JP4017223B2 - Intake device for internal combustion engine - Google Patents

Intake device for internal combustion engine

Info

Publication number
JP4017223B2
JP4017223B2 JP31803697A JP31803697A JP4017223B2 JP 4017223 B2 JP4017223 B2 JP 4017223B2 JP 31803697 A JP31803697 A JP 31803697A JP 31803697 A JP31803697 A JP 31803697A JP 4017223 B2 JP4017223 B2 JP 4017223B2
Authority
JP
Japan
Prior art keywords
intake
negative pressure
passage
throttle valve
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31803697A
Other languages
Japanese (ja)
Other versions
JPH11148374A (en
Inventor
英俊 石上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP31803697A priority Critical patent/JP4017223B2/en
Publication of JPH11148374A publication Critical patent/JPH11148374A/en
Application granted granted Critical
Publication of JP4017223B2 publication Critical patent/JP4017223B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、吸気通路のスロットル弁よりも上流側に負圧応動弁を設けて成る内燃エンジンの吸気装置に関する。
【0002】
【従来の技術】
図8に従来の吸気装置を備える内燃エンジンのスロットル弁開度α、吸入空気量Q、吸入燃料量F、エンジントルクT及びエンジン回転数Nの過渡特性(経時変化)を示すが、同図に示すように、加速時の吸入空気量Qはスロットル弁開度αの増加速度に対して殆ど時間遅れなく増大するが、燃料は吸入空気量Qの増加に対して遅れて噴射されるため、加速の初期段階で吸入燃料量Fに不足が発生する。
【0003】
上記燃料不足を補うために燃料の非同期噴射制御や加速増量補正制御が行われるが、噴射された燃料はその大部分が一旦吸気管の壁面に付着し、その後の吸入空気量Qの増加に伴って付着燃料の蒸発量が増加する。このため、吸入空気量Qの増加に対する吸入燃料量Fの増加に時間遅れが不可避的に生じてしまう。
【0004】
ところで、エンジン出力であるトルクTは、スロットル弁を開けた瞬間それまで吸気管の内壁に付着していた燃料と非同期噴射燃料のシリンダ内への流入と急激な吸入空気量Qの増大とによって立ち上がりが図示のように急峻となるが、その後は吸入燃料量Fの増加の時間遅れによって混合気の空燃比A/Fがリーン側にずれてトルクTに落ち込みが発生する。そして、その後は吸気管の内壁に付着していた燃料の蒸発と燃料の加速増量によってシリンダ内に十分な量の燃料が吸入されるため、トルクTが再び立ち上がり、不快な所謂ギクシャク感が発生する。
【0005】
又、上述のようにギクシャク感が発生した後にトルクTが再び立ち上がるが、シリンダへの燃料の吸入は空気の吸入に対して遅れるためにトルクTの立ち上がりが緩慢となり、エンジン回転数Nの上昇に所謂モタツキが発生する。
【0006】
そこで、吸気通路のスロットル弁よりも上流側に負圧応動弁を設け、吸入空気をスロットル弁開度αに対して或る時定数をもって遅れてシリンダ内に吸入させ、吸入空気量Qの増加割合を吸入燃料量Fの増加割合に合わせることによって混合気のリーン化を防ぎ、空燃比A/Fを要求値に近づけて前記問題を解消することが行われている。
【0007】
【発明が解決しようとする課題】
ところが、上述のように負圧応動弁を設けた場合であっても、加速初期の或る範囲においては吸入燃料量Fの増加は吸入空気量Qの増加に対して時間遅れが生じ、両者の増加割合に大きな差が生じるために混合気のリーン化が避けられず、ギクシャク感やエンジン回転上昇のモタツキを満足する程度に解消することはできなかった。
【0008】
本発明は上記問題に鑑みてなされたもので、その目的とする処は、加速初期における混合気のリーン化に伴うギクシャク感やエンジン回転上昇のモタツキを解消することができる内燃エンジンの吸気装置を提供することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、燃焼室に連通する吸気通路内に燃料を供給する燃料供給手段と、上記吸気通路に設けられたスロットル弁と、上記吸気通路の上記スロットル弁よりも上流側に設けられた負圧応動弁を有し、上記負圧応動弁を、上記吸気通路を開閉する弁体と、該弁体に貫設された負圧通路を介して上記吸気通路に連通する負圧室と、弁体を閉じ側に付勢する付勢手段を含んで構成して成る内燃エンジンの吸気装置において、吸気管の内壁の上記弁体に対向する位置に突設される棒体を設け、上記棒体は、低負荷域において上記負圧通路に進入し、上記負圧応動弁は上記吸気通路に発生する負圧に対して開く方向に動く、ことを特徴とする。
【0010】
従って、本発明によれば、吸気通路の内壁への燃料の付着等のために吸入燃料量の増加割合の小さな加速初期段階においては負圧応動弁の弁体の負圧通路の断面積を絞り手段によって絞って弁体の開き速度を小さく抑えることができるため、吸入空気量の増加割合を吸入燃料量の増加割合に近づけて混合気のリーン化を防ぐことができ、エンジントルクとエンジン回転数をほぼ滑らかに立ち上げて不快なギクシャク感とエンジン回転上昇のモタツキを解消することができる。
【0011】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。
【0012】
図1は本発明に係る吸気装置の構成を示す内燃エンジンの部分破断側面図、図2は図1の要部拡大詳細図である。
【0013】
図1に示す内燃エンジン1は水冷4サイクルエンジンであって、そのシリンダボディ2に形成されたシリンダ3にはピストン4が摺動自在に嵌装されている。尚、図示しないが、ピストン4はコンロッドを介してクランク軸に連結されており、該ピストン4のシリンダ3内での往復直線運動はコンロッドによってクランク軸の回転運動に変換される。
【0014】
又、前記シリンダボディ2の上部に被着されたシリンダヘッド5には燃焼室6と吸気通路7及び排気通路8が形成されるとともに、その電極部が燃焼室6に臨む点火プラグ9が螺着されている。そして、吸気通路7と排気通路8の燃焼室6に開口する吸気ポート7aと排気ポート8aは吸気バルブ10と排気バルブ11によってそれぞれ適当なタイミングで開閉されてシリンダ3内において所要のガス交換がなされる。
【0015】
即ち、上記吸気バルブ10と排気バルブ11はシリンダヘッド5に結着された筒状のバルブガイド12,13によってそれぞれ摺動自在に挿通保持されており、これらはバルブスプリング14,15によってそれぞれ閉じ側に付勢されている。
【0016】
又、シリンダヘッド5の上部には図1の紙面垂直方向にカム軸16,17がそれぞれ回転自在に配されており、各カム軸16,17に一体に形成された吸気カム16aと排気カム17aの各外周面には前記吸気バルブ10と排気バルブ11の各上端部がバルブリフター18,19を介して当接している。尚、図1において、20はヘッドカバーである。
【0017】
而して、内燃エンジン1が作動して不図示のクランク軸が回転駆動されると、クランク軸の回転は前記カム軸16,17に伝達されて該カム軸16,17がクランク軸の1/2の速度で回転駆動され、これらのカム軸16,17に一体に形成された前記吸気カム16aと排気カム17aに当接する前記吸気バルブ10と排気バルブ11がそれぞれ適当なタイミングで開閉されて前述のようにシリンダ3内において所要のガス交換がなされる。
【0018】
次に、本発明に係る吸気装置について説明する。
【0019】
前記シリンダヘッド5の吸気側端面には前記吸気通路7に連なる吸気管21の一端がゴム製のジョイント22によって連結されており、この吸気管21の他端にはエアクリーナ23内に下方から臨むゴム製のジョイント24が連結されている。尚、エアークリーナ23内にはエアフィルター25が収納されている。又、シリンダヘッド5の排気側端面には前記排気通路8に連なる不図示の排気管が取り付けられている。
【0020】
ところで、前記吸気管21内の前記吸気通路7に連なる吸気通路26にはスロットル弁27が設けられ、このスロットル弁27の上流(図1に矢印Aにて示す吸入空気の流れ方向に対して上流側)には負圧応動弁30が設けられており、吸気管21の負圧応動弁30に対向する部位にはインジェクタ28がボルト29によって取り付けられている。
【0021】
上記スロットル弁27は、スロットル操作によって回動して吸気通路26の断面積を変化させるものであって、その開度(スロットル弁開度α)は開度センサー31によって検出され、その検出信号は不図示のエンジンコントロールユニット(以下、ECUと略称する)に入力される。
【0022】
又、前記インジェクタ28は、不図示の燃料タンクからデリバリパイプ32を経て供給される燃料を適当なタイミングで吸気通路26の前記スロットル弁27の上流に向かって噴射するものであって、その噴射タイミングと噴射時間(燃料噴射量)は前記ECUによって制御される。
【0023】
ここで、前記負圧応動弁30について説明する。
【0024】
負圧応動弁30は、摺動することによって吸気通路26を開閉するピストン状の弁体である摺動絞り弁33と、該摺動絞り弁33に貫設された負圧通路34を介して吸気通路26に連通する負圧室35と、摺動絞り弁33を閉じ側に付勢するスプリング36を含んで構成されている。
【0025】
而して、吸気管21の外部には該吸気管21の一部とカバー37によって空間が形成されており、この空間は可撓性のダイヤフラム38によって前記負圧室35と大気室39とに画成されている。尚、ダイヤフラム38の周縁は吸気管21の一部と前記カバー37によって挟持されている。又、大気室39は不図示の孔を介して大気に連通しており、その内圧は大気圧に保たれている。
【0026】
一方、前記摺動絞り弁33は吸気管21に摺動自在に挿通保持されており、その上端部は前記ダイヤフラム38によって支持されている。そして、この摺動絞り弁33は、これと前記カバー37との間に縮装された前記スプリング36によって前述のように閉じ側に付勢されている。
【0027】
ところで、本実施の形態においては、図2に詳細に示すように、吸気管21の内壁の前記摺動絞り弁33に対向する位置には、摺動絞り弁33に貫設された前記負圧通路34に対して出没する円柱状の棒体40が突設されており、後述のように、この棒体40はスロットル弁27の開度αが所定値以下の低負荷域において図示のように摺動絞り弁33の負圧通路34に進入して該負圧通路34の断面積を絞る絞り手段を構成している。
【0028】
次に、本発明に係る吸気装置の作用を説明する。
【0029】
内燃エンジン1が始動されてピストン4がシリンダ3内で下動する吸気行程において吸気バルブ10が開くと、シリンダ3内に発生する負圧に引かれて空気がエアクリーナ23内に流入し、この空気はエアフィルター25を通過して浄化された後、エアクリーナ23内に開口するジョイント24から吸気通路26内に流入する。そして、吸気通路26を流れる空気にインジェクタ28から適当なタイミングで吸気通路26内に噴射される燃料が混合されることによって所定の空燃比A/Fの混合気が形成され、この混合気はスロットル弁27を通過してシリンダヘッド5の吸気通路7を流れ、吸気バルブ10を通って吸気ポート7aからシリンダ3内に流入する。その後、シリンダ3内の混合気は吸気バルブ10が閉じてピストン4がシリンダ3内を上動する圧縮行程において圧縮され、ピストン4が上死点近傍に達した時点で前記点火プラグ9によって着火燃焼せしめられる。
【0030】
ここで、本実施の形態に係る内燃エンジン1のスロットル弁開度α、吸入空気量Q、吸入燃料量F、エンジントルクT及びエンジン回転数Nの過渡特性を図3に示すが、スロットル開度αが小さいアイドリング運転を含む低負荷運転時には吸入空気量Qが小さく、吸入空気の流速も小さいために吸気通路26に発生する負圧が小さい。従って、負圧応動弁30の摺動絞り弁33に貫設された負圧通路34を介して吸気通路26に連通する負圧室35の負圧も小さく、摺動絞り弁33はスプリング36の付勢力によって図示のように閉じられ、このとき、前記棒体40は摺動絞り弁33の負圧通路34に進入して該負圧通路26の断面積を絞っている。
【0031】
而して、図3に示す時間T1 においてスロットル弁27を急に開いて急加速した場合、吸入空気量Qの増大と共に吸気通路26の負圧が大きくなるが、加速初期においては前述のように棒体40が摺動絞り弁33の負圧通路34に進入して該負圧通路34の断面積を絞っているために負圧室35内の負圧は緩慢に増大していく。このため、負圧室35の負圧に基づいてダイヤフラム38に作用する力もゆっくりと増大し、摺動絞り弁33もスプリング36の付勢力に抗して従来よりもゆっくりと摺動して吸気通路26を開く。
【0032】
従って、本実施の形態においては、図3に示すように、加速初期においては吸入空気量Qの増加割合は吸入燃料量Fの増加割合に沿って小さく抑えられ、加速初期における混合気のリーン化が防がれる。
【0033】
そして、摺動絞り弁33が徐々に開いてやがて図3に示す時間T2 においてその負圧通路34から棒体40が抜けると、負圧通路34の断面積が急拡大するため、吸気通路26の負圧がそのまま負圧室35に作用し、摺動絞り弁33の開く速度が速くなる(加速度が大きくなる)ために図3に示すように吸入空気量Qの増加割合が吸入燃料量Fの増加割合に沿って大きくなる。尚、比較のために従来の吸入空気量の特性(図8参照)を図3に示したが、本実施の形態では吸入空気量Qを2段階に増加させることによって吸入空気量Qの増加割合を吸入燃料量Fの増加割合に近づけることができ、混合気のリーン化を防ぐことができる。
【0034】
以上のように、本実施の形態においては、吸気管21の内壁への燃料の付着等のために吸入燃料量Fの増加割合の小さな加速初期(図3の時間T1 〜T2 の領域)においては摺動絞り弁33の負圧通路34の断面積を棒体40によって絞って摺動絞り弁33の開き速度を小さく抑えたため、吸入空気量Qの増加割合を吸入燃料量Fの増加割合に近づけて混合気のリーン化を防ぐことができ、図3に示すようにエンジントルクTがほぼ滑らかに立ち上がって不快なギクシャク感が解消されるとともに、エンジン回転数Nもモタツキなく滑らかに上昇する。
【0035】
ところで、図4(a)〜(d)に棒体40の各種形状を示し、図5(a)〜(d)に図4(a)〜(d)に示す棒体40を用いた場合の負圧通路34の断面積Sの変化を摺動絞り弁33のストロークLに対して示す図、図6は図4(a)〜(d)に示す棒体40を用いた場合の吸入空気量Qの加速初期における過渡特性を示す図である。
【0036】
図4(a)に示す本実施の形態に係る円柱状の棒体40を使用した場合、その断面積S2 は全長d0 に亘って一定であるため、図5(a)に示すように摺動絞り弁33のストロークLがd0 未満(L<d0 )の間(つまり、負圧通路34に棒体40が進入している間)は摺動絞り弁33の負圧通路34の断面積Sは棒体40によって絞られて(S1 −S2 )となる(S1 は負圧通路34に棒体40が進入していない場合の負圧通路34の断面積)。そして、摺動絞り弁33のストロークLがd0 に達すると(つまり、負圧通路34から棒体40が抜けると)、摺動絞り弁33の負圧通路34の断面積Sは棒体40によって絞られないためにS1 に急拡大する。そして、この場合の吸入空気量Qの過渡特性は図6において折れ線(a)に示されるが、棒体40が負圧通路34から抜けた瞬間(時間T2 )において吸入空気量Qは急増し、その後はやや緩慢に増大する。
【0037】
これに対して、図4(b)〜(d)に示す棒体40は断面積が先端に向かって変化するよう成形されたものであって、これらの棒体40を用いることによって負圧通路34の断面積Sを摺動絞り弁33のストロークLに応じて変化させることができる。
【0038】
即ち、図4(b)に示す棒体40は、長さd1 の部分40aは断面積S2 が一定の円柱で構成され、それより先の部分40bは円錐状に成形されてその部分40bの断面積は先端に向かって漸減している。
【0039】
従って、図4(b)に示す棒体40を使用した場合、その断面積は長さd1 の部分では一定(S2 )であるため、棒体40が負圧通路34に進入していて摺動絞り弁33のストロークLがd1 未満(L<d1 )の間は図5(b)に示すように摺動絞り弁33の負圧通路34の断面積Sは棒体40によって絞られて(S1 −S2 )となる。そして、摺動絞り弁33のストロークLがd1 〜d2 である場合(d1 <L<d2 )には、負圧通路34の断面積Sは(S1 −S2 )からS1 に2次曲線的に漸増し、やがて摺動絞り弁33のストロークLが(d1 +d2 )を超える(つまり、負圧通路34から棒体40が抜けると)、摺動絞り弁33の負圧通路34の断面積Sは棒体40によって絞られないためにS1 の一定値を示す。そして、この場合の吸入空気量Qの過渡特性は図6に曲線(b)にて示されるが、加速初期において吸入空気量Qは2次曲線的に漸増する。
【0040】
又、図4(c),(d)示す棒体40はその断面積が先端部に向かって漸減する先細り形状に成形したものであって、図4(c)に示す棒体40は全長d3 に亘って円錐状に成形され、図4(d)に示す棒体40は全長d4 に亘ってニードル状に成形されている。
【0041】
而して、図4(b),(c)に示す棒体40を使用した場合、その断面積は先端に向かって漸減するため、摺動絞り弁33のストロークLがそれぞれd3 ,d4 未満(L<d3 ,L<d4 )である間(つまり、負圧通路34に棒体40が進入している間)は摺動絞り弁33の負圧通路34の断面積Sは棒体40によって絞られ、図5(c),(d)にそれぞれ示すように負圧通路34の断面積Sは摺動絞り弁33のストロークLの増大に伴って(S1 −S2 )からS1 まで2次曲線的に漸増する。そして、摺動絞り弁33のストロークLがそれぞれd3 ,d4 を超える(L>d3 ,>d4 )と(つまり、負圧通路34から棒体40が抜けると)、摺動絞り弁33の負圧通路34の断面積Sは棒体40によって絞られないためにS1 の一定値を示す。そして、これらの場合の吸入空気量Qの過渡特性は図6に曲線(c),(d)にてそれぞれ示されるが、加速初期において吸入空気量Qは2次曲線的に漸増する。
【0042】
而して、図4(b)〜(d)に示すような断面積が先端に向かって変化する棒体40を用いることによって図6に曲線(b)〜(d)にて示すように吸入空気量Qを滑らかに漸増させることができるため、吸入空気量Qの増加割合を吸入燃料量Fの増加割合により一層近づけて混合気のリーン化を更に確実に防ぐことができ、エンジントルクT及びエンジン回転数Nをより滑らかに立ち上げてギクシャク感とエンジン回転数Nの上昇のモタツキをより効果的に解消することができる。
【0043】
尚、棒体40の径(断面積)は低負荷時の負圧応動弁30の応答特性に基づいて決定される。
【0044】
ところで、負圧応動弁30は、主に吸気通路26に発生する負圧、摺動絞り弁33を付勢するスプリング36のばね定数及び摺動絞り弁33の重量によってほぼ決定され、定常時においては負圧に基づく力とスプリング36の付勢力及び摺動絞り弁33の重量が釣り合うまで摺動絞り弁33が摺動する。又、加速や減速時等の過渡時においては、スプリング36のばね定数及び摺動絞り弁33の重量によって摺動絞り弁33の加速度がほぼ決定される。
【0045】
而して、棒体40が負圧通路34に進入している運転領域では、負圧通路34の絞りを大きくすることによって図7に実線Q’にて示すように吸入空気量Q’の増加割合を破線Qにて示す前記実施の形態における吸入空気量Qの増加割合よりも小さく抑えることができる。
【0046】
そして、摺動絞り弁33の加速度が前記実施の形態におけるそれよりも大きくなるようにスプリング36のばね定数と摺動絞り弁33の重量を設定しておき(具体的には、ばね定数及び重量共に小さく設定しておく)、棒体40が負圧通路34から抜けると吸入空気量Q’の増加割合が破線Qにて示す前記実施の形態における吸入空気量Qの増加割合よりも大きくすることによって吸入空気量Q’の増加割合を実際の吸入燃料量Fの増加率により近づけることができ、混合気の空燃比A/Fの所期の値からのズレをより小さく抑えて混合気の燃焼の安定化を図り、図7に破線T’に示すようにエンジントルクT’を実線Tにて示される前記実施の形態におけるエンジントルクTよりも滑らかに立ち上げることができ、加速の初期段階におけるギクシャク感とエンジン回転上昇のモタツキに関する問題をより効果的に解消することができる。
【0047】
【発明の効果】
以上の説明で明らかなように、本発明によれば、燃焼室に連通する吸気通路内に燃料を供給する燃料供給手段と、前記吸気通路に設けられたスロットル弁と、前記吸気通路の前記スロットル弁よりも上流側に設けられた負圧応動弁を有し、前記負圧応動弁を、前記吸気通路を開閉する弁体と、該弁体に貫設された負圧通路を介して前記吸気通路に連通する負圧室と、弁体を閉じ側に付勢する付勢手段を含んで構成して成る内燃エンジンの吸気装置において、前記スロットル弁の開度が所定値以下の低負荷域において前記負圧応動弁の負圧通路の断面積を絞る絞り手段を設けたため、吸気通路の内壁への燃料の付着等のために吸入燃料量の増加割合の小さな加速初期段階においては負圧応動弁の弁体の負圧通路の断面積を絞り手段によって絞って弁体の開き速度を小さく抑えることができ、吸入空気量の増加割合を吸入燃料量の増加割合に近づけて混合気のリーン化を防ぎ、エンジントルクとエンジン回転数をほぼ滑らかに立ち上げて不快なギクシャク感とエンジン回転上昇のモタツキを解消することができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明に係る吸気装置の構成を示す内燃エンジンの部分破断側面図である。
【図2】図1の要部拡大詳細図である。
【図3】本発明に係る吸気装置を備える内燃エンジンのスロットル弁開度α、吸入空気量Q、吸入燃料量F、エンジントルクT及びエンジン回転数Nの過渡特性を示す図である。
【図4】(a)〜(d)は棒体の各種形状を示す図である。
【図5】(a)〜(d)は図4(a)〜(d)に示す棒体を用いた場合の摺動絞り弁の負圧通路断面積Sの変化を摺動絞り弁のストロークLに対して示す図である。
【図6】図4(a)〜(d)に示す棒体を用いた場合の吸入空気量Qの過渡特性を示す図である。
【図7】本発明の別形態に係る吸気装置を備える内燃エンジンの吸入空気量Qと吸入燃料量F及びエンジントルクTの過渡特性を示す図である。
【図8】従来の吸気装置を備える内燃エンジンのスロットル弁開度α、吸入空気量Q、吸入燃料量F、エンジントルクT及びエンジン回転数Nの過渡特性を示す図である。
【符号の説明】
1 内燃エンジン
6 燃焼室
26 吸気通路
27 スロットル弁
28 インジェクタ(燃料供給手段)
30 負圧応動弁
33 摺動絞り弁(弁体)
34 負圧通路
35 負圧室
36 スプリング(付勢手段)
40 棒体(絞り手段)
α スロットル弁開度
F 吸入燃料量
Q 吸入空気量
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an intake device for an internal combustion engine in which a negative pressure responsive valve is provided upstream of a throttle valve in an intake passage.
[0002]
[Prior art]
FIG. 8 shows the transient characteristics (change over time) of the throttle valve opening α, the intake air amount Q, the intake fuel amount F, the engine torque T, and the engine speed N of an internal combustion engine equipped with a conventional intake device. As shown, the intake air amount Q at the time of acceleration increases almost without delay with respect to the increasing speed of the throttle valve opening α, but the fuel is injected with a delay with respect to the increase of the intake air amount Q. Insufficient intake fuel amount F occurs in the initial stage.
[0003]
In order to make up for the above fuel shortage, asynchronous fuel injection control and acceleration increase correction control are performed, but most of the injected fuel once adheres to the wall surface of the intake pipe, and as the intake air quantity Q thereafter increases, As a result, the amount of evaporated fuel increases. For this reason, a time delay inevitably occurs in the increase in the intake fuel amount F with respect to the increase in the intake air amount Q.
[0004]
The torque T, which is the engine output, rises due to the inflow of the fuel and the asynchronously injected fuel into the cylinder and the sudden increase in the intake air amount Q at the moment when the throttle valve is opened. However, the air-fuel ratio A / F of the air-fuel mixture shifts to the lean side due to the time delay of the increase in the intake fuel amount F, and the torque T falls. After that, a sufficient amount of fuel is sucked into the cylinder by evaporation of the fuel adhering to the inner wall of the intake pipe and the acceleration increase of the fuel, so that the torque T rises again and an unpleasant so-called jerky feeling is generated. .
[0005]
In addition, the torque T rises again after the jerky sensation as described above, but since the intake of fuel into the cylinder is delayed with respect to the intake of air, the rise of the torque T becomes slow and the engine speed N increases. So-called mottling occurs.
[0006]
Therefore, a negative pressure responsive valve is provided upstream of the throttle valve in the intake passage, and the intake air is sucked into the cylinder with a certain time constant with respect to the throttle valve opening α, and the rate of increase of the intake air amount Q is increased. Is adjusted to the rate of increase of the intake fuel amount F to prevent leaning of the air-fuel mixture, and the air-fuel ratio A / F is brought close to the required value to solve the above problem.
[0007]
[Problems to be solved by the invention]
However, even when the negative pressure responsive valve is provided as described above, the increase in the intake fuel amount F is delayed with respect to the increase in the intake air amount Q in a certain range in the early stage of acceleration. Since there is a large difference in the rate of increase, leaning of the air-fuel mixture is inevitable, and it has not been possible to eliminate the jerky feeling and the fluctuation of engine rotation.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide an intake device for an internal combustion engine that can eliminate the jerky feeling associated with leaning of the air-fuel mixture in the initial stage of acceleration and the fluctuation of engine rotation. It is to provide.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention provides a fuel supply means for supplying fuel into an intake passage communicating with a combustion chamber, a throttle valve provided in the intake passage, and the throttle in the intake passage. A negative pressure responsive valve provided upstream of the valve, wherein the negative pressure responsive valve includes a valve body that opens and closes the intake passage, and the intake air via a negative pressure passage that extends through the valve body. In an intake system for an internal combustion engine comprising a negative pressure chamber communicating with a passage and an urging means for urging the valve body toward the closing side, a protrusion is provided at a position facing the valve body on the inner wall of the intake pipe The rod body enters the negative pressure passage in a low load range, and the negative pressure responsive valve moves in a direction to open against the negative pressure generated in the intake passage. To do.
[0010]
Therefore, according to the present invention, the cross-sectional area of the negative pressure passage of the valve body of the negative pressure responsive valve is reduced in the initial stage of acceleration where the increase rate of the intake fuel amount is small due to fuel adhering to the inner wall of the intake passage. Since the opening speed of the valve body can be kept small by squeezing by means, the increase rate of the intake air amount can be brought close to the increase rate of the intake fuel amount to prevent leaning of the air-fuel mixture, and the engine torque and engine speed Can be started up almost smoothly to eliminate the unpleasant jerky feeling and engine rotation rise.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0012]
FIG. 1 is a partially cutaway side view of an internal combustion engine showing a configuration of an intake device according to the present invention, and FIG. 2 is an enlarged detail view of a main part of FIG.
[0013]
An internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle engine, and a piston 4 is slidably fitted in a cylinder 3 formed in a cylinder body 2 thereof. Although not shown, the piston 4 is connected to the crankshaft via a connecting rod, and the reciprocating linear motion of the piston 4 in the cylinder 3 is converted into the rotational motion of the crankshaft by the connecting rod.
[0014]
A combustion chamber 6, an intake passage 7, and an exhaust passage 8 are formed in the cylinder head 5 attached to the upper portion of the cylinder body 2, and a spark plug 9 with an electrode portion facing the combustion chamber 6 is screwed. Has been. The intake port 7a and the exhaust port 8a that open to the combustion chamber 6 in the intake passage 7 and the exhaust passage 8 are opened and closed at appropriate timings by the intake valve 10 and the exhaust valve 11, respectively, so that the required gas exchange is performed in the cylinder 3. The
[0015]
That is, the intake valve 10 and the exhaust valve 11 are slidably inserted and held by cylindrical valve guides 12 and 13 attached to the cylinder head 5, respectively, and these are closed by valve springs 14 and 15, respectively. Is being energized.
[0016]
1, cam shafts 16 and 17 are rotatably arranged in the direction perpendicular to the paper surface of FIG. 1, and an intake cam 16a and an exhaust cam 17a formed integrally with the cam shafts 16 and 17, respectively. The upper end portions of the intake valve 10 and the exhaust valve 11 are in contact with the outer peripheral surfaces of the respective outer peripheral surfaces via valve lifters 18 and 19. In FIG. 1, reference numeral 20 denotes a head cover.
[0017]
Thus, when the internal combustion engine 1 is operated and a crankshaft (not shown) is rotationally driven, the rotation of the crankshaft is transmitted to the camshafts 16 and 17 so that the camshafts 16 and 17 are 1 / of the crankshaft. The intake valve 10 and the exhaust valve 11 which are rotationally driven at a speed of 2 and are in contact with the intake cam 16a and the exhaust cam 17a formed integrally with the cam shafts 16 and 17 are opened and closed at appropriate timings, respectively. As described above, the necessary gas exchange is performed in the cylinder 3.
[0018]
Next, the intake device according to the present invention will be described.
[0019]
One end of an intake pipe 21 connected to the intake passage 7 is connected to the intake-side end face of the cylinder head 5 by a rubber joint 22, and the other end of the intake pipe 21 is exposed to rubber in the air cleaner 23 from below. A joint 24 made of metal is connected. An air filter 25 is accommodated in the air cleaner 23. An exhaust pipe (not shown) connected to the exhaust passage 8 is attached to the exhaust side end face of the cylinder head 5.
[0020]
By the way, a throttle valve 27 is provided in an intake passage 26 connected to the intake passage 7 in the intake pipe 21, and upstream of the throttle valve 27 (upstream with respect to the flow direction of intake air indicated by an arrow A in FIG. 1). A negative pressure responsive valve 30 is provided on the side), and an injector 28 is attached to a portion of the intake pipe 21 facing the negative pressure responsive valve 30 by a bolt 29.
[0021]
The throttle valve 27 is rotated by a throttle operation to change the cross-sectional area of the intake passage 26. The opening (throttle valve opening α) is detected by an opening sensor 31, and the detection signal is It is input to an engine control unit (not shown) (hereinafter abbreviated as ECU).
[0022]
The injector 28 injects fuel supplied from a fuel tank (not shown) through the delivery pipe 32 toward the upstream side of the throttle valve 27 in the intake passage 26 at an appropriate timing. The injection time (fuel injection amount) is controlled by the ECU.
[0023]
Here, the negative pressure responsive valve 30 will be described.
[0024]
The negative pressure responsive valve 30 includes a sliding throttle valve 33 which is a piston-like valve body that opens and closes the intake passage 26 by sliding, and a negative pressure passage 34 penetrating the sliding throttle valve 33. A negative pressure chamber 35 that communicates with the intake passage 26 and a spring 36 that biases the sliding throttle valve 33 toward the closing side are configured.
[0025]
Thus, a space is formed outside the intake pipe 21 by a part of the intake pipe 21 and the cover 37, and this space is divided into the negative pressure chamber 35 and the atmospheric chamber 39 by a flexible diaphragm 38. It is defined. The peripheral edge of the diaphragm 38 is sandwiched between a part of the intake pipe 21 and the cover 37. The atmosphere chamber 39 communicates with the atmosphere through a hole (not shown), and its internal pressure is kept at atmospheric pressure.
[0026]
On the other hand, the sliding throttle valve 33 is slidably inserted into the intake pipe 21, and its upper end is supported by the diaphragm 38. The sliding throttle valve 33 is urged toward the closing side as described above by the spring 36 that is mounted between the sliding throttle valve 33 and the cover 37.
[0027]
By the way, in this embodiment, as shown in detail in FIG. 2, the negative pressure penetrating through the sliding throttle valve 33 is provided at a position facing the sliding throttle valve 33 on the inner wall of the intake pipe 21. A cylindrical rod body 40 protruding and projecting with respect to the passage 34 is projected, and as will be described later, this rod body 40 is shown in the low load region where the opening α of the throttle valve 27 is a predetermined value or less as shown in the figure. Throttle means that enters the negative pressure passage 34 of the sliding throttle valve 33 and restricts the cross-sectional area of the negative pressure passage 34 is configured.
[0028]
Next, the operation of the intake device according to the present invention will be described.
[0029]
When the intake valve 10 is opened in the intake stroke in which the internal combustion engine 1 is started and the piston 4 moves down in the cylinder 3, air flows into the air cleaner 23 due to the negative pressure generated in the cylinder 3. After being purified by passing through the air filter 25, the air flows into the intake passage 26 from the joint 24 that opens into the air cleaner 23. Then, the air flowing through the intake passage 26 is mixed with the fuel injected from the injector 28 into the intake passage 26 at an appropriate timing, whereby an air-fuel mixture having a predetermined air-fuel ratio A / F is formed. It passes through the valve 27 and flows through the intake passage 7 of the cylinder head 5, passes through the intake valve 10, and flows into the cylinder 3 from the intake port 7 a. Thereafter, the air-fuel mixture in the cylinder 3 is compressed in a compression stroke in which the intake valve 10 is closed and the piston 4 moves up in the cylinder 3, and when the piston 4 reaches near the top dead center, the ignition plug 9 ignites and burns. I'm damned.
[0030]
Here, FIG. 3 shows transient characteristics of the throttle valve opening α, the intake air amount Q, the intake fuel amount F, the engine torque T, and the engine speed N of the internal combustion engine 1 according to the present embodiment. During low load operation including idling operation where α is small, the intake air amount Q is small and the flow velocity of the intake air is also small, so the negative pressure generated in the intake passage 26 is small. Therefore, the negative pressure in the negative pressure chamber 35 communicating with the intake passage 26 via the negative pressure passage 34 penetrating the sliding throttle valve 33 of the negative pressure responsive valve 30 is also small. The rod body 40 is closed as shown in the figure by the urging force. At this time, the rod body 40 enters the negative pressure passage 34 of the sliding throttle valve 33 and restricts the cross-sectional area of the negative pressure passage 26.
[0031]
And Thus, when the rapid acceleration to open the throttle valve 27 abruptly at time T 1 shown in FIG. 3, but the negative pressure in the intake passage 26 with increasing the intake air amount Q increases, as described above in the initial stage of acceleration Since the rod 40 enters the negative pressure passage 34 of the sliding throttle valve 33 and restricts the cross-sectional area of the negative pressure passage 34, the negative pressure in the negative pressure chamber 35 increases slowly. For this reason, the force acting on the diaphragm 38 slowly increases based on the negative pressure of the negative pressure chamber 35, and the sliding throttle valve 33 slides more slowly than the conventional one against the urging force of the spring 36, and the intake passage. 26 is opened.
[0032]
Therefore, in the present embodiment, as shown in FIG. 3, the rate of increase of the intake air amount Q is kept small along with the rate of increase of the intake fuel amount F in the initial stage of acceleration, and the air-fuel mixture becomes leaner in the initial stage of acceleration. Is prevented.
[0033]
When the rod 40 comes out from the negative pressure passage 34 in the sliding throttle valve 33 is gradually opened soon time shown in FIG. 3 T 2, since the cross-sectional area of the negative pressure passage 34 is rapidly expanded, an intake passage 26 3 acts on the negative pressure chamber 35 as it is, and the opening speed of the sliding throttle valve 33 increases (acceleration increases), so that the increase rate of the intake air amount Q is the intake fuel amount F as shown in FIG. It grows along with the rate of increase. For comparison, the conventional intake air amount characteristic (see FIG. 8) is shown in FIG. 3, but in this embodiment, the increase rate of the intake air amount Q is increased by increasing the intake air amount Q in two stages. Can be brought close to the increasing rate of the intake fuel amount F, and the lean mixture can be prevented.
[0034]
As described above, in the present embodiment, the initial stage of acceleration in which the rate of increase of the intake fuel amount F is small due to the adhesion of fuel to the inner wall of the intake pipe 21 (region of times T 1 to T 2 in FIG. 3) In FIG. 3, the cross-sectional area of the negative pressure passage 34 of the sliding throttle valve 33 is throttled by the rod body 40 to suppress the opening speed of the sliding throttle valve 33. Therefore, the increase rate of the intake air amount Q is set to the increase rate of the intake fuel amount F. As shown in FIG. 3, the engine torque T rises almost smoothly to eliminate an unpleasant jerky feeling, and the engine speed N also rises smoothly without mottling. .
[0035]
4A to 4D show various shapes of the rod 40, and FIGS. 5A to 5D show the case where the rod 40 shown in FIGS. 4A to 4D is used. FIG. 6 is a diagram showing a change in the cross-sectional area S of the negative pressure passage 34 with respect to the stroke L of the sliding throttle valve 33. FIG. 6 is an intake air amount when the rod body 40 shown in FIGS. 4 (a) to 4 (d) is used. It is a figure which shows the transient characteristic in the early stage of acceleration of Q.
[0036]
When the cylindrical rod body 40 according to the present embodiment shown in FIG. 4A is used, the cross-sectional area S 2 is constant over the entire length d 0 , so that as shown in FIG. While the stroke L of the sliding throttle valve 33 is less than d 0 (L <d 0 ) (that is, while the rod body 40 enters the negative pressure passage 34), the negative pressure passage 34 of the sliding throttle valve 33 The cross-sectional area S is reduced by the rod 40 (S 1 −S 2 ) (S 1 is the cross-sectional area of the negative pressure passage 34 when the rod 40 does not enter the negative pressure passage 34). When the stroke L of the sliding throttle valve 33 reaches d 0 (that is, when the rod body 40 comes out of the negative pressure passage 34), the cross-sectional area S of the negative pressure passage 34 of the sliding throttle valve 33 becomes the rod body 40. rapidly expanding to S 1 in order not to be squeezed by. The transient characteristic of the intake air amount Q in this case is indicated by a broken line (a) in FIG. 6, but the intake air amount Q increases rapidly at the moment (time T 2 ) when the rod body 40 is removed from the negative pressure passage 34. After that, it increases slightly slowly.
[0037]
On the other hand, the rod body 40 shown in FIGS. 4B to 4D is formed so that the cross-sectional area changes toward the tip, and by using these rod bodies 40, the negative pressure passage is formed. The cross-sectional area S of 34 can be changed according to the stroke L of the sliding throttle valve 33.
[0038]
That is, rod 40 shown in FIG. 4 (b), the portion 40a of the length d 1 is the cross-sectional area S 2 is composed of a fixed cylinder, the part 40b that earlier than portion 40b is formed into a conical shape The cross-sectional area of is gradually reduced toward the tip.
[0039]
Therefore, when the rod 40 shown in FIG. 4B is used, the cross-sectional area is constant (S 2 ) in the portion of the length d 1 , so that the rod 40 has entered the negative pressure passage 34. While the stroke L of the sliding throttle valve 33 is less than d 1 (L <d 1 ), the cross-sectional area S of the negative pressure passage 34 of the sliding throttle valve 33 is throttled by the rod body 40 as shown in FIG. It is in the (S 1 -S 2). When the stroke L of the sliding throttle valve 33 is d 1 to d 2 (d 1 <L <d 2 ), the cross-sectional area S of the negative pressure passage 34 is changed from (S 1 −S 2 ) to S 1. When the stroke L of the sliding throttle valve 33 eventually exceeds (d 1 + d 2 ) (that is, when the rod body 40 is removed from the negative pressure passage 34), the negative pressure of the sliding throttle valve 33 increases. sectional area S of the pressure passage 34 exhibits a constant value of S 1 in order not throttled by the rod 40. The transient characteristic of the intake air amount Q in this case is shown by a curve (b) in FIG. 6, and the intake air amount Q gradually increases in a quadratic curve at the initial stage of acceleration.
[0040]
4 (c) and 4 (d) is formed into a tapered shape whose cross-sectional area gradually decreases toward the tip, and the rod body 40 shown in FIG. The rod 40 shown in FIG. 4D is shaped like a needle over the entire length d 4 .
[0041]
Thus, when the rod body 40 shown in FIGS. 4B and 4C is used, its cross-sectional area gradually decreases toward the tip, so that the stroke L of the sliding throttle valve 33 becomes d 3 and d 4 , respectively. Is less than (L <d 3 , L <d 4 ) (that is, while the rod body 40 enters the negative pressure passage 34), the cross-sectional area S of the negative pressure passage 34 of the sliding throttle valve 33 is a rod. As shown in FIGS. 5C and 5D, the cross-sectional area S of the negative pressure passage 34 increases from (S 1 -S 2 ) as the stroke L of the sliding throttle valve 33 increases. It gradually increases in a quadratic curve until S 1 . When the stroke L of the sliding throttle valve 33 exceeds d 3 and d 4 (L> d 3 ,> d 4 ) (that is, when the rod body 40 comes out of the negative pressure passage 34), the sliding throttle valve sectional area S of the negative pressure passage 34 of the 33 showing a constant value of S 1 in order not throttled by the rod 40. The transient characteristics of the intake air amount Q in these cases are shown by curves (c) and (d) in FIG. 6, respectively. In the early stage of acceleration, the intake air amount Q gradually increases in a quadratic curve.
[0042]
Thus, by using the rod body 40 whose cross-sectional area changes toward the tip as shown in FIGS. 4B to 4D, inhalation as shown by curves (b) to (d) in FIG. Since the air amount Q can be gradually increased gradually, the increase rate of the intake air amount Q can be made closer to the increase rate of the intake fuel amount F to further prevent leaning of the air-fuel mixture, and the engine torque T and The engine speed N can be raised more smoothly to eliminate the jerky feeling and the fluctuation of the engine speed N more effectively.
[0043]
The diameter (cross-sectional area) of the rod body 40 is determined based on the response characteristics of the negative pressure responsive valve 30 at the time of low load.
[0044]
Incidentally, the negative pressure responsive valve 30 is substantially determined mainly by the negative pressure generated in the intake passage 26, the spring constant of the spring 36 that urges the sliding throttle valve 33, and the weight of the sliding throttle valve 33. The sliding throttle valve 33 slides until the force based on the negative pressure and the biasing force of the spring 36 and the weight of the sliding throttle valve 33 are balanced. Further, at the time of transition such as acceleration or deceleration, the acceleration of the sliding throttle valve 33 is substantially determined by the spring constant of the spring 36 and the weight of the sliding throttle valve 33.
[0045]
Thus, in the operation region in which the rod body 40 enters the negative pressure passage 34, the intake air amount Q ′ is increased as shown by the solid line Q ′ in FIG. It is possible to keep the ratio smaller than the increase ratio of the intake air amount Q in the embodiment shown by the broken line Q.
[0046]
Then, the spring constant of the spring 36 and the weight of the sliding throttle valve 33 are set so that the acceleration of the sliding throttle valve 33 is larger than that in the above embodiment (specifically, the spring constant and weight). Both of them are set to be small). When the rod body 40 is removed from the negative pressure passage 34, the increase rate of the intake air amount Q ′ is made larger than the increase rate of the intake air amount Q in the above-described embodiment shown by the broken line Q. By this, the increase rate of the intake air amount Q ′ can be made closer to the increase rate of the actual intake fuel amount F, and the deviation of the air-fuel ratio A / F of the air-fuel mixture from the intended value can be suppressed to a smaller value and the combustion of the air-fuel mixture As shown by the broken line T ′ in FIG. 7, the engine torque T ′ can be raised more smoothly than the engine torque T in the above-described embodiment indicated by the solid line T, and in the initial stage of acceleration. Gysi It is possible to more effectively solve the problems related to the feeling of squeak and engine rotation.
[0047]
【The invention's effect】
As is apparent from the above description, according to the present invention, the fuel supply means for supplying fuel into the intake passage communicating with the combustion chamber, the throttle valve provided in the intake passage, and the throttle in the intake passage A negative pressure responsive valve provided upstream of the valve, and the negative pressure responsive valve includes a valve body for opening and closing the intake passage, and the intake air through a negative pressure passage penetrating the valve body. In an intake system for an internal combustion engine comprising a negative pressure chamber communicating with a passage and an urging means for urging the valve body toward the closing side, in a low load region where the opening of the throttle valve is a predetermined value or less Since the throttle means for reducing the cross-sectional area of the negative pressure passage of the negative pressure responsive valve is provided, the negative pressure responsive valve at the initial stage of acceleration with a small increase rate of the intake fuel amount due to fuel adhering to the inner wall of the intake passage The cross-sectional area of the negative pressure passage of the valve body is throttled by the throttle means The opening speed of the valve body can be kept small, and the rate of increase of the intake air amount is brought close to the rate of increase of the intake fuel amount to prevent leaning of the air-fuel mixture. The effect of eliminating the jerky feeling and mottling of the engine speed increase can be obtained.
[Brief description of the drawings]
FIG. 1 is a partially cutaway side view of an internal combustion engine showing a configuration of an intake device according to the present invention.
FIG. 2 is an enlarged detail view of a main part of FIG.
FIG. 3 is a diagram showing transient characteristics of a throttle valve opening α, an intake air amount Q, an intake fuel amount F, an engine torque T, and an engine speed N of an internal combustion engine equipped with an intake device according to the present invention.
FIGS. 4A to 4D are diagrams showing various shapes of rods. FIG.
FIGS. 5A to 5D show changes in the negative pressure passage cross-sectional area S of the sliding throttle valve when the rod shown in FIGS. 4A to 4D is used. FIG. FIG.
6 is a diagram showing transient characteristics of intake air amount Q when the rod body shown in FIGS. 4 (a) to 4 (d) is used. FIG.
FIG. 7 is a diagram showing transient characteristics of an intake air amount Q, an intake fuel amount F, and an engine torque T of an internal combustion engine including an intake device according to another embodiment of the present invention.
FIG. 8 is a diagram showing transient characteristics of a throttle valve opening α, an intake air amount Q, an intake fuel amount F, an engine torque T, and an engine speed N of an internal combustion engine including a conventional intake device.
[Explanation of symbols]
1 Internal combustion engine 6 Combustion chamber 26 Intake passage 27 Throttle valve 28 Injector (fuel supply means)
30 Negative pressure responsive valve 33 Sliding throttle valve (valve)
34 Negative pressure passage 35 Negative pressure chamber 36 Spring (biasing means)
40 Rod (squeezing means)
α Throttle valve opening F Intake fuel amount Q Intake air amount

Claims (1)

燃焼室に連通する吸気通路内に燃料を供給する燃料供給手段と、前記吸気通路に設けられたスロットル弁と、前記吸気通路の前記スロットル弁よりも上流側に設けられた負圧応動弁を有し、前記負圧応動弁を、前記吸気通路を開閉する弁体と、該弁体に貫設された負圧通路を介して前記吸気通路に連通する負圧室と、弁体を閉じ側に付勢する付勢手段を含んで構成して成る内燃エンジンの吸気装置において、
吸気管の内壁の前記弁体に対向する位置に突設される棒体を設け、前記棒体は、低負荷域において前記負圧通路に進入し、
前記負圧応動弁は前記吸気通路に発生する負圧に対して開く方向に動く、
ことを特徴とする内燃エンジンの吸気装置。
A fuel supply means for supplying fuel into an intake passage communicating with the combustion chamber; a throttle valve provided in the intake passage; and a negative pressure responsive valve provided upstream of the throttle valve in the intake passage. The negative pressure responsive valve includes a valve body that opens and closes the intake passage, a negative pressure chamber that communicates with the intake passage through a negative pressure passage that extends through the valve body, and a valve body that is closed. In an intake system for an internal combustion engine configured to include an urging means for urging,
Providing a rod projecting at a position facing the valve body on the inner wall of the intake pipe, the rod enters the negative pressure passage in a low load region;
The negative pressure responsive valve moves in a direction to open against a negative pressure generated in the intake passage;
An intake system for an internal combustion engine.
JP31803697A 1997-11-19 1997-11-19 Intake device for internal combustion engine Expired - Fee Related JP4017223B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31803697A JP4017223B2 (en) 1997-11-19 1997-11-19 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31803697A JP4017223B2 (en) 1997-11-19 1997-11-19 Intake device for internal combustion engine

Publications (2)

Publication Number Publication Date
JPH11148374A JPH11148374A (en) 1999-06-02
JP4017223B2 true JP4017223B2 (en) 2007-12-05

Family

ID=18094788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31803697A Expired - Fee Related JP4017223B2 (en) 1997-11-19 1997-11-19 Intake device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4017223B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553288B1 (en) * 2002-10-18 2015-12-09 Yamaha Hatsudoki Kabushiki Kaisha Engine

Also Published As

Publication number Publication date
JPH11148374A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
CA1134686A (en) Low throttled volume engine
WO1997013063A1 (en) Control device for an internal combustion engine
JPS641656B2 (en)
JP3743414B2 (en) Engine starter
JP4017223B2 (en) Intake device for internal combustion engine
JP3195147B2 (en) Throttle valve controller for spark-ignition two-stroke engine
JPH04362221A (en) Air-fuel patio controlling device for internal combustion engine
JPS6052304B2 (en) Cylinder fuel injection internal combustion engine
US8186335B2 (en) Load control mechanism for internal combustion engine
JP3260507B2 (en) Gas-fuel mixture mixture formation device
JP2973837B2 (en) Crankcase ventilation valve
JPS5847119A (en) Suction device of engine with supercharger
JPH057508Y2 (en)
JPH1037769A (en) Two-cycle engine of intra-cylinder injection type
US4669437A (en) Governor device for an air-fuel mixture suction type engine
JPH1136898A (en) Electronic controller for fuel injection for motorcycle
JPH0678726B2 (en) Blow-by control device for alcohol fuel engine
JP4291961B2 (en) Internal combustion engine
JP3727357B2 (en) 4-cycle engine fuel injection control system
JP2002322933A (en) Intake system for internal combustion engine
JPS6123622Y2 (en)
JPS58192921A (en) Intake device of internal-combustion engine
JPH0634579Y2 (en) Double intake valve engine
JPS6020574B2 (en) Exhaust gas recirculation device for multi-cylinder internal combustion engines
JPS6136746Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060322

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees