JP4291961B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP4291961B2
JP4291961B2 JP2001085953A JP2001085953A JP4291961B2 JP 4291961 B2 JP4291961 B2 JP 4291961B2 JP 2001085953 A JP2001085953 A JP 2001085953A JP 2001085953 A JP2001085953 A JP 2001085953A JP 4291961 B2 JP4291961 B2 JP 4291961B2
Authority
JP
Japan
Prior art keywords
valve
combustion chamber
intake
port
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001085953A
Other languages
Japanese (ja)
Other versions
JP2002285851A (en
Inventor
一紀 菊池
智司 飯嶌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001085953A priority Critical patent/JP4291961B2/en
Publication of JP2002285851A publication Critical patent/JP2002285851A/en
Application granted granted Critical
Publication of JP4291961B2 publication Critical patent/JP4291961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/04Engines with prolonged expansion in main cylinders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

【0001】
【発明の属する技術分野】
本発明は、ピストンが摺動自在に嵌合されるシリンダボアに連なる燃焼室と、燃焼室に開口する吸気ポートおよび排気ポートと、蓄圧室と、該蓄圧室および燃焼室間を結ぶ蓄圧ポートとが設けられるシリンダヘッドに、前記吸気ポート、排気ポートおよび蓄圧ポートをそれぞれ開閉する吸気弁、排気弁および蓄圧弁が開閉作動可能に配設される内燃機関に関する。
【0002】
【従来の技術】
従来、かかる内燃機関は、たとえば特開2000−282867号公報で既に知られており、機関の膨張行程で蓄圧弁を一定期間開くことにより蓄圧室に既燃焼ガスを取り込み、次の圧縮行程で蓄圧弁を一定期間開くことにより蓄圧室から燃焼室に既燃焼ガスを噴入することで、燃焼室内のガスの圧縮圧力を高め、機関の高出力化を図るようにしている。
【0003】
【発明が解決しようとする課題】
ところが、上記従来のものでは、吸気弁がピストンの下死点を過ぎて圧縮行程に入ってもわずかに開弁しており、蓄圧弁は、吸気弁が全閉状態となった後の圧縮行程で一定期間開弁するようにしている。このため、燃焼室内の圧力が既に上昇し始めた状態で蓄圧弁が開弁することになり、この蓄圧弁の開弁時には蓄圧室および燃焼室間の圧力差が比較的小さくなっている。しかも蓄圧弁の開弁期間も比較的小さくなるので、燃焼室のガスの圧縮圧力および温度上昇効果が不充分であり、更なる熱効率の向上のためには過給量を増大させる必要がある。
【0004】
本発明は、かかる事情に鑑みてなされたものであり、過給量を増大させて熱効率を向上した内燃機関を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、ピストンが摺動自在に嵌合されるシリンダボアに連なる燃焼室と、燃焼室に開口する吸気ポートおよび排気ポートと、蓄圧室と、該蓄圧室および燃焼室間を結ぶ蓄圧ポートとが設けられるシリンダヘッドに、前記吸気ポート、排気ポートおよび蓄圧ポートをそれぞれ開閉する吸気弁、排気弁および蓄圧弁が開閉作動可能に配設される内燃機関において、前記吸気弁を前記ピストンが下死点に達するまでに全閉状態とし、前記蓄圧弁を機関の膨張行程で第1の期間開弁するとともに次の吸気行程での前記下死点前から該下死点を過ぎた圧縮行程にわたって第2の期間だけ開弁することを特徴とする。
【0006】
このような構成によれば、吸気弁をピストンが下死点に達するまでに全閉状態とすることにより、吸入空気量を制限し、圧縮比よりも膨張比を高めて熱効率を向上することができる。またピストンが下死点に達するまでに吸気弁が全閉状態となることで、蓄圧弁の開弁時期を吸気行程でのピストンの下死点前に定めることができ、しかも蓄圧弁を前記下死点を過ぎた圧縮行程で閉弁するようにしているので、燃焼室内の圧力が上昇し始める前に蓄圧室の既燃焼ガスを燃焼室に噴入するとともに蓄圧弁の開角を比較的大きくすることができ、過給量を増大させて熱効率をより一層向上することができる。
【0007】
また請求項2記載の発明は、上記請求項1記載の発明の構成に加えて、前記吸気ポートが、燃焼室内でスワール流を生じる形状に形成され、燃焼室内でのスワール流の流れ方向に沿って前記吸気ポートの燃焼室への開口端の直下で燃焼室に開口するように前記蓄圧ポートが形成されることを特徴とし、かかる構成によれば、吸気弁を比較的早く閉じることにより、既に形成されている燃焼室内のスワール流によって蓄圧ポートに作用する負圧を利用して蓄圧室内の蓄圧力を燃焼室に有効に作用させ、熱効率をより一層向上することができる。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。
【0009】
図1〜図4は本発明の一実施例を示すものであり、図1は内燃機関の縦断正面図、図2は図1の2−2線断面図、図3は図1の3−3線から見たシリンダヘッドの底面図、図4は吸気弁、排気弁および蓄圧弁の開閉作動特性図である。
【0010】
先ず図1および図2において、内燃機関Eの機関本体Eaは、クランクケース10と、該クランクケース10の上面に結合されるシリンダブロック11と、シリンダブロック11の上端面に結合されるシリンダヘッド12とを備え、クランクケース10に回転自在に支承されるクランクシャフト13と、シリンダブロック11に設けられるシリンダボア11aに摺動自在に嵌合されるピストン14とがコンロッド28を介して連結される。
【0011】
シリンダヘッド12には、シリンダボア11aに連なる燃焼室12aが設けられており、燃焼室12aの天井面中心部に電極15aを臨ませる点火プラグ15がシリンダヘッド12に取付けられる。
【0012】
図3を併せて参照して、シリンダヘッド12には、燃焼室12a内に図3の矢印で示すようなスワール流29を形成するようにして螺旋状に形成される吸気ポート16と、排気ポート17とが設けられており、吸気ポート16および排気ポート17の燃焼室12aへの開口端には弁座18,19が形成される。これらの弁座18,19には吸気弁20および排気弁21がそれぞれ着座可能である。
【0013】
吸気弁20および排気弁21は、それらの弁20,21の軸間が上方に向って広がるようにV字状に配置されてシリンダヘッド12に開閉作動可能として配設されており、シリンダヘッド12と吸気弁20および排気弁21との間には、それらの弁20,21を閉弁方向に付勢する弁ばね25,26が設けられる。
【0014】
吸気弁20および排気弁21の弁頭間には、シリンダヘッド12で回転自在に支承されるカムシャフト22が配置される。該カムシャフト22には、吸気カム22aおよび排気カム22bが設けられており、吸気カム22aおよび排気カム22bと、吸気弁20および排気弁21とは吸気ロッカアーム23および排気ロッカアーム24を介して連動、連結される。
【0015】
カムシャフト22には、クランクシャフト13の回転動力が調時伝動装置27を介して1/2の減速比で伝達されており、吸気弁20および排気弁21は、カムシャフト22の回転に応じて吸気および排気カム22a,22bならびに吸気および排気ロッカアーム22,23の協働作用により、図4で示す開閉タイミングで開閉駆動される。
【0016】
而して吸気カム22aは、図4の破線で示す従来の吸気弁の開閉作動特性に比べて、図4の実線で示すように、吸気弁20の開弁リフト量を小さくし、しかもピストン14が下死点に達するまでに吸気弁20が全閉状態となるように形成される。
【0017】
さらにシリンダヘッド12には、蓄圧室30と、該蓄圧室30および燃焼室12a間を結ぶ蓄圧ポート31とが設けられ、蓄圧ポート31は、吸気ポート16から燃焼室12aに流入する空気によって燃焼室12a内に形成されるスワール流29の流れ方向に沿って、吸気ポート16の燃焼室12aへの開口端の直下で燃焼室12aに開口するように形成される。
【0018】
蓄圧ポート31の燃焼室12aへの開口端には弁座32が形成されており、この弁座32に着座可能な蓄圧弁33が開閉作動を可能としてシリンダヘッド12に配設され、シリンダヘッド12および蓄圧弁33間には、蓄圧弁33を閉弁方向に付勢する弁ばね35が設けられる。
【0019】
シリンダヘッド12には、蓄圧弁33の弁頭に当接するカムフォロア36が摺動自在に嵌合されており、カムシャフト22の一端に固定された蓄圧カム22cがカムフォロア36に当接、係合される。
【0020】
而してカムシャフト22の回転に応じて蓄圧弁33は図4で示すように開閉駆動されるものであり、蓄圧弁33は、機関の膨張行程で第1の期間Aだけ開弁するとともに次の吸気行程でのピストン14の下死点前から該下死点を過ぎた圧縮行程にわたって第2の期間Bだけ開弁する。しかも蓄圧カム22cは、図4の破線で示す従来の蓄圧弁の開弁期間B′よりも大きな第2の期間Bだけ蓄圧弁33を開弁するとともに、蓄圧弁33のリフト量Lを図4の破線で示す従来の蓄圧弁のリフト量L′よりも大きくするように形成される。
【0021】
さらにシリンダヘッド12には、蓄圧室30に燃料を直接噴射する燃料噴射弁36が取付けられ、この燃料噴射弁36による燃料噴射は、図4で示すように、蓄圧弁33の閉弁中、望ましくは排気行程での第3の期間Cに実行される。
【0022】
次にこの実施例の作用について説明すると、内燃機関Eの運転中、膨張行程の後半に蓄圧弁33が第1の期間Aだけ開弁すると、燃焼室12a内の既燃焼ガスの一部が、そのガス自体の圧力により蓄圧ポート31から蓄圧室30に充填される。次いで排気行程では、燃料噴射弁36が第3の期間Cだけ作動し、機関Eの運転状況に応じた量だけ蓄圧室30に直接噴射された燃料が、比較的高温の状態にある既燃焼ガスと接触することで気化状態となる。
【0023】
次いで排気行程から吸気行程に移行すると、ピストン14が下降するとともに吸気弁20が開弁するので、吸気ポート16から燃焼室12aに空気が吸入されてスワール流29を形成し、吸気弁20の閉弁後に蓄圧弁33が第2の期間Bだけ開弁する。これにより、蓄圧弁30に蓄えられていた既燃焼ガスが、それ自体の圧力をもって気化状態の燃料とともに蓄圧ポート31から燃焼室12aに噴入し、気化状態の燃料を含む混合気を燃焼室12a内で形成するとともに、その混合気の圧縮圧力および温度をより高めることができ、機関Eが高出力を発揮するとともにEGR効果を発揮して排気ガス中のNOX を低減することができる。
【0024】
しかも吸気弁20は、ピストン14が下死点に達するまでに全閉状態となるものであり、それによって吸入空気量を制限し、圧縮比よりも膨張比を高めて熱効率を向上することができる。
【0025】
またピストン14が下死点に達するまでに吸気弁20が全閉状態となることで、蓄圧弁33の開弁時期を吸気行程でのピストン14の下死点前に定めることができ、それに加えて蓄圧弁33を前記下死点を過ぎた圧縮行程で閉弁するようにしているので、燃焼室12a内の圧力が上昇し始める前に蓄圧室30の既燃焼ガスを燃焼室12aに噴入するとともに、図4の破線で示す従来の蓄圧弁の開弁期間B′よりも大きな第2の期間Bだけ蓄圧弁33を開弁するようにして蓄圧弁33の開角を比較的大きくすることができ、開角を大きくすることでリフト量Lも従来のリフト量L′よりも大きくすることが可能となる。この結果、過給量を増大させて熱効率をより一層向上することができる。
【0026】
さらに蓄圧室30および燃焼室12a間を結ぶ蓄圧ポート31は、燃焼室12a内に形成されるスワール流29の流れ方向に沿って、吸気ポート16の燃焼室12aへの開口端の直下で燃焼室12aに開口するものであるので、吸気弁20を比較的早く閉じることにより既に形成されている燃焼室12a内のスワール流によって蓄圧ポート31に作用する負圧を利用し、蓄圧室30内の蓄圧力を燃焼室12aに有効に作用させ、熱効率をより一層向上することができる。
【0027】
ところで、この実施例では、蓄圧弁33が閉じた直後の排気行程で蓄圧室30に燃料噴射弁36から燃料を直接噴射するようにしているので、次に蓄圧弁33が開くまでの時間を充分に確保でき、蓄圧室30で燃料を充分に気化させることが可能である。
【0028】
また蓄圧弁33の長い閉弁期間中に蓄圧室30に燃料を直接噴射する場合には、その噴射時間Cを充分に確保することが可能であり、圧縮行程の終期に燃焼室12aに燃料を瞬時に直接噴射する一般的な筒内噴射に比べて噴射圧力を低下することが可能であり、燃料噴射弁36を含む燃料供給系の構成の簡素化、ひいてはコスト低減を図ることが可能となる。
【0029】
以上、本発明の実施例を説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行うことが可能である。
【0030】
たとえば上記実施例では蓄圧室30に燃料を直接噴射するようにしたが、吸気ポート16に燃料を噴射するようにした内燃機関にも本発明を適用することができる。また吸気弁20および排気弁21は、上記実施例のように2弁式のものに限定されるものではなく、2弁式や4弁式の内燃機関にも本発明を適用可能である。
【0031】
また吸気弁20および排気弁21の作動特性を運転状況に応じて変更するようにした内燃機関にも本発明を適用することが可能であり、そのような内燃機関では、蓄圧弁33の開弁による過給時期の一部を低負荷時に吸気行程とラップさせることにより、筒内圧力の低下を防止することができ、スロットル開度を大きくすることでポンピングロスの低減を図ることができる。
【0032】
【発明の効果】
以上のように請求項1記載の発明によれば、吸気弁を早閉じとすることで圧縮比よりも膨張比を高めて熱効率を向上することができ、燃焼室内の圧力が上昇し始める前に蓄圧室の既燃焼ガスを燃焼室に噴入するとともに蓄圧弁の開角を比較的大きくすることができ、過給量を増大させて熱効率をより一層向上することができる。
【0033】
また請求項2記載の発明によれば、蓄圧室内の蓄圧力を燃焼室に有効に作用させ、熱効率をより一層向上することができる。
【図面の簡単な説明】
【図1】内燃機関の縦断正面図である。
【図2】図1の2−2線断面図である。
【図3】図1の3−3線から見たシリンダヘッドの底面図である。
【図4】吸気弁、排気弁および蓄圧弁の開閉作動特性図である。
【符号の説明】
11a・・・シリンダボア
12・・・シリンダヘッド
12a・・・燃焼室
14・・・ピストン
16・・・吸気ポート
17・・・排気ポート
20・・・吸気弁
21・・・排気弁
30・・・蓄圧室
31・・・蓄圧ポート
33・・・蓄圧弁
E・・・内燃機関
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a combustion chamber connected to a cylinder bore into which a piston is slidably fitted, an intake port and an exhaust port that open to the combustion chamber, a pressure accumulation chamber, and a pressure accumulation port that connects the pressure accumulation chamber and the combustion chamber. The present invention relates to an internal combustion engine in which an intake valve, an exhaust valve, and an accumulator valve that open and close the intake port, the exhaust port, and the accumulator port, respectively, are disposed in a cylinder head that is provided so as to be able to open and close.
[0002]
[Prior art]
Conventionally, such an internal combustion engine is already known, for example, in Japanese Patent Application Laid-Open No. 2000-282867. The combustion valve is taken in the accumulator chamber by opening the accumulator valve for a certain period in the expansion stroke of the engine, and the accumulator is accumulated in the next compression stroke. By opening the valve for a certain period of time, the already burned gas is injected from the pressure accumulating chamber into the combustion chamber, thereby increasing the compression pressure of the gas in the combustion chamber and increasing the output of the engine.
[0003]
[Problems to be solved by the invention]
However, in the above-mentioned conventional one, the intake valve is slightly opened even after the bottom dead center of the piston enters the compression stroke, and the accumulator valve is the compression stroke after the intake valve is fully closed. The valve is opened for a certain period of time. For this reason, the pressure accumulation valve is opened in a state where the pressure in the combustion chamber has already started to rise, and the pressure difference between the pressure accumulation chamber and the combustion chamber is relatively small when the pressure accumulation valve is opened. In addition, since the opening period of the pressure accumulating valve is also relatively small, the effect of increasing the compression pressure and temperature of the gas in the combustion chamber is insufficient, and it is necessary to increase the supercharging amount in order to further improve the thermal efficiency.
[0004]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an internal combustion engine in which the supercharging amount is increased and the thermal efficiency is improved.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 is directed to a combustion chamber connected to a cylinder bore into which a piston is slidably fitted, an intake port and an exhaust port that open to the combustion chamber, an accumulator chamber, An internal combustion engine in which an intake valve, an exhaust valve, and an accumulator valve that open and close the intake port, the exhaust port, and the accumulator port, respectively, are disposed in a cylinder head provided with an accumulator port that connects the accumulator chamber and the combustion chamber. The intake valve is fully closed before the piston reaches bottom dead center, and the accumulator valve is opened for a first period in the expansion stroke of the engine and before the bottom dead center in the next intake stroke. The valve is opened only for the second period over the compression stroke past the bottom dead center.
[0006]
According to such a configuration, by making the intake valve fully closed before the piston reaches bottom dead center, it is possible to limit the amount of intake air and increase the expansion ratio rather than the compression ratio to improve the thermal efficiency. it can. In addition, since the intake valve is fully closed before the piston reaches the bottom dead center, the valve opening timing of the pressure accumulating valve can be determined before the bottom dead center of the piston in the intake stroke, and the pressure accumulating valve is Since the valve is closed in the compression stroke past the dead center, the burned gas in the accumulator is injected into the combustion chamber before the pressure in the combustion chamber starts to rise, and the opening angle of the accumulator valve is relatively large. It is possible to increase the supercharging amount and further improve the thermal efficiency.
[0007]
According to a second aspect of the invention, in addition to the configuration of the first aspect of the invention, the intake port is formed in a shape that generates a swirl flow in the combustion chamber, and follows the flow direction of the swirl flow in the combustion chamber. The pressure accumulation port is formed so as to open to the combustion chamber immediately below the opening end of the intake port to the combustion chamber. According to such a configuration, the intake valve is already closed relatively quickly, The accumulated pressure in the pressure accumulating chamber is effectively applied to the combustion chamber by using the negative pressure acting on the pressure accumulating port by the swirl flow formed in the combustion chamber, and the thermal efficiency can be further improved.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0009]
1 to 4 show an embodiment of the present invention, FIG. 1 is a longitudinal front view of an internal combustion engine, FIG. 2 is a sectional view taken along line 2-2 of FIG. 1, and FIG. 3 is 3-3 of FIG. 4 is a bottom view of the cylinder head as seen from the line, and FIG. 4 is a graph showing opening / closing operation characteristics of the intake valve, the exhaust valve, and the pressure accumulating valve.
[0010]
1 and 2, the engine body Ea of the internal combustion engine E includes a crankcase 10, a cylinder block 11 coupled to the upper surface of the crankcase 10, and a cylinder head 12 coupled to the upper end surface of the cylinder block 11. A crankshaft 13 rotatably supported by the crankcase 10 and a piston 14 slidably fitted to a cylinder bore 11a provided in the cylinder block 11 are connected via a connecting rod 28.
[0011]
The cylinder head 12 is provided with a combustion chamber 12a connected to the cylinder bore 11a. A spark plug 15 is attached to the cylinder head 12 so that the electrode 15a faces the center of the ceiling surface of the combustion chamber 12a.
[0012]
Referring also to FIG. 3, the cylinder head 12 has an intake port 16 formed in a spiral shape so as to form a swirl flow 29 as indicated by an arrow in FIG. 17, and valve seats 18 and 19 are formed at the open ends of the intake port 16 and the exhaust port 17 to the combustion chamber 12a. An intake valve 20 and an exhaust valve 21 can be seated on the valve seats 18 and 19, respectively.
[0013]
The intake valve 20 and the exhaust valve 21 are arranged in a V shape so that the distance between the axes of the valves 20 and 21 extends upward, and is arranged to be openable and closable with respect to the cylinder head 12. Between the intake valve 20 and the exhaust valve 21, valve springs 25 and 26 for biasing the valves 20 and 21 in the valve closing direction are provided.
[0014]
A camshaft 22 that is rotatably supported by the cylinder head 12 is disposed between the valve heads of the intake valve 20 and the exhaust valve 21. The camshaft 22 is provided with an intake cam 22a and an exhaust cam 22b. The intake cam 22a and the exhaust cam 22b, and the intake valve 20 and the exhaust valve 21 are interlocked via an intake rocker arm 23 and an exhaust rocker arm 24. Connected.
[0015]
The rotational power of the crankshaft 13 is transmitted to the camshaft 22 at a reduction ratio of 1/2 through the timing transmission device 27. The intake valve 20 and the exhaust valve 21 are in response to the rotation of the camshaft 22. By the cooperative action of the intake and exhaust cams 22a and 22b and the intake and exhaust rocker arms 22 and 23, they are opened and closed at the opening and closing timing shown in FIG.
[0016]
Thus, the intake cam 22a reduces the valve opening lift amount of the intake valve 20 as shown by the solid line in FIG. 4 as compared with the opening / closing operation characteristic of the conventional intake valve shown by the broken line in FIG. Is formed so that the intake valve 20 is fully closed before the bottom dead center is reached.
[0017]
Further, the cylinder head 12 is provided with a pressure accumulating chamber 30 and a pressure accumulating port 31 connecting the pressure accumulating chamber 30 and the combustion chamber 12a. The pressure accumulating port 31 is formed by the air flowing from the intake port 16 into the combustion chamber 12a. Along the flow direction of the swirl flow 29 formed in 12a, the intake port 16 is formed to open to the combustion chamber 12a immediately below the opening end to the combustion chamber 12a.
[0018]
A valve seat 32 is formed at the open end of the pressure accumulating port 31 to the combustion chamber 12a, and a pressure accumulating valve 33 that can be seated on the valve seat 32 is disposed in the cylinder head 12 so as to be able to open and close. Between the pressure accumulating valve 33 and the pressure accumulating valve 33, a valve spring 35 that urges the pressure accumulating valve 33 in the valve closing direction is provided.
[0019]
A cam follower 36 abutting on the valve head of the pressure accumulating valve 33 is slidably fitted to the cylinder head 12, and a pressure accumulating cam 22 c fixed to one end of the cam shaft 22 is abutted and engaged with the cam follower 36. The
[0020]
Thus, the pressure accumulating valve 33 is driven to open and close in accordance with the rotation of the camshaft 22, and the pressure accumulating valve 33 is opened only during the first period A during the expansion stroke of the engine. During the second intake stroke B, the valve is opened only for the second period B over the compression stroke past the bottom dead center from the bottom dead center of the piston 14. Moreover, the pressure accumulating cam 22c opens the pressure accumulating valve 33 only during a second period B longer than the valve opening period B 'of the conventional pressure accumulating valve shown by the broken line in FIG. It is formed to be larger than the lift amount L ′ of the conventional pressure accumulating valve indicated by the broken line.
[0021]
Further, a fuel injection valve 36 for directly injecting fuel into the pressure accumulating chamber 30 is attached to the cylinder head 12. The fuel injection by the fuel injection valve 36 is preferably performed while the pressure accumulating valve 33 is closed as shown in FIG. Is executed in the third period C in the exhaust stroke.
[0022]
Next, the operation of this embodiment will be described. When the accumulator valve 33 is opened only during the first period A during the second half of the expansion stroke during operation of the internal combustion engine E, a part of the burned gas in the combustion chamber 12a is The pressure accumulation chamber 30 is filled from the pressure accumulation port 31 by the pressure of the gas itself. Next, in the exhaust stroke, the fuel injection valve 36 operates only for the third period C, and the fuel directly injected into the pressure accumulating chamber 30 by an amount corresponding to the operating condition of the engine E is in a relatively high temperature state. Vaporized by contact with.
[0023]
Next, when the exhaust stroke shifts to the intake stroke, the piston 14 descends and the intake valve 20 opens, so that air is drawn into the combustion chamber 12a from the intake port 16 to form a swirl flow 29, and the intake valve 20 is closed. The accumulator valve 33 is opened for the second period B after the valve. As a result, the already burned gas stored in the pressure accumulating valve 30 is injected into the combustion chamber 12a from the pressure accumulating port 31 together with the vaporized fuel with its own pressure, and an air-fuel mixture containing the fuel in the vaporized state is injected into the combustion chamber 12a. In addition, the compression pressure and temperature of the air-fuel mixture can be increased, and the engine E can exhibit a high output and can exhibit the EGR effect to reduce NO x in the exhaust gas.
[0024]
Moreover, the intake valve 20 is fully closed before the piston 14 reaches bottom dead center, thereby limiting the amount of intake air and increasing the expansion ratio rather than the compression ratio, thereby improving the thermal efficiency. .
[0025]
In addition, since the intake valve 20 is fully closed before the piston 14 reaches the bottom dead center, the opening timing of the pressure accumulating valve 33 can be determined before the bottom dead center of the piston 14 in the intake stroke. Since the pressure accumulating valve 33 is closed in the compression stroke past the bottom dead center, the burnt gas in the pressure accumulating chamber 30 is injected into the combustion chamber 12a before the pressure in the combustion chamber 12a starts to rise. At the same time, the accumulator valve 33 is opened for a second period B longer than the conventional accumulator valve opening period B 'shown by the broken line in FIG. The lift amount L can be made larger than the conventional lift amount L ′ by increasing the opening angle. As a result, the supercharging amount can be increased to further improve the thermal efficiency.
[0026]
Further, the pressure accumulation port 31 connecting the pressure accumulation chamber 30 and the combustion chamber 12a is located in the combustion chamber just below the opening end of the intake port 16 to the combustion chamber 12a along the flow direction of the swirl flow 29 formed in the combustion chamber 12a. 12a, the negative pressure acting on the pressure accumulation port 31 by the swirl flow in the combustion chamber 12a that has already been formed by closing the intake valve 20 relatively quickly is utilized to store the pressure in the pressure accumulation chamber 30. The pressure can be effectively applied to the combustion chamber 12a, and the thermal efficiency can be further improved.
[0027]
By the way, in this embodiment, since the fuel is directly injected from the fuel injection valve 36 into the pressure accumulating chamber 30 in the exhaust stroke immediately after the pressure accumulating valve 33 is closed, the time until the pressure accumulating valve 33 is opened next is sufficient. The fuel can be sufficiently vaporized in the pressure accumulating chamber 30.
[0028]
Further, when the fuel is directly injected into the pressure accumulating chamber 30 during the long closing period of the pressure accumulating valve 33, it is possible to secure a sufficient injection time C, and the fuel is injected into the combustion chamber 12a at the end of the compression stroke. Compared with general in-cylinder injection in which direct injection is performed instantaneously, the injection pressure can be reduced, and the configuration of the fuel supply system including the fuel injection valve 36 can be simplified, and the cost can be reduced. .
[0029]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. It is.
[0030]
For example, in the above embodiment, the fuel is directly injected into the pressure accumulating chamber 30, but the present invention can also be applied to an internal combustion engine in which the fuel is injected into the intake port 16. Further, the intake valve 20 and the exhaust valve 21 are not limited to the two-valve type as in the above embodiment, and the present invention can be applied to a two-valve or four-valve internal combustion engine.
[0031]
The present invention can also be applied to an internal combustion engine in which the operating characteristics of the intake valve 20 and the exhaust valve 21 are changed in accordance with the operating conditions. In such an internal combustion engine, the valve accumulator 33 is opened. By wrapping a part of the supercharging timing with the intake stroke at low load, it is possible to prevent a drop in the in-cylinder pressure, and it is possible to reduce the pumping loss by increasing the throttle opening.
[0032]
【The invention's effect】
As described above, according to the first aspect of the present invention, it is possible to improve the thermal efficiency by increasing the expansion ratio rather than the compression ratio by quickly closing the intake valve, and before the pressure in the combustion chamber starts to rise. The burned gas in the accumulator chamber can be injected into the combustion chamber and the opening angle of the accumulator valve can be made relatively large, and the supercharging amount can be increased to further improve the thermal efficiency.
[0033]
According to the second aspect of the present invention, the accumulated pressure in the accumulator chamber can be effectively applied to the combustion chamber, and the thermal efficiency can be further improved.
[Brief description of the drawings]
FIG. 1 is a longitudinal front view of an internal combustion engine.
FIG. 2 is a sectional view taken along line 2-2 of FIG.
FIG. 3 is a bottom view of the cylinder head as viewed from line 3-3 in FIG.
FIG. 4 is an opening / closing operation characteristic diagram of an intake valve, an exhaust valve, and an accumulator valve.
[Explanation of symbols]
11a ... cylinder bore 12 ... cylinder head 12a ... combustion chamber 14 ... piston 16 ... intake port 17 ... exhaust port 20 ... intake valve 21 ... exhaust valve 30 ... Accumulation chamber 31 ... Accumulation port 33 ... Accumulation valve E ... Internal combustion engine

Claims (2)

ピストン(14)が摺動自在に嵌合されるシリンダボア(11a)に連なる燃焼室(12a)と、燃焼室(12a)に開口する吸気ポート(16)および排気ポート(17)と、蓄圧室(30)と、該蓄圧室(30)および燃焼室(12a)間を結ぶ蓄圧ポート(31)とが設けられるシリンダヘッド(12)に、前記吸気ポート(16)、排気ポート(17)および蓄圧ポート(31)をそれぞれ開閉する吸気弁(20)、排気弁(21)および蓄圧弁(33)が開閉作動可能に配設される内燃機関において、前記吸気弁(20)を前記ピストン(14)が下死点に達するまでに全閉状態とし、前記蓄圧弁(33)を機関の膨張行程で第1の期間開弁するとともに次の吸気行程での前記下死点前から該下死点を過ぎた圧縮行程にわたって第2の期間だけ開弁することを特徴とする内燃機関。A combustion chamber (12a) connected to a cylinder bore (11a) in which a piston (14) is slidably fitted, an intake port (16) and an exhaust port (17) opened to the combustion chamber (12a), and a pressure accumulating chamber ( 30) and an accumulator port (31) connecting the accumulator chamber (30) and the combustion chamber (12a) to the cylinder head (12), the intake port (16), the exhaust port (17) and the accumulator port In an internal combustion engine in which an intake valve (20), an exhaust valve (21), and a pressure accumulating valve (33) that open and close (31) are arranged so as to be able to open and close, the intake valve (20) is connected to the piston (14). The valve is fully closed before reaching the bottom dead center, and the accumulator valve (33) is opened for the first period in the expansion stroke of the engine and passes the bottom dead center before the bottom dead center in the next intake stroke. Over the compression stroke Internal combustion engine, characterized in that the opening only of the period. 前記吸気ポート(16)が、燃焼室(12a)内でスワール流を生じる形状に形成され、燃焼室(12a)内でのスワール流の流れ方向に沿って前記吸気ポート(16)の燃焼室(12a)への開口端の直下で燃焼室(12a)に開口するように前記蓄圧ポート(31)が形成されることを特徴とする請求項1記載の内燃機関。The intake port (16) is formed in a shape that generates a swirl flow in the combustion chamber (12a), and a combustion chamber (in the intake port (16)) along the flow direction of the swirl flow in the combustion chamber (12a). The internal combustion engine according to claim 1, wherein the pressure accumulation port (31) is formed so as to open to the combustion chamber (12a) immediately below the opening end to 12a).
JP2001085953A 2001-03-23 2001-03-23 Internal combustion engine Expired - Fee Related JP4291961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001085953A JP4291961B2 (en) 2001-03-23 2001-03-23 Internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001085953A JP4291961B2 (en) 2001-03-23 2001-03-23 Internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002285851A JP2002285851A (en) 2002-10-03
JP4291961B2 true JP4291961B2 (en) 2009-07-08

Family

ID=18941394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001085953A Expired - Fee Related JP4291961B2 (en) 2001-03-23 2001-03-23 Internal combustion engine

Country Status (1)

Country Link
JP (1) JP4291961B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400684B2 (en) * 2010-03-31 2014-01-29 本田技研工業株式会社 Internal combustion engine with sub chamber

Also Published As

Publication number Publication date
JP2002285851A (en) 2002-10-03

Similar Documents

Publication Publication Date Title
JP5562386B2 (en) Multi-cylinder diesel engine
Kreuter et al. Strategies to improve SI-engine performance by means of variable intake lift, timing and duration
EP1179676A1 (en) In-cylinder injection engine
US20120283932A1 (en) Two-stroke internal combustion engine with variable compression ratio and an exhaust port shutter and a method of operating such an engine
JP5116465B2 (en) Method for operating an internal combustion engine and internal combustion engine implementing the method
EP2759685B1 (en) Premixed compression self-ignition engine
JP2001295653A (en) Intake controller of v-type multiple cylinder engine
JPH11280507A (en) Spark ignition type internal combustion engine
JP4291961B2 (en) Internal combustion engine
US20140182544A1 (en) System and method of improving efficiency of an internal combustion engine
JP4591300B2 (en) 4-cycle spark ignition engine
EP1550794A3 (en) Diesel engine with dual-lobed intake cam for compression ratio control
JP4125441B2 (en) Internal combustion engine
JP2022124166A (en) internal combustion engine
JPH0359242B2 (en)
JP3133434B2 (en) engine
JP4229913B2 (en) Internal combustion engine with exhaust gas recirculation device
JPH11117776A (en) Suction device for direct injection diesel engine
JP4045743B2 (en) Control device for internal combustion engine
Haas et al. Get ready for the combustion Strategies of tomorrow
US7334564B2 (en) Throttle and inlet valves for 8 stroke and 4 stroke engines
JP2634466B2 (en) 4-cycle internal combustion engine
JPH05263647A (en) Combustion chamber of two-cycle internal combustion engine
JP4139772B2 (en) Internal combustion engine that can be operated in controlled auto-ignition mode
JPS6123622Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090325

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees