible light region and is transparent. It turns out that falls. It can also be seen that when the ZnO content is less than 50% as in Comparative Examples 3 to 5, a reaction with the recording layer occurs and the stability of the film becomes insufficient.
(Examples 7 to 9)
A weather resistance evaluation was performed to evaluate the deterioration of the protective layer performance due to long-term storage. Using a glass as a complete barrier layer, a reflective layer and a protective layer were formed thereon to prepare a sample.

まず、RFマグネトロンスパッタ装置(アネルバ製 SPF210H)に直径102mmのAgターゲットを取り付けて、スライドガラス(MATUNAMI製 S−1111)上に膜厚100nmになるように反射層を成膜した。次に、上記原料配合A、B、Cの酸化物焼結体ターゲットを取り付けて、反射層上に100nmの保護層を形成した。その後、得られた試料を恒温恒湿槽に入れて、温度80℃、湿度80%の条件で500時間保持して、保持前後の反射率を測定して保持後の反射率から保持前の反射率を引いた差を求めた。結果を表3に示す。
(実施例10〜12)
反射層の成膜において濃度0.1モル%AuのAg合金ターゲットを用いた以外は、それぞれ実施例7〜9と同様に行った。その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表3に示す。
(実施例13〜15)
反射層の成膜において濃度0.1モル%PdのAg合金ターゲットを用いた以外は、それぞれ実施例7〜9と同様に行った。その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表3に示す。
(比較例6〜8)
実施例7,10,13と同様の条件で反射層を成膜して試料を作成した。保護層はZnS粉末にSiO2粉末を30モル%加えた原料配合Lのターゲットにより成膜した。その後、恒温恒湿槽保持前後の反射率を測定しその差を求めた。結果を表3に示す。
First, an Ag target having a diameter of 102 mm was attached to an RF magnetron sputtering apparatus (SPF210H manufactured by Anelva), and a reflective layer was formed on a slide glass (S-1111 manufactured by MATUNAMI) so as to have a film thickness of 100 nm. Next, the oxide sintered compact target of the said raw material mixing | blending A, B, and C was attached, and the protective layer of 100 nm was formed on the reflective layer. After that, the obtained sample is put in a constant temperature and humidity chamber, held at a temperature of 80 ° C. and a humidity of 80% for 500 hours, the reflectance before and after holding is measured, and the reflectance before holding is reflected from the reflectance after holding. The difference minus the rate was determined. The results are shown in Table 3.
(Examples 10 to 12)
Except that an Ag alloy target having a concentration of 0.1 mol% Au was used in the formation of the reflective layer, it was performed in the same manner as in Examples 7 to 9, respectively. Thereafter, the reflectance before and after holding the constant temperature and humidity chamber was measured to obtain the difference. The results are shown in Table 3.
(Examples 13 to 15)
The reflective layer was formed in the same manner as in Examples 7 to 9 except that an Ag alloy target having a concentration of 0.1 mol% Pd was used. Thereafter, the reflectance before and after holding the constant temperature and humidity chamber was measured to obtain the difference. The results are shown in Table 3.
(Comparative Examples 6-8)
Samples were prepared by forming a reflective layer under the same conditions as in Examples 7, 10, and 13. The protective layer was formed with a target of raw material blend L in which 30 mol% of SiO 2 powder was added to ZnS powder. Thereafter, the reflectance before and after holding the constant temperature and humidity chamber was measured to obtain the difference. The results are shown in Table 3.

Figure 2005174402
表3の実施例7〜15において、本発明の保護層では、反射率の変化は0.5%以下と小さく、長期保管時の耐候性が優れていることがわかる。一方、従来から一般的に使用されているZnS系の保護層では反射率の低下が大きく膜の安定性が不十分であることがわかる。



























Figure 2005174402
In Examples 7-15 of Table 3, in the protective layer of this invention, the change of a reflectance is as small as 0.5% or less, and it turns out that the weather resistance at the time of long-term storage is excellent. On the other hand, it can be seen that ZnS-based protective layers generally used in the past have a large decrease in reflectivity and insufficient film stability.



























Claims (3)

透明基板上に保護層、記録層、保護層および反射層を積層する構造の相変化型光記録媒体において、保護層が酸化亜鉛と酸化ニオブ及び/又は酸化タンタルの混合物からなり、混合物の酸化亜鉛含有量が50モル%〜90モル%であり、かつ高屈折率で可視光領域において透明性を有することを特徴とする相変化光記録媒体の保護層。   In a phase change optical recording medium having a structure in which a protective layer, a recording layer, a protective layer and a reflective layer are laminated on a transparent substrate, the protective layer comprises a mixture of zinc oxide and niobium oxide and / or tantalum oxide, and the mixture of zinc oxide A protective layer for a phase change optical recording medium having a content of 50 mol% to 90 mol% and having a high refractive index and transparency in the visible light region. 透明基板上に保護層、記録層、保護層および反射層を順次積層して得られる相変化型光記録媒体において、保護層として請求項1記載の保護層を用いたことを特徴とする相変化型記録媒体。   In a phase change optical recording medium obtained by sequentially laminating a protective layer, a recording layer, a protective layer and a reflective layer on a transparent substrate, the phase change characterized by using the protective layer according to claim 1 as the protective layer Type recording medium. 前記相変化型光記録媒体において、酸化亜鉛と酸化ニオブ及び/又は酸化タンタルを含むスパッタリングターゲットを用い酸素添加無しにスパッタリングすることにより成膜することを特徴とするの相変化型光記録媒体保護層の製造方法。





















In the phase change optical recording medium, the phase change optical recording medium protective layer is formed by sputtering without adding oxygen using a sputtering target containing zinc oxide and niobium oxide and / or tantalum oxide. Manufacturing method.





















JP2003409799A 2003-12-09 2003-12-09 Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer Pending JP2005174402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003409799A JP2005174402A (en) 2003-12-09 2003-12-09 Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003409799A JP2005174402A (en) 2003-12-09 2003-12-09 Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer

Publications (1)

Publication Number Publication Date
JP2005174402A true JP2005174402A (en) 2005-06-30

Family

ID=34731035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003409799A Pending JP2005174402A (en) 2003-12-09 2003-12-09 Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer

Country Status (1)

Country Link
JP (1) JP2005174402A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007063800A1 (en) * 2005-12-02 2009-05-07 パナソニック株式会社 Optical information recording medium, recording / reproducing method and recording / reproducing apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007063800A1 (en) * 2005-12-02 2009-05-07 パナソニック株式会社 Optical information recording medium, recording / reproducing method and recording / reproducing apparatus
JP4612689B2 (en) * 2005-12-02 2011-01-12 パナソニック株式会社 Optical information recording medium, recording / reproducing method and recording / reproducing apparatus
US8110273B2 (en) 2005-12-02 2012-02-07 Panasonic Corporation Optical information recording medium, recording/reproducing method thereof and recording/reproducing apparatus

Similar Documents

Publication Publication Date Title
EP1107244B1 (en) Optical recording medium and production method of the same
TWI469143B (en) Information recording medium and method for producing the same
US8758497B2 (en) Sputtering target of sintered Ti—Nb based oxide, thin film of Ti—Nb based oxide, and method of producing the thin film
TW200820252A (en) Sputtering target and manufacturing method therefor, and recordable optical recording medium
JP3533333B2 (en) Sputtering target for interference film of optical recording medium and method of manufacturing the same
EP1566801B1 (en) Sputtering target for manufacturing an optical recording medium
JP2005135568A (en) Information recording medium, its manufacturing method, and sputtering target
JP2003166052A (en) Sputtering target
JP4678062B2 (en) Optical media and manufacturing method thereof
JP4023432B2 (en) Phase change optical recording medium, method for producing the same, and sputtering target for forming a protective layer used therefor
JP2005174402A (en) Protecting layer for phase change optical recording medium, and method of manufacturing protecting layer
JP2005317093A (en) Sputtering target for forming protection layer and its manufacturing method
JP2005243187A (en) Protective film for optical disk, and sputtering target for forming protective film
JP4817137B2 (en) Sputtering target and optical recording medium
JP2005116038A (en) Phase change optical recording medium, its manufacturing method, and sputtering target for forming protective layer in the method
JP4735734B2 (en) Sputtering target for optical media, method for producing the same, optical media, and method for producing the same
JP5012984B2 (en) Sputtering target for reflective layer of optical media and method for producing the same
JP3868738B2 (en) Optical information recording medium, method for producing the same, and sputtering target
JP2011134438A (en) Sputtering target, interface layer film for phase change optical recording medium using same, method of producing same, and phase change optical recording medium
JP3972279B2 (en) Optical recording medium dielectric protective film for protecting phase change recording film of recordable and erasable optical recording medium
JP5847308B2 (en) Zinc oxide-based sintered body, zinc oxide-based sputtering target comprising the sintered body, and zinc oxide-based thin film obtained by sputtering the target
JP2004158048A (en) Sputtering target and optical recording medium
JP2007239061A (en) Sputtering target, interlayer film for phase change optical recording medium using the same and its manufacturing method, and phase change optical recording medium
JP2006028537A (en) Optical disk protective film, sputtering target for depositing protective film, and method for manufacturing the sputtering target
JPH1029373A (en) Optical data recording medium