JP4022843B2 - Robot control method and control apparatus - Google Patents

Robot control method and control apparatus Download PDF

Info

Publication number
JP4022843B2
JP4022843B2 JP16939998A JP16939998A JP4022843B2 JP 4022843 B2 JP4022843 B2 JP 4022843B2 JP 16939998 A JP16939998 A JP 16939998A JP 16939998 A JP16939998 A JP 16939998A JP 4022843 B2 JP4022843 B2 JP 4022843B2
Authority
JP
Japan
Prior art keywords
workpiece
axis
robot
arm
seconds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16939998A
Other languages
Japanese (ja)
Other versions
JP2000006069A5 (en
JP2000006069A (en
Inventor
隆一 守田
誠一郎 福島
幸博 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP16939998A priority Critical patent/JP4022843B2/en
Publication of JP2000006069A publication Critical patent/JP2000006069A/en
Publication of JP2000006069A5 publication Critical patent/JP2000006069A5/en
Application granted granted Critical
Publication of JP4022843B2 publication Critical patent/JP4022843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、搬送装置の機側に配置されて、前記搬送装置によって搬送されているワークに対して所定の作業を行うロボットの制御方法および制御装置に関する。
【0002】
【従来の技術】
例えば、ベルトコンベアのような搬送装置で搬送されるワークをロボットで取り上げるための制御方法として、特開昭60−217085号公報に開示されている方法があった。これは、次のような方法である。
ベルトコンベアの上であって、ロボットの設置場所に対して上流側にあたる所定の位置に視覚装置を備え、前記視覚装置で前記ベルトコンベア上を搬送されるワークの位置と向きと速度を計測し、計測した前記ワークの位置と向きと速度から、所定の時間(t秒とする)後の前記ワークの位置と向きを計算し、前記ロボットがt秒後に前記位置で前記ワークを掴むように制御する。
【0003】
【発明が解決しようとする課題】
ところが、この従来の制御方法では、次のような問題がある。第1に、ワークが視覚装置の下を通過してから、所定の時間(t秒)の経過後にロボットがワークを掴むようにしているので、制御開始時のロボットのアームの位置や姿勢の条件によっては、t秒間にワークを掴める位置まで移動できず、ワークを掴み損ねると言う問題がある。逆に、姿勢の条件によってはもっと早いタイミングでワークを掴める場合もあるが、この場合でも、ロボットはt秒が経過するまでワークを掴めない。言い換えれば、ワークを掴み損ねることがないように、最悪の条件に合わせて、ロボットのスケジュールとコンベアの速度を決定しているので、ロボット作業の能率が悪いという問題がある。第2に、この従来の制御方法では、ワークが視覚装置の下を通過してから、ロボットがワークを掴むまでの間、つまりt秒後までは、コンベアが一定の速度で移動することを前提条件にしているが、現実のコンベアは滑り等の原因により、移動速度が変化するので、計算によって求めたt秒後の位置と実際の位置に誤差が生じ、正確にワークを掴めないという問題がある。そこで、本発明は搬送中のワークにロボットのエンドエフェクタが最短時間で到達できるように制御するロボットの制御方法およびその制御装置を提供するものである。また、ワークの搬送速度の変動に応じて、ロボットの動作を修正するロボットの制御方法およびその制御装置を提供するものである。
【0004】
【課題を解決するための手段】
上記の問題を解決するために、本発明は設置場所に対して垂直軸回りに回転する旋回軸と、前記旋回軸に搭載され、前後及び上下に揺動するアームと、前記アームの先端に取り付けられた直交3軸回りに回動自在なエンドエフェクタと、を備え、ワークを搬送する搬送装置の近傍に配置されて、前記搬送装置によって搬送されている前記ワークに対して所定の作業を行うロボットであって、かつ、前記旋回軸の回転速度が前記アームを前後及び上下に揺動させる軸と前記直交3軸とに比べて同等か低速に設定され、前記旋回軸の回転角度が前記アームを前後及び上下に揺動させる軸と前記直交3軸とに比べて大きいロボットの制御方法において、前記搬送装置の搬送速度を計測し、前記ワークの位置を計測し、前記設置場所の平面配置図において前記ロボットの旋回軸を原点とし、前記搬送装置の移送方向に平行な軸をX軸とした直交座標系における、前記旋回軸によって回転する前記アームの前記X軸に対する角度及び角速度から求まるt秒後の前記アームの前記X軸に対する角度と、前記直交座標系における前記t秒後の前記エンドエフェクタの基準点の前記旋回軸まわりの回転半径がRであると仮定したときの回転半径Rとから得られる前記t秒後の前記基準点の座標Et、前記搬送速度と前記ワークの位置とから得られる前記直交座標系におけるt秒後の前記ワークの座標Atと、から前記基準点の座標Etと前記ワークの座標Atとが一致する時間t1及びそのときの座標Abを計算し、前記エンドエフェクタの基準点が前記t1秒後に前記座標Abに向かうように前記ロボットを動作させるものである。また、前記搬送装置の搬送距離を周期的に計測し、その度に前記地点を計算して修正し、前記ロボットの前記エンドエフェクタを修正した前記地点に向けて動作させるものである。また、前記ワークの位置を視覚センサを用いて計測するものである。
【0005】
【発明の実施の形態】
図1は本発明の実施例を示す搬送装置とロボットの平面配置図であり、図2は本発明の実施例を示すフローチャートであり、図3は視覚センサで捉えたワークの画像を示す説明図であり、図4は搬送対象のワークの位置を示す前記ロボットを基準とする座標を説明する説明図である。以下、図に従って本発明の実施例を説明する。
図1において、1は、例えばベルトコンベアのような搬送装置であり、ワーク2を図の左側から右側へ搬送する装置である。3はエンコーダであり、搬送装置1の図示しない駆動軸に取り付けられて、前記駆動軸の回転角度を計測する装置である。エンコーダ3の計測値から、搬送装置1上のワーク2の移動速度、すなわち搬送速度、およびワーク2の移動距離、すなわち搬送距離を求めることができる。4はロボットであり、垂直軸S回りに自在に旋回する。ロボット4は前後および上下に揺動するアーム4aを備え、アーム4aの先端にはエンドエフェクタ5が直交3軸回りに回動自在に取付けられている。このように構成されているので、ロボット4は、垂直軸Sの回転およびアーム4aの前後および上下の揺動によって任意の姿勢を取ることができる。また前記直交3軸の回動によって、エンドエフェクタ5の方向、傾きを任意に決める事ができる。6はロボット4の制御盤である。また、ロボット4は搬送装置1の機側に配置され、搬送装置1上を搬送されて来るワーク2をエンドエフェクタ5で掴んで、図示しない別の装置まで運ぶものである。7は視覚センサであり、搬送装置1の上流側に、搬送装置1を見下ろすように配置されている。7aは視覚センサ7の視野を示す。視覚センサ7は例えばCCDカメラと画像処理装置を組み合わせて、前記CCDカメラで捉えた対象物の画像を解析して、前記対象物の位置と姿勢を計測する装置である。視覚センサ7とエンコーダ3の信号線は、それぞれロボットの制御盤6に接続されている。
【0006】
次に、図2および図3に従って、ロボット4の制御方法を説明する。
図2ににおいて、ステップS1は、搬送装置1の搬送速度を算出する段階であり、時刻taにおけるエンコーダ3の出力Caと、時刻tbにおけるエンコーダ3の出力Cbから、搬送装置1の移送速度Vを次式によって求める。
【0007】
V=Kc*(Cb−Ca)/(tb−ta) (式1)
【0008】
ここで、Kcはエンコーダ3の1パルスあたりの搬送装置1の移送距離を示す係数であり、搬送装置1の機械的構成によって決まる定数である。ワーク2が視覚センサ7の視野7aに入って来ると、ステップS2を実行する。ステップS2は、ワーク2の位置と姿勢を求める段階である。図3に示すように、視覚センサ7はワーク2の画像を基に、視覚センサ7の視野7aに固定された座標系によるワーク2の重心の座標G(X0 ,Y0 )を求める。またワーク2の正規の姿勢に対する角度θも算出する。
次のステップS3では、ロボット4の先端に取り付けたエンドエフェクタ5がワーク2を掴む位置を求める。エンドエフェクタ5に固定された点であって、ワーク2を掴む時の位置合わせの基準となる点をエンドエフェクタ5の基準点と言うことにする。つまり、このエンドエフェクタ5の向きを角度θ分だけ修正し、エンドエフェクタ5の基準点をワーク2の重心と一致させれば、エンドエフェクタ5はワーク2を正しく掴める訳である。図4ではこのワーク2を掴む位置を求める方法を説明するために、搬送装置1とワーク2とロボット4の位置関係を、ロボット4の旋回軸Sを原点とする直交座標系で表示している。図4において、半径Laと半径Lbはエンドエフェクタ5の基準点の到達限界を示す。つまり、エンドエフェクタ5の基準点は半径Laと半径Lbの間で動作する。今、ステップS3の制御を始める時点において、ワーク2は座標Ao( p,q)で示す位置にある。ここで使う座標系はロボット4の旋回軸Sを原点とし、搬送装置1の移送方向に平行な軸をX軸とする直交座標系である。視覚センサ7は搬送装置1およびロボット4に対して固定されているから、スッテプS2で求めた視覚センサ7の視野7aに固定された座標系によるワーク2の座標を前記直交座標系に変換するのは容易である。またこの時の搬送装置1の搬送速度はステップS1で求めたVであるから、t秒後のワーク2の位置を示す座標はAt(p+V*t,q)で得られる。
また、ステップS3を開始する時点において、ロボット1の旋回軸の角度をαとし、旋回軸の角速度をωとすると、t秒後の旋回軸の角度はα+ω*tである。ここで、エンドエフェクタ6の基準点の旋回軸Sまわりの回転半径をRとすると、エンドエフェクタ6の基準点の座標はEt(R*cos(α+ω*t),R*sin(α+ω*t))で得られる。
点Aと点Eの座標が一致する点を求めるのであるから、次式が得られる。
【0009】
p+V*t=R*cos(α+ω*t) (式2)
【0010】
q=R*sin(α+ω*t) (式3)
【0011】
式2と式3からRを消去すると、次式が得られる。
【0012】
p+V*t=q/tan(α+ω*t) (式4)
【0013】
式4を解いて得られるtの解をt1とすると、ワーク2とエンドエフェクタ6が最短時間で出会える点の座標はAb(p+V*t1,q)で得られる。この点にエンドエフェクタ5の基準点を持ってきた時の、基準点の旋回軸Sまわりの回転半径Rbは次式で得られる。
【0014】
Rb=q/sin(α+ω*t1) (式5)
【0015】
Rbの値はロボット4の動作範囲で制限されるから、La<Rb<Lbでなければならない。RbがLa<Rb<Lbの条件を満たさないときは、「異常」として図示しない上位の制御装置に信号を送り、所定の異常処理のシーケンスを実行する。
ここで、t1秒の間にロボット1のアームの各軸を操作して、エンドエフェクタ6の旋回軸S回りの回転半径がRbになるような姿勢を取れるか否かと言う問題が残っている。一般に垂直多関節ロボットにおいては、旋回軸の回転速度はアームの各揺動軸に比べて、同等かむしろ低速に設定されている。また、旋回軸の回転角度がアームの各揺動軸に比べて大きい。従って、エンドエフェクタ5とワーク2を最短時間で出会わせる問題を考える時は、旋回軸の動作時間がクリティカルな問題になる。つまり、実用上は旋回軸の動作が間に合えば、アームの各揺動 軸の動作は当然に間に合うと考えてよい。
このようにして、ワーク2とエンドエフェクタ5が最短時間で出会える点の座標Abと時間t1が決まるので、t1秒後にエンドエフェクタ5の基準点が
1秒後に点Abに来るように、ロボット4に指令する。つまり、点Abを移動目標とする動作指令をロボット4に与える。
【0016】
ステップS4は、エンドフェクタ5を点Abに向けて動かし始めたあと、搬送装置1の搬送距離を周期的に計測して、エンドエフェクタ5の動作の目標を修正する段階である。ステップS4の制御の詳細は次のようなものである。
ステップS3が終了して、エンドエフェクタ5が点Abに向かって動作を開始したら、周期T秒(但しT<t1)で周期的にエンコーダ2の出力パルスCTmを取り込む、次にステップS1で計測した搬送装置1の移送速度Vから計算した、同じ時刻のパルスの値CTcを用いて目標Abの修正量ΔXを次式で求める。
【0017】
ΔX=(CTm−CTc)*Kc (式6)
【0018】
この修正量を用いて、エンドエフェクタ5の移動目標をAb’(p+CV*t1+ΔX,q)に変更する。以上のように、周期T秒ごとに搬送装置1の搬送距離を測定し、当初に計測した速度から求めた搬送距離と比較して、その差に応じて、移動目標を修正する。
以上の演算と制御は制御盤6によって行われる。
実施例の説明においては、搬送装置上のワークを掴み上げて移載するロボットに本発明を適用した例を示したが、搬送装置上のワークに対して、何らかの作業、例えば塗装、糊付け、組立、加工などを行うロボット一般に本発明を適用できることは言うまでもない。また、ワークの位置および姿勢を検出するセンサは視覚センサに限られない、同様の機能を持つセンサであれば他の形式のセンサであってもよい。
【0019】
【発明の効果】
以上述べたように、本発明によれば、エンドエフェクタが最短時間でワークに出会うようにロボットを制御するので、ロボットの動作に無駄がなく、ロボットの作業の能率が向上するいう効果がある。また、搬送装置の速度の変化に応じて、ロボットの移動目標を修正するので、ロボットがワークを逃すことがないという効果もある。
【図面の簡単な説明】
【図1】本発明の実施例を示す搬送装置とロボットの平面配置図である。
【図2】本発明の実施例を示すフローチャートである。
【図3】視覚センサで捉えたワークの画像の説明図である。
【図4】図4は搬送対象のワークの位置を示す前記搬送ロボットを基準とする座標を説明する説明図である。
【符号の説明】
1:搬送装置 2:ワーク
3:エンコーダ 4:ロボット
4a:アーム 5:エンドエフェクタ
6:制御盤 7:視覚センサ
7a:視覚センサの視野
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control method and a control device for a robot which is arranged on the machine side of a transfer device and performs a predetermined work on a work being transferred by the transfer device .
[0002]
[Prior art]
For example, as a control method for picking up a workpiece conveyed by a conveying device such as a belt conveyor with a robot, there is a method disclosed in Japanese Patent Laid-Open No. 60-217085. This is the following method.
A visual device is provided on a belt conveyor at a predetermined position on the upstream side with respect to the installation location of the robot, and the position, orientation, and speed of a workpiece conveyed on the belt conveyor by the visual device are measured, The position and orientation of the workpiece after a predetermined time (t seconds) is calculated from the measured position, orientation and speed of the workpiece, and control is performed so that the robot grasps the workpiece at the position after t seconds. .
[0003]
[Problems to be solved by the invention]
However, this conventional control method has the following problems. First, since the robot grabs the workpiece after a lapse of a predetermined time (t seconds) after the workpiece has passed under the visual device, depending on the robot arm position and posture conditions at the start of control, There is a problem that the workpiece cannot be moved to a position where the workpiece can be gripped in t seconds, and the workpiece cannot be gripped. Conversely, depending on the condition of the posture, the workpiece may be grasped at an earlier timing, but even in this case, the robot cannot grasp the workpiece until t seconds elapse. In other words, the robot schedule and the conveyor speed are determined in accordance with the worst conditions so as not to miss the workpiece, so that there is a problem that the efficiency of the robot operation is poor. Secondly, in this conventional control method, it is assumed that the conveyor moves at a constant speed from when the workpiece passes under the visual device until the robot grasps the workpiece, that is, after t seconds. Although it is a condition, because the moving speed of an actual conveyor changes due to slipping, etc., there is an error between the position after t seconds obtained by calculation and the actual position, and the workpiece cannot be grasped accurately. is there. Therefore, the present invention provides a robot control method and a control apparatus for controlling the robot so that the end effector of the robot can reach the workpiece being transported in the shortest time. Further, the present invention provides a robot control method and a control apparatus for correcting a robot operation according to fluctuations in the workpiece conveyance speed.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a pivot shaft that rotates about a vertical axis with respect to an installation location, an arm that is mounted on the pivot shaft, and swings back and forth and up and down, and is attached to the tip of the arm. And an end effector that is rotatable about three orthogonal axes, and is disposed in the vicinity of a transfer device that transfers a workpiece, and performs a predetermined operation on the workpiece that is transferred by the transfer device And the rotational speed of the pivot axis is set to be equal to or lower than that of the three orthogonal axes and the axis that swings the arm back and forth and up and down, and the rotational angle of the pivot axis In a robot control method that is larger than the axis that swings back and forth and up and down and the three orthogonal axes, the conveyance speed of the conveyance device is measured, the position of the workpiece is measured, and the plane layout of the installation location Oh T seconds determined from an angle and an angular velocity of the arm with respect to the X axis in an orthogonal coordinate system in which the rotation axis of the robot is the origin and the axis parallel to the transfer direction of the transfer device is the X axis. An angle of the rear arm with respect to the X axis, and a rotation radius R assuming that the rotation radius of the reference point of the end effector about the turning axis after the t seconds in the orthogonal coordinate system is R ; the coordinate Et of t seconds the reference point after, the conveying speed and the coordinates at and from the reference point coordinates of the workpiece after t seconds in the orthogonal coordinate system obtained from the position of the workpiece obtained from A time t1 at which Et and the coordinate At of the workpiece coincide with each other and a coordinate Ab at that time are calculated, and the reference point of the end effector is directed to the coordinate Ab after t1 seconds. It is intended to operate the serial robot. In addition, the transport distance of the transport device is periodically measured, the point is calculated and corrected each time, and the end effector of the robot is operated toward the corrected point. Further, the position of the workpiece is measured using a visual sensor.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a plan view of a transfer device and a robot according to an embodiment of the present invention, FIG. 2 is a flowchart illustrating an embodiment of the present invention, and FIG. 3 is an explanatory diagram illustrating an image of a work captured by a visual sensor. FIG. 4 is an explanatory diagram for explaining coordinates based on the robot indicating the position of the workpiece to be conveyed. Embodiments of the present invention will be described below with reference to the drawings.
In FIG. 1, reference numeral 1 denotes a conveying device such as a belt conveyor, which conveys the workpiece 2 from the left side to the right side in the drawing. Reference numeral 3 denotes an encoder which is attached to a drive shaft (not shown) of the transport device 1 and measures the rotation angle of the drive shaft. From the measured value of the encoder 3, the moving speed of the workpiece 2 on the conveying device 1, that is, the conveying speed, and the moving distance of the workpiece 2, that is, the conveying distance can be obtained. Reference numeral 4 denotes a robot that freely turns around a vertical axis S. The robot 4 includes an arm 4a that swings back and forth and up and down, and an end effector 5 is attached to the tip of the arm 4a so as to be rotatable around three orthogonal axes. Since it is configured in this manner, the robot 4 can take an arbitrary posture by rotating the vertical axis S and swinging the arm 4a back and forth and up and down. The direction and inclination of the end effector 5 can be arbitrarily determined by the rotation of the three orthogonal axes. Reference numeral 6 denotes a control panel of the robot 4. Further, the robot 4 is disposed on the machine side of the transport device 1 and grips the workpiece 2 transported on the transport device 1 with the end effector 5 and transports it to another device (not shown). A visual sensor 7 is arranged on the upstream side of the transport device 1 so as to look down at the transport device 1. Reference numeral 7 a denotes a visual field of the visual sensor 7. The visual sensor 7 is a device that, for example, combines a CCD camera and an image processing device, analyzes an image of the object captured by the CCD camera, and measures the position and orientation of the object. The signal lines of the visual sensor 7 and the encoder 3 are respectively connected to the control panel 6 of the robot.
[0006]
Next, a method for controlling the robot 4 will be described with reference to FIGS.
In FIG. 2, step S1 is a stage for calculating the transport speed of the transport apparatus 1, and the transfer speed V of the transport apparatus 1 is calculated from the output Ca of the encoder 3 at time ta and the output Cb of the encoder 3 at time tb. Obtained by the following equation.
[0007]
V = Kc * (Cb-Ca) / (tb-ta) (Formula 1)
[0008]
Here, Kc is a coefficient indicating the transfer distance of the transport device 1 per pulse of the encoder 3, and is a constant determined by the mechanical configuration of the transport device 1. When the work 2 enters the visual field 7a of the visual sensor 7, step S2 is executed. Step S2 is a stage for obtaining the position and posture of the workpiece 2. As shown in FIG. 3, the visual sensor 7 obtains coordinates G (X 0 , Y 0 ) of the center of gravity of the workpiece 2 based on the coordinate system fixed to the visual field 7 a of the visual sensor 7 based on the image of the workpiece 2. Also, an angle θ with respect to the normal posture of the work 2 is calculated.
In the next step S <b> 3, a position where the end effector 5 attached to the tip of the robot 4 grips the workpiece 2 is obtained. A point fixed to the end effector 5 and serving as a reference for alignment when the workpiece 2 is gripped is referred to as a reference point of the end effector 5. That is, if the direction of the end effector 5 is corrected by the angle θ and the reference point of the end effector 5 is made coincident with the center of gravity of the work 2, the end effector 5 can correctly grasp the work 2. In FIG. 4, in order to explain a method for obtaining the position where the workpiece 2 is gripped, the positional relationship among the transfer device 1, the workpiece 2, and the robot 4 is displayed in an orthogonal coordinate system with the turning axis S of the robot 4 as the origin. . In FIG. 4, the radius La and the radius Lb indicate the reach limit of the reference point of the end effector 5. That is, the reference point of the end effector 5 operates between the radius La and the radius Lb. Now, at the time of starting the control in step S3, the workpiece 2 is at a position indicated by coordinates Ao (p, q). The coordinate system used here is an orthogonal coordinate system in which the turning axis S of the robot 4 is the origin and the axis parallel to the transfer direction of the transport device 1 is the X axis. Since the visual sensor 7 is fixed with respect to the transfer device 1 and the robot 4, the coordinates of the workpiece 2 in the coordinate system fixed in the visual field 7a of the visual sensor 7 obtained in step S2 are converted into the orthogonal coordinate system. Is easy. Further, since the transport speed of the transport device 1 at this time is V obtained in step S1, the coordinates indicating the position of the work 2 after t seconds are obtained by At (p + V * t, q).
At the time of starting step S3, if the angle of the turning axis of the robot 1 is α and the angular velocity of the turning axis is ω, the angle of the turning axis after t seconds is α + ω * t. Here, assuming that the radius of rotation of the reference point of the end effector 6 around the turning axis S is R, the coordinates of the reference point of the end effector 6 are Et (R * cos (α + ω * t), R * sin (α + ω * t). ).
Since the point where the coordinates of the point A and the point E coincide is obtained, the following equation is obtained.
[0009]
p + V * t = R * cos (α + ω * t) (Formula 2)
[0010]
q = R * sin (α + ω * t) (Formula 3)
[0011]
Eliminating R from Equation 2 and Equation 3 yields:
[0012]
p + V * t = q / tan (α + ω * t) (Formula 4)
[0013]
If the solution of t obtained by solving Equation 4 is t1, the coordinates of the point where the workpiece 2 and the end effector 6 can meet in the shortest time can be obtained by Ab (p + V * t1, q). When the reference point of the end effector 5 is brought to this point, the rotation radius Rb around the turning axis S of the reference point is obtained by the following equation.
[0014]
Rb = q / sin (α + ω * t1) (Formula 5)
[0015]
Since the value of Rb is limited by the movement range of the robot 4, La <Rb <Lb must be satisfied. When Rb does not satisfy the condition of La <Rb <Lb, a signal is sent to an upper control device (not shown) as “abnormal” to execute a predetermined abnormality processing sequence.
Here, there remains a problem whether or not it is possible to operate each axis of the arm of the robot 1 during t1 seconds so that the end effector 6 can take a posture in which the turning radius around the turning axis S becomes Rb. In general, in a vertical articulated robot, the rotational speed of the turning axis is set to be equal or rather low compared to the swing axes of the arms. Further, the rotation angle of the turning shaft is larger than that of each swinging shaft of the arm. Therefore, when considering the problem of meeting the end effector 5 and the workpiece 2 in the shortest time, the operation time of the turning axis becomes a critical problem. In other words, in practice, if the movement of the pivot axis is in time, the movement of each swing axis of the arm can be considered to be in time.
In this way, the coordinates Ab and the time t1 at which the workpiece 2 and the end effector 5 can meet in the shortest time are determined, so that the reference point of the end effector 5 comes to the point Ab after 1 second after t1 seconds. Command. That is, an operation command with the point Ab as a movement target is given to the robot 4.
[0016]
Step S4 is a step of correcting the target of the operation of the end effector 5 by periodically measuring the transport distance of the transport device 1 after starting to move the end effector 5 toward the point Ab. Details of the control in step S4 are as follows.
When step S3 ends and the end effector 5 starts to move toward the point Ab, the output pulse CTm of the encoder 2 is periodically captured at a period of T seconds (where T <t1), and then measured at step S1. The correction amount ΔX of the target Ab is obtained by the following equation using the pulse value CTc at the same time calculated from the transfer speed V of the transport device 1.
[0017]
ΔX = (CTm−CTc) * Kc (Formula 6)
[0018]
Using this correction amount, the movement target of the end effector 5 is changed to Ab ′ (p + CV * t1 + ΔX, q). As described above, the transport distance of the transport device 1 is measured every cycle T seconds, compared with the transport distance obtained from the initially measured speed, and the movement target is corrected according to the difference.
The above calculation and control are performed by the control panel 6.
In the description of the embodiments, an example in which the present invention is applied to a robot that picks up and transfers a workpiece on a transfer device has been described. However, some work such as painting, gluing, and assembly is performed on the workpiece on the transfer device. Needless to say, the present invention can be applied to general robots for processing and the like. Further, the sensor for detecting the position and orientation of the workpiece is not limited to the visual sensor, but may be another type of sensor as long as it has a similar function.
[0019]
【The invention's effect】
As described above, according to the present invention, the robot is controlled so that the end effector meets the workpiece in the shortest time. Therefore, there is an effect that there is no waste in the operation of the robot and the efficiency of the robot operation is improved. In addition, since the movement target of the robot is corrected according to the change in the speed of the transfer device, there is an effect that the robot does not miss the workpiece.
[Brief description of the drawings]
FIG. 1 is a plan view of a transfer device and a robot according to an embodiment of the present invention.
FIG. 2 is a flowchart showing an embodiment of the present invention.
FIG. 3 is an explanatory diagram of an image of a work captured by a visual sensor.
FIG. 4 is an explanatory diagram for explaining coordinates on the basis of the transfer robot indicating the position of a workpiece to be transferred;
[Explanation of symbols]
1: Transfer device 2: Work 3: Encoder 4: Robot 4a: Arm 5: End effector 6: Control panel 7: Visual sensor 7a: Field of view of visual sensor

Claims (8)

設置場所に対して垂直軸回りに回転する旋回軸と、前記旋回軸に搭載され、前後及び上下に揺動するアームと、前記アームの先端に取り付けられた直交3軸回りに回動自在なエンドエフェクタと、を備え、ワークを搬送する搬送装置の近傍に配置されて、前記搬送装置によって搬送されている前記ワークに対して所定の作業を行うロボットであって、かつ、前記旋回軸の回転速度が前記アームを前後及び上下に揺動させる軸と前記直交3軸とに比べて同等か低速に設定され、前記旋回軸の回転角度が前記アームを前後及び上下に揺動させる軸と前記直交3軸とに比べて大きいロボットの制御方法において、
前記搬送装置の搬送速度を計測し、
前記ワークの位置を計測し、
前記設置場所の平面配置図において前記ロボットの旋回軸を原点とし、前記搬送装置の移送方向に平行な軸をX軸とした直交座標系における、前記旋回軸によって回転する前記アームの前記X軸に対する角度及び角速度から求まるt秒後の前記アームの前記X軸に対する角度と、前記直交座標系における前記t秒後の前記エンドエフェクタの基準点の前記旋回軸まわりの回転半径がRであると仮定したときの回転半径Rとから得られる前記t秒後の前記基準点の座標Et、前記搬送速度と前記ワークの位置とから得られる前記直交座標系におけるt秒後の前記ワークの座標Atと、から前記基準点の座標Etと前記ワークの座標Atとが一致する時間t1及びそのときの座標Abを計算し、
前記エンドエフェクタの基準点が前記t1秒後に前記座標Abに向かうように前記ロボットを動作させることを特徴とするロボットの制御方法。
A swivel shaft that rotates about a vertical axis with respect to the installation location, an arm that is mounted on the swivel shaft and swings back and forth and up and down, and an end that is rotatable about three orthogonal axes attached to the tip of the arm An effector, disposed in the vicinity of the transfer device for transferring the workpiece, and performing a predetermined operation on the workpiece being transferred by the transfer device, and the rotational speed of the pivot axis Is set to be equal to or lower than the axis that swings the arm back and forth and up and down and the three orthogonal axes, and the rotation angle of the pivot axis is orthogonal to the axis that swings the arm back and forth and up and down. In the robot control method, which is larger than the axis,
Measure the transport speed of the transport device,
Measure the position of the workpiece,
With respect to the X axis of the arm rotated by the pivot axis in an orthogonal coordinate system in which the pivot axis of the robot is the origin and the axis parallel to the transfer direction of the transfer device is the X axis in the plane layout of the installation location It is assumed that the angle of the arm with respect to the X axis after t seconds obtained from the angle and the angular velocity and the radius of rotation around the pivot axis of the reference point of the end effector after t seconds in the orthogonal coordinate system are R. rotation radius R, the coordinate Et of the reference point after the t seconds obtained from the coordinates at the workpiece after t seconds in the orthogonal coordinate system obtained from the position of the said transport speed workpiece when , The time t1 when the coordinate Et of the reference point and the coordinate At of the workpiece coincide with each other and a coordinate Ab at that time are calculated.
A robot control method, wherein the robot is operated such that a reference point of the end effector is directed to the coordinate Ab after t1 seconds.
前記搬送装置の搬送速度の変動を周期的に計測し、その度に前記地点を計算して修正し、前記エンドエフェクタが修正した前記地点に向かうように前記ロボットを動作させることを特徴とする請求項1に記載のロボットの制御方法。   The fluctuation of the conveying speed of the conveying device is periodically measured, the point is calculated and corrected each time, and the robot is operated so as to go to the point corrected by the end effector. Item 2. A robot control method according to Item 1. 前記ワークの位置を視覚センサを用いて計測することを特徴とする請求項1または請求項2に記載のロボットの制御方法。  The robot control method according to claim 1, wherein the position of the workpiece is measured using a visual sensor. 前記搬送装置の搬送速度を前記搬送装置の駆動軸に連結したエンコーダを用いて計測することを特徴とする請求項1から請求項3のいずれかに記載のロボットの制御方法。  The robot control method according to any one of claims 1 to 3, wherein the transport speed of the transport device is measured using an encoder connected to a drive shaft of the transport device. 設置場所に対して垂直軸回りに回転する旋回軸と、前記旋回軸に搭載され、前後及び上下に揺動するアームと、前記アームの先端に取り付けられた直交3軸回りに回動自在なエンドエフェクタと、を備え、ワークを搬送する搬送装置の近傍に配置されて、前記搬送装置によって搬送されている前記ワークに対して所定の作業を行うロボットであって、かつ、前記旋回軸の回転速度が前記アームを前後及び上下に揺動させる軸と前記直交3軸とに比べて同等か低速に設定され、前記旋回軸の回転角度が前記アームを前後及び上下に揺動させる軸と前記直交3軸とに比べて大きいロボットの制御装置において、
前記搬送装置の搬送速度を計測し、
前記ワークの位置を計測し、
前記設置場所の平面配置図において前記ロボットの旋回軸を原点とし、前記搬送装置の移送方向に平行な軸をX軸とした直交座標系における、前記旋回軸によって回転する前記アームの前記X軸に対する角度及び角速度から求まるt秒後の前記アームの前記X軸に対する角度と、前記直交座標系における前記t秒後の前記エンドエフェクタの基準点の前記旋回軸まわりの回転半径がRであると仮定したときの回転半径Rとから得られる前記t秒後の前記基準点の座標Et、前記搬送速度と前記ワークの位置とから得られる前記直交座標系におけるt秒後の前記ワークの座標Atと、から前記基準点の座標Etと前記ワークの座標Atとが一致する時間t1及びそのときの座標Abを計算し、
前記エンドエフェクタの基準点が前記t1秒後に前記座標Abに向かうように前記ロボットを動作させることを特徴とするロボットの制御装置。
A swivel shaft that rotates about a vertical axis with respect to the installation location, an arm that is mounted on the swivel shaft and swings back and forth and up and down, and an end that is rotatable about three orthogonal axes attached to the tip of the arm An effector, disposed in the vicinity of the transfer device for transferring the workpiece, and performing a predetermined operation on the workpiece being transferred by the transfer device, and the rotational speed of the pivot axis Is set to be equal to or lower than the axis that swings the arm back and forth and up and down and the three orthogonal axes, and the rotation angle of the pivot axis is orthogonal to the axis that swings the arm back and forth and up and down. In a robot control device that is larger than the axis,
Measure the transport speed of the transport device,
Measure the position of the workpiece,
With respect to the X axis of the arm rotated by the pivot axis in an orthogonal coordinate system in which the pivot axis of the robot is the origin and the axis parallel to the transfer direction of the transfer device is the X axis in the plane layout of the installation location It is assumed that the angle of the arm with respect to the X axis after t seconds obtained from the angle and the angular velocity and the radius of rotation around the pivot axis of the reference point of the end effector after t seconds in the orthogonal coordinate system are R. rotation radius R, the coordinate Et of the reference point after the t seconds obtained from the coordinates at the workpiece after t seconds in the orthogonal coordinate system obtained from the position of the said transport speed workpiece when , The time t1 when the coordinate Et of the reference point and the coordinate At of the workpiece coincide with each other and a coordinate Ab at that time are calculated.
The robot control apparatus, wherein the robot is operated so that a reference point of the end effector is directed to the coordinate Ab after t1 seconds.
前記搬送装置の搬送速度の変動を周期的に計測し、その度に前記地点を計算して修正し、前記エンドエフェクタが修正した前記地点に向かうように前記ロボットを動作させることを特徴とする請求項5に記載のロボットの制御装置。  The fluctuation of the conveying speed of the conveying device is periodically measured, the point is calculated and corrected each time, and the robot is operated so as to go to the point corrected by the end effector. Item 6. The robot control device according to Item 5. 前記ワークの位置を視覚センサを用いて計測することを特徴とする請求項5または請求項6に記載のロボットの制御装置。  The robot control apparatus according to claim 5, wherein the position of the workpiece is measured using a visual sensor. 前記搬送装置の搬送速度を前記搬送装置の駆動軸に連結したエンコーダを用いて計測することを特徴とする請求項5から請求項7のいずれかに記載のロボットの制御装置。  The robot control device according to claim 5, wherein the transport speed of the transport device is measured using an encoder connected to a drive shaft of the transport device.
JP16939998A 1998-06-17 1998-06-17 Robot control method and control apparatus Expired - Fee Related JP4022843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16939998A JP4022843B2 (en) 1998-06-17 1998-06-17 Robot control method and control apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16939998A JP4022843B2 (en) 1998-06-17 1998-06-17 Robot control method and control apparatus

Publications (3)

Publication Number Publication Date
JP2000006069A JP2000006069A (en) 2000-01-11
JP2000006069A5 JP2000006069A5 (en) 2005-10-13
JP4022843B2 true JP4022843B2 (en) 2007-12-19

Family

ID=15885889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16939998A Expired - Fee Related JP4022843B2 (en) 1998-06-17 1998-06-17 Robot control method and control apparatus

Country Status (1)

Country Link
JP (1) JP4022843B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707842B2 (en) 2018-11-27 2023-07-25 Fanuc Corporation Robot system and coordinate conversion method
KR102624551B1 (en) * 2023-02-09 2024-01-12 한국과학기술원 A method for task-space compliance control of robot manipulator without rotational displacement constraints

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4303411B2 (en) * 2000-10-06 2009-07-29 セイコーインスツル株式会社 Tracking method and tracking system
JP7000363B2 (en) 2019-01-25 2022-01-19 ファナック株式会社 Robot control device and management system
KR102292561B1 (en) * 2019-05-31 2021-08-25 한국전자기술연구원 Calibration Device and Calibration System including the same
JP7368156B2 (en) 2019-09-26 2023-10-24 ファナック株式会社 robot control system
CN113858818A (en) * 2021-09-24 2021-12-31 珠海格力智能装备有限公司 Marking system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01268923A (en) * 1988-04-19 1989-10-26 Mitsubishi Heavy Ind Ltd Control on horizontal and vertical movement of moving part
JP2703099B2 (en) * 1990-08-03 1998-01-26 三菱重工業株式会社 Conveyor tracking method for industrial robots
JPH0569357A (en) * 1991-09-06 1993-03-23 Yaskawa Electric Corp Conveyor follow-up control system of robot
JPH10105217A (en) * 1996-09-27 1998-04-24 Mitsubishi Electric Corp Tracking controlling method of robot and robot control system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11707842B2 (en) 2018-11-27 2023-07-25 Fanuc Corporation Robot system and coordinate conversion method
DE102019131284B4 (en) 2018-11-27 2023-11-02 Fanuc Corporation Robot system and coordinate conversion method
KR102624551B1 (en) * 2023-02-09 2024-01-12 한국과학기술원 A method for task-space compliance control of robot manipulator without rotational displacement constraints

Also Published As

Publication number Publication date
JP2000006069A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
JP3002097B2 (en) Visual tracking method
US20170066133A1 (en) Coordinate system setting method, coordinate system setting apparatus, and robot system provided with coordinate system setting apparatus
JP5849403B2 (en) Robot controller, robot, and robot system
US8880216B2 (en) Picking system
JP2017035754A (en) Robot system with visual sensor and multiple robots
JP6484213B2 (en) Robot system including a plurality of robots, robot control apparatus, and robot control method
US8790064B2 (en) Device and method for aligning the position of plate-shaped parts
CN107107336A (en) The adaptive place system of robot with end effector location estimation
CN105417066B (en) Substrate position offset detection and means for correcting and substrate conveying system
JP4022843B2 (en) Robot control method and control apparatus
TWI623395B (en) Substrate transfer robot and substrate transfer method
JP2005262369A (en) Robot system
JP2007168053A (en) Teaching method of vertical articulated type robot and industrial robot device
US20120109380A1 (en) Robot control apparatus, robot control method, and robot system
JP4303411B2 (en) Tracking method and tracking system
JP5446887B2 (en) Control device, robot, robot system, and robot tracking method
JP4809524B2 (en) Tracking method, tracking system, and tracking device
CN105329642B (en) Substrate position offset detection and bearing calibration and the control method of substrate conveying system
JP4056662B2 (en) Appearance inspection device
JP2000006069A5 (en) Robot control method and control device
JP2003110004A (en) Position correcting method in conveying wafer
JP5453590B2 (en) Robot hand control method and workpiece transfer robot system
WO2019134673A1 (en) Parcel identification device and parcel sorting device
JPS6161955B2 (en)
JPS60217085A (en) Handling system of moving body

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050531

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111012

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121012

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141012

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees