JP4021578B2 - Method and apparatus for destructive inspection of photosensitive drum - Google Patents

Method and apparatus for destructive inspection of photosensitive drum Download PDF

Info

Publication number
JP4021578B2
JP4021578B2 JP05183299A JP5183299A JP4021578B2 JP 4021578 B2 JP4021578 B2 JP 4021578B2 JP 05183299 A JP05183299 A JP 05183299A JP 5183299 A JP5183299 A JP 5183299A JP 4021578 B2 JP4021578 B2 JP 4021578B2
Authority
JP
Japan
Prior art keywords
photosensitive layer
conductive
photosensitive
drum
photosensitive drum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05183299A
Other languages
Japanese (ja)
Other versions
JP2000249689A (en
Inventor
健一 斉藤
清 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP05183299A priority Critical patent/JP4021578B2/en
Publication of JP2000249689A publication Critical patent/JP2000249689A/en
Application granted granted Critical
Publication of JP4021578B2 publication Critical patent/JP4021578B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Cleaning In Electrography (AREA)
  • Testing Relating To Insulation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、感光体の破壊検査方法及びその装置に関し、更に詳しくは、ドラム型で回転する感光体の感光層に高電圧を印加させて感光層に生ずる剥離破壊を調べる破壊検査方法(又は耐電圧検査方法)及びその検査装置に関する。
【0002】
【従来の技術】
従来から、画像形成装置、例えば、レーザープリンタ、電子写真機等に用いられる感光体の表面には、CdS系、セレン系等の材料からなる感光層が形成されている。この感光層に傷、凹み、空洞、剥落、異物付着等に起因する電気的に不均一な部位を有する等の異常部が存在すると、得られる画像に、いわゆる白抜け現象が発生する。従って、事前にこのような欠陥を検査して不良感光体を判定することが行われている。
【0003】
そこで、これらの事前の検査方法として、例えば、特開昭57−169665号公報には、感光体に導電チャック及び導電ローラーを導通させて、感光体に高電圧を印加させて、感光体を回転移動させながらある所定値以上の電流(過大電流)が流れれば不良部位を有するとして欠陥部位を検出する検出方法が記載されている。上記する提案では、このように発生する過大電流を検知する方法であるが、しかしながら、高電圧を印加したとき、感光体上に不良部分があっても、ブレーカーを使用して感光体を損傷しないようにしているため、不良部が発生すると装置が停止する場合があった。
【0004】
また、上記問題を回避するために特開昭61−142456号公報には、非接触の電極を設けて、この高電圧印加時に感光体に不良部分が存在した場合に、その不良部分と通常部分の電位の変動を測定して、不良部分の有無を検出する方法が提案されている。しかしながら、この提案では、新たに電位の変化を検出する装置を組まなければならず、装置としてコスト高になる欠点を有している。また、このような電位の差を検出するためには感光体全体に一定の安定した電圧を印加させなければならず、このような条件設定は極めて高精度を要することから、操作上煩雑になり、必ずしも検査方法としては好ましいものではない。
【0005】
また、実公平6−2973号公報に記載させている電導ローラーに代えて感光体表面に導電性ブラシを接触させて行う検査方法においても、この高電圧の印加時に帯電した感光体ドラムの感光層の表面と電気的に反発して、導電性ブラシの先端部が上下・左右に動いてしまい、導電性ブラシと感光体ドラムの露出する基体部間に放電することがあり、取り扱いの上で支障を来すことがある。
【0006】
【発明が解決しようとする課題】
上述するように、従来から、このような感光体を事前に検査をする上で、各種の検査方法及びその装置が提案されているが、上記公報の記載からも明らかなように、実際に試験に供するといろいろと多くの問題が生じ、未だ満足される検査方法でないのが実状である。
【0007】
このような状況下で、感光体ドラムの感光層に、何かの要因によって電気的に不均一な部位、例えば、その静電抵抗にバラツキがあるような場合には、製品として不的確であり、このような製品を事前に検査・摘出しなければならない。本発明は、このような不良製品の検査・摘出を、従来に比べて容易に、しかも、確実にできる検査方法を提供することを目的とするものである。また、本発明は、この検査に用いる装置が、従来に比べてコスト的に低廉で簡便な破壊検査装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明者等は、上記課題に鑑み鋭意検討した結果、上記ドラム型感光体に高電圧を印加させたときに、印加電圧によって感光層の塗膜が破壊されるその感光体の耐印加電圧を調べることにより従来法に比べて、容易に検査されることを見出し、本発明を完成させるに至った。すなわち、本発明は、ドラム型基体上に感光層を設けた感光体ドラムの前記基体が、その片側端面に摺動するように支持された導電性チャックを介して導通し、一方前記感光層がその表面に接触する導電性ブラシを介して導通し、且つ前記導電性チャックと前記導電性ブラシ間に高電圧を印加させた状態で、前記感光体ドラムを回転させて前記感光層面に印加電圧を走査させて行う耐電圧試験において、前記感光層に生ずる塗膜破壊とその時の耐印加電圧を求めることを特徴とする感光体ドラムの破壊検査方法を提供するものである。
【0009】
従って、本発明による前記感光体の感光層に塗膜破壊を起こさせる感光体の耐印加電圧は、感光体ドラムの感光層に電気的に不均一な部位が存在する場合には、図1に示す本発明の破壊検査装置において、感光体の感光層1を導電性チャック3と導電性ブラシ6とで導通させ、次いで電源7によってこの両者間に高電圧を印加させ、感光体ドラムを回転させると、感光層面に印加電圧が走査されて感光層に上記するような電気的に不均一部分があるとその部位に過大電流が流れて、その部位の塗膜が破壊される。その結果、極めて単純な判定によって不良部位を検査・摘出することができるのである。
【0010】
また、本発明は、ドラム型基体上に感光層を設けた感光体ドラムに高電圧を印加させて前記感光層に塗膜破壊を起こさせて行う破壊検査装置が、前記感光体ドラムの前記基体の片側端面を摺動するように支持する導電性チャックと、前記感光層の表面に接触するように設ける導電性ブラシと、且つ前記導電性チャックと前記導電性ブラシとを介して前記感光層に高電圧を印加させる電源とを有することを特徴とする感光体ドラムの破壊検査装置を提供するものである。従って、図1に示す如く、本発明のドラム型感光体の破壊検査装置の構成は、感光体ドラムを摺動するように支持する導電性チャック3、感光層1に接触する導電性ブラシ6及びこの両者に高電圧を印加させる電源7を有する、極めて単純な装置であることがよく判り、特に従来のように電流を検出する装置を必要としないことから、コスト的に低廉で、単純な構成からなる感光体ドラムの破壊検査装置である。
【0011】
【発明の実施の形態】
既に述べているように、感光体ドラムの感光層に不良部分が存在するかどうかを検査する本発明の検査方法は、感光層に生ずる破壊膜の有無を極めて単純な導通の有無で判定することを可能にさせたことを特徴とする検査方法であり、また、それに用いられる検査装置も、既に上述する如く(図1を参照)、従来から用いられている装置に比べて、極めて単純なシステムで構成されていることから、コスト的にも低廉であることも特徴とするものである。
【0012】
以下に、図1〜図4に基づいて、本発明による感光体ドラムの破壊検査方法及びその検査装置の実施の形態について詳細に説明する。
【0013】
そこで、本発明において、図1に示す如く、感光体ドラムの基体2の片方の側端面に、導電性チャック3が基体側面に摺動するように支持されている。従って、導電性チャック3は、この摺動面を介して基体2と導通している。一方、感光層1の表面には、ブラシ固定部材5に固定された導電性ブラシ6の先端が感光層1に垂直に接触させたり又は離したりできるように導電性ブラシ6を駆動できるように設けられている。これにより、感光層1の表面は、導電性ブラシ6の先端を介して導通させられる。
【0014】
そこで、この感光体ドラム2をモーターにより回転させ、次いで、導電性チャック3と感光層1の面に導電性ブラシ6が完全に接触させて電気的に導通した状態になったところへ、耐電圧試験用電源7によって感光体ドラムの感光層1に高電圧を印加させる。このように感光層面を印加電圧で走査する状態で、ある電流値以上の電流が流れる部位があれば、その部位の膜が剥離破壊される。その剥離の有無をこの時の印加電圧に連動して、容易に導通の有無で確認できることから、その時の印加電圧値をもって耐電圧不良と判定されて、耐印加電圧値に連動した不良部位の剥離破壊を知ることができるものである(後述する、図5参照)。
【0015】
また、本発明において、上記する感光層の耐印加電圧Pは、下記(1)式
P≧alog r・s2 …………(1)
式中、係数aは、0.9×102 〜1.2×102 の範囲にあり、
rは感光体ドラムの静電抵抗(Ω/cm 2 )、
sは感光体ドラムの感光層の厚さ(mm)
で表される実験式で得られる電圧を満たすことが好ましい。
すなわち、耐印加電圧Pは、式中において感光体ドラムの静電抵抗(Ω/cm 2 )rに係わる関数である。これによって、感光体層に存在する電気的に不均一な部位を上記する静電抵抗値と耐印加電圧Pとの相関関係で判定することができることが判る。
【0016】
そこで、本発明において、感光体ドラムの感光層幅に対して、この導電性ブラシ6の幅L0 (図1参照)は、特に限定する必要がないが、好ましくは、高電圧を印加させて、感光層幅全域に導電性ブラシを同時に、同等の条件で接触導通させて感光層全域を検査できる点からすると、上記感光層幅に対して、上記ブラシの幅L0 は、少なくと等しいくすることがより好適である。しかしながら、従来から、この試験中に発生するアーク放電を防止する観点か、通常は、そのブラシ幅L0 を感光層幅より小さいものが使用されている。従って、従来の試験装置では、感光体表面の全域を検査するためには、このブラシを感光層に対して左右に移動させて繰り返し試験をしなければならない。そのためから、検査効率を低下させるばかりでなく、上記の移動のための駆動装置を要し、装置のコスト高を来すものであった。
【0017】
そこで、本発明において、図2及び図3に示す如く、導電性ブラシ6の両端に非導電性(絶縁性)の保持部材4を設けることにより、上記のような問題を解消させ、しかも、上述する破壊検査試験の効率を向上させることを可能にしたものである。
【0018】
すなわち、後述する図5に示すように、この破壊検査試験(耐電圧試験)は、高電圧を印加させることから、従来から、このよう試験において、通常、感光体ドラムの周辺部に静電気が蓄積され、特に導電性ブラシ6の先端部が電気的に反発して、ブラシ先端が不揃いになって測定に支障を来す傾向があった。また、このような高電圧下に感光体ドラムの周辺部の電気的に導通し易い金属露出部にアーク放電を起こす傾向があった。
【0019】
これらの電気的反発及びアーク放電を効果的に防止するためから、本発明において、好ましくは、図2に示す如く、保持部材4を導電性ブラシ6の両端に沿ってブラシ固定部材5に設けることが好適である。また、本発明においては、このような保持部材4の形状又は取り付け形式として、例えば、図3に示す(a)〜(c)等の例を挙げることができる。
【0020】
また、このように設けられる保持部材4は、図4に示す如く、導電性ブラシ6の毛の長さL1 に対して、保持部材4の長さL2 を、通常、L1 >L2 にしておくことが好適である。すなわち、その形状を図3に示した(a)〜(c)において、例えば、保持部材4の材質がアクリル、ポリカーボネート、ポリエチレン等の何れの合成樹脂であっても、L1 =L2 及びL1 <L2 の場合には、感光層の表面に傷を発生させてしまうからである。
【0021】
この保持部材4は非導電性の絶縁体であれば、無機・有機の素材に特に限定されるものではなく、例えば、天然の雲母、石綿、セピオライト、水晶、大理石、合成雲母等の薄片状、繊維状、板状の鉱物材、コランダム、ムライト等の磁器材、繊維状、板状の石英、鉛、アルカリ等のガラス材、各種の絶縁紙、綿糸、麻糸、絹糸等の天然繊維質材、コパール、セラック等の天然樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネイト、ポリアミド、メタクリル、ポリエステル、ポリアセタール、ポリ塩化ビニール、エポキシ、フッ素樹脂等の合成樹脂成形体、これらの合成繊維加工体、又はこれらの合成樹脂塗料を塗布した各種の金属部材、更には、天然ゴム及びイソプレン、ブタジエン、スチレンブタジエンラバー、クロロプレン、ニトリルゴム及びブチルゴム等の合成ゴムを挙げることができる。
【0022】
【実施例】
以下、本発明を実施例により、さらに詳しく説明するが、本発明は、これらに限定されるものではない。
【0023】
実施例1
本発明の耐電圧試験装置(破壊検査装置)に、図1に示すようなドラム型の感光体であって、基体面がアルミニウ製の基体2にセレン系の感光層をそれぞれ10、20、30、40及び50μm層厚に形成させたドラム型感光体を作製し、次いで、これらの感光体サンプルの感光層に電気的に不均一な部位〔電気抵抗で表して、その層に1〜50(TΩ・cm2 )の範囲にある不均一な部位を含有させたものである。〕を含有させたドラム型感光体を作製し、本発明の耐電圧試験装置(破壊検査装置)を用いて、これらの感光体サンプルの塗膜剥離とその時の耐印加電圧Pを調べた。
試験方法
上記感光体サンプルの片方の側端面が導電性チャック3に接触するように挿入し、次いで、該サンプルの感光層表面に導電性ブラシ6の先端が接触するようにセットする。次いで、導電性ブラシ6と導電性チャック3との間に高電圧(印加電圧)をかけた状態で、これらの感光体サンプルを回転させながえら印加電圧を780〜1120Vの範囲にわたって変化させて、感光体層の表面を走査させて感光体層に剥離破壊が生ずるかどうか目視観察をし、同時にその時の印加電圧値を耐印加電圧Pとして確認する。
以上のようにして、各サンプルの感光層に生じた剥離の有無を目視で確認し、同時に、その時の導電性チャック3と導電性ブラシ6間に印加した電圧を確認して、その結果を、電気的に不均一な不良部位の電気抵抗値に対し、その塗膜破壊を起こす印加電圧値として図5に示した。
【0024】
その結果、図5に示されたそれぞれのサンプルにおける電気的に不均一な部位の抵抗値に対して、印加電圧値が感光層にあるこれらの電気的に不均一な部位の塗膜を破壊させる耐印加電圧として測定されていることが判る。また、図5から明らかなように、感光層の厚さ、また、その層に存在する静電抵抗を基準に示された広範囲の電気的に不均一な部位に対して、剥離破壊とその耐印加電圧Pの関係が明確に示されていることもよく判り、しかも、これらの耐印加電圧Pを感光層の剥離破壊という目視観察から判定できることもよく判る。
【0025】
実施例2
感光体ドラムの感光層に接触させる感光層幅に対する導電性ブラシ6の幅L0(図1参照)を変えて、印加電圧200〜4000Vにわたって試験を行い、感光体ドラムの両端部及び試験装置のドラム装着近傍の金属面が露出されている箇所や、導電性ブラシ先端からのアーク放電の発生の有無を調べた。その結果、感光層に接触している該ブラシの幅L0 が、感光層幅に対して、同等か又はその幅が小さ目である場合には、本発明の試験装置においても、従来と同様に、上記箇所からのアーク放電の発生が全く見られなかった。従って、該ブラシ幅L0 が少なくとも感光層幅全域に対して、同等又はそれ以下であれば、本発明の試験方法及びその装置を使用してもアーク放電の発生が起こらない。
【0026】
実施例3
導電性ブラシ6に、部材の材質としてアクリル材を用いて図3の(a)、(b)及び(c)に示す形状の保持部材4を設けた効果について、実施例2と同様にして、感光層幅全域に、その幅と同等幅の導電性ブラシを接触させた以外は、実施例2の条件と同様にして、実施例2と同様の箇所からのアーク放電の発生の有無を試験したが全く異常がなかった。しかも、感光層全域を、1回の走査で支障なく試験することができ、これにより従来のように試験中にブラシを左右に駆動させて、繰返し試験をする必要もなく、検査試験を効率よく行うことができた。なお、図3の(a)に示した形状の保持部材4については、材質をポリカーボネート、ポリエチレン、シリコーン、アルキッド・メラミン、エポキシ及びコンデンサ紙に代えたものについて、それぞれ同様の条件で試験したが、同様にアーク放電の発生がなかった。
【0027】
比較例1
実施例3において、保持部材4が図3の(a)に示した形状で、その材質をアルミニウム、鉄及び銅の金属面が露出した部材に代えた以外は、実施例3と同様の条件で、印加電圧250〜4000Vの範囲にわたって、試験を行ったところ、これらの全ての部材において、この印加電圧範囲でアーク放電の発生を起こした。
【0028】
【発明の効果】
本発明によれば、各種の画像形成に用いられる感光体の不良品を検査・摘出する破壊検査方法が、実際の画像形成時に白ボチ等を起こす起因であり、その感光体層に存在する電気的に不均一な部位の不良箇所を、従来のような高電圧印加時に煩雑な電流チェックを要せず、その判定を感光層に生ずる膜破壊の有無を単純な目視観察で的確に行える方法を提供することができる。
また、この検査に使用する本発明の破壊検査装置には、高電圧印加時に発生するアーク放電を防止するため、導電性ブラシに単純な非導電性の部材が設けられ、しかも、従来の装置に設けられていた電流検出、導電性ブラシに係る駆動装置等を要せず、装置の構成が単純であることから、従来に比べて低廉な破壊検査装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の検査装置を示す概念図である。
【図2】導電性ブラシに保持部材を設けた本発明の検査装置の概念図を示す。
【図3】保持部材の一例として、その形状を表すその斜視断面図を示す。
【図4】保持部材の取り付け部における導電性ブラシに接する部分の長さ(L2 )と導電性ブラシの長さ(L1 )を表す断面図を示す。
【図5】実施例1の破壊試験時における感光体層の耐印加電圧と電気抵抗値で表される感光体層の不均一部位との関係を示すグラフである。
【符号の説明】
1.感光体ドラムの感光層
2.感光体ドラムの回転型基体
3.導電性チャック
4.保持部材
5.ブラシ固定部材イ
6.導電性ブラシ
7.耐電圧試験用電源
L0 .導電性ブラシの幅
L1 .導電性ブラシの毛の長さ
L2 .保持部材の長さ
[0001]
BACKGROUND OF THE INVENTION
More particularly, the present invention relates to a destructive inspection method (or anti-destructive method) for examining delamination that occurs in a photosensitive layer by applying a high voltage to the photosensitive layer of a photosensitive drum rotating in a drum shape. The present invention relates to a voltage inspection method) and an inspection apparatus thereof.
[0002]
[Prior art]
Conventionally, a photosensitive layer made of a material such as a CdS-based material or a selenium-based material has been formed on the surface of a photoreceptor used in an image forming apparatus such as a laser printer or an electrophotographic machine. Scratches on the photosensitive layer, dents, cavities, exfoliation, when the abnormal portion such as with an electrically non-uniform site due to adhesion of foreign matter or the like is present, the resulting image, so-called white spot phenomenon occurs. Therefore, in advance, such a defect is inspected to determine a defective photoconductor.
[0003]
Therefore, as these prior inspection methods, for example, in Japanese Patent Application Laid-Open No. 57-169665, a conductive chuck and a conductive roller are connected to the photosensitive member, a high voltage is applied to the photosensitive member, and the photosensitive member is rotated. A detection method is described in which a defective portion is detected as having a defective portion when a current (overcurrent) of a predetermined value or more flows while moving. The above proposal is a method for detecting the excessive current generated in this way. However, when a high voltage is applied, even if there is a defective portion on the photoreceptor, the breaker is not used to damage the photoreceptor. Therefore, the apparatus may stop when a defective part occurs.
[0004]
In order to avoid the above problem, Japanese Patent Application Laid-Open No. 61-142456 provides a non-contact electrode, and when a defective portion exists on the photoconductor when this high voltage is applied, the defective portion and the normal portion. There has been proposed a method of detecting the presence or absence of a defective portion by measuring the fluctuation of the potential. However, this proposal has a drawback that a new device for detecting a change in potential must be assembled, resulting in high cost of the device. In addition, in order to detect such a potential difference, a constant and stable voltage must be applied to the entire photoconductor, and such a condition setting requires extremely high accuracy, which makes operation complicated. However, it is not always preferable as an inspection method.
[0005]
Also, in the inspection method in which a conductive brush is brought into contact with the surface of the photosensitive member instead of the conductive roller described in Japanese Utility Model Publication No. 6-21973, the photosensitive layer of the photosensitive drum charged when this high voltage is applied. The tip of the conductive brush moves up and down, left and right due to electrical repulsion with the surface of the surface, and discharge may occur between the conductive brush and the exposed base portion of the photosensitive drum, which hinders handling. May come.
[0006]
[Problems to be solved by the invention]
As described above, various inspection methods and apparatuses have been proposed in the past for inspecting such a photoreceptor in advance. However, in reality, it is not a satisfactory inspection method.
[0007]
Under such circumstances, if the photosensitive layer of the photosensitive drum is electrically non-uniform due to some factor, for example, its electrostatic resistance varies, it is inaccurate as a product. Such products must be inspected and removed in advance. An object of the present invention is to provide an inspection method capable of easily and reliably inspecting and extracting such defective products as compared with the prior art. Another object of the present invention is to provide a destructive inspection apparatus that is simple and inexpensive in comparison with the conventional apparatus used for this inspection.
[0008]
[Means for Solving the Problems]
As a result of intensive studies in view of the above-mentioned problems, the present inventors have determined the withstand voltage to be applied to the photosensitive member that causes the coating film of the photosensitive layer to be destroyed by the applied voltage when a high voltage is applied to the drum-type photosensitive member. As a result of the investigation, it was found that the inspection can be easily performed as compared with the conventional method, and the present invention has been completed. That is, in the present invention, the substrate of the photosensitive drum provided with the photosensitive layer on the drum-type substrate is conducted through the conductive chuck supported so as to slide on one end surface thereof, while the photosensitive layer is The conductive drum is rotated to apply an applied voltage to the surface of the photosensitive layer in a state in which the conductive drum is conducted through a conductive brush contacting the surface and a high voltage is applied between the conductive chuck and the conductive brush. The present invention provides a method for inspecting a destruction of a photosensitive drum, characterized in that, in a withstand voltage test performed by scanning, the destruction of a coating film generated in the photosensitive layer and the withstand voltage applied at that time are obtained.
[0009]
Accordingly, the withstand voltage applied to the photosensitive member causing the coating layer to be destroyed in the photosensitive layer of the photosensitive member according to the present invention is shown in FIG. 1 when there is an electrically non-uniform portion in the photosensitive layer of the photosensitive drum. In the destructive inspection apparatus according to the present invention, the photosensitive layer 1 of the photosensitive member is made conductive by the conductive chuck 3 and the conductive brush 6, and then a high voltage is applied between the two by the power source 7 to rotate the photosensitive drum. When the applied voltage is scanned on the surface of the photosensitive layer and there is an electrically nonuniform portion as described above in the photosensitive layer, an excessive current flows through the portion, and the coating film at that portion is destroyed. As a result, a defective part can be inspected and extracted by a very simple determination.
[0010]
Further, the present invention provides a destructive inspection apparatus that applies a high voltage to a photosensitive drum provided with a photosensitive layer on a drum type substrate to cause coating film destruction on the photosensitive layer, and the substrate of the photosensitive drum A conductive chuck that supports the end surface of the photosensitive member so as to slide, a conductive brush provided to contact the surface of the photosensitive layer, and the photosensitive layer via the conductive chuck and the conductive brush. The present invention provides a destructive inspection device for a photosensitive drum, characterized by having a power source for applying a high voltage. Therefore, as shown in FIG. 1, the drum type photoconductor destructive inspection apparatus according to the present invention comprises a conductive chuck 3 that supports the photosensitive drum so as to slide, a conductive brush 6 that contacts the photosensitive layer 1, and It is well understood that this is a very simple device having a power source 7 for applying a high voltage to both of them, and in particular, a device for detecting current as in the prior art is not required. A destructive inspection apparatus for a photosensitive drum.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As already described, the inspection method of the present invention for inspecting whether there is a defective portion in the photosensitive layer of the photosensitive drum determines the presence or absence of a destructive film generated in the photosensitive layer based on the presence or absence of extremely simple conduction. In addition, as already described above (see FIG. 1), the inspection method used for the inspection method is an extremely simple system as compared with a conventionally used device. It is also characterized by being low in cost.
[0012]
In the following, an embodiment of a method for inspecting destructiveness of a photosensitive drum and an inspection apparatus for the same according to the present invention will be described in detail with reference to FIGS.
[0013]
Therefore, in the present invention, as shown in FIG. 1, the conductive chuck 3 is supported on one side end face of the base 2 of the photosensitive drum so as to slide on the side face of the base. Accordingly, the conductive chuck 3 is electrically connected to the base body 2 through this sliding surface. On the other hand, the conductive brush 6 is provided on the surface of the photosensitive layer 1 so that the tip of the conductive brush 6 fixed to the brush fixing member 5 can be brought into contact with or separated from the photosensitive layer 1 vertically. It has been. Thereby, the surface of the photosensitive layer 1 is made conductive through the tip of the conductive brush 6.
[0014]
Therefore, the photosensitive drum 2 is rotated by a motor, and then the conductive brush 6 is brought into full electrical contact with the surfaces of the conductive chuck 3 and the photosensitive layer 1 so as to be electrically conductive. A high voltage is applied to the photosensitive layer 1 of the photosensitive drum by the test power source 7. In this way, if the photosensitive layer surface is scanned with the applied voltage and there is a portion where a current exceeding a certain current value flows, the film at that portion is peeled and broken. Since the presence or absence of the peeling can be easily confirmed by the presence or absence of conduction in conjunction with the applied voltage at this time, it is determined that the withstand voltage failure is based on the applied voltage value at that time, and peeling of the defective part linked to the applied voltage value It is possible to know the destruction (see FIG. 5 described later).
[0015]
In the present invention, the withstand voltage P of the photosensitive layer is expressed by the following equation (1): P ≧ alog r · s 2 (1)
In the formula, the coefficient a is in the range of 0.9 × 10 2 to 1.2 × 10 2 ,
r is the electrostatic resistance of the photosensitive drum ( Ω / cm 2 ),
s is the thickness (mm) of the photosensitive layer of the photosensitive drum .
It is preferable to satisfy the voltage obtained by the empirical formula represented by:
That is, the applied withstand voltage P is the electrostatic resistance ( Ω / cm 2 ) of the photosensitive drum in the equation. ) A function related to r. Thus, it can be seen that an electrically non-uniform portion existing in the photosensitive layer can be determined by the correlation between the electrostatic resistance value and the withstand voltage P described above.
[0016]
Therefore, in the present invention, the width L0 of the conductive brush 6 (see FIG. 1) is not particularly limited with respect to the photosensitive layer width of the photosensitive drum, but preferably, a high voltage is applied, From the viewpoint that a conductive brush can be simultaneously contacted and conducted under the same conditions over the entire width of the photosensitive layer to inspect the entire photosensitive layer, the width L0 of the brush should be at least equal to the width of the photosensitive layer. Is more preferred. However, conventionally, a brush width L0 smaller than the photosensitive layer width has been used from the viewpoint of preventing arc discharge generated during this test. Therefore, in the conventional test apparatus, in order to inspect the entire surface of the photoreceptor surface, it is necessary to repeat the test by moving the brush to the left and right with respect to the photosensitive layer. For this reason, not only the inspection efficiency is lowered, but also a drive device for the above movement is required, which increases the cost of the device.
[0017]
Therefore, in the present invention, as shown in FIG. 2 and FIG. 3, by providing the non-conductive (insulating) holding members 4 at both ends of the conductive brush 6, the above-described problems can be solved, and the above-mentioned problem can be solved. This makes it possible to improve the efficiency of the destructive inspection test.
[0018]
That is, as shown in FIG. 5 to be described later, since this destructive inspection test (withstand voltage test) applies a high voltage, conventionally, in such a test, static electricity usually accumulates in the periphery of the photosensitive drum. In particular, the tip of the conductive brush 6 is electrically repelled, and the tip of the brush is uneven, which tends to hinder measurement. Further, there is a tendency that arc discharge occurs in the exposed metal portion at the periphery of the photosensitive drum which is easily electrically conductive under such a high voltage.
[0019]
In order to effectively prevent these electric repulsion and arc discharge, in the present invention, preferably, the holding member 4 is provided on the brush fixing member 5 along both ends of the conductive brush 6 as shown in FIG. Is preferred. Moreover, in this invention, examples, such as (a)-(c) shown in FIG. 3, can be mentioned as a shape or attachment form of such a holding member 4, for example.
[0020]
In the holding member 4 thus provided, the length L2 of the holding member 4 is normally set to L1> L2 with respect to the bristle length L1 of the conductive brush 6, as shown in FIG. Is preferred. That is, in FIGS. 3A to 3C, the shape of the holding member 4 is L1 = L2 and L1 <L2 regardless of the synthetic resin such as acrylic, polycarbonate, polyethylene, etc. In this case, scratches are generated on the surface of the photosensitive layer.
[0021]
The holding member 4 is not particularly limited to inorganic or organic materials as long as it is a non-conductive insulator. For example, flakes such as natural mica, asbestos, sepiolite, crystal, marble, synthetic mica, Fiber materials, plate-like mineral materials, porcelain materials such as corundum, mullite, fiber materials, plate-like quartz, glass materials such as lead and alkali, various insulating papers, natural fiber materials such as cotton yarn, hemp yarn, silk yarn, Synthetic resin moldings such as natural resins such as copal and shellac, polyethylene, polypropylene, polystyrene, polycarbonate, polyamide, methacryl, polyester, polyacetal, polyvinyl chloride, epoxy and fluororesin, synthetic fiber processed products thereof, or synthesis thereof Various metal parts coated with resin paint, natural rubber and isoprene, butadiene, styrene butadiene rubber, chloro Ren, mention may be made of synthetic rubber such as nitrile rubber and butyl rubber.
[0022]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these.
[0023]
Example 1
A withstand voltage test device of the present invention (destructive test apparatus), a photoreceptor drum type as shown in FIG. 1, the substrate surface is a selenium on a substrate 2 made of aluminum photosensitive layer, respectively 10, 20, 30 , 40 and 50 μm layer thicknesses are prepared, and then electrically non-uniform portions of the photosensitive layers of these photoreceptor samples [expressed in terms of electrical resistance, 1 to 50 ( (TΩ · cm 2 ) in a non-uniform region. ] Were prepared, and using the withstand voltage test apparatus (destructive inspection apparatus) of the present invention, the coating film peeling of these photoreceptor samples and the withstand voltage P at that time were examined.
Test Method The photoconductor sample is inserted so that one side end face thereof is in contact with the conductive chuck 3, and then set so that the tip of the conductive brush 6 is in contact with the surface of the photosensitive layer of the sample. Next, in a state where a high voltage (applied voltage) is applied between the conductive brush 6 and the conductive chuck 3, the applied voltage is changed over a range of 780 to 1120V while rotating these photoconductor samples. Then, the surface of the photosensitive layer is scanned to visually observe whether peeling failure occurs in the photosensitive layer, and at the same time, the applied voltage value is confirmed as the withstand voltage P.
As described above, the presence or absence of peeling occurred in the photosensitive layer of each sample was visually confirmed, and at the same time, the voltage applied between the conductive chuck 3 and the conductive brush 6 was confirmed, and the result was FIG. 5 shows the applied voltage value that causes the coating film to be destroyed with respect to the electrical resistance value of the electrically nonuniform defective portion.
[0024]
As a result, with respect to the resistance value of the electrically non-uniform portion in each sample shown in FIG. 5, the applied voltage value of the electrically non-uniform portion in the photosensitive layer is destroyed. It can be seen that it was measured as the withstand voltage. In addition, as is clear from FIG. 5, peeling destruction and its resistance against a wide range of electrically non-uniform parts indicated on the basis of the thickness of the photosensitive layer and the electrostatic resistance existing in the layer. It is well understood that the relationship of the applied voltage P is clearly shown, and it is also well understood that these withstand voltage P can be determined from visual observation of peeling and breaking of the photosensitive layer.
[0025]
Example 2
The width L0 (see FIG. 1) of the conductive brush 6 with respect to the width of the photosensitive layer to be brought into contact with the photosensitive layer of the photosensitive drum is changed, and the test is performed over an applied voltage of 200 to 4000 V, and both ends of the photosensitive drum and the drum of the test apparatus are tested. The location where the metal surface in the vicinity of the mounting was exposed and the occurrence of arc discharge from the tip of the conductive brush were examined. As a result, when the width L0 of the brush in contact with the photosensitive layer is equal to or smaller than the width of the photosensitive layer, also in the test apparatus of the present invention, The occurrence of arc discharge from the above location was not observed at all. Therefore, if the brush width L0 is equal to or less than at least the entire width of the photosensitive layer, arc discharge does not occur even when the test method and apparatus of the present invention are used.
[0026]
Example 3
About the effect which provided the holding member 4 of the shape shown to (a), (b) and (c) of FIG. 3 in the conductive brush 6 using the acrylic material as a material of a member similarly to Example 2, Except for contact with a conductive brush having the same width as the entire width of the photosensitive layer, the same conditions as in Example 2 were tested for the occurrence of arc discharge from the same locations as in Example 2. There was no abnormality at all. In addition, the entire photosensitive layer can be tested without any trouble with a single scan, which eliminates the need to repeat the test by driving the brush left and right during the test as in the past. Could be done. Note that the holding member 4 having the shape shown in FIG. 3A was tested under the same conditions, except that the material was replaced with polycarbonate, polyethylene, silicone, alkyd melamine, epoxy, and capacitor paper. Similarly, there was no arc discharge.
[0027]
Comparative Example 1
In Example 3, the holding member 4 has the same shape as that shown in FIG. 3A, except that the material is replaced with a member in which the metal surface of aluminum, iron and copper is exposed. When the test was conducted over the range of the applied voltage of 250 to 4000 V, arc discharge was generated in this applied voltage range in all these members.
[0028]
【The invention's effect】
According to the present invention, destructive inspection method for inspecting, excised defective photosensitive member used in a variety of image formation, a due cause Shirobo switch or the like at the time of actual image forming, present in the photosensitive layer A method that can accurately determine the presence or absence of film breakage that occurs in the photosensitive layer without the need for complicated current checks when applying high voltages as in the past, for defective parts of electrically non-uniform parts. Can be provided.
In addition, the destructive inspection apparatus of the present invention used for this inspection is provided with a simple non-conductive member on the conductive brush in order to prevent arc discharge that occurs when a high voltage is applied. Since the current detection and drive device related to the conductive brush provided are not required and the configuration of the device is simple, a destructive inspection device can be provided which is less expensive than the conventional one.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an inspection apparatus of the present invention.
FIG. 2 is a conceptual diagram of an inspection apparatus according to the present invention in which a holding member is provided on a conductive brush.
FIG. 3 is a perspective sectional view showing the shape of an example of a holding member.
FIG. 4 is a cross-sectional view showing the length (L2) of the portion in contact with the conductive brush in the attachment portion of the holding member and the length (L1) of the conductive brush.
5 is a graph showing the relationship between the withstand voltage applied to the photoreceptor layer and the non-uniform portion of the photoreceptor layer represented by the electrical resistance value during the destructive test of Example 1. FIG.
[Explanation of symbols]
1. 1. Photosensitive layer of photosensitive drum 2. Rotating type substrate of photosensitive drum 3. Conductive chuck 4. holding member 5. Brush fixing member a 6. Conductive brush Withstand voltage test power supply L0. Conductive brush width L1. Conductive brush hair length L2. Length of holding member

Claims (5)

ドラム型基体上に感光層を設けた感光体ドラムの前記基体が、その片側端面に摺動するように支持された導電性チャックを介して導通し、一方前記感光層がその表面に接触する導電性ブラシを介して導通し、且つ前記導電性チャックと前記導電性ブラシ間に高電圧を印加させた状態で、前記感光体ドラムを回転させて前記感光層面に印加電圧を走査させて行う耐電圧試験において、前記感光層に生ずる塗膜破壊とその時の耐印加電圧を求めることを特徴とする感光体ドラムの破壊検査方法。  The photosensitive drum provided with a photosensitive layer on a drum-type substrate is electrically connected through a conductive chuck supported so as to slide on one end surface thereof, while the photosensitive layer is in contact with the surface thereof. Withstand voltage that is conducted by rotating the photosensitive drum and scanning the surface of the photosensitive layer with the high voltage applied between the conductive chuck and the conductive brush. In the test, a method for inspecting the destruction of the photosensitive drum, wherein the coating film destruction occurring in the photosensitive layer and the applied voltage at that time are obtained. 前記感光層の耐印加電圧Pが、下記(1)式
P≧alog r・s2 …………(1)
式中、係数aは、0.9×102 〜1.2×102 の範囲にあり、
rは感光体ドラムの静電抵抗(Ω/cm 2 )、
sは感光体ドラムの感光層の厚さ(mm)。
で表される請求項1に記載する感光体ドラムの破壊検査方法。
The withstand voltage P applied to the photosensitive layer is expressed by the following formula (1): P ≧ alog r · s 2 (1)
In the formula, the coefficient a is in the range of 0.9 × 10 2 to 1.2 × 10 2 ,
r is the electrostatic resistance of the photosensitive drum ( Ω / cm 2 ),
s is the thickness (mm) of the photosensitive layer of the photosensitive drum.
The destructive inspection method for a photosensitive drum according to claim 1, represented by:
ドラム型基体上に感光層を設けた感光体ドラムに高電圧を印加させて前記感光層に塗膜破壊を起こさせて行う破壊検査装置が、前記感光体ドラムの前記基体の片側端面を摺動するように支持する導電性チャックと、前記感光層の表面に接触するように設ける導電性ブラシと、且つ前記導電性チャックと前記導電性ブラシとを介して前記感光層に高電圧を印加させる電源とを有することを特徴とする感光体ドラムの破壊検査装置。  A destructive inspection apparatus that applies a high voltage to a photosensitive drum provided with a photosensitive layer on a drum-type substrate to cause coating film destruction on the photosensitive layer, slides on one end surface of the substrate of the photosensitive drum A conductive chuck that supports the conductive layer, a conductive brush that is in contact with the surface of the photosensitive layer, and a power source that applies a high voltage to the photosensitive layer through the conductive chuck and the conductive brush. And a destructive inspection apparatus for a photosensitive drum. 前記導電性ブラシの両端に保持部材を設けた請求項3に記載する感光体ドラムの破壊検査装置。  The photoconductor drum destructive inspection apparatus according to claim 3, wherein holding members are provided at both ends of the conductive brush. 前記保持部材が非導電性である請求項4に記載する感光体ドラムの破壊検査装置。  The photoconductor drum destructive inspection apparatus according to claim 4, wherein the holding member is non-conductive.
JP05183299A 1999-02-26 1999-02-26 Method and apparatus for destructive inspection of photosensitive drum Expired - Fee Related JP4021578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05183299A JP4021578B2 (en) 1999-02-26 1999-02-26 Method and apparatus for destructive inspection of photosensitive drum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05183299A JP4021578B2 (en) 1999-02-26 1999-02-26 Method and apparatus for destructive inspection of photosensitive drum

Publications (2)

Publication Number Publication Date
JP2000249689A JP2000249689A (en) 2000-09-14
JP4021578B2 true JP4021578B2 (en) 2007-12-12

Family

ID=12897850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05183299A Expired - Fee Related JP4021578B2 (en) 1999-02-26 1999-02-26 Method and apparatus for destructive inspection of photosensitive drum

Country Status (1)

Country Link
JP (1) JP4021578B2 (en)

Also Published As

Publication number Publication date
JP2000249689A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US9279758B2 (en) Method and apparatus for diagnosing status of parts in real time in plasma processing equipment
JP4846452B2 (en) Brush member, and transfer device and image forming apparatus using the same
JPH01267667A (en) Electrostatic charging device
US7715743B2 (en) Charger with a probe and controller
JP4021578B2 (en) Method and apparatus for destructive inspection of photosensitive drum
US8335464B2 (en) Cleaning brush for electrostatographic apparatus
US20100097082A1 (en) Apparatus and method for determining in real time the success of conductive coating removal
JPH0669252B2 (en) Core wire flaw detection method and detection head used in this method
US6320387B1 (en) Charge measuring instrument for flexible materials
US5708317A (en) DC motor designed for asset recovery
JP2994676B2 (en) Charging member and charging device having charging member
JPS6385782A (en) Detection of pinhole of photosensitive body for image forming device
JPH0862938A (en) Electrifying and cleaning device
JPH07295329A (en) Contact type electrostatic charging device
JPH0862937A (en) Electrifying and cleaning device
JPS61142456A (en) Inspecting device for photosensing body for electrophotography
JPH04246666A (en) Image forming device
JP3970121B2 (en) Peeling charge measuring device
JPH09325169A (en) Low dielectric strength defect inspecting instrument, conductive roller for inspection and inspection method for electrophotographic photoreceptor body
JPS61140854A (en) Device for inspecting electrophotographic sensitive body
JPH09319183A (en) Electrifying device
JP4481743B2 (en) Transfer bias measurement method, transfer bias measurement device, transfer bias evaluation method, transfer bias setting method, image forming apparatus
JPH09229907A (en) Method and device for detecting insulation defect of electric insulation material
JP2006349938A (en) Charging device and image forming apparatus
JPH01315782A (en) Image forming device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121005

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131005

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees