JP4021807B2 - Abnormal current monitoring circuit - Google Patents

Abnormal current monitoring circuit Download PDF

Info

Publication number
JP4021807B2
JP4021807B2 JP2003170641A JP2003170641A JP4021807B2 JP 4021807 B2 JP4021807 B2 JP 4021807B2 JP 2003170641 A JP2003170641 A JP 2003170641A JP 2003170641 A JP2003170641 A JP 2003170641A JP 4021807 B2 JP4021807 B2 JP 4021807B2
Authority
JP
Japan
Prior art keywords
circuit
value
upper limit
lower limit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003170641A
Other languages
Japanese (ja)
Other versions
JP2005012851A (en
Inventor
輝一 海藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Denki Engineering Co Ltd
Original Assignee
Hitachi Kokusai Denki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Denki Engineering Co Ltd filed Critical Hitachi Kokusai Denki Engineering Co Ltd
Priority to JP2003170641A priority Critical patent/JP4021807B2/en
Publication of JP2005012851A publication Critical patent/JP2005012851A/en
Application granted granted Critical
Publication of JP4021807B2 publication Critical patent/JP4021807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本願発明は、W−CDMA方式(wideband−code division multiple access )の携帯電話システムの基地局に備えられ、アンテナ鉄塔等に取り付けられる塔頂用受信増幅器等に適用されるような監視対象回路として、多数の監視対象回路の監視負荷電流を比較判定する回路を用いて機器の監視を行う監視回路に関する。
【0002】
【従来の技術】
従来の監視回路は、比較回路を有することにより、受信電界レベルが所定値以下であるかを判定し、その判定出力を得るようなものがあった。(例えば、特許文献1参照)。
【0003】
【特許文献1】
特公平6−103870号公報(第3頁、第5欄、25行〜31行、第2図(B))
【0004】
図3〜図4は、従来用いられている異常電流監視回路例の説明図である。
先ず、図3は、本願発明を塔頂用受信増幅器のシステムに適用した例の説明図である。塔頂用受信増幅器は、鉄塔等その上部に配置されたアンテナの近傍に設置され、アンテナで誘起された移動機等から発せられる無線周波を所定の増幅度で増幅して、この無線周波信号を出力として、給電ケーブルを介して局内無線設備に供給される。塔頂用受信増幅器は、入力された無線周波信号が低雑音増幅器(LNA;low noise amplifier )の並列接続及び直列接続を経て所定の増幅度を得た無線周波信号として出力される。
各LNA(1〜4)と電源Vcc間には、例えば、FET(field effect transistor ; 電界効果トランジスタ)増幅回路のドレイン電流を負荷として、このドレイン負荷回路に電位差検出用の抵抗器が挿入され、その各抵抗器に流された電流によりそれぞれの電位差(V1 〜V4 )が電位差検出部1によって検出される。検出された各電位差(V1 〜V4 )は、直流増幅部2に入力されて、ここで直流増幅される。直流増幅部2の各直流出力は、比較部3に入力され、ここで最高値,最低値と所定値との比較,判定されてアラーム信号として出力される。アラーム信号は外部に出力され、塔頂用受信増幅器の各LNAの各電源電流異常値を監視するためのアラーム表示、アラーム制御などシステムに用いられる。
【0005】
次に図4は、従来例を詳細にした回路説明図である。監視対象回路の複数の負荷(M1 ,M2 ,・・・Mn )に流される電流を電位差(V1 ,V2 ,・・・Vn )としてそれぞれ検出する複数の回路を有する電位差検出部1と、この電位差(V1 ,V2 ,・・・Vn )をそれぞれ増幅する複数の直流増幅回路(A1 ,A2 ,・・・An )を有する直流増幅部2と、直流増幅部2のそれぞれの出力電圧が所定の上限値以上,下限値以下の電圧であるかを判定する複数の比較判定回路(C1 (C1u,C1l),C2 (C2u,C2l),・・・Cn (Cnu,Cnl))及びこの判定結果により全回路のうちどれか一つの回路でも所定の上限値以上,下限値以下の電圧であれば、いずれかの監視対象回路の異常状態として1個のアラーム信号が出力され、あるいは、全回路とも所定の上限値以上、下限値以下の電圧ではなければ、いずれの監視対象回路も正常であると判断して1個の正常信号が出力されるような処理を行う比較部3とを備えた従来の異常電流監視回路である。
【0006】
比較部3は、直流増幅部2の直流増幅回路(A1 ,A2 ,・・・An )の出力電圧毎を入力として、その電圧に対しの所定の上限値以上,下限値以下の電圧であるかを比較判定する回路(C1 (C1u,C1l),C2 (C2u,C2l),・・・Cn (Cnu,Cnl))を有し、比較部3内の回路には、所定の上限値以上の判定回路(C1u,C2u,・・・Cnu)の回路毎に所定の上限値判定のための電圧設定を行う可変抵抗器を有し、更に、所定の下限値以下の判定回路(C1l,C2l,・・・Cnl)の回路毎に所定の下限値判定のための電圧設定を行う可変抵抗器を有する。よって比較部3には、2n個の調整用可変抵抗器を持ち、その調整のために少なくとも2n回分の調整工数を要する。
【0007】
【発明が解決しようとする課題】
図3において、アンテナへ誘起される異常電圧である雷、異常電波等による過入力、あるいはシステム機器,装置で何らかの原因による静電気発生等の異常電圧がFETなどの半導体回路で構成されたLNAの内部回路を破壊,破損に至らしめ、一部のLNAが所定の増幅機能を発揮できなくなることがあり、その際速やかな異常発報(アラーム)が行われてシステムダウンを最小限に留め、システム回復を図るようにする必要がある。
従来、この種の回路は、検出すべき監視対象回路1回路に対し、検出回路1回路(V1 )、直流増幅回路1回路(A1 )、比較判定回路1対回路(C1 (C1u,C1l))を必要としていた。このため検出すべき対象に多数の負荷回路(1,2,・・・n)を有する監視対象回路の場合は、検出回路、直流増幅回路、比較判定回路も各々多数系統(1,2,・・・n)の回路分が必要になるため部品点数、実装スペース等がn倍に備えなければならない問題がある。
更に、部品単体の特性のばらつきにより、同じ部品定数を用いても、各々の監視回路での出力電圧がばらついてしまい、所定値の精度にばらつき誤差を生じさせることになる。このため比較部3の比較判定回路(C1 ,C2 ,・・・Cn )のそれぞれの回路の電圧に設定することのできるように可変抵抗器が必要となる。
この可変抵抗器は上限値設定用の可変抵抗器と下限値設定用の可変抵抗器の1対の回路によって、所定値のばらつきを調整される。このように比較部3は、1対の比較判定回路に対し2個の可変抵抗器が必要となり、監視対象回路が多数になった場合に調整工数が極めて増大する問題がある。
図3に示されるように、実際に使用した塔頂用受信増幅器の例は、4つの監視対象回路であるので比較部3に備えた可変抵抗器の数が8個必要となる。これでは、部品点数が多い上、受信増幅器1台あたりの調整工数が多くなってしまい量産品の生産には適さない問題があった。
【0008】
本願発明の目的は、従来技術の問題点である「監視対象回路の検出対象が多数になった場合の部品点数、実装スペース、調整工数の増大」を解決し、部品点数の削減(材料費低減)、実装の省スペース化(小型化)及び調整工数の削減(加工費低減)を目標達成することのできる異常電流監視回路を提供することにある。
【0009】
【発明を解決するための手段】
本願発明の異常電流監視回路は、監視対象回路の複数n個の負荷に流される電流を複数n個の電位差出力として検出する電位差検出部と、該複数n個の電位差出力をそれぞれ増幅する直流増幅部と、該直流増幅部の複数n個の増幅出力電圧値から該複数n個のうちの最高値を検出する最高値検出回路及び該複数n個のうちの最低値を検出する最低値検出回路を有したピーク検出部と、該最高値検出回路から得られた該最高値の電圧が所定の上限値以上にあるかを判定する上限値判定回路及び該最低値検出回路から得られた該最低値の電圧が所定の下限値以下であるかを判定する下限値判定回路を有し、該上限値判定回路での判定の結果が上限値以上と判定されたか又は該下限値判定回路での判定の結果が下限値以下と判定されたかであれば前記監視対象回路が異常状態であるとしてアラーム信号を出力する比較部とを備えた。
【0010】
【発明の実施の形態】
本願発明の実施例は、図1に示されるように、監視対象回路のn個の負荷(M1 ,M2 ,・・・Mn )に流される電流をそれぞれに対応するn個の電位差出力(V1 ,V2 ,・・・Vn )として検出する電位差検出部11と、このn個の電位差(V1 ,V2 ,・・・Vn )をそれぞれ増幅した増幅出力電圧を得るn個の直流増幅回路(A1 ,A2 ,・・・An )を有する直流増幅部21と、直流増幅部21のn個の増幅出力電圧の中から最高値を検出するn回路分の順方向ダイオードゲート回路があり、その出力側がワイヤードオアされた最高値検出回路及び直流増幅部21のn個の増幅出力電圧の中から最低値を検出するn回路分の逆方向ダイオードゲート回路があり、その出力側がワイヤードオアされた最低値検出回路の2つの検出回路を有するピーク検出部31と、最高値検出回路出力(A点)に現れて検出された最高値が所定の上限値以上の電圧であるかを判定する判定回路(Cu )及び最低値検出回路出力(B点)に現れて検出された最低値が下限値以下の電圧であるかを判定する判定回路(Cl )の1対の判定回路(Cu 、Cl )を有する比較部41とを備えている。この比較部41における1対の判定回路(Cu 、Cl )のそれぞれの判定結果が判定回路(Cu )において所定の上限値以上又は判定回路(Cl )において下限値以下の電圧と判断された場合には監視対象回路の異常状態のアラーム信号出力を得る。判定回路(Cu )において所定の上限値以上,判定回路(Cl )において下限値以下の電圧以外(上限値以下、下限値以上)と判定された場合には監視対象回路の正常状態としての正常信号出力を得る。これら上限、下限の判定出力はOR回路で合成されて1つの出力として出される。監視対象回路のn個の負荷(M1 ,M2 ,・・・Mn )のnの値が多数に増えても、比較部41は1対の判定回路(Cu ,Cl )で済まされる。
【0011】
従来回路(図4)の比較部3は、可変抵抗器が2n個を要した。本願発明の図1の比較部41では可変抵抗器に替え固定抵抗である。ただし、前述したような部品定数のばらつきによる判定回路での上限値,下限値の判定誤差の影響を避けるため直流増幅部21の各直流増幅回路(A1 ,A2 ,・・・An )に増幅率を可変として部品定数のばらつきによって生ずる電圧誤差に対応して所定の値に調整ができるようにn個の調整用可変抵抗器が備えられている。
【0012】
以下の詳細説明例は、図1における回路動作の順位毎に対応する電圧値例を示し説明する。
監視対象回路に流れる所定の電流によって回路の負荷側と電源Vcc側とで電位差(V1 ,V2 ,・・・Vn )が生じるような固定抵抗器を有する電位差検出部11がある。監視対象回路が正常であれば、V1 ,V2 ,・・・Vn の各電位差は概ね同一値になるような固定抵抗器の定数である。
電位差(V1 ,V2 ,・・・Vn )をそれぞれ直流増幅し、この時、増幅度のばらつきを均一にするため各直流増幅回路(A1 ,A2 ,・・・An )の出力端に有したTP1〜TPn(テストポイント)における各電圧値が同一の所定電圧値になるように各直流増幅回路(A1 ,A2 ,・・・An )の+側入力端に接続された可変抵抗器を調整し、各回路のTPとも同一の所定電圧値にされた直流増幅部21である。即ちシステム実動作時の監視対象回路が正常であれば、各直流増幅部21回路の出力である各TPとも同一の所定電圧値(例えば5V)である。
ピーク検出部31ではn個の順方向ダイオードが出力側でワイヤードORされて最高値検出回路出力(A点)となり、このワイヤードORされた回路は抵抗を介してGNDへプルダウンされる。一方n個の逆方向ダイオードが出力側でワイヤードORされて最低値検出回路出力(B点)となり、このワイヤードORされ回路は抵抗を介してVccにプルアップされている。従ってピーク検出部31それぞれ(A点),(B点)でのピーク検出部31出力電圧は、正常値の例であれば(A点)では4.5V、(B点)では5.5Vである。(図2参照)
次に、比較部41における1対の判定回路(Cu 、Cl )のそれぞれは、(A点)を入力として上限値判定回路(Cu )へ接続され、その入力電圧が所定の上限値(例えば6V)以上であればアラームと認識する上限値判定回路(Cu )及び(B点)を入力として下限値判定回路(Cl )へ接続され、その入力電圧が所定の下限値(例えば4V)以下であればアラームと認識する下限値判定回路(Cl )がある。
従って、先の監視対象回路の正常例であれば比較部41の上限値判定回路(Cu )では、(A点)電圧4.5V<所定の上限値6Vである判断がされて、これを正常と看做す。同様に下限値判定回路(Cl )では、(B点)電圧5.5V>所定の下限値4Vである判断がされて、これを正常であると看做す。従って比較部41の出力は監視対象回路の正常状態と判断して正常信号出力を得て、上限値判定回路と下限値判定回路の各判定出力はOR回路で合成されて論理レベル“H”が出力される。
【0013】
次に、監視対象回路の負荷(M1 ,M2 ,・・・Mn )のいずれかの回路において異常が生じた場合、当該回路の負荷に流れる電流が変化(過大,過小)する、このことによって所定の電位差(V1 ,V2 ,・・・Vn )及び各TPでの電圧が所定値に対し1〜nの回路の一部において変化電圧値(異常値)を示すこととなる。
そこで監視対象回路の一部(負荷M1 に過大電流又は負荷M2 に過小電流)が異常動作として起こされたとする。このとき直流増幅部31の出力電圧例として、負荷M1 に対応したTP1での変化電圧値(異常値)が7V及び負荷M2 に対応したTP2での変化電圧値(異常値)が3Vであったとし、その他のTP3〜TPnは概ね5Vの所定値(正常値)であったとする。以降は発明をなす主要な電圧関係を説明する。(図2参照)。
TP1での変化電圧値(異常値)の7Vがピーク検出部31の1つの入力となる。ピーク検出部31の出力では最高値検出回路出力(A点)で6.5Vが現れる。これが比較部41の上限値判定回路(Cu )に入力され、上限値判定回路(Cu )では(A点)電圧6.5V≧所定の上限値6Vの判定状況であるので所定の上限値以上である条件が満たされ、監視対象回路は異常であると判断される。なおこのとき最低値検出回路出力(B点)側では7.5Vが現れているが下限値判定回路(Cl )では(B点)電圧7.5V≧所定の下限値4Vであるので下限値以下である条件が満たされずアラーム判定に寄与しない。
そこで上限判定回路側での判断結果の出力が論理レベル“L”のアラーム信号として出力される。
一方、TP2での変化電圧値(異常値)が3Vの例では、ピーク検出部31の最低値検出回路出力(B点)で3.5Vが現れて下限値判定回路(Cl )では(B点)電圧3.5V≦所定の下限値4Vであるので所定の下限値以下である条件が満たされ、監視対象回路は異常であると判断される。なおこのとき最低値検出回路出力(A点)では2.5Vが現れているが上限値判定回路(Cu )では(A点)電圧2.5V≧所定の上限値6Vであるので上限値以上である条件が満たされずアラーム判定に寄与しない。そこで下限判定回路側での判断結果の出力が論理レベル“L”のアラーム信号として出力される。
最後に、比較部41から出力された、この“H”、“L”の信号を利用して、システム側では、CPU等の制御動作に用いたり、LEDを駆動させたりしてアラーム監視・制御を行うようにさせるものである。
【0014】
【発明の効果】
従来型では、監視対象回路毎の回路数に対応した比較判定回路の数を有し、比較判定回路の1対回路に範囲の上限と下限を設定する可変抵抗器2個、n回路では2n個を要していたが、ピーク検出回路を用いる本願発明では、直流増幅回路に設定用の可変抵抗器1個、n回路ではn個を備えることによって、調整用可変抵抗器の数を従来比1/2にしたので、可変抵抗器での電圧調整工数も従来の1/2にすることができた。
更に、監視対象回路の負荷が1回路増えた場合、従来回路は、直流増幅回路(演算増幅器:1個)、比較判定回路(演算増幅器:2個、可変抵抗器:2個、論理IC:1個)が合計6部品必要となるのに対して、本願発明では、ピーク検出回路を用いているので、直流増幅回路(演算増幅器:1個、可変抵抗器:1個)、ピーク検出回路(ダイオード:2個)の4部品が必要となるが、比較部においては、回路部品の追加は必要とせず、最初に備えた1対の判定回路(Cu 、Cl )で済む。従って、監視対象が1回路増える毎に必要とされる部品点数は従来回路の約1/2でよい。
このように、回路簡略化による製造コスト低減のみならず調整・保守の容易性によるアンテナ鉄塔等に取り付けられる塔頂用受信増幅器のような装置での信頼性向上の効果は極めて大きい。
【図面の簡単な説明】
【図1】本願発明に係るピーク検出部と比較部を用いた電流監視回路図である。
【図2】本願発明に係るピーク検出回路の動作レベル図である。
【図3】従来の電流監視回路を用いた機器のブロック図である。
【図4】従来の比較部を用いた電流監視回路図である。
【符号の説明】
1,11 電位差検出部
2,21 直流増幅部
3,41 比較部
31 ピーク検出部
1 ,M2 ,・・・Mn 監視対象回路
1 ,V2 ,・・・Vn 電位差
1 ,A2 ,・・・An 直流増幅回路
1 ,C2 ,・・・Cn 比較判定回路
u ,Cl 判定回路
[0001]
BACKGROUND OF THE INVENTION
The present invention is provided as a W-CDMA (wideband-code division multiple access) mobile phone system base station as a monitoring target circuit that is applied to a tower top receiving amplifier or the like attached to an antenna tower or the like. The present invention relates to a monitoring circuit that monitors devices using a circuit that compares and determines monitoring load currents of a large number of monitoring target circuits.
[0002]
[Prior art]
Some conventional monitoring circuits have a comparison circuit to determine whether the received electric field level is equal to or lower than a predetermined value and to obtain the determination output. (For example, refer to Patent Document 1).
[0003]
[Patent Document 1]
Japanese Examined Patent Publication No. 6-103870 (page 3, column 5, lines 25-31, FIG. 2 (B))
[0004]
3 to 4 are explanatory diagrams of examples of an abnormal current monitoring circuit conventionally used.
First, FIG. 3 is an explanatory diagram of an example in which the present invention is applied to a tower-top receiving amplifier system. The tower-top receiving amplifier is installed in the vicinity of an antenna arranged on the top of a tower, etc., and amplifies a radio frequency emitted from a mobile device or the like induced by the antenna with a predetermined amplification, As an output, it is supplied to the radio equipment in the station via a power feeding cable. The tower-top receiving amplifier outputs an input radio frequency signal as a radio frequency signal obtained through a parallel connection and a series connection of a low noise amplifier (LNA) to obtain a predetermined amplification degree.
Between each LNA (1 to 4) and the power source Vcc, for example, a drain current of a FET (field effect transistor) amplifier circuit is used as a load, and a resistor for detecting a potential difference is inserted into the drain load circuit. The potential difference (V 1 to V 4 ) is detected by the potential difference detection unit 1 by the current passed through each resistor. Each detected potential difference (V 1 to V 4 ) is input to the DC amplification unit 2 where it is DC amplified. Each DC output of the DC amplification unit 2 is input to the comparison unit 3, where the highest value, the lowest value and a predetermined value are compared and determined, and output as an alarm signal. The alarm signal is output to the outside and used in a system such as alarm display and alarm control for monitoring each power supply current abnormal value of each LNA of the tower-top receiving amplifier.
[0005]
Next, FIG. 4 is a circuit explanatory diagram detailing a conventional example. Potential difference detection having a plurality of circuits for detecting currents flowing through a plurality of loads (M 1 , M 2 ,... M n ) of the monitored circuit as potential differences (V 1 , V 2 ,... V n ), respectively. Unit 1, and a DC amplification unit 2 having a plurality of DC amplification circuits (A 1 , A 2 ,... A n ) for amplifying the potential differences (V 1 , V 2 ,... V n ), respectively, A plurality of comparison judgment circuits (C 1 (C 1u , C 1l ), C 2 (C 2u , C 2l ) for judging whether the output voltage of the amplifying unit 2 is a voltage not less than a predetermined upper limit value and not more than a lower limit value. ),... C n (C nu , C nl )) and any one of all the circuits based on the determination result, if the voltage is not less than the predetermined upper limit value and not more than the lower limit value. One alarm signal is output as an abnormal state of the circuit, or all circuits are below the specified upper limit value and lower limit value. If the voltage not a conventional abnormal current monitor circuit that includes a comparator 3 which determines that any of the monitored circuit is also normal one normal signal performs processing as output.
[0006]
The comparison unit 3 receives each output voltage of the DC amplification circuit (A 1 , A 2 ,... A n ) of the DC amplification unit 2 as an input, and a voltage that is greater than or equal to a predetermined upper limit value and less than the lower limit value for that voltage. Are compared (C 1 (C 1u , C 1l ), C 2 (C 2u , C 2l ),... C n (C nu , C nl )). The circuit includes a variable resistor for setting a voltage for determining a predetermined upper limit value for each circuit of determination circuits (C 1u , C 2u ,... C nu ) having a predetermined upper limit value or more. Each of the determination circuits (C 1l , C 2l ,... C nl ) below the predetermined lower limit value has a variable resistor for setting a voltage for determining the predetermined lower limit value. Therefore, the comparison unit 3 has 2n variable resistors for adjustment, and at least 2n adjustment man-hours are required for the adjustment.
[0007]
[Problems to be solved by the invention]
In FIG. 3, an abnormal voltage such as lightning that is an abnormal voltage induced to the antenna, an excessive input due to an abnormal radio wave, or the occurrence of static electricity due to some cause in a system device or apparatus, is generated inside the LNA formed of a semiconductor circuit such as an FET. The circuit may be destroyed or damaged, and some LNAs may not be able to perform the specified amplification function. At that time, an abnormal alarm (alarm) is promptly issued to minimize system down and system recovery. It is necessary to plan.
Conventionally, this type of circuit has a detection circuit 1 circuit (V 1 ), a DC amplification circuit 1 circuit (A 1 ), and a comparison determination circuit 1 pair circuit (C 1 (C 1u). , C 1l )). For this reason, in the case of a monitoring target circuit having a large number of load circuits (1, 2,... N) as targets to be detected, the detection circuit, the direct current amplifier circuit, and the comparison / determination circuit also have a large number of systems (1, 2,. ..N) Since the circuit portion of n) is required, there is a problem that the number of parts, mounting space, etc. must be provided n times.
Furthermore, even if the same component constant is used due to variations in characteristics of individual components, the output voltage in each monitoring circuit varies, resulting in variation errors in the accuracy of a predetermined value. For this reason, a variable resistor is required so that the voltage of each of the comparison judgment circuits (C 1 , C 2 ,... C n ) of the comparison unit 3 can be set.
In this variable resistor, variation in a predetermined value is adjusted by a pair of circuits of a variable resistor for setting an upper limit value and a variable resistor for setting a lower limit value. Thus, the comparison unit 3 requires two variable resistors for a pair of comparison / determination circuits, and there is a problem that the number of adjustment steps is extremely increased when the number of circuits to be monitored increases.
As shown in FIG. 3, since the example of the tower-top receiving amplifier actually used is four monitored circuits, the number of variable resistors provided in the comparison unit 3 is eight. In this case, the number of parts is large, and the number of adjustment steps per receiving amplifier increases, which is not suitable for the production of mass-produced products.
[0008]
The object of the present invention is to solve the problem of the prior art “increase in the number of components, mounting space, and adjustment man-hours when there are a large number of targets to be monitored in a circuit to be monitored” and reduce the number of components (reducing material costs) ), To provide an abnormal current monitoring circuit capable of achieving the goal of mounting space saving (miniaturization) and adjustment man-hour reduction (processing cost reduction).
[0009]
[Means for Solving the Invention]
An abnormal current monitoring circuit according to the present invention includes a potential difference detection unit that detects a current flowing through a plurality of n loads of a monitoring target circuit as a plurality of n potential difference outputs, and a DC amplification that amplifies each of the plurality of n potential difference outputs. , A highest value detection circuit for detecting the highest value among the plurality of n amplified output voltage values of the DC amplification unit, and a lowest value detection circuit for detecting the lowest value of the plurality of n A peak detection unit having the maximum value voltage obtained from the maximum value detection circuit, an upper limit value determination circuit for determining whether the voltage of the maximum value is equal to or higher than a predetermined upper limit value, and the lowest value obtained from the lowest value detection circuit A lower limit determination circuit that determines whether the voltage of the value is equal to or lower than a predetermined lower limit, and whether the determination result in the upper limit determination circuit is greater than or equal to the upper limit or determination in the lower limit determination circuit If the result is determined to be less than or equal to the lower limit, It monitored circuit and a comparator for outputting an alarm signal as an abnormal state.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the embodiment of the present invention, as shown in FIG. 1, n potential difference outputs corresponding to currents flowing in n loads (M 1 , M 2 ,... M n ) of the monitoring target circuit are respectively provided. (V 1 , V 2 ,... V n ) and a potential difference detection unit 11 that detects the potential difference, and an amplified output voltage obtained by amplifying the n potential differences (V 1 , V 2 ,... V n ). DC amplification unit 21 having DC amplification circuits (A 1 , A 2 ,... A n ) and the order of n circuits for detecting the maximum value from the n amplification output voltages of DC amplification unit 21 There is a directional diode gate circuit, and there is a maximum value detection circuit whose output side is wired OR, and a reverse diode gate circuit for n circuits for detecting the minimum value from the n amplified output voltages of the DC amplification unit 21, Two detection circuits of the lowest value detection circuit whose output side is wired OR A peak detector 31 having a maximum value detecting circuit output maximum value detected appears in (A point) determination circuit whether a predetermined upper limit value or more of the voltage (C u) and a minimum value detection circuit output A comparison unit 41 having a pair of determination circuits (C u , C l ) of a determination circuit (C l ) for determining whether the lowest value detected and detected at (B point) is equal to or lower than the lower limit value; I have. It is determined that each determination result of the pair of determination circuits (C u , C l ) in the comparison unit 41 is a voltage not less than a predetermined upper limit value in the determination circuit (C u ) or not more than a lower limit value in the determination circuit (C l ). If it is, an alarm signal output indicating an abnormal state of the monitored circuit is obtained. When the determination circuit (C u ) determines that the voltage is not less than the predetermined upper limit value and the determination circuit (C l ) is other than the lower limit value (upper limit value, lower limit value), the normal state of the monitored circuit is determined. Normal signal output is obtained. These upper limit and lower limit determination outputs are combined by an OR circuit and output as one output. Even if the value of n of the n loads (M 1 , M 2 ,... M n ) of the monitored circuit increases to a large number, the comparison unit 41 can be completed with a pair of determination circuits (C u , C l ). It is.
[0011]
The comparison unit 3 of the conventional circuit (FIG. 4) requires 2n variable resistors. In the comparison unit 41 of FIG. 1 of the present invention, a variable resistor is used instead of a fixed resistor. However, each DC amplifier circuit (A 1 , A 2 ,... An ) of the DC amplifier unit 21 is avoided in order to avoid the influence of the determination error of the upper limit value and the lower limit value in the determination circuit due to the dispersion of the component constants as described above. In addition, n variable resistors for adjustment are provided so that the amplification factor is variable and the voltage can be adjusted to a predetermined value corresponding to a voltage error caused by variations in component constants.
[0012]
The following detailed explanation examples show and explain voltage value examples corresponding to each order of circuit operation in FIG.
There is a potential difference detection unit 11 having a fixed resistor in which a potential difference (V 1 , V 2 ,... V n ) is generated between a load side of the circuit and a power supply Vcc side by a predetermined current flowing in the monitored circuit. If the monitored circuit is normal, V 1, V 2, each potential difference · · · V n is generally a fixed constant resistor such that the same value.
The potential differences (V 1 , V 2 ,... V n ) are each DC amplified, and at this time, in order to make the dispersion of the amplification degree uniform, each DC amplifier circuit (A 1 , A 2 ,... A n ) Connected to the + input side of each DC amplifier circuit (A 1 , A 2 ,... A n ) so that the voltage values at TP1 to TPn (test points) at the output terminal have the same predetermined voltage value. This is a DC amplifying unit 21 that adjusts the variable resistor so that the TP of each circuit has the same predetermined voltage value. That is, if the monitoring target circuit during normal operation of the system is normal, each TP that is the output of each DC amplification unit 21 circuit has the same predetermined voltage value (for example, 5 V).
In the peak detection unit 31, n forward diodes are wired-ORed on the output side to become the maximum value detection circuit output (point A), and this wired-OR circuit is pulled down to GND through a resistor. On the other hand, n reverse diodes are wired-ORed on the output side to become the lowest value detection circuit output (point B), and this wired-ORed circuit is pulled up to Vcc through a resistor. Therefore, the peak detection unit 31 output voltage at each of the peak detection units 31 (A point) and (B point) is 4.5 V at (A point) and 5.5 V at (B point) in the case of normal values. is there. (See Figure 2)
Next, each of the pair of determination circuits (C u , C l ) in the comparison unit 41 is connected to the upper limit value determination circuit (C u ) with (A point) as an input, and the input voltage is a predetermined upper limit value. The upper limit value determination circuit (C u ) and (B point) that recognizes an alarm if it is equal to or greater than (for example, 6 V) are connected to the lower limit value determination circuit (C l ) as inputs, and the input voltage is a predetermined lower limit value (for example, 4V) There is a lower limit judgment circuit (C l ) that recognizes an alarm if it is less than or equal to 4V).
Therefore, in the normal example of the previous monitoring target circuit, the upper limit determination circuit (C u ) of the comparison unit 41 determines that (A point) voltage 4.5V <predetermined upper limit 6V. Consider it normal. Similarly, in the lower limit determination circuit (C l ), it is determined that (B point) voltage 5.5V> predetermined lower limit 4V, and this is considered normal. Accordingly, the output of the comparison unit 41 is determined to be a normal state of the monitoring target circuit, and a normal signal output is obtained. The determination outputs of the upper limit value determination circuit and the lower limit value determination circuit are combined by the OR circuit, and the logic level “H” is set. Is output.
[0013]
Next, when an abnormality occurs in any of the loads (M 1 , M 2 ,... M n ) of the monitored circuit, the current flowing through the load of the circuit changes (over and under). As a result, the predetermined potential difference (V 1 , V 2 ,... V n ) and the voltage at each TP exhibit a change voltage value (abnormal value) in a part of the circuit 1 to n with respect to the predetermined value. .
Where a portion (insufficient current to excessive current or load M 2 to the load M 1) of the monitored circuit is to have been caused as an abnormal operation. As the output voltage example of the direct-current amplifying section 31 this time, it changes the voltage value at TP2 change voltage value at TP1 corresponding to the load M 1 (abnormal values) corresponding to 7V and load M 2 (outliers) is at 3V It is assumed that other TP3 to TPn have a predetermined value (normal value) of approximately 5V. In the following, the main voltage relationships that make up the invention will be described. (See FIG. 2).
7V of the change voltage value (abnormal value) at TP1 is one input of the peak detector 31. In the output of the peak detector 31, 6.5V appears at the maximum value detection circuit output (point A). This is input to the upper limit determination circuit (C u ) of the comparison unit 41. In the upper limit determination circuit (C u ), the determination situation of (Voltage A) voltage 6.5V ≧ predetermined upper limit 6V is made, so the predetermined upper limit It is determined that the above condition is satisfied and the monitored circuit is abnormal. At this time, 7.5V appears on the lowest value detection circuit output (point B) side, but in the lower limit determination circuit (C l ), the voltage (V) is 7.5V ≧ predetermined lower limit value 4V, so the lower limit value. The following conditions are not satisfied and do not contribute to alarm determination.
Therefore, the output of the determination result on the upper limit determination circuit side is output as an alarm signal of logic level “L”.
On the other hand, in the example in which the change voltage value (abnormal value) at TP2 is 3V, 3.5V appears at the lowest value detection circuit output (point B) of the peak detection unit 31, and the lower limit determination circuit (C l ) has (B Point) Since the voltage is 3.5 V ≦ the predetermined lower limit value 4 V, the condition that is equal to or lower than the predetermined lower limit value is satisfied, and it is determined that the monitored circuit is abnormal. At this time, 2.5 V appears at the output of the minimum value detection circuit (point A), but at the upper limit determination circuit (C u ), voltage (2.5 points) ≧ predetermined upper limit value 6 V, so that the upper limit value is exceeded. This condition is not satisfied and does not contribute to alarm determination. Therefore, the output of the determination result on the lower limit determination circuit side is output as an alarm signal of logic level “L”.
Finally, using the “H” and “L” signals output from the comparison unit 41, the system side uses them for control operations of the CPU, etc., or drives the LEDs for alarm monitoring and control. Is to do.
[0014]
【The invention's effect】
The conventional type has the number of comparison judgment circuits corresponding to the number of circuits for each monitoring target circuit, two variable resistors for setting the upper and lower limits of the range in one pair of comparison judgment circuits, and 2n in the n circuit However, in the present invention using a peak detection circuit, the number of variable resistors for adjustment is 1 as compared with the conventional one by providing one variable resistor for setting in the DC amplifier circuit and n in the n circuit. Therefore, the number of man-hours for adjusting the voltage with the variable resistor can be halved.
Further, when the load on the monitoring target circuit increases by one circuit, the conventional circuit includes a DC amplifier circuit (operational amplifier: 1), a comparison / determination circuit (operational amplifier: 2 units, variable resistor: 2 units, logic IC: 1). In contrast, the present invention uses a peak detection circuit, so a DC amplification circuit (1 operational amplifier, 1 variable resistor), a peak detection circuit (diode) : 2) four parts are required, but the comparison unit does not require the addition of circuit parts, and only a pair of determination circuits (C u , C l ) provided first is sufficient. Therefore, the number of parts required every time the number of monitoring targets increases by one circuit may be about ½ that of the conventional circuit.
As described above, the effect of improving the reliability of an apparatus such as a tower-top receiving amplifier attached to an antenna tower or the like due to ease of adjustment and maintenance as well as reduction in manufacturing cost due to circuit simplification is extremely great.
[Brief description of the drawings]
FIG. 1 is a current monitoring circuit diagram using a peak detection unit and a comparison unit according to the present invention.
FIG. 2 is an operation level diagram of a peak detection circuit according to the present invention.
FIG. 3 is a block diagram of a device using a conventional current monitoring circuit.
FIG. 4 is a current monitoring circuit diagram using a conventional comparison unit.
[Explanation of symbols]
1,11 potential difference detection unit 2, 21 DC amplifying section 3, 41 comparing unit 31 peak detector M 1, M 2, ··· M n monitored circuit V 1, V 2, ··· V n potential difference A 1, A 2 ,... A n DC amplifier circuits C 1 , C 2 ,... C n comparison / judgment circuits C u , C l judgment circuits

Claims (1)

監視対象回路の複数n個の負荷に流される電流を複数n個の電位差出力として検出する電位差検出部と、
該複数n個の電位差出力をそれぞれ増幅する直流増幅部と、
該直流増幅部の複数n個の増幅出力電圧値から該複数n個のうちの最高値を検出する最高値検出回路及び該複数n個のうちの最低値を検出する最低値検出回路を有したピーク検出部と、
該最高値検出回路から得られた該最高値の電圧が所定の上限値以上にあるかを判定する上限値判定回路及び該最低値検出回路から得られた該最低値の電圧が所定の下限値以下であるかを判定する下限値判定回路を有し、該上限値判定回路での判定の結果が上限値以上と判定されたか又は該下限値判定回路での判定の結果が下限値以下と判定されたかであれば前記監視対象回路が異常状態であるとしてアラーム信号を出力する比較部
とを備えたことを特徴とする異常電流監視回路。
A potential difference detection unit that detects currents flowing through a plurality of n loads of a monitoring target circuit as a plurality of n potential difference outputs; and
A direct current amplifier for amplifying each of the plurality of n potential difference outputs;
A maximum value detecting circuit for detecting a maximum value among the plurality of n pieces from a plurality of n amplified output voltage values of the direct current amplifier; and a minimum value detecting circuit for detecting the lowest value of the plurality of n pieces. A peak detector;
An upper limit determination circuit for determining whether or not the highest voltage obtained from the highest value detection circuit is equal to or higher than a predetermined upper limit value, and the lowest voltage obtained from the lowest value detection circuit is a predetermined lower limit value. It has a lower limit determination circuit for determining whether or not it is less than or equal to, and the determination result in the upper limit determination circuit is determined to be greater than or equal to the upper limit or the determination result in the lower limit determination circuit is determined to be less than or equal to the lower limit And a comparator that outputs an alarm signal indicating that the monitored circuit is in an abnormal state.
JP2003170641A 2003-06-16 2003-06-16 Abnormal current monitoring circuit Expired - Lifetime JP4021807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003170641A JP4021807B2 (en) 2003-06-16 2003-06-16 Abnormal current monitoring circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003170641A JP4021807B2 (en) 2003-06-16 2003-06-16 Abnormal current monitoring circuit

Publications (2)

Publication Number Publication Date
JP2005012851A JP2005012851A (en) 2005-01-13
JP4021807B2 true JP4021807B2 (en) 2007-12-12

Family

ID=34095384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003170641A Expired - Lifetime JP4021807B2 (en) 2003-06-16 2003-06-16 Abnormal current monitoring circuit

Country Status (1)

Country Link
JP (1) JP4021807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549654B1 (en) * 2013-12-09 2015-09-03 주식회사 한국통신부품 Over duty stopper in a semi-conductor amplifier

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102167485B1 (en) 2012-09-13 2020-10-19 호야 가부시키가이샤 Mask blank manufacturing method and a method of manufacturing mask for transfer
KR102239197B1 (en) 2012-09-13 2021-04-09 호야 가부시키가이샤 Method for manufacturing mask blank and method for manufacturing transfer mask

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101549654B1 (en) * 2013-12-09 2015-09-03 주식회사 한국통신부품 Over duty stopper in a semi-conductor amplifier

Also Published As

Publication number Publication date
JP2005012851A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US7480125B2 (en) Constant voltage circuit, system power device and method of controlling system power device
US9231598B2 (en) Multiplexed oscillators
CN106484017B (en) Semiconductor integrated circuit for voltage stabilizer
US7339357B2 (en) Power supply regulation using kelvin tap for voltage sense feedback from point within integrated circuit load
US6498473B1 (en) Pin electronics having current measuring unit and testing apparatus having pin electronics thereof
US8519730B2 (en) Circuit, system, and method for degradation detection
US20080180265A1 (en) Voltage monitoring device
US10132695B2 (en) Determining an extreme temperature location from a plurality of locations
JP4021807B2 (en) Abnormal current monitoring circuit
US20110235222A1 (en) Output short to ground protection circuit
US7755432B1 (en) Short circuit protection circuits and methods
US20040075488A1 (en) Semiconductor device having voltage feedback circuit therein, and electronic apparatus using the same
KR20110040557A (en) Antenna device for motor vehicles and method for detecting failure of the antenna device
US6768624B2 (en) Fan protection
US20220074973A1 (en) Current detecting circuit and switching circuit
US11156672B2 (en) Semiconductor device
US7667428B2 (en) Fan system and power monitoring apparatus thereof
US20210036667A1 (en) Semiconductor device
EP1935090B1 (en) Electronic device with an amplifier output stage and an over-current detection means
US5675268A (en) Overcurrent detection circuit for a power MOSFET and method therefor
JPH11340459A (en) Temperature detecting circuit
US7459979B2 (en) Semiconductor indicator for voltage diagnostics in power amplifiers
US9906011B2 (en) Electronic device and over-current protection circuit thereof
US11569735B2 (en) Power supply system and power supply device
US20230358787A1 (en) Apparatus and method for protecting probe card and probes using thermal heat sensor trace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4