JP4016630B2 - Method for manufacturing lithium ion battery - Google Patents

Method for manufacturing lithium ion battery Download PDF

Info

Publication number
JP4016630B2
JP4016630B2 JP2001316418A JP2001316418A JP4016630B2 JP 4016630 B2 JP4016630 B2 JP 4016630B2 JP 2001316418 A JP2001316418 A JP 2001316418A JP 2001316418 A JP2001316418 A JP 2001316418A JP 4016630 B2 JP4016630 B2 JP 4016630B2
Authority
JP
Japan
Prior art keywords
battery
electrode
resin layer
porous resin
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001316418A
Other languages
Japanese (ja)
Other versions
JP2003123725A (en
Inventor
潤二 中島
純一 山浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001316418A priority Critical patent/JP4016630B2/en
Publication of JP2003123725A publication Critical patent/JP2003123725A/en
Application granted granted Critical
Publication of JP4016630B2 publication Critical patent/JP4016630B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、電池の製造方法に関するものである。
【0002】
【従来の技術】
これまで、乾電池、アルカリ乾電池、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウム一次電池、リチウム二次電池など数多くの種類の化学電池が実用化されてきた。これらの内、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウム一次電池、リチウム二次電池の多くは正極と負極を積層したり巻回して構成されており、正負極間には短絡防止と電解液の保持を目的としたセパレータが設けられている。
【0003】
従来セパレータとしては電池系、電池構造に応じて、それに適合すべく不織布、ガラスマット、多孔質フィルムなどが用いられ、それぞれ電極の積層時、巻回時に正負極と供に組み込まれ、電極群として構成されている。
【0004】
また、このような多孔質のセパレータとして、球状樹脂粒子同士を接着するとともに、球状粒子間に電解液保持用の隙間を設けたものも知られている(特開平1−167948号公報)。
【0005】
また、リチウムイオン電池において、上記のようなセパレータと電極とが別体ではなく、電極の少なくとも片面に多孔質の樹脂層を一体的に積層してセパレータとすることで電極群の組み立て性を改善したものも知られている(特開平11−345606号公報)。
【0006】
また、ポリマー系のリチウムイオン電池において、同様の多孔質樹脂層を電極中に作製する方法として、ポリフッ化ビニリデン(PVDF)樹脂をN−メチルピロリドン(NMP)に溶解したものを結着剤として用い、塗工後にPVDFが不溶の別溶媒、たとえば水を加えてNMPを抽出してPVDFの多孔質相を形成する技術も報告されている。
【0007】
【発明が解決しようとする課題】
電極上に多孔質の樹脂層を一体的に設けてセパレータとなす手法は、電極上に既にセパレータが一体化されているため、正極、負極の二部構成で電極群を組み立てることとなり、従来の正極、負極、セパレータの三部構成で組み立てるものと比べ、組み立て性は各段に向上する。
【0008】
しかしながら、電池の性能、品質という観点からはその樹脂層の物性、形状、構造が重要な因子であり、それら因子を制御しうる樹脂層形成のための製造方法が必要である。本発明は上述した実情に鑑みなされたものであり、電極上に多孔質樹脂層を一体的にする手法であり、前記多孔質樹脂層の物性、形状、構造の制御に有利な製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係るリチウムイオン電池は、正極、負極、および正負極両極間にブチルイソシアネート微粒子からなる多孔質樹脂層を有するリチウムイオン電池であって、正負極の少なくとも一方の電極上に電極と一体化した多孔質樹脂層を設けることを特徴とするものである。
【0010】
本発明は該リチウムイオン電池の製造方法であり、多孔質樹脂層となるブチルイソシアネートと加熱により分解するジアゾ系有機化合物微粒子とからなる混合体を正負極の少なくとも一方の電極上に形成した後、所定の加熱によりブチルイソシアネート中のジアゾ系有機化合物分解させて電極と一体化した多孔質樹脂層を設けることを特徴とする。
【0012】
具体的には、ブチルイソシアネートを溶媒に溶解した樹脂溶液にジアゾ系有機化合物微粒子を分散させたサスペンジョン液体を用い、これを電極上に塗布した後、加熱により発泡させ、乾燥を行い多孔質樹脂層を得る製造法である。
【0014】
【発明の実施の形態】
本発明の製造法に係る電池において、多孔質樹脂層は電極上に一体化した形で形成されており、この樹脂層をセパレータとして用いるものである。正極と負極との接触防止と電解液の保持機能というセパレータとしての本来の機能を確保すれば、この樹脂層は正負極のいずれの電極上に形成しても良いし、電極の両面、または片面に形成しても良い。
【0015】
多孔質樹脂層の厚みは、少なくとも正負極間で正極と負極の接触防止と電解液の保持機能というセパレータとしての本来の機能を確保するものであればいずれでも良い。電池系がリチウムイオン電池、またはリチウム一次電池等のリチウム電池系の場合はセパレータとして機能する樹脂層の厚みは10μm〜60μmあたりが適当であるし、電池系がニッケルカドミウム電池、またはニッケル水素電池等のアルカリ蓄電池系の場合はその厚みは0.1mm〜0.8mmあたりが適当であるし、電池系が鉛蓄電池の場合はその厚みは0.5mm〜1.2mmあたりが適当である。但しこれに限定されるものではない。
【0016】
この樹脂層の厚みは、塗布等で電極上に樹脂層を形成する際の塗膜の厚みに左右されるもので、塗布液の粘度、採用する塗布方法で容易に調整できる。
【0017】
多孔質樹脂の気孔率はいずれの電池系でも目的の電極反応を十分に行わせるに足りる電解液を保持し、かつ目的の電極反応速度を得られるものであればいずれでも良い。但し、その孔形状、孔サイズ、孔数は電池系によって適合させるべき範囲がある。本発明の製造法を用いれば、発泡剤の種類、発泡剤微粒子の粒子径、発泡剤微粒子の濃度、発泡時の塗膜の粘度、発泡過程の昇温、降温速度等の温度制御等で目的の孔形状、孔サイズ、孔数を有する多孔質樹脂層を容易に得ることができる。例えば、小さな孔サイズの孔を数多く作りたい場合、発泡材微粒子の粒子径を小さくし、樹脂濃度を上げ、かつ発泡材濃度を上げ、さらに発泡が同時に起こり、乾燥が速やかに進むように昇温速度を工夫すれば良い。
【0018】
また、電極上に樹脂層の塗膜を形成する方法としては、ドクターブレード、ダイヘッドコーター、スプレー吹き付け等の塗布方式を用いることができる。樹脂層の厚みが比較的薄い設計となるリチウム電池系の場合、精度が要求されるので、ドクターブレードかダイヘッドコータ−を用いることが好ましい。ここで、アルカリ蓄電池系では要求精度が少し緩くなるのでスプレー吹き付け方式も採用できる。さらに厚めの樹脂層となる鉛蓄電池では樹脂液中に電極を漬けて引き上げるデイップ方式も採用できる。但しこれに限定されるものではない。
【0019】
多孔質樹脂層を構成する樹脂としては、リチウム電池系では電解液に溶解しない樹脂を選択することが前提となり、尿素系樹脂であるブチルイソシアネートを選択することができる
【0020】
発泡剤としては、ジアゾ化合物等の有機材料系のものが有用である。
【0021】
【実施例】
以下、本発明の実施例を説明する。
【0022】
本発明の製造法をリチウムイオン電池へ適用した場合について説明する。
【0023】
図1は本実施例に用いた円筒形電池の断面図であり、(b)は円筒形電池断面図(a)の極板群部を拡大表示したものである。図1(b)に示すように、極板群は、活物質のLiCoO2粉末に導電材の炭素粉末と結着材のPVDFを混合した正極活物質層1を正極集電体のアルミニウム(Al)箔2の両面に設けた正極と、活物質の黒鉛粉末と結着材のPVDFを混合した負極活物質層3を負極集電体の銅(Cu)箔4の両面に設けた負極とを巻回したものであり、その正負極間には本発明の製造法で負極上に設けたセパレータの機能を果たす多孔質樹脂層5を有する。
【0024】
図1(a)に示されるように、電池は、この巻回極板群を電池ケース10内に装填した後、極板群から取り出した正極リード7と負極リード8をそれぞれ封口板9と電池ケース10内低部に抵抗溶接し、炭酸エチレン(EC)と炭酸ジエチル(DEC)の体積比1:1の混合溶媒に、LiPF6を1モル/リットル溶解した有機電解液6を注入し、封口板9と電池ケース10との間の電気的絶縁を保つとともに、正極ケース開口縁が内側に折り曲げられ、ポリプロピレン製のガスケット11を介してかしめることによって、電池内容物を密閉、封止したものである。
【0025】
以後、電池性能の評価はこの電池を用いて行なった。
【0026】
本発明の主題は前記した多孔質樹脂層の製造法であり、本実施例では、多孔質樹脂成分としてPVDFを用い、発泡材として炭酸カルシウム(CaCO3)を組み合わせた例(参考例1)、多孔質樹脂成分としてブチルイソシアネート樹脂を用い、発泡材としてジアゾ系有機化合物を組み合わせた例(実施例)について説明する。
【0027】
参考例1)
参考例1では、活物質の黒鉛粉末と結着材のPVDFを混合した負極活物質層を負極集電体のCu箔の両面に設けた負極板シートに多孔質樹脂層を作製する基板として用いた。
【0028】
まず、NMPに多孔質樹脂成分のPVDFを12質量%溶解した溶液200gを用意し、これに発泡材のCaCO3微粉末(粒径1μm〜5μm)10gを投入し、これを充分に混練した後、上記負極の表面にダイヘッドコーターを用いて塗膜厚が30μmとなるように均一に塗布した。
【0029】
次いで、160℃に加熱した乾燥機にこの極板を入れ、加熱によりCaCO3を分解(CO2発生)して塗膜中の発泡を促進するとともに、NMPを蒸発させて塗膜を乾燥しPVDFからなる多孔質樹脂層を作製した。乾燥後の多孔質樹脂層の厚みは約25μmであり、塗膜質量と体積の関係から空孔率は約30%であることがわかった。この処方で、負極の両面に多孔質樹脂層を設けた電極を作製し、これとLiCoO2を活物質とする正極を巻回して上述の構成からなる円筒形電池(電池A)を作製した。
【0030】
(実施例
本実施例1においても活物質の黒鉛粉末と結着材のPVDFを混合した負極活物質層を集電体のCu箔の両面に設けた負極板シートに多孔質樹脂層を作製する基板として用いた。
【0031】
まず、トルエンに多孔質樹脂成分のブチルイソシアネート樹脂を50質量%溶解した溶液200gを用意し、これに発泡材のジアゾ系有機化合物(粒径0.2μm〜2.0μm)5gを投入し、これを充分に混練した後、上記負極の表面にダイヘッドコーターを用いて塗膜厚が30μmとなるように均一に塗布した。
【0032】
次いで、130℃に加熱した乾燥機にこの極板を入れ、加熱によりジアゾ系有機化合物を分解(N2発生)して塗膜中の発泡を促進するとともに、トルエンを蒸発させて塗膜を乾燥しブチルイソシアネートからなる多孔質樹脂層を作製した。乾燥後の多孔質樹脂層の厚みは約20μmであり、その空孔率は約50%であった。この処方で、負極の両面に多孔質樹脂層を設けた電極を作製し、これとLiCoO2を活物質とする正極を巻回して上述の構成からなる円筒形電池(電池B)を作製した。
【0033】
参考例1ならびに実施例で作製した多孔質樹脂層の形態を確認するため、多孔質樹脂層を設けた負極を裁断して、その断面を顕微鏡で観測した。その結果、図2の模式図に示すように三次元の連続した孔が樹脂層全体に均一に分布した塗膜が得られていることが分かった。
【0034】
(比較例)
上述の本発明の処方で製作した多孔質樹脂層を電極と一体化した構造の本発明に係るところの電池との比較のために、ポリプロピレンの多孔質樹脂フィルムからなる別体のセパレータを正負極間に介して巻回した従来構造の電池(電池C)を作製した。なお、このセパレータは市販の厚み25μm、多孔率33%の多孔質樹脂フィルムである。
【0035】
ここで、セパレータが別体となった従来の構成の電池に比べ、本発明の製造法に係るところの電池は、電極群の組み立て性において格段の優位性があることも明らかとなった。
【0036】
次いで、上述した実施例、参考例および比較例に係る電池の性能についての試験を行った。
【0037】
なお、負極とセパレータが一体化している参考例および実施例に係る電池Aおよび電池Bと電極とセパレータが別体となっている比較例に係る電池Cはいずれも正負極は同サイズの電極を使用しており、電池サイズ、電池形状も同一の電池とした。
【0038】
いずれの電池も最初に1/5C定電流で(充電終止電圧4.1V、放電終止電圧3.0V)3サイクル充放電した後に、放電を1C、2Cとした放電負荷特性を調べた。
【0039】
その結果を図3に示す。図3は1/5C、1C、2Cのそれぞれの放電時における容量を示したものであるが、1/5C放電ではいずれの電池もほとんど同容量を示す。
【0040】
しかしながら、1C、2Cの高率放電では、従来セパレータ使用の電池Cに比べ、電池Aは同等の負荷特性、電池Bは良好な負荷特性を示すことが分かった。
【0041】
電池Bが優れている理由として、セパレータの多孔率が比較的高かった(電池Bでは多孔率50%)ことが関係するものと思われる。
【0042】
従来のセパレータの場合、一般に多孔率を上げるとフィルムそのものの強度が低下し、別体で巻回する際に破断するなどの不都合が生じるため実際上多孔率を上げることは困難である。
【0043】
しかしながら、電極と一体化させる本発明の製造法に係るところの多孔質樹脂層は多孔率を上げても電極に保持されているため強度的問題は生じず、多孔率を上げることができるという利点があることが分かった。即ち、本発明の製造法はリチウムイオン電池の高出力化には大変都合の良い技術である。
【0044】
また、鋭意検討の結果、本発明の製造法を用いれば、さらに多孔率を上げることも、またその孔の径、孔数までも制御が可能であることも分かった
【0045】
本実施例では円筒形のリチウムイオン電池を例に説明したが、その電池形状がボタン型電池、コイン型電池、角型電池でも本発明の技術は適用可能である。また、本実施例では、電極を巻回する方式の電池構造を用いたが、平板状の正負極を積層する方式の電池構造に適用しても良い。
【0046】
さらに、本実施例ではリチウムイオン電池を例に説明したが、本発明の製造法は、鉛蓄電池、ニッケルカドミウム電池、ニッケル水素電池、リチウム一次電池、その他のリチウム二次電池の多くに適用可能である。
【0047】
いずれの電池系においても、本発明の製造法を用いると、別体のセパレータを用いる従来の電池に比べて電池の組み立て工程の容易化が図れること、孔径、孔数など容易に多孔質樹脂形態を制御できるため電池の高性能化が可能なこと、さらには樹脂層が電極の活物質層を覆っているため活物質層の脱落等も抑えうるため耐久性向上が図れることなどその効果は大きい。
【0048】
【発明の効果】
本発明により、電極上に多孔質樹脂層を設ける手法において、前記多孔質樹脂層の物性、形状、構造の制御に有利な製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例における試験電池、及び電極群の断面図
【図2】本発明の実施例における多孔質樹脂層の断面模式図
【図3】本発明の実施例における充放電負荷特性図
【符号の説明】
1 正極活物質層
2 正極集電体
3 負極活物質層
4 負極集電体
5 多孔質樹脂層
6 電解液
7 正極リード
8 負極リード
9 封口板
10 電池ケース
11 ガスケット
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery manufacturing method.
[0002]
[Prior art]
Until now, many kinds of chemical batteries such as dry batteries, alkaline batteries, lead storage batteries, nickel cadmium batteries, nickel metal hydride batteries, lithium primary batteries, lithium secondary batteries have been put into practical use. Of these, most of lead acid batteries, nickel cadmium batteries, nickel metal hydride batteries, lithium primary batteries, and lithium secondary batteries are constructed by laminating or winding a positive electrode and a negative electrode. A separator for holding the liquid is provided.
[0003]
Conventional separators include non-woven fabrics, glass mats, porous films, etc., to suit the battery system and battery structure, and are assembled together with the positive and negative electrodes during electrode lamination and winding, respectively. It is configured.
[0004]
Further, as such a porous separator, there is also known one in which spherical resin particles are bonded together and a gap for holding an electrolyte solution is provided between the spherical particles (Japanese Patent Laid-Open No. 1-167948).
[0005]
Also, in lithium-ion batteries, the separator and electrode are not separate, but the assembly of the electrode group is improved by forming a porous resin layer integrally on at least one side of the electrode to form a separator. This is also known (Japanese Patent Laid-Open No. 11-345606).
[0006]
In a polymer lithium ion battery, as a method for producing a similar porous resin layer in an electrode, a material obtained by dissolving polyvinylidene fluoride (PVDF) resin in N-methylpyrrolidone (NMP) is used as a binder. Further, a technique for forming a porous phase of PVDF by adding another solvent insoluble in PVDF after coating, for example, water to extract NMP is also reported.
[0007]
[Problems to be solved by the invention]
The method of providing a porous resin layer integrally on the electrode to form a separator is that the separator is already integrated on the electrode, so the electrode group is assembled in a two-part configuration of the positive electrode and the negative electrode. Compared with what is assembled by the three-part structure of a positive electrode, a negative electrode, and a separator, assemblability improves in each step.
[0008]
However, from the viewpoint of battery performance and quality, the physical properties, shape, and structure of the resin layer are important factors, and a manufacturing method for forming the resin layer that can control these factors is required. The present invention has been made in view of the above-described circumstances, and is a method of integrating a porous resin layer on an electrode, and provides a manufacturing method advantageous for controlling the physical properties, shape, and structure of the porous resin layer. The purpose is to do.
[0009]
[Means for Solving the Problems]
A lithium ion battery according to the present invention is a lithium ion battery having a porous resin layer composed of butyl isocyanate fine particles between a positive electrode, a negative electrode, and both positive and negative electrodes, and is integrated with an electrode on at least one of the positive and negative electrodes The porous resin layer is provided.
[0010]
The present invention is a manufacturing method of the lithium-ion battery, after forming a mixture comprising a diazo organic compound fine particles to decompose by heating with butyl isocyanate to be porous resin layer on at least one of the electrodes of the positive and negative electrodes, A porous resin layer integrated with an electrode is provided by decomposing a diazo organic compound in butyl isocyanate by predetermined heating.
[0012]
Specifically, using a suspension liquid of butyl isocyanate are dispersed diazo organic compound fine particles to the resin solution dissolved in a solvent, which was coated on the electrode, is more foamed pressure heat porous and dried This is a production method for obtaining a resin layer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
In the battery according to the production method of the present invention, the porous resin layer is formed in an integrated form on the electrode, and this resin layer is used as a separator. The resin layer may be formed on any of the positive and negative electrodes, as long as the original function as a separator, ie, the prevention of contact between the positive electrode and the negative electrode and the retention function of the electrolyte, is secured. You may form in.
[0015]
The thickness of the porous resin layer may be any as long as it ensures the original function as a separator, at least between positive and negative electrodes, preventing contact between the positive electrode and the negative electrode and retaining the electrolyte. When the battery system is a lithium battery system such as a lithium ion battery or a lithium primary battery, the thickness of the resin layer functioning as a separator is suitably around 10 μm to 60 μm, and the battery system is a nickel cadmium battery, a nickel hydrogen battery, or the like In the case of the alkaline storage battery system, the thickness is suitably around 0.1 mm to 0.8 mm, and in the case where the battery system is a lead storage battery, the thickness is suitably around 0.5 mm to 1.2 mm. However, it is not limited to this.
[0016]
The thickness of the resin layer depends on the thickness of the coating film when the resin layer is formed on the electrode by coating or the like, and can be easily adjusted by the viscosity of the coating solution and the coating method employed.
[0017]
The porosity of the porous resin may be any as long as it can hold an electrolytic solution sufficient to cause the target electrode reaction to be sufficiently performed and can obtain the target electrode reaction rate in any battery system. However, the hole shape, hole size, and number of holes have a range to be adapted depending on the battery system. If the production method of the present invention is used, the purpose is to control the type of foaming agent, the particle size of the foaming agent fine particles, the concentration of the foaming agent fine particles, the viscosity of the coating film during foaming, the temperature rise in the foaming process, the temperature drop rate, A porous resin layer having a pore shape, a pore size, and a number of pores can be easily obtained. For example, if you want to make many small pores, increase the particle size of the foam fine particles, increase the resin concentration, increase the foam material concentration, and foaming will occur at the same time, so that the drying proceeds quickly. You can devise the speed.
[0018]
Moreover, as a method for forming a coating film of the resin layer on the electrode, a coating method such as a doctor blade, a die head coater, or spraying can be used. In the case of a lithium battery system in which the resin layer is designed to be relatively thin, accuracy is required, and therefore it is preferable to use a doctor blade or a die head coater. Here, since the required accuracy is slightly relaxed in the alkaline storage battery system, a spray spraying method can also be adopted. Furthermore, a lead storage battery having a thick resin layer can employ a dip method in which an electrode is immersed in a resin solution and pulled up. However, it is not limited to this.
[0019]
As the resin constituting the porous resin layer, it is assumed that a resin that does not dissolve in the electrolyte solution is selected in the lithium battery system, and butyl isocyanate, which is a urea resin , can be selected .
[0020]
As the foaming agent, those organic materials systems such as di-azo compounds are useful.
[0021]
【Example】
Examples of the present invention will be described below.
[0022]
The case where the manufacturing method of the present invention is applied to a lithium ion battery will be described.
[0023]
FIG. 1 is a cross-sectional view of a cylindrical battery used in this example, and FIG. 1B is an enlarged view of the electrode plate group portion of the cylindrical battery cross-sectional view (a). As shown in FIG. 1 (b), the electrode group consists of a positive electrode active material layer 1 in which a conductive material carbon powder and a binder PVDF are mixed with an active material LiCoO 2 powder. ) A positive electrode provided on both surfaces of the foil 2, and a negative electrode provided with negative electrode active material layers 3 mixed with active material graphite powder and binder PVDF on both surfaces of the negative electrode current collector copper (Cu) foil 4. A porous resin layer 5 that functions as a separator provided on the negative electrode by the production method of the present invention is provided between the positive and negative electrodes.
[0024]
As shown in FIG. 1 (a), after the wound electrode plate group is loaded into the battery case 10, the positive electrode lead 7 and the negative electrode lead 8 taken out from the electrode plate group are connected to the sealing plate 9 and the battery, respectively. The case 10 is resistance welded to the lower part of the case 10, and an organic electrolyte 6 in which 1 mol / liter of LiPF 6 is dissolved is injected into a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) in a volume ratio of 1: 1, and sealed. The battery contents are hermetically sealed by keeping the electrical insulation between the plate 9 and the battery case 10, and the positive case opening edge is bent inward and crimped via a polypropylene gasket 11. It is.
[0025]
Thereafter, the battery performance was evaluated using this battery.
[0026]
The subject of the present invention is a method for producing a porous resin layer as described above. In this example, PVDF is used as a porous resin component, and calcium carbonate (CaCO 3 ) is combined as a foaming material ( Reference Example 1). An example (Example 1 ) in which a butyl isocyanate resin is used as the porous resin component and a diazo organic compound is combined as the foaming material will be described.
[0027]
( Reference Example 1)
In Reference Example 1, a negative electrode active material layer in which graphite powder of an active material and PVDF of a binder are mixed is used as a substrate for forming a porous resin layer on a negative electrode sheet provided on both surfaces of a Cu foil of a negative electrode current collector. Using.
[0028]
First, 200 g of a solution in which 12% by mass of PVDF as a porous resin component is dissolved in NMP is prepared, and 10 g of CaCO 3 fine powder (particle size: 1 μm to 5 μm) as a foaming material is added thereto and kneaded sufficiently. The surface of the negative electrode was uniformly applied using a die head coater so that the coating thickness was 30 μm.
[0029]
Next, this electrode plate is put into a dryer heated to 160 ° C., and CaCO 3 is decomposed (CO 2 generation) by heating to promote foaming in the coating film, and NMP is evaporated to dry the coating film. A porous resin layer comprising: The thickness of the porous resin layer after drying was about 25 μm, and it was found that the porosity was about 30% from the relationship between the coating film mass and the volume. With this formulation, an electrode having a porous resin layer provided on both sides of the negative electrode was produced, and a positive electrode using LiCoO 2 as an active material was wound to produce a cylindrical battery (battery A) having the above-described configuration.
[0030]
(Example 1 )
Also in Example 1 , a negative electrode active material layer obtained by mixing active material graphite powder and binder PVDF was used as a substrate for forming a porous resin layer on a negative electrode sheet provided on both sides of a Cu foil of a current collector. It was.
[0031]
First, 200 g of a solution in which 50% by mass of a butyl isocyanate resin as a porous resin component was dissolved in toluene was prepared, and 5 g of a diazo organic compound (particle size: 0.2 μm to 2.0 μm) as a foaming material was added thereto. Was sufficiently kneaded and then uniformly applied to the surface of the negative electrode using a die head coater so that the coating thickness was 30 μm.
[0032]
Next, this electrode plate is placed in a dryer heated to 130 ° C., and the diazo organic compound is decomposed (N 2 generation) by heating to promote foaming in the coating film, and toluene is evaporated to dry the coating film. Then, a porous resin layer made of butyl isocyanate was prepared. The thickness of the porous resin layer after drying was about 20 μm, and the porosity was about 50%. With this formulation, an electrode provided with a porous resin layer on both sides of the negative electrode was prepared, and a positive electrode using LiCoO 2 as an active material was wound to prepare a cylindrical battery (battery B) having the above-described configuration.
[0033]
In order to confirm the form of the porous resin layer produced in Reference Example 1 and Example 1 , the negative electrode provided with the porous resin layer was cut and the cross section was observed with a microscope. As a result, as shown in the schematic diagram of FIG. 2, it was found that a coating film in which three-dimensional continuous holes were uniformly distributed over the entire resin layer was obtained.
[0034]
(Comparative example)
For comparison with the battery according to the present invention having a structure in which the porous resin layer produced by the above-described formulation of the present invention is integrated with an electrode, a separate separator made of a polypropylene porous resin film is used as a positive and negative electrode. A battery (battery C) having a conventional structure wound between them was produced. This separator is a commercially available porous resin film having a thickness of 25 μm and a porosity of 33%.
[0035]
Here, it was also clarified that the battery according to the manufacturing method of the present invention has a significant advantage in the assembly property of the electrode group, as compared with the battery having a conventional configuration in which the separator is separated.
[0036]
Next, tests on the performance of the batteries according to the above-described Examples , Reference Examples, and Comparative Examples were performed.
[0037]
It should be noted that both the battery A and the battery B according to the reference example and the example in which the negative electrode and the separator are integrated, and the battery C according to the comparative example in which the electrode and the separator are separated from each other, have positive and negative electrodes of the same size. The battery used was the same battery size and shape.
[0038]
Each battery was first charged and discharged for 3 cycles at a constant current of 1 / 5C (end-of-charge voltage of 4.1 V, end-of-discharge voltage of 3.0 V), and then the discharge load characteristics were determined by setting the discharge to 1 C and 2 C.
[0039]
The result is shown in FIG. FIG. 3 shows the capacities at the time of 1 / 5C, 1C, and 2C discharges. In the 1 / 5C discharge, all the batteries show almost the same capacity.
[0040]
However, it was found that with high rate discharges of 1C and 2C, the battery A shows equivalent load characteristics and the battery B shows good load characteristics compared to the battery C using a conventional separator.
[0041]
The reason why the battery B is excellent seems to be related to the fact that the porosity of the separator was relatively high (the porosity of the battery B was 50%).
[0042]
In the case of a conventional separator, in general, when the porosity is increased, the strength of the film itself is reduced, and inconveniences such as breakage occur when wound separately, so it is actually difficult to increase the porosity.
[0043]
However, the porous resin layer according to the production method of the present invention integrated with the electrode is held in the electrode even if the porosity is increased, so that there is no problem in strength and the advantage that the porosity can be increased. I found out that In other words, the production method of the present invention is a very convenient technique for increasing the output of a lithium ion battery.
[0044]
Further, as a result of intensive studies, it has been found that if the production method of the present invention is used, the porosity can be further increased and the diameter and the number of holes can be controlled .
[0045]
In this embodiment, a cylindrical lithium ion battery has been described as an example. However, the technology of the present invention can be applied even when the battery shape is a button type battery, a coin type battery, or a square type battery. Further, in this embodiment, the battery structure in which the electrodes are wound is used, but the present invention may be applied to a battery structure in which flat positive and negative electrodes are stacked.
[0046]
Furthermore, in this embodiment, the lithium ion battery has been described as an example. However, the manufacturing method of the present invention can be applied to many of lead storage batteries, nickel cadmium batteries, nickel metal hydride batteries, lithium primary batteries, and other lithium secondary batteries. is there.
[0047]
In any battery system, when the production method of the present invention is used, the battery assembly process can be facilitated, the pore diameter, the number of holes, etc. can be easily achieved compared to the conventional battery using a separate separator. It is possible to improve the performance of the battery because it can control the battery, and further, since the resin layer covers the active material layer of the electrode, it is possible to suppress the falling off of the active material layer, so that the durability can be improved. .
[0048]
【The invention's effect】
According to the present invention, a method for providing a porous resin layer on an electrode can provide a production method advantageous for controlling the physical properties, shape, and structure of the porous resin layer.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a test battery and electrode group in an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of a porous resin layer in an embodiment of the present invention. Characteristics [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Positive electrode active material layer 2 Positive electrode collector 3 Negative electrode active material layer 4 Negative electrode collector 5 Porous resin layer 6 Electrolytic solution 7 Positive electrode lead 8 Negative electrode lead 9 Sealing plate 10 Battery case 11 Gasket

Claims (2)

正極、負極、および正負極両極間にブチルイソシアネートからなる多孔質樹脂層を有するリチウムイオン電池の製造方法であり、ブチルイソシアネートジアゾ系有機化合物微粒子からなる混合体を正負極の少なくとも一方の電極上に形成した後、加熱によりブチルイソシアネート中のジアゾ系有機化合物分解させて電極と一体化した多孔質樹脂層を設けることを特徴とするリチウムイオン電池の製造方法。A method for producing a lithium ion battery having a porous resin layer made of butyl isocyanate between a positive electrode, a negative electrode, and both positive and negative electrodes, and a mixture of butyl isocyanate and diazo organic compound fine particles on at least one of the positive and negative electrodes after formation, the method for producing a lithium ion battery and providing a porous resin layer integrated by decomposing diazo organic compounds in butyl isocyanate and the electrode by heating. 前記ジアゾ系有機化合物微粒子の粒径が0.2μm〜2.0μmであることを特徴とする請求項1に記載のリチウムイオン電池の製造方法。2. The method for producing a lithium ion battery according to claim 1, wherein a particle diameter of the diazo organic compound fine particles is 0.2 μm to 2.0 μm.
JP2001316418A 2001-10-15 2001-10-15 Method for manufacturing lithium ion battery Expired - Fee Related JP4016630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001316418A JP4016630B2 (en) 2001-10-15 2001-10-15 Method for manufacturing lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001316418A JP4016630B2 (en) 2001-10-15 2001-10-15 Method for manufacturing lithium ion battery

Publications (2)

Publication Number Publication Date
JP2003123725A JP2003123725A (en) 2003-04-25
JP4016630B2 true JP4016630B2 (en) 2007-12-05

Family

ID=19134440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001316418A Expired - Fee Related JP4016630B2 (en) 2001-10-15 2001-10-15 Method for manufacturing lithium ion battery

Country Status (1)

Country Link
JP (1) JP4016630B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6372680B2 (en) * 2013-12-06 2018-08-15 三星エスディアイ株式会社Samsung SDI Co., Ltd. Non-aqueous electrolyte secondary battery microcapsule, non-aqueous electrolyte secondary battery separator, non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery electrode active material layer, and non-aqueous electrolyte Secondary battery
JP6349080B2 (en) * 2013-12-09 2018-06-27 三星エスディアイ株式会社Samsung SDI Co., Ltd. Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR102246735B1 (en) * 2014-08-13 2021-04-30 삼성에스디아이 주식회사 Electrode for rechargeable lithium battery and rechargeable lithium battery including the same

Also Published As

Publication number Publication date
JP2003123725A (en) 2003-04-25

Similar Documents

Publication Publication Date Title
US9083036B2 (en) Separator comprising microcapsules and electrochemical device having the same
EP2541644B1 (en) Manufacturing method for separator
KR100432113B1 (en) Multilayer Non-aqueous Electrolyte Secondary Battery
JP5231239B2 (en) Organic-inorganic composite porous separation membrane and electrochemical device using the same
JP3985849B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery using the same, and manufacturing method thereof
EP0954042B1 (en) Lithium ion secondary battery and manufacture thereof
US20140329126A1 (en) Electrode and battery
US20160118636A1 (en) Organic/inorganic composite porous membrane, and separator and electrode structure comprising the same
JP2005293950A (en) Lithium ion secondary battery and charging method of lithium ion secondary battery
US20180026271A1 (en) Negative electrode comprising mesh-type current collector, lithium secondary battery comprising the same, and manufacturing method thereof
CN105914323B (en) Electric storage element
CN110521021A (en) Method of manufacturing separator, thus obtained partition and the electrochemical appliance including the partition
JP6609946B2 (en) Lithium ion secondary battery electrode, method for producing the same, and lithium ion secondary battery
JP4699256B2 (en) Lithium secondary battery
JP4145762B2 (en) Nonaqueous electrolyte secondary battery
JP4016630B2 (en) Method for manufacturing lithium ion battery
JPH1167273A (en) Lithium secondary battery
JP4664455B2 (en) Non-aqueous electrolyte secondary battery
US6376125B2 (en) Lithium ion secondary battery and process for producing the same
JP2003157823A (en) Secondary battery and manufacturing method therefor
WO2014128844A1 (en) Lithium ion secondary battery
JPH11297299A (en) Thin secondary battery
CN113474920B (en) Electrode for rechargeable energy storage device
WO2017098715A1 (en) Power storage element
JPH10241663A (en) Battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040311

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees