JPS6052304B2 - Cylinder fuel injection internal combustion engine - Google Patents

Cylinder fuel injection internal combustion engine

Info

Publication number
JPS6052304B2
JPS6052304B2 JP14307179A JP14307179A JPS6052304B2 JP S6052304 B2 JPS6052304 B2 JP S6052304B2 JP 14307179 A JP14307179 A JP 14307179A JP 14307179 A JP14307179 A JP 14307179A JP S6052304 B2 JPS6052304 B2 JP S6052304B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
knocking
engine
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14307179A
Other languages
Japanese (ja)
Other versions
JPS5666426A (en
Inventor
明朗児 中井
泰彦 中川
九五 浜井
隆三郎 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP14307179A priority Critical patent/JPS6052304B2/en
Publication of JPS5666426A publication Critical patent/JPS5666426A/en
Publication of JPS6052304B2 publication Critical patent/JPS6052304B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は燃焼室に直接的に燃料を噴射するとともに、点
火栓でこの噴射燃料を点火するようにした筒内噴射式内
燃機関の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a direct injection internal combustion engine in which fuel is directly injected into a combustion chamber and the injected fuel is ignited by a spark plug.

機関圧縮行程において燃焼室に燃料噴射弁からの燃料を
直接的に噴射供給し、いわゆる層状給気を行い、最も混
合気の濃い付近に点火栓で点火して層状燃焼を可能とす
るのが、筒内噴射式内燃機関であつて、これによれば、
予混合式機関のように吸気絞弁を設ける必要がないため
、熱効率がアップし燃費が非常に改善されるという特徴
がある。
During the engine compression stroke, fuel is directly injected from the fuel injection valve into the combustion chamber to provide so-called stratified air supply, and the ignition plug is ignited near the richest mixture to enable stratified combustion. It is a direct injection internal combustion engine, and according to this,
Unlike premix engines, there is no need to provide an intake throttle valve, so thermal efficiency is increased and fuel efficiency is greatly improved.

(「SAETechnica1PaperSeries
780699」及び雑誌「AutomotiveEng
ineering」1978年8月号V01.86N0
.8P68〜P75)ところで、一般に機関にとつて強
度のノッキング現象は、機関耐久性を損つたりする問題
を生じるが、軽微なノッキング領域では燃費効率がきわ
めて良好になることが知られている。上記した筒内燃料
噴射式機関では、燃料の噴射時期と点火時期とが燃焼に
重要な影響を及ぼし、ノッキングについてもこれらの要
素を変化させると大幅に変動する傾向にある。
(“SAETechnica1PaperSeries
780699” and the magazine “Automotive Eng.
ineering” August 1978 issue V01.86N0
.. 8P68-P75) Incidentally, severe knocking phenomena generally pose a problem for engines, such as impairing the durability of the engine, but it is known that fuel efficiency becomes extremely good in the slight knocking region. In the above-mentioned direct fuel injection engine, the fuel injection timing and ignition timing have important effects on combustion, and knocking tends to vary significantly when these factors are changed.

そこで本発明は、これらの現象にもとづき、機関ノッキ
ング状態を検出しながら燃料の噴射時期と点火時期とを
制御し、常に最良の燃費特性を得られるようにした筒内
噴射式内燃機関を提供することを目的とする。
Based on these phenomena, the present invention provides a direct injection internal combustion engine that controls fuel injection timing and ignition timing while detecting the engine knocking state, thereby always achieving the best fuel efficiency characteristics. The purpose is to

以下、本発明の実施例を図面にもとづいて説明する。Embodiments of the present invention will be described below based on the drawings.

第1図において、1は機関本体で、2は燃焼室に直接的
に燃料を噴射する燃料噴射弁、3は燃料ど空気の混合層
に点火する点火栓を示し、これら”は後述の制御装置5
からの信号によりそれぞれ燃料の噴射時期と点火時期が
可変的に制御される。
In Fig. 1, 1 is the engine body, 2 is a fuel injection valve that injects fuel directly into the combustion chamber, 3 is an ignition plug that ignites a mixed layer of fuel and air, and these are the control devices described later. 5
The fuel injection timing and ignition timing are variably controlled by the signals from the respective engines.

4は機関ノッキングセンサであり、例えば機関本体1の
振動を感知してノッキング状態を検出する。
Reference numeral 4 denotes an engine knocking sensor, which senses, for example, vibrations of the engine body 1 to detect a knocking state.

゛6は機関回転数センサであつてクランク回転角(例え
ば1゜間隔)して検出する。
Reference numeral 6 denotes an engine rotation speed sensor which detects crank rotation angles (for example, at intervals of 1 degree).

7は機関負荷センサであり、例えば燃料噴射量を増減す
るための信号を出力するアクセルペダル(図示せず、た
だしこのアクセルペダルは吸気絞弁がないので、単に制
御装置5に信号を入力させるたけの機能をもつ)と連動
し、負荷状態を検出する。
Reference numeral 7 designates an engine load sensor, which outputs, for example, an accelerator pedal (not shown) that outputs a signal to increase or decrease the amount of fuel injection. function) to detect the load status.

これら各センサ4,6,7からの信号は、直接または間
接的に制御装置5の演算回路8へと送られる。
Signals from each of these sensors 4, 6, and 7 are sent directly or indirectly to an arithmetic circuit 8 of the control device 5.

すなわち、ノッキングセンサ4の出力は判別回路9にお
いて、ノッキングにもとづく機関振動の大きさを基準値
と比較して判定され、ノッキングの大きさを表わす判別
信号が演算回路8へと入力する。
That is, the output of the knocking sensor 4 is determined by the determination circuit 9 by comparing the magnitude of engine vibration due to knocking with a reference value, and a determination signal representing the magnitude of knocking is input to the arithmetic circuit 8.

また、回転数センサ6からの出力は信号処理回路11に
おいて、クランク回転角度に同期したパルス信号に波形
整形された上で、上記と同じく演算回路8へ入力される
Further, the output from the rotational speed sensor 6 is waveform-shaped into a pulse signal synchronized with the crank rotation angle in the signal processing circuit 11, and is then inputted to the arithmetic circuit 8 in the same manner as described above.

演算回路8では、予め機関負荷、回転数に対応して決め
られた最適の燃料噴射時期(ただし後述のように噴射弁
2に対する燃料供給圧をコントロールすることで噴射時
期は決まる)と点火時期を記憶している記憶回路12の
値を、そのときどき一の運転状態(負荷及び回転数)に
より選び出し、これを・ノッキング状態にもとづいて補
正した上で駆動回路13へと出力する。
The arithmetic circuit 8 calculates the optimal fuel injection timing, which is predetermined in accordance with the engine load and engine speed (however, the injection timing is determined by controlling the fuel supply pressure to the injection valve 2, as described later) and the ignition timing. The stored values in the memory circuit 12 are selected from time to time according to one operating condition (load and rotational speed), corrected based on the knocking condition, and then output to the drive circuit 13.

つまり、演算回路8はノッキングセンサ4からの信号を
フィードバック信号として、燃料噴射時!期や点火時期
の修正を行い、常に燃費が最良となるように軽微なノッ
キング状態を維持するように制御を行うのである。
In other words, the arithmetic circuit 8 uses the signal from the knocking sensor 4 as a feedback signal during fuel injection! It adjusts the engine speed and ignition timing to maintain a slight knocking condition to always achieve the best fuel efficiency.

ただし、第3図に示すように、機関低中負荷域では最良
燃費域(A点)がノッキング限界Cから5外れた軽微な
ノッキング域のため問題はないが、高負荷域ではこのA
点は、機関耐久性などにとつて好ましくないノッキング
限界Dに突入してしまうので、この負荷領域では燃料噴
射時期(とくに噴射終了時期)と点火時期を遅らせ、ノ
ッキング4限界から外れた領域で最善の燃費効率が得ら
れるように設定する。
However, as shown in Figure 3, in the engine low and medium load range, the best fuel efficiency range (point A) is a slight knocking range that is 5 points outside the knocking limit C, so there is no problem;
In this load range, the fuel injection timing (especially the end of injection timing) and ignition timing are delayed, and the best results are in the range outside the knocking limit D, which is unfavorable for engine durability. Set so that the fuel efficiency of

勿論、このような制御にもかかわらず実際のノッキング
状態が許容限定を越えるようなことがあれば、ただちに
フィードバック制御にもとづき補正がなされる。
Of course, if the actual knocking condition exceeds the permissible limit despite such control, correction is immediately made based on feedback control.

上記燃料噴射信号は燃料圧力を制御する電磁弁15に供
給され、該電磁弁15は燃料ポンプ16からの吐出燃料
を燃料タンク17へと戻す回路に挿入され、その開弁時
に燃圧を低下させる。
The fuel injection signal is supplied to a solenoid valve 15 that controls fuel pressure, and the solenoid valve 15 is inserted into a circuit that returns fuel discharged from a fuel pump 16 to a fuel tank 17, and reduces the fuel pressure when the valve is opened.

つまり、燃料噴射弁2は圧力型の自動弁であつて、供給
燃圧が所定の開弁圧以上に保たれている間だけ開き、燃
料を燃焼室へと噴射供給するたlめ、その途中において
電磁弁15が燃料タンク17への戻り通路を開いてしま
えば、燃圧が低下して燃料噴射は行われない。この電磁
弁15は各気筒の燃料噴射弁2にそれぞれ対応して設け
られるもので、したがつて駆動回路13からは各気筒毎
に位相のずれた噴射信号が送り込まれる。
In other words, the fuel injection valve 2 is a pressure-type automatic valve that opens only while the supply fuel pressure is maintained above a predetermined valve opening pressure, and injects fuel into the combustion chamber. Once the solenoid valve 15 opens the return path to the fuel tank 17, the fuel pressure will drop and no fuel injection will occur. The electromagnetic valves 15 are provided corresponding to the fuel injection valves 2 of each cylinder, so that the drive circuit 13 sends injection signals out of phase to each cylinder.

具体的な構造は第2図に示すが、18は燃料供給通路、
19は燃料リターン通路、20はリターン通路19へと
燃料を逃がす弁口21を開閉する針弁、22は針弁20
と一体動する可動鉄心、23はリターンスプリング24
(この場合、開弁方向に付勢)に対抗して閉弁させる電
磁コイルで、これらから電磁弁15が構成されている。
The specific structure is shown in FIG. 2, and 18 is a fuel supply passage;
19 is a fuel return passage, 20 is a needle valve that opens and closes a valve port 21 that releases fuel to the return passage 19, and 22 is a needle valve 20.
The movable iron core moves integrally with the return spring 23.
(In this case, the solenoid valve 15 is constituted by an electromagnetic coil that closes the valve in opposition to the bias in the valve opening direction.)

駆動回路13からパルス信号が供給されると、そのオン
(ハイレベル)の間だけ電磁弁15が閉じ、燃料供給通
路18の圧力を高め、燃料噴射弁2から燃料が噴射され
ることになる。以上のような構成において、機関回転数
センサ6と負荷センサ7からの信号にもとづき、予め記
憶回路12に記憶されたものから最良の燃費、出力が得
られる噴射時期及び点火時期が選び出され、演算回路8
から駆動回路13へと出力される。
When a pulse signal is supplied from the drive circuit 13, the electromagnetic valve 15 closes only while the pulse signal is on (high level), increasing the pressure in the fuel supply passage 18, and fuel is injected from the fuel injection valve 2. In the above configuration, based on the signals from the engine speed sensor 6 and the load sensor 7, the injection timing and ignition timing that provide the best fuel efficiency and output are selected from those stored in the memory circuit 12 in advance, Arithmetic circuit 8
The signal is output from the drive circuit 13 to the drive circuit 13.

これにもとづいて主として圧縮行程で燃料が噴射される
とともに圧縮上死点付近で点火栓3による点火が行われ
る。
Based on this, fuel is mainly injected during the compression stroke, and ignition is performed by the ignition plug 3 near the compression top dead center.

吸気系に絞弁を設けなくても、噴射弁2から噴射する燃
料重量をコントロールすることにより機関出力は増減す
る。
Even without providing a throttle valve in the intake system, the engine output can be increased or decreased by controlling the weight of fuel injected from the injection valve 2.

これは、圧縮行程で噴射した燃料が空気とともに層状に
滞溜し、圧縮上死点では点火栓3の付近を中心として濃
混合気層が形成され、良好な着火と火炎の伝播が得られ
るからである。
This is because the fuel injected during the compression stroke accumulates in layers with the air, and at compression top dead center, a rich mixture layer is formed around the ignition plug 3, resulting in good ignition and flame propagation. It is.

一方、ノッキングセンサ4により機関ノツキング状態が
検出され、これが演算回路8へとフィードバックされて
いるため、上記した燃料噴射時期と点火時期は、強いノ
ッキングを起こさない範囲で最良燃費点が得られるまで
進められる。
On the other hand, the engine knocking state is detected by the knocking sensor 4, and this is fed back to the calculation circuit 8, so the above-mentioned fuel injection timing and ignition timing are advanced until the best fuel efficiency point is obtained within a range that does not cause strong knocking. It will be done.

そして、ノッキングが発生すれば、これにもとづいて燃
料の噴射時期と点火時期が、ノッキングの大きさに応じ
て遅らせられるのであり、このようにしてただちにノッ
キングを回避する。
If knocking occurs, based on this, the fuel injection timing and ignition timing are delayed in accordance with the magnitude of knocking, and in this way, knocking is immediately avoided.

なお、この直後から、噴射時期と点火時期は再びノッキ
ングを生じる直前まで進められ、再度ノッキングが生じ
た時点でまた遅らせる、というような制御動作が繰り返
えされるのである。
Immediately after this, the injection timing and ignition timing are advanced until just before knocking occurs again, and when knocking occurs again, they are delayed again, and such control operations are repeated.

第3図からも明らかなように、点火時期あるいは燃料噴
射時期のみを遅らせても、ノッキングは回避されるが、
等燃費曲線(図中Bl,Bl!,B3・・りとの関係上
、いずれか一方のみの遅角動作は燃費的に不利であつて
、両者を同時に遅らせることにより、燃費の損失を最小
限にくい止めながらノッキングを回避することができる
のである。
As is clear from Figure 3, knocking can be avoided even if only the ignition timing or fuel injection timing is delayed.
Due to the relationship between the equal fuel consumption curves (Bl, Bl!, B3, etc. in the figure), retarding only one of them is disadvantageous in terms of fuel efficiency. By retarding both at the same time, the loss in fuel efficiency can be minimized. This allows you to avoid knocking while keeping the engine firmly in place.

以上説明したように本発明によれば、ノッキング状態を
検出しながら常に最良の燃費が得られるように燃料噴射
時期と点火時期をフィードバック制御するので、筒内燃
料噴射機関のすぐれた特徴である燃費効率をなお一層向
上させることができる。とくにこのようなフィードバッ
ク制御を行えば、機関ごとの性能上のバラツキや燃料成
分、オクタン価のバラツキがあつても、常に個々に最適
な状態に制御できるという効果もある。
As explained above, according to the present invention, the fuel injection timing and the ignition timing are feedback-controlled so as to always obtain the best fuel efficiency while detecting the knocking state, so the fuel efficiency is improved, which is an excellent feature of the direct fuel injection engine. Efficiency can be further improved. In particular, if this kind of feedback control is performed, even if there are variations in performance, fuel composition, and octane number between engines, it is possible to always control each engine to its optimum state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す概略構成図、第2図は電
磁弁の断面図、第3図は点火時期と噴射時期をパラメー
タとしての等燃費特性曲線図である。 2・・・・・・燃料噴射弁、3・・・・・・点火栓、4
・・・・・・ノッキングセンサ、5・・・・・・制御装
置、6・・・・・・回転数センサ、7・・・・・・負荷
センサ、8・・・・・・演算回路、15・・・・電磁弁
FIG. 1 is a schematic configuration diagram showing an embodiment of the present invention, FIG. 2 is a sectional view of a solenoid valve, and FIG. 3 is an equal fuel efficiency characteristic curve diagram using ignition timing and injection timing as parameters. 2...Fuel injection valve, 3...Ignition plug, 4
... Knocking sensor, 5 ... Control device, 6 ... Rotation speed sensor, 7 ... Load sensor, 8 ... Arithmetic circuit, 15... Solenoid valve.

Claims (1)

【特許請求の範囲】[Claims] 1 燃焼室に直接的に燃料を噴射供給する燃料噴射弁と
、層状混合気を着火燃焼させる点火栓とを有する筒内燃
料噴射式内燃機関において、機関ノッキング状態を検出
するセンサと、回転数並びに負荷を検出するセンサと、
運転状態に応じて選び出した最適な燃料噴射時期と、点
火時期とを、ノッキング状態にもとづいて補正し、該補
正信号により燃料噴射弁と点火栓の作動を制御する制御
装置とを備えたことを特徴とする筒内燃料噴射式内燃機
関。
1. In a direct fuel injection internal combustion engine that has a fuel injection valve that directly injects fuel into a combustion chamber and a spark plug that ignites and burns a stratified mixture, a sensor that detects an engine knocking state and a sensor that detects the rotational speed and A sensor that detects the load,
The present invention includes a control device that corrects the optimum fuel injection timing and ignition timing selected according to the operating condition based on the knocking condition, and controls the operation of the fuel injection valve and the ignition plug based on the correction signal. Features a cylinder fuel injection type internal combustion engine.
JP14307179A 1979-11-05 1979-11-05 Cylinder fuel injection internal combustion engine Expired JPS6052304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14307179A JPS6052304B2 (en) 1979-11-05 1979-11-05 Cylinder fuel injection internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14307179A JPS6052304B2 (en) 1979-11-05 1979-11-05 Cylinder fuel injection internal combustion engine

Publications (2)

Publication Number Publication Date
JPS5666426A JPS5666426A (en) 1981-06-04
JPS6052304B2 true JPS6052304B2 (en) 1985-11-18

Family

ID=15330237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14307179A Expired JPS6052304B2 (en) 1979-11-05 1979-11-05 Cylinder fuel injection internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6052304B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828559A (en) * 1981-07-23 1983-02-19 Toyota Motor Corp Method of controlling air fuel ratio of spark-ignited engine
JPS5872636A (en) * 1981-10-26 1983-04-30 Nissan Motor Co Ltd Direct-injection type gasoline engine
JPS58124027A (en) * 1982-01-21 1983-07-23 Toyota Motor Corp Control device for ignition timing and fuel injection of internal-combustion engine
JP2861233B2 (en) * 1990-04-11 1999-02-24 トヨタ自動車株式会社 Engine control device for in-cylinder direct injection spark ignition engine
JP2929708B2 (en) * 1990-11-16 1999-08-03 トヨタ自動車株式会社 In-cylinder direct injection spark ignition engine
JP3186589B2 (en) * 1996-02-16 2001-07-11 三菱自動車工業株式会社 Ignition timing control system for in-cylinder injection spark ignition internal combustion engine
JP3216139B2 (en) * 1996-03-08 2001-10-09 三菱自動車工業株式会社 Control device for in-cylinder injection internal combustion engine
JP3952110B2 (en) * 1999-01-26 2007-08-01 三菱自動車工業株式会社 In-cylinder injection type spark ignition internal combustion engine
DE10037024A1 (en) 2000-07-29 2002-02-07 Bosch Gmbh Robert Method and device for avoiding knocking in the event of a knocking control failure

Also Published As

Publication number Publication date
JPS5666426A (en) 1981-06-04

Similar Documents

Publication Publication Date Title
EP1515031B1 (en) System and method for controlling spark-ignition internal combustion engine
US5950603A (en) Vapor recovery control system for direct injection spark ignition engines
US5988137A (en) Controller of in-cylinder injection spark ignition internal combustion engine
JP3500951B2 (en) Non-throttle compression-ignition internal combustion engine and control method thereof
US7051693B2 (en) Engine starting system
US5483934A (en) Method for operating a four-stroke internal combustion engine with externally supplied ignition and direct injection, and apparatus for performing the method
US5797367A (en) Control apparatus for an in-cylinder injection internal combustion engine
EP1531324A2 (en) Knocking determination apparatus for internal combustion engine
US6058905A (en) Fuel injection control system for internal combustion engine
US4619236A (en) Control apparatus of internal combustion engine
EP1443197A2 (en) Direct fuel injection combustion control system
JPH0151893B2 (en)
JP2007016685A (en) Internal combustion engine control device
US6651616B1 (en) Method for operating a four-stroke reciprocating internal combustion engine with alternating compression ignition and externally supplied ignition
JPH0559270B2 (en)
US4913117A (en) Control apparatus of an internal combustion engine
US5975045A (en) Apparatus and method for controlling direct injection engines
JPS6052304B2 (en) Cylinder fuel injection internal combustion engine
EP1164276A2 (en) Internal combustion engine with external assist for stable auto-ignition
JPS63138118A (en) Stratified combustion control device for engine
JP3772892B2 (en) Engine starter
EP0095190B1 (en) Electronically controlled injection system for internal combustion engines
JPH0559271B2 (en)
JPH0559272B2 (en)
US4656988A (en) Automobile fuel supply control