JP6349080B2 - Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP6349080B2
JP6349080B2 JP2013254281A JP2013254281A JP6349080B2 JP 6349080 B2 JP6349080 B2 JP 6349080B2 JP 2013254281 A JP2013254281 A JP 2013254281A JP 2013254281 A JP2013254281 A JP 2013254281A JP 6349080 B2 JP6349080 B2 JP 6349080B2
Authority
JP
Japan
Prior art keywords
secondary battery
fine particles
electrolyte secondary
group
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013254281A
Other languages
Japanese (ja)
Other versions
JP2015115107A (en
Inventor
巌 福地
巌 福地
貴弘 遠藤
貴弘 遠藤
利雄 村田
利雄 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2013254281A priority Critical patent/JP6349080B2/en
Priority to KR1020140172506A priority patent/KR102253022B1/en
Publication of JP2015115107A publication Critical patent/JP2015115107A/en
Application granted granted Critical
Publication of JP6349080B2 publication Critical patent/JP6349080B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Description

本発明は、非水電解質二次電池用微粒子混合物、非水電解質二次電池用電極、及び非水電解質二次電池に関する。   The present invention relates to a fine particle mixture for a nonaqueous electrolyte secondary battery, an electrode for a nonaqueous electrolyte secondary battery, and a nonaqueous electrolyte secondary battery.

近年、リチウムイオン二次電池の高容量化、低抵抗化が進むに従い、セパレータの薄膜化が進行している。一方、安全性向上の観点からはこれまで以上に高い絶縁性能(短絡防止性能)が求められている。   In recent years, as the capacity and the resistance of lithium ion secondary batteries have increased, the thickness of the separator has been reduced. On the other hand, from the viewpoint of improving safety, higher insulation performance (short-circuit prevention performance) is required than ever.

この点に関し、特許文献1には、耐熱性の有機繊維を用いた不織布に、熱膨張することが可能な熱膨張性微粒子を含有させる技術が開示されている。この技術によれば、内部短絡等による急激な発熱反応が起こった場合でも、セパレータの絶縁性が消失するのを抑止できる。   In this regard, Patent Document 1 discloses a technique in which a non-woven fabric using heat-resistant organic fibers contains thermally expandable fine particles that can be thermally expanded. According to this technique, even when a sudden exothermic reaction occurs due to an internal short circuit or the like, it is possible to suppress the loss of the insulating properties of the separator.

特開2007−273127号公報JP 2007-273127 A

しかし、不織布系のセパレータは、膜厚を薄くする事が難しいという問題があった。一方、リチウムイオン二次電池用のセパレータとしては、ポリオレフィン(polyolefin)系多孔質膜が知られており、この多孔質膜が現在主流となっている。ポリオレフィン系多孔質膜の材料としては、ポリエチレン及びポリプロピレン(polyethylene and polypropylene)等が知られている。   However, the nonwoven fabric separator has a problem that it is difficult to reduce the film thickness. On the other hand, as a separator for a lithium ion secondary battery, a polyolefin-based porous film is known, and this porous film is currently mainstream. As a material for the polyolefin-based porous film, polyethylene, polypropylene, and the like are known.

ポリオレフィン系多孔質膜は、不織布系のセパレータよりも薄膜化しやすいという長所がある。しかし、ポリオレフィン系多孔質膜は、薄膜化すると膜の強度が低下し、破膜が起こり易く絶縁性能が低下するという問題があった。この問題を解決する方法としては、無機フィラーの塗布や高弾性ポリマーによる被服等が挙げられる。しかし、これらの方法では膜厚の増加が避けられず、製造コストも増加する。さらに、ポリオレフィン系多孔質膜の薄膜化は限界に近付いており、更なる薄膜化は極めて難しかった。   Polyolefin porous membranes have the advantage that they can be made thinner than nonwoven separators. However, when the polyolefin-based porous film is thinned, the strength of the film is lowered, and there is a problem that the film is easily broken and the insulating performance is lowered. Examples of a method for solving this problem include application of an inorganic filler and clothing with a highly elastic polymer. However, these methods inevitably increase the film thickness and increase the manufacturing cost. Furthermore, thinning of the polyolefin-based porous film is approaching its limit, and further thinning has been extremely difficult.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、非水電解質二次電池のセパレータを薄膜化でき、かつ、セパレータの絶縁性能を向上することが可能な、非水電解質二次電池用微粒子混合物、非水電解質二次電池用電極、及び非水電解質二次電池を提供することにある。   Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to reduce the thickness of the separator of the nonaqueous electrolyte secondary battery and to improve the insulating performance of the separator. An object is to provide a fine particle mixture for a non-aqueous electrolyte secondary battery, an electrode for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.

上記課題を解決するために、本発明のある観点によれば、非水電解質二次電池の電解液に膨潤する膨潤性微粒子と、電解液への膨潤性が膨潤性微粒子より低く、かつ熱膨張性を有する熱膨張性微粒子と、を含み、平均粒子径が0.05μm〜0.5μmであることを特徴とする、非水電解質二次電池用微粒子混合物が提供される。   In order to solve the above problems, according to one aspect of the present invention, swelling fine particles that swell in an electrolyte solution of a non-aqueous electrolyte secondary battery, swelling property to an electrolyte solution is lower than swelling fine particles, and thermal expansion There is provided a fine particle mixture for a non-aqueous electrolyte secondary battery, characterized by comprising a thermally expandable fine particle having a property and an average particle size of 0.05 μm to 0.5 μm.

この観点による非水電解質二次電池用微粒子混合物は、例えば電極上に配置された後に発泡することで、非水電解質二次電池のセパレータとして機能する。このセパレータは、微粒子混合物を発泡させたものなので、ポリオレフィン系多孔質膜よりも薄膜化でき、かつ、ポリオレフィン系セパレータよりも絶縁性が向上する。さらに、このセパレータは、ポリオレフィン系多孔質膜よりも低コストで作製可能である。さらに、このセパレータを使用した非水電解質二次電池は、ポリオレフィン系多孔質膜を使用した非水電解質二次電池と遜色ないサイクル寿命を実現可能である。   The fine particle mixture for a non-aqueous electrolyte secondary battery according to this aspect functions as a separator of the non-aqueous electrolyte secondary battery by foaming after being disposed on the electrode, for example. Since this separator is obtained by foaming a fine particle mixture, the separator can be made thinner than the polyolefin-based porous film, and the insulation is improved as compared with the polyolefin-based separator. Furthermore, this separator can be produced at a lower cost than a polyolefin-based porous membrane. Furthermore, a non-aqueous electrolyte secondary battery using this separator can realize a cycle life comparable to a non-aqueous electrolyte secondary battery using a polyolefin-based porous membrane.

ここで、熱膨張性微粒子は、発泡性モノマーと発泡性モノマーよりも非水電解質二次電池内での安定性が高い安定化用モノマーとの共重合体であってもよく、この場合、熱膨張性微粒子が非水電解質二次電池内で安定して存在する。すなわち、微粒子混合物を発泡させることで作製されたセパレータの絶縁性が向上する。   Here, the thermally expandable fine particles may be a copolymer of a foaming monomer and a stabilizing monomer having a higher stability in the non-aqueous electrolyte secondary battery than the foamable monomer. The expandable fine particles are stably present in the nonaqueous electrolyte secondary battery. That is, the insulating property of the separator produced by foaming the fine particle mixture is improved.

また、発泡性モノマーはジアゾ化合物を含んでいてもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   Further, the foamable monomer may contain a diazo compound, and in this case, the thermally expandable fine particles can be easily foamed.

また、ジアゾ化合物は、以下の化学式Iで示される構造を有していてもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   Further, the diazo compound may have a structure represented by the following chemical formula I. In this case, the thermally expandable fine particles can be easily foamed.

Figure 0006349080
Figure 0006349080

化学式I中、R1は水素原子又はメチル基、R2は水素又は炭素数1〜6のアルキル基、R3は水素又は炭素数1〜6のアルキル基、R4は水素、メチル基、アクリル基、メタクリル基、またはグリシジル基、Xは直結又は炭素数1〜6のアルキレン基を表す。   In Chemical Formula I, R1 is a hydrogen atom or a methyl group, R2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, R3 is hydrogen or an alkyl group having 1 to 6 carbon atoms, R4 is hydrogen, a methyl group, an acryl group, or a methacryl group. Or a glycidyl group, X represents a direct bond or an alkylene group having 1 to 6 carbon atoms.

また、ジアゾ化合物は、以下の化学式IIで示される構造を有していてもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   The diazo compound may have a structure represented by the following chemical formula II, and in this case, the thermally expandable fine particles can be easily foamed.

Figure 0006349080
Figure 0006349080

化学式II中、R1は水素原子又はメチル基、R2は水素又は炭素数1〜6のアルキル基、Aはメチレン基又はカルボニル基、Qはメチレン基又はメチン基、Tは直結、二重結合、メチレン基、酸素、またはNH基を表す。   In Formula II, R1 is a hydrogen atom or methyl group, R2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, A is a methylene group or carbonyl group, Q is a methylene group or methine group, T is a direct bond, a double bond, methylene Represents a group, oxygen or NH group.

また、発泡性モノマーの発泡温度が120℃以上250℃以下であってもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   Further, the foaming temperature of the foamable monomer may be 120 ° C. or more and 250 ° C. or less. In this case, the thermally expandable fine particles can be easily foamed.

本発明の他の観点によれば、電極活物質層と、電極活物質層上に設けられ、上記の非水電解質二次電池用微粒子混合物が発泡したセパレータと、を有することを特徴とする、非水電解質二次電池用電極が提供される。   According to another aspect of the present invention, there is provided an electrode active material layer, and a separator provided on the electrode active material layer, wherein the fine particle mixture for a nonaqueous electrolyte secondary battery is foamed. An electrode for a non-aqueous electrolyte secondary battery is provided.

この観点による非水電解質二次電池用電極は、上記の微粒子混合物を発泡させることで作製されたセパレータを含むので、セパレータを薄膜化することができる。また、この電極を使用した非水電解質二次電池は、絶縁性が向上する。   Since the electrode for nonaqueous electrolyte secondary batteries according to this aspect includes a separator produced by foaming the above fine particle mixture, the separator can be thinned. In addition, the non-aqueous electrolyte secondary battery using this electrode has improved insulating properties.

本発明の他の観点によれば、上記の非水電解質二次電池用電極を含むことを特徴とする、非水電解質二次電池が提供される。   According to another aspect of the present invention, there is provided a nonaqueous electrolyte secondary battery comprising the electrode for a nonaqueous electrolyte secondary battery.

この観点によれば、非水電解質二次電池のセパレータを薄膜化でき、かつ、セパレータの絶縁性能を向上することができる。   According to this viewpoint, the separator of the nonaqueous electrolyte secondary battery can be made thin, and the insulating performance of the separator can be improved.

以上説明したように本発明による微粒子混合物は、非水電解質二次電池のセパレータを薄膜化でき、かつ、セパレータの絶縁性能を向上することが可能となる。   As described above, the fine particle mixture according to the present invention can reduce the thickness of the separator of the nonaqueous electrolyte secondary battery and can improve the insulating performance of the separator.

本発明の実施形態に係るリチウムイオン二次電池の構成を示す側断面図である。It is a sectional side view which shows the structure of the lithium ion secondary battery which concerns on embodiment of this invention.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

(リチウムイオン二次電池の構成)
まず、図1に基づいて、第1の実施形態に係るリチウムイオン二次電池10の構成について説明する。
(Configuration of lithium ion secondary battery)
First, based on FIG. 1, the structure of the lithium ion secondary battery 10 which concerns on 1st Embodiment is demonstrated.

リチウムイオン二次電池10は、正極20と、負極30と、セパレータ層40とを備える。リチウムイオン二次電池10の充電到達電圧(酸化還元電位)は、例えば4.3V(vs.Li/Li)以上5.0V以下、特に4.5V以上5.0V以下となる。リチウムイオン二次電池10の形態は、特に限定されない。即ち、リチウムイオン二次電池10は、円筒形、角形、ラミネート(laminate)形、ボタン(button)形等のいずれであってもよい。 The lithium ion secondary battery 10 includes a positive electrode 20, a negative electrode 30, and a separator layer 40. The charge ultimate voltage (redox potential) of the lithium ion secondary battery 10 is, for example, 4.3 V (vs. Li / Li + ) or more and 5.0 V or less, particularly 4.5 V or more and 5.0 V or less. The form of the lithium ion secondary battery 10 is not particularly limited. That is, the lithium ion secondary battery 10 may be any one of a cylindrical shape, a square shape, a laminate shape, a button shape, and the like.

正極20は、集電体21と、正極活物質層22とを備える。集電体21は、導電体であればどのようなものでも良く、例えば、アルミニウム(aluminium)、ステンレス(stainless)鋼、及びニッケルメッキ(nickel coated)鋼等で構成される。   The positive electrode 20 includes a current collector 21 and a positive electrode active material layer 22. The current collector 21 may be any conductor as long as it is a conductor, and is made of, for example, aluminum, stainless steel, nickel-coated steel, or the like.

正極活物質層22は、少なくとも正極活物質を含み、導電剤と、結着剤とをさらに含んでいてもよい。正極活物質は、例えばリチウムを含む固溶体酸化物であるが、電気化学的にリチウムイオンを吸蔵及び放出することができる物質であれば特に制限されない。固溶体酸化物は、例えば、LiMnCoNi(1.150≦a≦1.430、0.45≦x≦0.6、0.10≦y≦0.15、0.20≦z≦0.28)、LiMnCoNi(0.3≦x≦0.85、0.10≦y≦0.3、0.10≦z≦0.3)、LiMn1.5Ni0.5となる。 The positive electrode active material layer 22 includes at least a positive electrode active material, and may further include a conductive agent and a binder. The positive electrode active material is, for example, a solid solution oxide containing lithium, but is not particularly limited as long as the material can electrochemically occlude and release lithium ions. The solid solution oxide is, for example, Li a Mn x Co y Ni z O 2 (1.150 ≦ a ≦ 1.430, 0.45 ≦ x ≦ 0.6, 0.10 ≦ y ≦ 0.15,. 20 ≦ z ≦ 0.28), LiMn x Co y Ni z O 2 (0.3 ≦ x ≦ 0.85, 0.10 ≦ y ≦ 0.3, 0.10 ≦ z ≦ 0.3), LiMn 1.5 Ni 0.5 O 4 .

導電剤は、例えばケッチェンブラック(Ketjenblack)、アセチレンブラック(acetylene black)等のカーボンブラック、天然黒鉛、人造黒鉛等であるが、正極の導電性を高めるためのものであれば特に制限されない。   The conductive agent is, for example, carbon black such as ketjen black or acetylene black, natural graphite, artificial graphite, or the like, but is not particularly limited as long as it is intended to increase the conductivity of the positive electrode.

結着剤は、例えばポリフッ化ビニリデン(polyvinylidene fluoride)、エチレンプロピレンジエン(ethylene−propylene−diene)三元共重合体、スチレンブタジエンゴム(Styrene−butadiene rubber)、アクリロニトリルブタジエンゴム(acrylonitrile−butadiene rubber)、フッ素ゴム(fluororubber)、ポリ酢酸ビニル(polyvinyl acetate)、ポリメチルメタクリレート(polymethylmethacrylate)、ポリエチレン(polyethylene)、ニトロセルロース(cellulose nitrate)等であるが、正極活物質及び導電剤を集電体21上に結着させることができるものであれば、特に制限されない。   Examples of the binder include polyvinylidene fluoride, ethylene-propylene-diene terpolymer, styrene-butadiene rubber, acrylonitrile butadiene rubber, and acrylonitrile butadiene rubber. Fluororubber, polyvinyl acetate, polymethylmethacrylate, polyethylene, nitrocellulose, and the like, and a positive electrode active material and a conductive agent on the current collector 21. Bind There is no particular limitation as long as it can be used.

正極活物質層22は、例えば、以下の製法により作製される。すなわち、まず、正極活物質、導電剤、及び結着剤を乾式混合することで正極合剤を作製する。ついで、正極合剤を適当な有機溶媒に分散させることで正極合剤スラリー(slurry)を形成し、この正極合剤スラリーを集電体21上に塗工し、乾燥、圧延することで正極活物質層が形成される。   The positive electrode active material layer 22 is produced, for example, by the following manufacturing method. That is, first, a positive electrode mixture is prepared by dry-mixing a positive electrode active material, a conductive agent, and a binder. Next, the positive electrode mixture is dispersed in a suitable organic solvent to form a positive electrode mixture slurry (slurry). The positive electrode mixture slurry is applied onto the current collector 21, dried, and rolled to produce a positive electrode active slurry. A material layer is formed.

負極30は、集電体31と、負極活物質層32とを含む。集電体31は、導電体であればどのようなものでも良く、例えば、アルミニウム、ステンレス鋼、及びニッケルメッキ鋼等で構成される。負極活物質層32は、リチウムイオン二次電池の負極活物質層として使用されるものであれば、どのようなものであってもよい。例えば、負極活物質層32は、負極活物質を含み、結着剤をさらに含んでいてもよい。負極活物質は、例えば、黒鉛活物質(人造黒鉛、天然黒鉛、人造黒鉛と天然黒鉛との混合物、人造黒鉛を被覆した天然黒鉛等)、ケイ素もしくはスズもしくはそれらの酸化物の微粒子と黒鉛活物質との混合物、ケイ素もしくはスズの微粒子、ケイ素もしくはスズを基本材料とした合金、及びLiTi12等の酸化チタン系化合物等が考えられる。ケイ素の酸化物は、SiO(0≦x≦2)で表される。負極活物質としては、これらの他に、例えば金属リチウム等が挙げられる。結着剤は、正極活物質層22を構成する結着剤と同様のものでもある。正極活物質と結着剤との質量比は特に制限されず、従来のリチウムイオン二次電池で採用される質量比が本実施形態でも適用可能である。 The negative electrode 30 includes a current collector 31 and a negative electrode active material layer 32. The current collector 31 may be any conductor as long as it is a conductor, for example, aluminum, stainless steel, nickel-plated steel, or the like. The negative electrode active material layer 32 may be any material as long as it is used as a negative electrode active material layer of a lithium ion secondary battery. For example, the negative electrode active material layer 32 includes a negative electrode active material, and may further include a binder. Examples of the negative electrode active material include graphite active material (artificial graphite, natural graphite, a mixture of artificial graphite and natural graphite, natural graphite coated with artificial graphite, etc.), fine particles of silicon or tin or oxides thereof and graphite active material. , Silicon or tin fine particles, alloys based on silicon or tin, and titanium oxide compounds such as Li 4 Ti 5 O 12 . The oxide of silicon is represented by SiO x (0 ≦ x ≦ 2). Examples of the negative electrode active material include metallic lithium and the like in addition to these. The binder is also the same as the binder constituting the positive electrode active material layer 22. The mass ratio between the positive electrode active material and the binder is not particularly limited, and the mass ratio employed in the conventional lithium ion secondary battery is also applicable in this embodiment.

負極活物質層32は、例えば、以下の製法により作製される。すなわち、まず、負極活物質、及び結着剤を乾式混合することで負極合剤を作製する。ついで、負極合剤を適当な溶媒に分散させることで負極合剤スラリー(slurry)を形成し、この負極合剤スラリーを集電体31上に塗工し、乾燥、圧延することで負極活物質層32が形成される。   The negative electrode active material layer 32 is produced by the following manufacturing method, for example. That is, first, a negative electrode mixture is prepared by dry-mixing a negative electrode active material and a binder. Subsequently, the negative electrode mixture is dispersed in a suitable solvent to form a negative electrode mixture slurry (slurry). The negative electrode mixture slurry is coated on the current collector 31, dried, and rolled to form a negative electrode active material. Layer 32 is formed.

セパレータ層40は、セパレータ(separator)と、非水電解液とを含む。セパレータは、微粒子混合物を発泡させたものである。ここで、微粒子混合物は、膨潤性微粒子と熱膨張性微粒子とを含む。   The separator layer 40 includes a separator and a non-aqueous electrolyte. The separator is obtained by foaming a fine particle mixture. Here, the fine particle mixture includes swellable fine particles and thermally expandable fine particles.

膨潤性微粒子は、非水電解液によって膨潤する微粒子である。膨潤性微粒子は、セパレータの導電性を確保する役割を有する。膨潤性微粒子は、熱膨張性を有していても有していなくてもよい。ただし、膨潤性微粒子が熱膨張する場合、膨潤性微粒子は、熱膨張性微粒子と同様の態様で熱膨張することができる。すなわち、セパレータ内に熱膨張後(発泡後)の膨潤性微粒子と熱膨張後の熱膨張性微粒子とが均一に分散する。これにより、セパレータの絶縁性能がさらに向上し、かつ、導電性をより確実に確保することができる。また、膨潤性微粒子が熱膨張性を有する場合、膨潤性微粒子は、熱膨張することで内部に多数の気孔を形成することができる。したがって、膨潤性微粒子は、より多くの電解液を含むことができる。   Swellable fine particles are fine particles that are swollen by a non-aqueous electrolyte. The swellable fine particles have a role of ensuring the conductivity of the separator. The swellable fine particles may or may not have thermal expansibility. However, when the swellable fine particles are thermally expanded, the swellable fine particles can be thermally expanded in the same manner as the thermally expandable fine particles. That is, the swellable fine particles after thermal expansion (after foaming) and the thermal expandable fine particles after thermal expansion are uniformly dispersed in the separator. Thereby, the insulation performance of the separator can be further improved, and the conductivity can be more reliably ensured. When the swellable fine particles have thermal expansibility, the swellable fine particles can thermally expand to form a large number of pores therein. Therefore, the swellable fine particles can contain more electrolytic solution.

膨潤性微粒子が熱膨張性を有する場合、膨潤性微粒子を構成する材料としては、後述する発泡性モノマーと、アクリル酸ブチル、トリエチレングリコールジアクリレート、アクリル酸、スチレン、アクリロニトリル、及びアクリルアミドのいずれか1種以上との共重合体等が挙げられる。   When the swellable fine particles have thermal expansibility, the material constituting the swellable fine particles is any of foamable monomers, butyl acrylate, triethylene glycol diacrylate, acrylic acid, styrene, acrylonitrile, and acrylamide, which will be described later Examples thereof include a copolymer with one or more kinds.

膨潤性微粒子が熱膨張性を有しない場合、膨潤性微粒子を構成する材料としては、上記の発泡性モノマーを2−ヒドロキシジエチルアクリレート、スチレン、アクリロニトリル、アクリルアミド、及びN−イソプロピルアミドのいずれかに置き換えたもの等が挙げられる。   When the swellable fine particles do not have thermal expansibility, as the material constituting the swellable fine particles, the above foamable monomer is replaced with 2-hydroxydiethyl acrylate, styrene, acrylonitrile, acrylamide, or N-isopropylamide. And the like.

熱膨張性微粒子は、電解液への膨潤性が膨潤性微粒子より低く、かつ熱膨張性を有するものである。熱膨張性微粒子は、熱膨張(発泡)することで、電極間の短絡を抑制する。また、熱膨張性微粒子は、リチウムイオン二次電池10内で安定して存在する。すなわち、電解液に対して膨潤しにくく、かつ、電極とも反応しにくい。したがって、発泡後の熱膨張性微粒子は、セパレータの骨格として機能する。   The heat-expandable fine particles have a lower swelling property to the electrolytic solution than the swellable fine particles and have a heat-expandable property. The thermally expandable fine particles are thermally expanded (foamed) to suppress a short circuit between the electrodes. Further, the thermally expandable fine particles are stably present in the lithium ion secondary battery 10. That is, it hardly swells with respect to the electrolytic solution and hardly reacts with the electrode. Therefore, the thermally expandable fine particles after foaming function as a skeleton of the separator.

熱膨張性微粒子は、発泡性モノマーと、発泡性モノマーよりもリチウムイオン二次電池内での安定性が高い安定化用モノマーとの共重合体となっていることが好ましい。熱膨張性微粒子がこれらのモノマーの共重合体となることで、熱膨張性しつつ電解液に膨潤しにくい微粒子となる。   The thermally expandable fine particles are preferably a copolymer of a foaming monomer and a stabilizing monomer having higher stability in the lithium ion secondary battery than the foamable monomer. When the heat-expandable fine particles become a copolymer of these monomers, the heat-expandable fine particles are hardly swelled in the electrolytic solution.

発泡性モノマーは、加熱された際に発泡する樹脂であれば特に制限なく使用できるが、揮発性の低いものが好ましい。揮発性の高い発泡性モノマーを含む熱膨張性微粒子を電解液に投入した場合、揮発性の成分が電解液中に溶出する可能性があるからである。   The foamable monomer can be used without particular limitation as long as it is a resin that foams when heated, but a low volatility monomer is preferred. This is because when thermally expandable fine particles containing a highly volatile foamable monomer are introduced into the electrolyte, volatile components may be eluted into the electrolyte.

発泡性モノマーは、120℃〜250℃の間で発泡することが好ましい。発泡性モノマーは、好ましくはジアゾ化合物を含む。ジアゾ化合物は、加熱されることで分解する。そして、ジアゾ化合物は、分解生成物である窒素ガスにより発泡する。ジアゾ化合物は、好ましくは、以下の化学式Iまたは化学式IIで示される構造を有することが好ましい。   The foamable monomer preferably foams between 120 ° C and 250 ° C. The foamable monomer preferably comprises a diazo compound. The diazo compound decomposes when heated. And a diazo compound foams with the nitrogen gas which is a decomposition product. The diazo compound preferably has a structure represented by the following chemical formula I or chemical formula II.

Figure 0006349080
Figure 0006349080

化学式I中、R1は水素原子又はメチル基、R2は水素又は炭素数1〜6のアルキル基、R3は水素又は炭素数1〜6のアルキル基、R4は水素、メチル基、アクリル基、メタクリル基、またはグリシジル基、Xは直結又は炭素数1〜6のアルキレン基を表す。   In Chemical Formula I, R1 is a hydrogen atom or a methyl group, R2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, R3 is hydrogen or an alkyl group having 1 to 6 carbon atoms, R4 is hydrogen, a methyl group, an acryl group, or a methacryl group. Or a glycidyl group, X represents a direct bond or an alkylene group having 1 to 6 carbon atoms.

Figure 0006349080
化学式II中、R1は水素原子又はメチル基、R2は水素又は炭素数1〜6のアルキル基、Aはメチレン基又はカルボニル基、Qはメチレン基又はメチン基、Tは直結、二重結合、メチレン基、酸素、またはNH基を表す。
Figure 0006349080
In Formula II, R1 is a hydrogen atom or methyl group, R2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, A is a methylene group or carbonyl group, Q is a methylene group or methine group, T is a direct bond, a double bond, methylene Represents a group, oxygen or NH group.

熱膨張性微粒子がジアゾ化合物のみからなる場合、熱膨張性微粒子は電極活物質と反応しやすく、かつ、電解液に膨潤しやすい。したがって、熱膨張性微粒子を電解液に投入した場合、熱膨張性微粒子は電極と反応し、電解液で膨潤する。この結果、リチウムイオン二次電池10の内部抵抗の増大、サイクル寿命の低下といった問題が生じうる。   When the heat-expandable fine particles are composed only of a diazo compound, the heat-expandable fine particles easily react with the electrode active material and easily swell in the electrolytic solution. Therefore, when thermally expandable fine particles are added to the electrolytic solution, the thermally expandable fine particles react with the electrode and swell with the electrolytic solution. As a result, problems such as an increase in internal resistance and a decrease in cycle life of the lithium ion secondary battery 10 may occur.

そこで、本実施形態では、熱膨張性微粒子を発泡性モノマーと発泡性モノマーよりもリチウムイオン二次電池内での安定性が高い安定化用モノマーとの共重合体とする。安定化用モノマーは、発泡性モノマーよりも電解液に膨潤しにくい。また、安定化用モノマーは、発泡性モノマーよりも電極活物質と反応しにくい。安定化用モノマーとしては、例えば、アクリロニトリル、及びアクリル酸等が挙げられる。これにより、熱膨張性微粒子をリチウムイオン二次電池内で安定化させる。すなわち、熱膨張性微粒子を電解液に膨潤しにくくし、かつ電極と反応しにくくする。   Therefore, in this embodiment, the thermally expandable fine particles are a copolymer of a foaming monomer and a stabilizing monomer having higher stability in the lithium ion secondary battery than the foamable monomer. The stabilizing monomer is less likely to swell in the electrolyte solution than the foamable monomer. In addition, the stabilizing monomer is less likely to react with the electrode active material than the foamable monomer. Examples of the stabilizing monomer include acrylonitrile and acrylic acid. As a result, the thermally expandable fine particles are stabilized in the lithium ion secondary battery. That is, the heat-expandable fine particles are less likely to swell in the electrolytic solution and are less likely to react with the electrode.

微粒子混合物の平均粒子径は、0.05μm〜0.5μmである。ここで、平均粒子径は、各微粒子を球とみなしたときの直径のD50値である。平均粒子径は、例えば、レーザー回折散乱式粒子径粒度分布測定装置(たとえば、日機装株式会社製 Microtrac MT3000)平均粒子径が0.05μmを下回ると、熱膨張性微粒子が熱膨張しても十分な大きさとならず、この結果、セパレータの絶縁性能が不十分となる可能性がある。一方、平均粒子径が0.5μmより大きくなると、セパレータが厚膜化する。   The average particle size of the fine particle mixture is 0.05 μm to 0.5 μm. Here, the average particle diameter is a D50 value of the diameter when each fine particle is regarded as a sphere. For example, when the average particle size is less than 0.05 μm, for example, a laser diffraction / scattering particle size distribution measuring apparatus (for example, Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) is sufficient even if the thermally expandable fine particles are thermally expanded. As a result, the insulating performance of the separator may be insufficient. On the other hand, when the average particle size is larger than 0.5 μm, the separator becomes thicker.

本実施形態に係るセパレータは、微粒子混合物を発泡させたものなので、ポリオレフィン系多孔質膜よりも薄膜化でき、かつ、ポリオレフィン系セパレータよりも絶縁性が向上する。さらに、本実施形態に係るセパレータは、ポリオレフィン系多孔質膜よりも低コストで作製可能である。さらに、後述するように、本実施形態に係るリチウムイオン二次電池10は、ポリオレフィン系多孔質膜を使用したリチウムイオン二次電池と遜色ないサイクル寿命を実現可能である。   Since the separator according to the present embodiment is obtained by foaming a fine particle mixture, the separator can be made thinner than the polyolefin-based porous film, and the insulating property is improved as compared with the polyolefin-based separator. Furthermore, the separator according to this embodiment can be produced at a lower cost than the polyolefin-based porous membrane. Furthermore, as will be described later, the lithium ion secondary battery 10 according to the present embodiment can realize a cycle life comparable to that of a lithium ion secondary battery using a polyolefin-based porous film.

非水電解液は、従来からリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。非水電解液は、非水溶媒に電解質塩を含有させた組成を有する。非水溶媒としては、例えば、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ブチレンカーボネート(ethylene carbonate)、クロロエチレンカーボネート(chloroethylene carbonate)、ビニレンカーボネート(vinylene carbonate)等の環状炭酸エステル(ester)類;γ−ブチロラクトン(butyrolactone)、γ−バレロラクトン(valerolactone)等の環状エステル類;ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、エチルメチルカーボネート(ethyl methyl carbonate)等の鎖状カーボネート類;ギ酸メチル(methyl formate)、酢酸メチル(methyl acetate)、酪酸メチル(butyric acid methyl)等の鎖状エステル類;テトラヒドロフラン(Tetrahydrofuran)またはその誘導体;1,3−ジオキサン(dioxane)、1,4−ジオキサン(dioxane)、1,2−ジメトキシエタン(dimethoxyethane)、1,4−ジブトキシエタン(dibutoxyethane)、メチルジグライム(methyl diglyme)等のエーテル(ether)類;アセトニトリル(acetonitrile)、ベンゾニトリル(benzonitrile)等のニトリル(nitrile)類;ジオキソラン(Dioxolane)またはその誘導体;エチレンスルフィド(ethylene sulfide)、スルホラン(sulfolane)、スルトン(sultone)またはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。   As the non-aqueous electrolyte, the same non-aqueous electrolyte as conventionally used for lithium secondary batteries can be used without any particular limitation. The nonaqueous electrolytic solution has a composition in which an electrolyte salt is contained in a nonaqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, vinylene carbonate (vinyl carbonate), and the like. ); Cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate chain carbonates such as ethyl carbonate; chain esters such as methyl formate, methyl acetate, butyric acid methyl; tetrahydrofuran (tetrahydrofuran) or derivatives thereof; 1,3- Ethers such as dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1,4-dibutoxyethane, methyl diglyme; Nitriles such as acetonitrile and benzonitrile e) class; dioxolane or a derivative thereof; ethylene sulfide, sulfolane, sultone, or a derivative thereof alone or a mixture of two or more thereof, etc. It is not limited to.

また、電解質塩としては、例えば、LiClO、LiBF、LiAsF、LiPF,LiPF6−x(C2n+1[但し、1<x<6,n=1or2],LiSCN,LiBr,LiI,LiSO,Li10Cl10,NaClO,NaI,NaSCN,NaBr,KClO,KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiCFSO,LiN(CFSO,LiN(CSO,LiN(CFSO)(CSO),LiC(CFSO,LiC(CSO,(CHNBF,(CHNBr,(CNClO,(CNI,(CNBr,(n−CNClO,(n−CNI,(CN−maleate,(CN−benzoate,(CN−phtalate、ステアリルスルホン酸リチウム(stearyl sulfonic acid lithium)、オクチルスルホン酸リチウム(octyl sulfonic acid)、ドデシルベンゼンスルホン酸リチウム(dodecyl benzene sulphonic acid)等の有機イオン塩等が挙げられ、これらのイオン性化合物を単独、あるいは2種類以上混合して用いることが可能である。なお、電解質塩の濃度は、従来のリチウム二次電池で使用される非水電解液と同様でよく、特に制限はない。本実施形態では、適当なリチウム化合物(電解質塩)を0.8〜1.5mol/L程度の濃度で含有させた非水電解液を使用することができる。 Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiPF 6-x (C n F 2n + 1 ) x [where 1 <x <6, n = 1or2], LiSCN, LiBr, Inorganic ions containing one kind of lithium (Li), sodium (Na) or potassium (K) such as LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN Salt, LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3, LiC (C 2 F 5 SO 2) 3, (CH 3) 4 NBF 4, (CH 3) 4 NBr, (C 2 H 5) 4 NClO 4, C 2 H 5) 4 NI, (C 3 H 7) 4 NBr, (n-C 4 H 9) 4 NClO 4, (n-C 4 H 9) 4 NI, (C 2 H 5) 4 N-maleate , (C 2 H 5 ) 4 N-benzoate, (C 2 H 5 ) 4 N-phthalate, lithium stearyl sulfonate (octyl sulfonic acid), lithium dodecylbenzene sulfonate (lithium dodecylbenzene sulfonate) organic ion salts such as dodecyl benzene sulphonic acid) and the like, and these ionic compounds can be used alone or in admixture of two or more. The concentration of the electrolyte salt may be the same as that of the nonaqueous electrolytic solution used in the conventional lithium secondary battery, and is not particularly limited. In this embodiment, a nonaqueous electrolytic solution containing an appropriate lithium compound (electrolyte salt) at a concentration of about 0.8 to 1.5 mol / L can be used.

なお、非水電解液には、各種の添加剤を添加してもよい。このような添加剤としては、負極作用添加剤、正極作用添加剤、エステル系の添加剤、炭酸エステル系の添加剤、硫酸エステル系の添加剤、リン酸エステル系の添加剤、ホウ酸エステル系の添加剤、酸無水物系の添加剤、及び電解質系の添加剤等が挙げられる。これらのうちいずれか1種を非水電解液に添加しても良いし、複数種類の添加剤を非水電解液に添加してもよい。   Various additives may be added to the nonaqueous electrolytic solution. Examples of such additives include a negative electrode action additive, a positive electrode action additive, an ester additive, a carbonate ester additive, a sulfate ester additive, a phosphate ester additive, and a borate ester additive. Additive, acid anhydride additive, electrolyte additive and the like. Any one of these may be added to the non-aqueous electrolyte, or a plurality of types of additives may be added to the non-aqueous electrolyte.

(リチウムイオン二次電池の製造方法)
次に、リチウムイオン二次電池10の製造方法について説明する。正極20は、以下のように作製される。まず、正極活物質、導電剤、及び結着剤を混合したものを、溶媒(例えばN−メチル−2−ピロリドン)に分散させることでスラリーを形成する。次いで、スラリーを集電体21上に形成(例えば塗工)し、乾燥させることで、正極活物質層22を形成する。なお、塗工の方法は、特に限定されない。塗工の方法としては、例えば、ナイフコーター(knife coater)法、グラビアコーター(gravure coater)法等が考えられる。以下の各塗工工程も同様の方法により行われる。次いで、プレス(press)機により正極活物質層22をプレスする。これにより、正極20が作製される。
(Method for producing lithium ion secondary battery)
Next, a method for manufacturing the lithium ion secondary battery 10 will be described. The positive electrode 20 is produced as follows. First, a slurry is formed by dispersing a mixture of a positive electrode active material, a conductive agent, and a binder in a solvent (for example, N-methyl-2-pyrrolidone). Next, the positive electrode active material layer 22 is formed by forming (for example, coating) the slurry on the current collector 21 and drying the slurry. The coating method is not particularly limited. Examples of the coating method include a knife coater method and a gravure coater method. The following coating steps are also performed by the same method. Next, the positive electrode active material layer 22 is pressed by a press machine. Thereby, the positive electrode 20 is produced.

負極30も、正極20と同様に作製される。まず、負極活物質、及び結着剤を混合したものを、溶媒(例えばN−メチル−2−ピロリドン、水)に分散させることでスラリーを形成する。次いで、スラリーを集電体31上に形成(例えば塗工)し、乾燥させることで、負極活物質層32を形成する。次いで、プレス機により負極活物質層32をプレスする。これにより、負極30が作製される。   The negative electrode 30 is also produced in the same manner as the positive electrode 20. First, a slurry is formed by dispersing a mixture of a negative electrode active material and a binder in a solvent (eg, N-methyl-2-pyrrolidone, water). Next, the negative electrode active material layer 32 is formed by forming (for example, coating) the slurry on the current collector 31 and drying the slurry. Next, the negative electrode active material layer 32 is pressed by a press. Thereby, the negative electrode 30 is produced.

微粒子混合物のスラリーを正極活物質層22及び負極活物質層32の少なくとも一方に塗工し、乾燥することで、セパレータを形成する。ついで、セパレータを正極20及び負極30で挟むことで、電極構造体を作製する。次いで、電極構造体を所望の形態(例えば、円筒形、角形、ラミネート形、ボタン形等)に加工し、当該形態の容器に挿入する。次いで、当該容器内に上記組成の電解液を注入することで、セパレータ内の各気孔に電解液を含浸させる。これにより、リチウムイオン二次電池が作製される。   The slurry of the fine particle mixture is applied to at least one of the positive electrode active material layer 22 and the negative electrode active material layer 32 and dried to form a separator. Subsequently, an electrode structure is produced by sandwiching the separator between the positive electrode 20 and the negative electrode 30. Next, the electrode structure is processed into a desired shape (for example, a cylindrical shape, a square shape, a laminate shape, a button shape, etc.) and inserted into a container of the shape. Next, by injecting the electrolytic solution having the above composition into the container, each pore in the separator is impregnated with the electrolytic solution. Thereby, a lithium ion secondary battery is produced.

(発泡性モノマーの合成例1)
まず、本実施例で使用した発泡性モノマーの合成例を説明する。合成例1では、以下の方法により発泡性モノマーとしてN−モノアクリルアゾジカルボンアミドを合成した。
(Synthesis example 1 of foaming monomer)
First, a synthesis example of the foamable monomer used in this example will be described. In Synthesis Example 1, N-monoacrylazodicarbonamide was synthesized as a foamable monomer by the following method.

冷却管、温度計、及び滴下ロートを装着した1リットルの3つ口フラスコに窒素雰囲気下でアゾジカルボンアミド50g(0.43mol,1当量)、無水N,N−ジメチルホルムアミド(dimethylformamide、DMF)500g、無水ピリジン500g(6.32mol,14.7当量)を加え、これらの混合液をマグネティックスターラで撹拌しながら氷浴で5℃に冷却した。   50 g (0.43 mol, 1 equivalent) of azodicarbonamide and 500 g of anhydrous N, N-dimethylformamide (DMF) in a 1 liter three-necked flask equipped with a condenser, a thermometer, and a dropping funnel under a nitrogen atmosphere Then, 500 g (6.32 mol, 14.7 equivalents) of anhydrous pyridine was added, and the mixture was cooled to 5 ° C. in an ice bath while stirring with a magnetic stirrer.

ついで、滴下ロートにアクリル酸クロリド39g(0.43mol,1.0当量)を加え、混合液の温度を30℃以下に維持しながら当該混合液にアクリル酸クロリドを滴下した。滴下終了後、氷浴をオイルバスに交換し、混合液を40℃で2時間、加熱撹拌した。次いで、反応液を室温に冷却後、反応液を1000mlの水に注ぎ撹拌した。この溶液を3000mlの分液ロートに移し、酢酸エチル300mlで3回抽出した。全ての有機層を集め、収集物を水500mlで2回、飽和食塩水300mlで1回洗浄後、無水硫酸マグネシウムを加え乾燥した。乾燥後の収集物から吸引ろ過で無水硫酸マグネシウムを取り除いたのち、ロータリーエバポレータ(浴温40℃)で濃縮した。濃縮物を更に真空乾燥機(40℃/133Pa)で6時間乾燥した。これにより、N−モノアクリルアゾジカルボンアミド55g(収率75%)を得た。   Next, 39 g (0.43 mol, 1.0 equivalent) of acrylic acid chloride was added to the dropping funnel, and acrylic acid chloride was added dropwise to the mixed solution while maintaining the temperature of the mixed solution at 30 ° C. or lower. After completion of the dropping, the ice bath was replaced with an oil bath, and the mixture was heated and stirred at 40 ° C. for 2 hours. Next, after cooling the reaction solution to room temperature, the reaction solution was poured into 1000 ml of water and stirred. This solution was transferred to a 3000 ml separatory funnel and extracted three times with 300 ml of ethyl acetate. All the organic layers were collected, and the collected product was washed twice with 500 ml of water and once with 300 ml of saturated brine, and dried over anhydrous magnesium sulfate. After removing anhydrous magnesium sulfate by suction filtration from the collected material after drying, it was concentrated with a rotary evaporator (bath temperature 40 ° C.). The concentrate was further dried with a vacuum dryer (40 ° C./133 Pa) for 6 hours. As a result, 55 g (yield 75%) of N-monoacrylazodicarbonamide was obtained.

(発泡性モノマーの合成例2)
アクリル酸クロリドの代わりにメタクリル酸クロリド(Methacrylic acid chloride)45g(0.43mol,1.0当量)を用いた以外は発泡性モノマー合成例1と同様の処理を行った。これにより、N−モノアクリルアゾジカルボンアミド(N−Monoacrylic azodicarbonamide)58g(収率73%)を得た。
(Synthesis example 2 of foamable monomer)
The same treatment as in the foaming monomer synthesis example 1 was performed except that 45 g (0.43 mol, 1.0 equivalent) of methacrylic acid chloride was used instead of acrylic acid chloride. As a result, 58 g (yield 73%) of N-monoacrylic azodicarbonamide was obtained.

(発泡性モノマーの合成例3)
アクリル酸クロリド(acrylic acid chloride)を80g(0.88mol,2.05当量)用いた以外は発泡性モノマー合成例1と同様の処理を行った。これにより、N,N’−ジアクリルアゾジカルボンアミド(N,N’−diacrylic azodicarbonamide)78g(収率81%)を得た。
(Synthesis example 3 of foaming monomer)
The same treatment as in the foaming monomer synthesis example 1 was performed, except that 80 g (0.88 mol, 2.05 equivalent) of acrylic acid chloride was used. Thereby, 78 g (yield 81%) of N, N′-diacrylazodicarbonamide (N, N′-diacrylic azodic bonamide) was obtained.

(発泡性モノマーの合成例4)
アクリル酸クロリドの代わりにメタクリル酸クロリド92.3g(0.88mol,2.05当量)を用いた以外は発泡性モノマー合成例4と同様の処理を行った。これにより、N,N’−ジメタクリルアゾジカルボンアミド(N,N’−dimethacrylic azodicarbonamide)85g(収率78%)を得た。
(Synthesis example 4 of foaming monomer)
The same treatment as in the foaming monomer synthesis example 4 was performed except that 92.3 g (0.88 mol, 2.05 equivalents) of methacrylic acid chloride was used instead of acrylic acid chloride. As a result, 85 g (yield 78%) of N, N′-dimethacrylic azodicarbonamide was obtained.

(熱膨張性微粒子の合成例1)
次に、本実施例で使用したマイクロカプセルの合成例を説明する。合成例1では、以下の処理により平均粒子径80nmの熱膨張性微粒子を作製した。攪拌機、温度計、冷却管、送液ポンプを装着した0.5リットルの3つ口フラスコ(Flask)に、水240g、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム(sodium dodecylbenzenesulfonate (SDBS))300mg(0.86mmol、モノマー総質量に対して0.005質量部(外数))、発泡助剤としてステアリン酸亜鉛150mgを加えることで、第1混合液を作製した。
(Synthesis example 1 of thermally expandable fine particles)
Next, a synthesis example of the microcapsules used in this example will be described. In Synthesis Example 1, thermally expandable fine particles having an average particle diameter of 80 nm were produced by the following treatment. To a 0.5 liter three-necked flask (Flask) equipped with a stirrer, thermometer, condenser, and liquid feed pump, 240 g of water, 300 mg of sodium dodecylbenzenesulfonate (SDBS) as a surfactant (0 .86 mmol, 0.005 parts by mass (external number) with respect to the total mass of monomers), and 150 mg of zinc stearate as a foaming aid were added to prepare a first mixed solution.

ついで、3つ口フラスコ内をダイアフラムポンプ(Diaphragm pump)で2600Paに減圧後、窒素で常圧に戻す操作を3回繰り返すことで、第1混合液から溶存酸素を除去した。フラスコ内を窒素雰囲気に保ち、第1混合液を攪拌しながらオイルバスでフラスコ内の温度が65℃になるように加熱後、過硫酸アンモニウム(ammonium)0.102g(0.447mmol、熱膨張性微粒子のモノマー総質量のモル数に対して0.05モル(mol)%(外数))を第1混合液に加えた。   Next, the pressure in the three-necked flask was reduced to 2600 Pa with a diaphragm pump and then returned to normal pressure with nitrogen three times to remove dissolved oxygen from the first mixture. While maintaining the inside of the flask in a nitrogen atmosphere and heating the first mixed solution with an oil bath so that the temperature in the flask becomes 65 ° C., 0.102 g (0.447 mmol, thermally expandable fine particles) of ammonium persulfate (ammonium) 0.05 mol (mol)% (outside number)) was added to the first mixed liquid with respect to the total number of moles of the monomer.

過硫酸アンモニウムを加えた直後から、N−モノアクリルアゾジカルボンアミド(合成例1)30g(176.3mmol、熱膨張性微粒子のモノマー総質量に対して50.0質量部)、アクリロニトリル(Acrylonitrile)(和光純薬社製)25g(471.2mmol、熱膨張性微粒子のモノマー総質量に対して41.7質量部)、アクリル酸ブチル(butyl acrylate)(和光純薬社製)3g(23.4mmol、熱膨張性微粒子のモノマー総質量に対して5.0質量部)、アクリル酸(和光純薬社製)2g(27.8mmol、熱膨張性微粒子のモノマー総質量に対して3.3質量部)の混合物(第2混合液)を送液ポンプで1時間かけて第1混合液に滴下した。   Immediately after adding ammonium persulfate, 30 g of N-monoacrylazodicarbonamide (Synthesis Example 1) (176.3 mmol, 50.0 parts by mass relative to the total mass of monomers of the thermally expandable fine particles), acrylonitrile (sum) 25 g (471.2 mmol, 41.7 parts by mass based on the total mass of monomers of the thermally expandable fine particles), 3 g (23.4 mmol, heat) of butyl acrylate (manufactured by Wako Pure Chemical Industries) 5.0 parts by mass with respect to the total mass of monomers of the expandable fine particles), 2 g of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (27.8 mmol, 3.3 parts by mass with respect to the total mass of monomers of the thermally expandable fine particles) The mixture (second mixed solution) was added dropwise to the first mixed solution over a period of 1 hour using a feed pump.

ついで、第1及び第2混合液の混合液(第3混合液)を4時間撹拌したのち、反応温度を80℃に昇温して更に1時間攪拌を継続した。これにより、各モノマーを乳化重合させた。すなわち、熱膨張性微粒子を作製した。ついで、熱膨張性微粒子分散液を室温に冷却後、100(mesh)のフィルター(filter)でろ過することで、凝集物を除去した。これにより、熱膨張性微粒子分散液を精製した。   Subsequently, after the liquid mixture (3rd liquid mixture) of a 1st and 2nd liquid mixture was stirred for 4 hours, reaction temperature was heated up to 80 degreeC and stirring was continued for further 1 hour. Thereby, each monomer was emulsion-polymerized. That is, thermally expandable fine particles were produced. Next, the thermally expandable fine particle dispersion was cooled to room temperature, and then filtered through a 100 (mesh) filter to remove aggregates. Thereby, the thermally expandable fine particle dispersion was purified.

ついで、熱膨張性微粒子分散液をアルミパン(Aluminium pan)に約1ml量り取り、160℃に加熱したホットプレート(hot plate)上で15分間乾燥させ、残渣重量から不揮発分を算出したところ熱膨張性微粒子分散液の総質量に対して19.6質量%(収率98%)であった。また、レーザー(laser)回折散乱式粒子径粒度分布測定装置(日機装株式会社製 Microtrac MT3000)にて熱膨張性微粒子の平均粒子径(D50)を測定したところ80nmであった。   Next, about 1 ml of the thermally expandable fine particle dispersion was weighed into an aluminum pan, dried on a hot plate heated to 160 ° C. for 15 minutes, and the nonvolatile content was calculated from the residue weight. 19.6% by mass (yield 98%) with respect to the total mass of the conductive fine particle dispersion. In addition, the average particle diameter (D50) of the thermally expandable fine particles was measured by a laser (laser) diffraction scattering type particle size distribution measuring apparatus (Microtrac MT3000, manufactured by Nikkiso Co., Ltd.).

(熱膨張性微粒子の合成例2)
ドデシルベンゼンスルホン酸ナトリウム150mg(0.43mmol、熱膨張性微粒子のモノマー総質量に対して0.0025質量部(外数))を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例2に係る熱膨張性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、平均粒子径は150nmであった。
(Synthesis example 2 of thermally expandable fine particles)
The same treatment as in Synthesis Example 1 of thermally expandable fine particles was performed except that 150 mg of sodium dodecylbenzenesulfonate (0.43 mmol, 0.0025 parts by mass (external number) with respect to the total monomer mass of the thermally expandable fine particles) was used. went. Thereby, thermally expandable fine particles according to Synthesis Example 2 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). Moreover, the average particle diameter was 150 nm.

(熱膨張性微粒子の合成例3)
水190g、ドデシルベンゼンスルホン酸ナトリウム60mg(0.17mmol、モノマー総質量に対して0.001質量部(外数))を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例3に係る熱膨張性微粒子を得た。不揮発分は23.7質量%(収率99%)であった。また、熱膨張性微粒子の平均粒子径は300nmであった。
(Synthesis example 3 of thermally expandable fine particles)
The same treatment as in Synthesis Example 1 of thermally expandable fine particles was performed except that 190 g of water and 60 mg of sodium dodecylbenzenesulfonate (0.17 mmol, 0.001 part by mass (external number) with respect to the total mass of monomers) were used. . Thereby, thermally expandable fine particles according to Synthesis Example 3 were obtained. The nonvolatile content was 23.7% by mass (yield 99%). The average particle size of the thermally expandable fine particles was 300 nm.

(熱膨張性微粒子の合成例4)
N−モノアクリルアゾジカルボンアミドの代わりにN−モノメタクリルアゾジカルボンアミド(発泡性モノマーの合成例2)30g(162.9mmol、熱膨張性微粒子のモノマー総質量に対して50.0質量部)を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例4に係る熱膨張性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、熱膨張性微粒子の平均粒子径は100nmであった。
(Synthesis example 4 of thermally expandable fine particles)
Instead of N-monoacrylazodicarbonamide, 30 g (162.9 mmol, 50.0 parts by mass with respect to the total mass of monomers of thermally expandable fine particles) of N-monomethacrylazodicarbonamide (Synthesis Example 2 of foaming monomer) The same treatment as in Synthesis Example 1 of thermally expandable fine particles was performed except that it was used. Thereby, thermally expandable fine particles according to Synthesis Example 4 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). The average particle size of the thermally expandable fine particles was 100 nm.

(熱膨張性微粒子の合成例5)
N−モノアクリルアゾジカルボンアミドの代わりにN−モノメタクリルアゾジカルボンアミド(発泡性モノマーの合成例2)30g(162.9mmol、熱膨張性微粒子のモノマー総質量に対して50.0質量部)、ドデシルベンゼンスルホン酸ナトリウム150mg(0.43mmol、熱膨張性微粒子のモノマー総質量に対して0.0025質量部(外数))を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例5に係る熱膨張性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、熱膨張性微粒子の平均粒子径は150nmであった。
(Synthesis example 5 of thermally expandable fine particles)
30 g of N-monomethacrylazodicarbonamide (Synthesis Example 2 of foamable monomer) instead of N-monoacrylazodicarbonamide (162.9 mmol, 50.0 parts by mass with respect to the total mass of monomers of the thermally expandable fine particles), The same treatment as in Synthesis Example 1 of thermally expandable fine particles was performed except that 150 mg of sodium dodecylbenzenesulfonate (0.43 mmol, 0.0025 parts by mass (external number) with respect to the total monomer mass of the thermally expandable fine particles) was used. went. Thereby, thermally expandable fine particles according to Synthesis Example 5 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). The average particle size of the thermally expandable fine particles was 150 nm.

(熱膨張性微粒子の合成例6)
水190gを使用し、N−モノアクリルアゾジカルボンアミドの代わりにN−モノメタクリルアゾジカルボンアミド(発泡性モノマー合成例2)30g(162.9mmol、熱膨張性微粒子のモノマー総質量に対して50.0質量部)を使用し、ドデシルベンゼンスルホン酸ナトリウム60mg(0.17mmol、熱膨張性微粒子のモノマー総質量に対して0.001質量部(外数))を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例6に係る熱膨張性微粒子を得た。不揮発分は23.5質量%(収率98%)であった。また、熱膨張性微粒子の平均粒子径は320nmであった。
(Synthesis example 6 of thermally expandable fine particles)
Using 190 g of water, instead of N-monoacrylazodicarbonamide, 30 g of N-monomethacrylazodicarbonamide (Expandable Monomer Synthesis Example 2) (162.9 mmol, 50. 0 parts by mass), and 60 mg (0.17 mmol, 0.001 part by mass (outside number) of the total monomer mass of the thermally expandable fine particles) of sodium dodecylbenzenesulfonate was used. The same processing as in Synthesis Example 1 was performed. Thereby, thermally expandable fine particles according to Synthesis Example 6 were obtained. The nonvolatile content was 23.5% by mass (yield 98%). The average particle diameter of the thermally expandable fine particles was 320 nm.

(熱膨張性微粒子の合成例7)
N−モノアクリルアゾジカルボンアミドの代わりにN,N’−ジアクリルアゾジカルボンアミド(発泡性モノマーの合成例3)30g(133.8mmol、熱膨張性微粒子のモノマー総質量に対して50.0質量部)を使用し、ドデシルベンゼンスルホン酸ナトリウム150mg(0.43mmol、熱膨張性微粒子のモノマー総質量に対して0.0025質量部(外数))を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例7に係る熱膨張性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、熱膨張性微粒子の平均粒子径は100nmであった。
(Synthesis example 7 of thermally expandable fine particles)
Instead of N-monoacrylazodicarbonamide, 30 g (133.8 mmol) of N, N′-diacrylazodicarbonamide (Synthesis Example 3 of expandable monomer), 50.0 mass relative to the total monomer mass of the thermally expandable fine particles Part) and using sodium dodecylbenzenesulfonate 150 mg (0.43 mmol, 0.0025 parts by mass (external number) with respect to the total monomer mass of the thermally expandable particles)) 1 was performed. Thereby, thermally expandable fine particles according to Synthesis Example 7 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). The average particle size of the thermally expandable fine particles was 100 nm.

(熱膨張性微粒子の合成例8)
N−モノアクリルアゾジカルボンアミドの代わりにN,N’−ジメタアクリルアゾジカルボンアミド(発泡性モノマーの合成例4)30g(118.9mmol、熱膨張性微粒子のモノマー総質量に対して50.0質量部)を使用し、ドデシルベンゼンスルホン酸ナトリウム150mg(0.43mmol、モノマー総質量に対して0.0025質量部(外数))を用いた以外は熱膨張性微粒子の合成例1と同様の処理を行った。これにより、合成例8に係る熱膨張性微粒子を得た。不揮発分は19.6質量%(収率98%)であった。また、熱膨張性微粒子の平均粒子径は160nmであった。
(Synthesis example 8 of thermally expandable fine particles)
Instead of N-monoacrylazodicarbonamide, 30 g (118.9 mmol of N, N′-dimethacrylacrylazodicarbonamide (Synthesis Example 4 of expandable monomer), 50.0 with respect to the total monomer mass of the thermally expandable fine particles Parts by weight) and using 150 mg of sodium dodecylbenzenesulfonate (0.43 mmol, 0.0025 parts by mass (external number) with respect to the total mass of the monomer) as in Synthesis Example 1 of thermally expandable fine particles Processed. Thereby, thermally expandable fine particles according to Synthesis Example 8 were obtained. The nonvolatile content was 19.6% by mass (yield 98%). The average particle diameter of the thermally expandable fine particles was 160 nm.

(膨潤性微粒子の合成例1(熱膨張性有り))
攪拌機、温度計、冷却管、送液ポンプを装着した0.5リットルの3つ口フラスコに、水240g、界面活性剤としてドデシルベンゼンスルホン酸ナトリウム60mg(0.172mmol、膨潤性微粒子のモノマー総質量に対して0.001質量部)、発泡助剤としてステアリン酸亜鉛150mgを加えることで第1混合液を作製した。
(Synthesis example 1 of swellable fine particles (with thermal expansion))
In a 0.5 liter three-necked flask equipped with a stirrer, thermometer, condenser, and liquid feed pump, 240 g of water, 60 mg of sodium dodecylbenzenesulfonate as a surfactant (0.172 mmol, total monomer mass of swellable fine particles) 0.001 part by mass) and 150 mg of zinc stearate as a foaming aid was added to prepare a first mixed solution.

ついで、3つ口フラスコ内をダイアフラムポンプで2600Paに減圧後、窒素で常圧に戻す操作を3回繰り返すことで、第1混合液から溶存酸素を除去した。フラスコ内を窒素雰囲気に保ち、第1混合液を攪拌しながらオイルバスでフラスコ内の温度が65℃になるように加熱した。その後、過硫酸アンモニウム0.05g(0.220mmol、膨潤性微粒子のモノマー総質量のモル数に対して0.05モル%(外数))を第1混合液に加えた。   Next, the pressure in the three-necked flask was reduced to 2600 Pa with a diaphragm pump, and the operation of returning to normal pressure with nitrogen was repeated three times to remove dissolved oxygen from the first mixed solution. The flask was kept in a nitrogen atmosphere, and the first mixture was stirred and heated in an oil bath so that the temperature in the flask was 65 ° C. Thereafter, 0.05 g of ammonium persulfate (0.220 mmol, 0.05 mol% (external number) with respect to the total number of moles of the monomer of the swellable fine particles) was added to the first mixed solution.

第1混合液に過硫酸アンモニウムを加えた直後から、N−モノアクリルアゾジカルボンアミド(合成例1)15g(88.2mmol、膨潤性微粒子のモノマー総質量に対して25.0質量部)、アクリル酸ブチル(和光純薬社製)40g(312.1mmol、膨潤性微粒子のモノマー総質量に対して66.7質量部)、トリエチレングリコールジアクリレート(共栄社化学社製3EG−A)3g(12.0mmol、膨潤性微粒子のモノマー総質量に対して5.0質量部)、及びアクリル酸(和光純薬社製)2g(27.8mmol、膨潤性微粒子のモノマー総質量に対して3.3質量部)の混合物(第2混合液)を送液ポンプで1時間掛けて第1混合液に滴下した。   Immediately after adding ammonium persulfate to the first mixture, 15 g of N-monoacrylazodicarbonamide (Synthesis Example 1) (88.2 mmol, 25.0 parts by mass relative to the total monomer mass of the swellable fine particles), acrylic acid Butyl (manufactured by Wako Pure Chemical Industries, Ltd.) 40 g (312.1 mmol, 66.7 parts by mass based on the total monomer mass of the swellable fine particles), triethylene glycol diacrylate (Kyoeisha Chemical Co., Ltd. 3EG-A) 3 g (12.0 mmol) , 5.0 parts by mass with respect to the total mass of monomers of the swellable fine particles), and 2 g of acrylic acid (manufactured by Wako Pure Chemical Industries, Ltd.) (27.8 mmol, 3.3 parts by mass with respect to the total mass of monomers of the swellable fine particles) The mixture (second mixture) was added dropwise to the first mixture over a period of 1 hour with a feed pump.

滴下終了後、第1及び第2の混合液の混合液(第3混合液)を4時間撹拌したのち、反応温度を80℃に昇温して更に1時間攪拌を継続した。これにより、各モノマーを乳化重合させた。すなわち、膨潤性微粒子を作製した。膨潤性微粒子の分散液を室温に冷却後、100メッシュのフィルターでろ過することで、凝集物を除いた。これにより、膨潤性微粒子分散液を精製した。膨潤性微粒子分散液をアルミパンに約1ml量り取り、160℃に加熱したホットプレート上で15分間乾燥させ、残渣重量から不揮発分を算出したところ19.5質量%(収率98%)であった。また、膨潤性微粒子の平均粒子径は90nmであった。   After completion of the dropwise addition, the mixed liquid of the first and second mixed liquids (third mixed liquid) was stirred for 4 hours, and then the reaction temperature was raised to 80 ° C. and stirring was continued for another 1 hour. Thereby, each monomer was emulsion-polymerized. That is, swellable fine particles were produced. The dispersion of the swellable fine particles was cooled to room temperature and then filtered through a 100 mesh filter to remove aggregates. Thereby, the swellable fine particle dispersion was purified. About 1 ml of the swellable fine particle dispersion was weighed into an aluminum pan, dried on a hot plate heated to 160 ° C. for 15 minutes, and the non-volatile content was calculated from the weight of the residue. The result was 19.5% by mass (yield 98%). It was. Further, the average particle diameter of the swellable fine particles was 90 nm.

(膨潤性微粒子の合成例2(熱膨張性あり))
N−モノアクリルアゾジカルボンアミドの代わりにN−モノメタクリルアゾジカルボンアミド(合成例2)15g(81.5mmol、膨潤性微粒子のモノマー総質量に対して25.0質量部)を用いた以外は全て膨潤性微粒子の合成例1と同様の処理を行うことで、膨潤性微粒子の合成例2に係る膨潤性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、膨潤性微粒子の平均粒子径は95nmであった。
(Synthesis example 2 of swellable fine particles (with thermal expansion))
All except that 15 g of N-monomethacrylazodicarbonamide (Synthesis Example 2) (81.5 mmol, 25.0 parts by mass relative to the total mass of the monomer of the swellable fine particles) was used instead of N-monoacrylazodicarbonamide By performing the same treatment as in the synthesis example 1 of the swellable fine particles, the swellable fine particles according to the synthesis example 2 of the swellable fine particles were obtained. The nonvolatile content was 19.5% by mass (yield 98%). Further, the average particle diameter of the swellable fine particles was 95 nm.

(膨潤性微粒子の合成例3(熱膨張性なし))
N−モノアクリルアゾジカルボンアミドの代わりに2−ヒドロキシエチルアクリレート15g(129.2mmol、膨潤性微粒子のモノマー総質量に対して25.0質量部)を用いた以外は膨潤性微粒子の合成例1と同様の処理を行うことで、合成例3に係る膨潤性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、膨潤性微粒子の平均粒子径は100nmであった。
(Synthesis example 3 of swelling fine particles (no thermal expansion))
Synthesis Example 1 of swellable fine particles, except that 15 g of 2-hydroxyethyl acrylate (129.2 mmol, 25.0 parts by mass with respect to the total monomer mass of the swellable fine particles) was used instead of N-monoacrylazodicarbonamide By performing the same treatment, swellable fine particles according to Synthesis Example 3 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). Moreover, the average particle diameter of the swellable fine particles was 100 nm.

(膨潤性微粒子の合成例4(熱膨張性なし))
N−モノアクリルアゾジカルボンアミドの代わりにスチレン15g(144.0mmol、膨潤性微粒子のモノマー総質量に対して25.0質量部)を用いた以外は膨潤性微粒子の合成例1と同様の処理を行うことで、合成例4に係る膨潤性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、膨潤性微粒子の平均粒子径は105nmであった。
(Synthesis example 4 of swelling fine particles (no thermal expansion))
The same treatment as in Synthesis Example 1 of the swellable fine particles was performed except that 15 g of styrene (144.0 mmol, 25.0 parts by mass relative to the total monomer mass of the swellable fine particles) was used instead of N-monoacrylazodicarbonamide. As a result, swellable fine particles according to Synthesis Example 4 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). The average particle size of the swellable fine particles was 105 nm.

(膨潤性微粒子の合成例5(熱膨張性なし))
N−モノアクリルアゾジカルボンアミドの代わりにアクリロニトリル15g(283.0mmol、膨潤性微粒子のモノマー総質量に対して25.0質量部)を用いた以外は膨潤性微粒子の合成例1と同様の処理を行うことで、合成例5に係る膨潤性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、膨潤性微粒子の平均粒子径は95nmであった。
(Synthesis example 5 of swelling fine particles (no thermal expansion))
The same treatment as in Synthesis Example 1 of the swellable fine particles was performed except that 15 g of acrylonitrile (283.0 mmol, 25.0 parts by mass with respect to the total monomer mass of the swellable fine particles) was used instead of N-monoacrylazodicarbonamide. As a result, swellable fine particles according to Synthesis Example 5 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). Further, the average particle diameter of the swellable fine particles was 95 nm.

(膨潤性微粒子の合成例6(熱膨張性なし))
N−モノアクリルアゾジカルボンアミドの代わりにN−イソプロピルアクリルアミド15g(133.0mmol、膨潤性微粒子のモノマー総質量に対して25.0質量部)を用いた以外は膨潤性微粒子の合成例1と同様の処理を行うことで、合成例6に係る膨潤性微粒子を得た。不揮発分は19.5質量%(収率98%)であった。また、膨潤性微粒子の平均粒子径は100nmであった。
(Synthesis Example 6 of swelling fine particles (no thermal expansion))
The same as Synthesis Example 1 of the swellable fine particles, except that 15 g of N-isopropylacrylamide (133.0 mmol, 25.0 parts by mass with respect to the total monomer mass of the swellable fine particles) was used instead of N-monoacrylazodicarbonamide. As a result of the treatment, swellable fine particles according to Synthesis Example 6 were obtained. The nonvolatile content was 19.5% by mass (yield 98%). Moreover, the average particle diameter of the swellable fine particles was 100 nm.

(発泡性の評価)
熱膨張性微粒子の合成例1〜12、膨潤性微粒子の合成例1〜2(熱膨張性あり)で得られた水分散液100質量部とカルボキシメチルセルロース1質量%水溶液(水溶液の総質量に対してカルボキシメチルセルロースを1質量%含むもの)25質量部とを各々遊星撹拌装置(Thinky社製泡とり粘太郎、自転速度800rpm、公転速度2000rpm)で3分間撹拌することで実験用混合液を調製した。
(Evaluation of foamability)
100 parts by mass of the aqueous dispersion obtained in Synthesis Examples 1 to 12 of the thermally expandable fine particles and Synthetic Examples 1 and 2 of the swellable fine particles (with thermal expansion) and a 1% by mass aqueous solution of carboxymethyl cellulose (based on the total mass of the aqueous solution) 25 parts by mass of each containing 1% by mass of carboxymethylcellulose) was stirred for 3 minutes with a planetary stirrer (Thinky Awatake Vitaro, rotation speed 800 rpm, revolution speed 2000 rpm) to prepare an experimental mixture. .

ついで、実験用混合液をガラス基板上に、乾燥後の膜厚が3μmになるようにギャップ調整したバーコータで塗布し、80℃の送風乾燥機で乾燥させた。これにより、実験用の塗膜を作製した。ついで、この塗膜をホットプレート上で160℃に加熱し、発泡後の膜厚を測定した。結果をまとめて表1に示す。   Next, the experimental mixed solution was applied on a glass substrate with a bar coater with a gap adjusted so that the film thickness after drying was 3 μm, and dried with an air blow dryer at 80 ° C. Thereby, the coating film for experiment was produced. Subsequently, this coating film was heated to 160 ° C. on a hot plate, and the film thickness after foaming was measured. The results are summarized in Table 1.

Figure 0006349080
Figure 0006349080

表1により、いずれの微粒子も膨張によってセパレータとして十分な膜厚を実現できることがわかった。   From Table 1, it was found that any fine particles can realize a sufficient film thickness as a separator by expansion.

(微粒子混合物の調製)
表2に示す組み合わせで熱膨張性微粒子分散液と膨潤性微粒子分散液とを混合することで、微粒子混合物を調製した。なお、各分散液の混合比(体積比)は1:1とした。
(Preparation of fine particle mixture)
A fine particle mixture was prepared by mixing the thermally expandable fine particle dispersion and the swellable fine particle dispersion in the combinations shown in Table 2. The mixing ratio (volume ratio) of each dispersion was 1: 1.

Figure 0006349080
Figure 0006349080

(負極合剤スラリーの作製例1)
次に、負極合剤スラリーの作製例について説明する。人造黒鉛95質量%、アセチレンブラック(acetylene black)2質量%、スチレンブタジエン共重合体(SBR)2質量%、カルボキシメチルセルロース(CMC)1質量%を混合し、更に粘度調整のために水を加えることで負極合剤スラリーを作製した。なお、負極合剤スラリー(slurry)中の不揮発分はスラリーの総質量に対して48質量%であった。
(Preparation Example 1 of Negative Electrode Mixture Slurry)
Next, a preparation example of the negative electrode mixture slurry will be described. Mix 95% by weight of artificial graphite, 2% by weight of acetylene black, 2% by weight of styrene butadiene copolymer (SBR), and 1% by weight of carboxymethylcellulose (CMC), and add water to adjust the viscosity. A negative electrode mixture slurry was prepared. In addition, the non volatile matter in a negative mix slurry (slurry) was 48 mass% with respect to the total mass of a slurry.

(負極作製例1)
次に、負極の作製例について説明する。乾燥後の合剤塗布量(面密度)が9.55mg/cmになるようにバーコータ(Bar coater)のギャップ(gap)を調整した。次いで、このバーコータにより作製例1で作成された負極合剤スラリーを銅箔(集電体,10μm)へ均一に塗布した。次いで、負極合剤スラリーを80℃に設定した送風型乾燥機で15分乾燥した。ついで、乾燥後の負極合剤をロールプレス(roll press)機により合剤密度が1.65g/cmとなるようにプレスした。ついで、負極合剤を150℃で6時間真空乾燥することで、負極集電体と負極活物質層とからなるシート(sheet)状の負極を作製した。この負極は第1の実施形態に対応する。
(Negative electrode production example 1)
Next, an example of manufacturing a negative electrode will be described. The gap of the bar coater was adjusted so that the coating amount (area density) after drying was 9.55 mg / cm 2 . Next, the negative electrode mixture slurry prepared in Preparation Example 1 was uniformly applied to a copper foil (current collector, 10 μm) using this bar coater. Next, the negative electrode mixture slurry was dried for 15 minutes by a blow type dryer set at 80 ° C. Subsequently, the negative electrode mixture after drying was pressed by a roll press machine so that the mixture density was 1.65 g / cm 3 . Subsequently, the negative electrode mixture was vacuum-dried at 150 ° C. for 6 hours to produce a sheet-shaped negative electrode including a negative electrode current collector and a negative electrode active material layer. This negative electrode corresponds to the first embodiment.

(負極作製例2(セパレータ付き負極の作製例))
負極作成例1で作製したシート状の負極に、調製例1で調整した微粒子混合物100質量部と、カルボキシメチルセルロース1質量%水溶液25質量部の混合液を、乾燥後の塗布層の厚みが3μmとなるように調整したバーコータで塗布後、80℃の送風乾燥機で15分乾燥した。ついで、乾燥後の塗膜をさらに80℃で1時間、160℃で1時間真空乾燥することで、負極上にセパレータを形成した。すなわち、セパレータ付き負極を作製した。
(Negative electrode preparation example 2 (preparation example of negative electrode with separator))
To the sheet-like negative electrode prepared in negative electrode preparation example 1, 100 parts by weight of the fine particle mixture prepared in preparation example 1 and 25 parts by weight of a 1% by weight aqueous solution of carboxymethylcellulose were mixed, and the thickness of the coating layer after drying was 3 μm. After coating with a bar coater adjusted so as to be, it was dried with an air blow dryer at 80 ° C. for 15 minutes. Next, the dried coating film was further vacuum-dried at 80 ° C. for 1 hour and 160 ° C. for 1 hour to form a separator on the negative electrode. That is, a negative electrode with a separator was produced.

(負極作製例3〜14(セパレータ付き負極の作製例))
調製例2〜13で調製した微粒子混合物を用いた以外は負極作製例2と同様の処理を行うことで、負極作製例3〜14に係るセパレータ付き負極を作製した。
(Negative electrode preparation examples 3 to 14 (preparation example of negative electrode with separator))
A separator-attached negative electrode according to negative electrode preparation examples 3 to 14 was manufactured by performing the same treatment as negative electrode preparation example 2 except that the fine particle mixture prepared in Preparation Examples 2 to 13 was used.

(正極合剤スラリー作製例)
次に、正極合剤スラリーの作製例について説明する。固溶体酸化物Li1.20Mn0.55Co0.10Ni0.1596質量%、ケッチェンブラック(Ketjenblack)2質量%、ポリフッ化ビニリデン(PVDF)2質量%をN−メチル−2−ピロリドンに分散させることで、正極合剤スラリーを形成した。なお、正極合剤スラリー中の不揮発分は50質量%であった。
(Example of positive electrode mixture slurry preparation)
Next, a preparation example of the positive electrode mixture slurry will be described. Solid solution oxide Li 1.20 Mn 0.55 Co 0.10 Ni 0.15 O 2 96% by mass, Ketjenblack 2% by mass, polyvinylidene fluoride (PVDF) 2% by mass with N-methyl-2 -A positive electrode mixture slurry was formed by dispersing in pyrrolidone. The non-volatile content in the positive electrode mixture slurry was 50% by mass.

(正極作製例1)
次に、正極作製例について説明する。乾燥後の合剤塗布量(面密度)が22.7mg/cmになるようにバーコータのギャップを調整した。ついで、このバーコータにより正極合剤スラリーを集電体であるアルミニウム集電箔上に塗工し、乾燥させることで、正極活物質層を作製した。乾燥後の正極合剤をロールプレス機により合剤密度が3.9g/cmとなるようにプレスした。ついで、正極合剤を80℃で6時間真空乾燥することで、正極集電体と正極活物質層とからなるシート状の正極を作製した。この正極は、第1の実施形態に対応する。
(Positive electrode production example 1)
Next, a positive electrode manufacturing example will be described. The gap of the bar coater was adjusted so that the coating amount (area density) after drying was 22.7 mg / cm 2 . Next, a positive electrode active material layer was prepared by coating the positive electrode mixture slurry on the aluminum current collector foil, which is a current collector, and drying it with this bar coater. The positive electrode mixture after drying was pressed with a roll press so that the mixture density was 3.9 g / cm 3 . Subsequently, the positive electrode mixture was vacuum-dried at 80 ° C. for 6 hours to produce a sheet-like positive electrode including a positive electrode current collector and a positive electrode active material layer. This positive electrode corresponds to the first embodiment.

(正極作製例2(セパレータ付き正極の作製例))
正極作成例1で作製したシート状の正極に、調製例1で調整した微粒子混合物100質量部と、カルボキシメチルセルロース1質量%水溶液25質量部の混合液とを、乾燥後の塗布層の厚みが3μmとなるように調整したバーコータで塗布後、80℃の送風乾燥機で15分乾燥した。ついで乾燥後の塗膜を、さらに80℃で1時間、160℃で1時間真空乾燥することで、正極上にセパレータを形成した。すなわち、セパレータ付き正極を作製した。
(Positive electrode preparation example 2 (preparation example of positive electrode with separator))
To the sheet-like positive electrode prepared in Positive Electrode Preparation Example 1, 100 parts by mass of the fine particle mixture prepared in Preparation Example 1 and a mixed liquid of 25 parts by mass of a 1% by mass aqueous solution of carboxymethyl cellulose had a coating layer thickness of 3 μm after drying. After coating with a bar coater adjusted so as to be, it was dried with an air blow dryer at 80 ° C. for 15 minutes. Next, the dried coating film was further vacuum-dried at 80 ° C. for 1 hour and 160 ° C. for 1 hour to form a separator on the positive electrode. That is, a positive electrode with a separator was produced.

(正極作製例3〜14)
調製例2〜13で調製した微粒子混合物を使用した以外は正極作製例2と同様の処理を行うことで、正極作製例3〜14に係るセパレータ付き正極を作製した。
(Positive electrode production examples 3 to 14)
A positive electrode with a separator according to positive electrode preparation examples 3 to 14 was manufactured by performing the same process as positive electrode preparation example 2 except that the fine particle mixture prepared in Preparation Examples 2 to 13 was used.

(セル作製例1)
正極作製例1で作製された正極を直径1.3cmの円形に、負極作製例2で作製されたセパレータ付き負極を直径1.55cmの円形に各々切断した。
(Cell production example 1)
The positive electrode produced in the positive electrode production example 1 was cut into a circle having a diameter of 1.3 cm, and the negative electrode with a separator produced in the negative electrode production example 2 was cut into a circle having a diameter of 1.55 cm.

ついで、直径2.0cmのステンレス(stainless)製コイン(coin)外装容器内で、先に作製した直径1.3cmの正極、直径1.55cmの負極、さらにスペーサー(spacer)として直径1.5cmの円形に切断した厚さ200μmの銅プレート(plate)をこの順番に重ね合わせた。ついで、容器に電解液(1.5MのLiPF エチレンカーボネート(EC)/ジエチルカーボネート(DEC)/フルオロエチレンカーボネート(FEC)=10/70/20混合溶液(体積比))を溢れない程度に垂らした。ついで、ポリプロピレン製のパッキン(packing)を介して、ステンレス製のキャップ(cap)を容器に被せ、コイン電池作製用のかしめ器で容器を密封した。これにより、リチウムイオン二次電池を作製した。 Then, in a stainless steel coin outer container having a diameter of 2.0 cm, a positive electrode having a diameter of 1.3 cm, a negative electrode having a diameter of 1.55 cm, and a spacer having a diameter of 1.5 cm as a spacer. A 200 μm thick copper plate cut in a circle was superposed in this order. Then, the electrolyte (1.5 M LiPF 6 ethylene carbonate (EC) / diethyl carbonate (DEC) / fluoroethylene carbonate (FEC) = 10/70/20 mixed solution (volume ratio)) is dropped in the container to the extent that it does not overflow. It was. Next, a stainless steel cap was put on the container via polypropylene packing, and the container was sealed with a caulking device for producing a coin battery. This produced the lithium ion secondary battery.

(セル作製例2〜30)
表3に示した正極、負極、及びセパレータを使用した以外はセル作製例1と同様の処理を行うことで、セル作製例2〜38に係るリチウムイオン二次電池を作製した。
(Cell production examples 2 to 30)
A lithium ion secondary battery according to Cell Preparation Examples 2 to 38 was manufactured by performing the same treatment as in Cell Preparation Example 1 except that the positive electrode, negative electrode, and separator shown in Table 3 were used.

(サイクル寿命の評価)
各作製例で作製されたリチウムイオン二次電池を25℃で0.1Cの定電流−定電圧で4.2V、0.04mAまで充電したのち、0.1Cの定電流で2.5Vまで放電する条件で1サイクルした。次に1.0Cの電流−定電圧で4.2V、0.04mAまで充電したのち、1.0Cの定電流で2.5Vまで放電する条件で100サイクルした。ついで、100サイクル後の放電容量を1サイクル後の放電容量で除することで、放電容量維持率(百分率)を算出した。容量維持率が大きいほどサイクル寿命が良いことを示す。放電容量の測定は、TOSCAT3000 東洋システム株式会社により行われた。評価結果をまとめて表3に示す。
(Evaluation of cycle life)
The lithium ion secondary battery produced in each of the production examples was charged at a constant current-constant voltage of 0.1 C to 4.2 V and 0.04 mA at 25 ° C., and then discharged to 2.5 V at a constant current of 0.1 C. One cycle was performed under the following conditions. Next, after charging to 4.2 V and 0.04 mA at a current-constant voltage of 1.0 C, 100 cycles were performed under the condition of discharging to 2.5 V at a constant current of 1.0 C. Next, the discharge capacity retention rate (percentage) was calculated by dividing the discharge capacity after 100 cycles by the discharge capacity after 1 cycle. The larger the capacity retention rate, the better the cycle life. The measurement of the discharge capacity was performed by TOSCAT3000 Toyo System Corporation. The evaluation results are summarized in Table 3.

Figure 0006349080
Figure 0006349080

負極作製例2〜14、正極作製例2〜14は本実施形態に係る微粒子混合物を用いて作製されているので、本実施形態の実施例に相当する。また、セル作製例1〜29に係るリチウムイオン二次電池は、正極、及び負極のうちいずれか1種以上の構成要素に微粒子混合物を使用しているので、本実施形態の実施例に相当する。セル作製例30は本実施形態の微粒子混合物を使用していないので、比較例に相当する。   Since the negative electrode preparation examples 2 to 14 and the positive electrode preparation examples 2 to 14 are prepared using the fine particle mixture according to this embodiment, they correspond to the examples of this embodiment. Moreover, since the lithium ion secondary battery which concerns on cell preparation examples 1-29 uses the fine particle mixture for any 1 or more types of components among a positive electrode and a negative electrode, it corresponds to the Example of this embodiment. . Since Cell Preparation Example 30 does not use the fine particle mixture of this embodiment, it corresponds to a comparative example.

表3によれば、本実施例に係るリチウムイオン二次電池は、ポリオレフィン系多孔質膜を使用したリチウムイオン二次電池と遜色ないサイクル寿命を実現していることがわかった。   According to Table 3, it was found that the lithium ion secondary battery according to this example realized a cycle life comparable to that of a lithium ion secondary battery using a polyolefin-based porous membrane.

以上により、本実施形態に係る微粒子混合物は、少なくとも熱膨張性微粒子が発泡することでリチウムイオン二次電池のセパレータとして機能する。このセパレータは、微粒子混合物を発泡させたものなので、ポリオレフィン系多孔質膜よりも薄膜化でき、かつ、ポリオレフィン系セパレータよりも絶縁性が向上する。さらに、このセパレータは、ポリオレフィン系多孔質膜よりも低コストで作製可能である。さらに、このセパレータを使用したリチウムイオン二次電池は、ポリオレフィン系多孔質膜を使用したリチウムイオン二次電池と遜色ないサイクル寿命を実現可能である。すなわち、本実施形態に係る微粒子混合物を使用することで、従来のセパレータを用いなくても、良好なサイクル寿命を有するリチウムイオン二次電池を作成可能となる。   As described above, the fine particle mixture according to the present embodiment functions as a separator of a lithium ion secondary battery by foaming at least the thermally expandable fine particles. Since this separator is obtained by foaming a fine particle mixture, the separator can be made thinner than the polyolefin-based porous film, and the insulation is improved as compared with the polyolefin-based separator. Furthermore, this separator can be produced at a lower cost than a polyolefin-based porous membrane. Furthermore, a lithium ion secondary battery using this separator can realize a cycle life comparable to that of a lithium ion secondary battery using a polyolefin-based porous membrane. That is, by using the fine particle mixture according to the present embodiment, a lithium ion secondary battery having a good cycle life can be produced without using a conventional separator.

ここで、熱膨張性微粒子は、発泡性モノマーと発泡性モノマーよりもリチウムイオン二次電池内での安定性が高い安定化用モノマーとの共重合体であってもよく、この場合、熱膨張性微粒子がリチウムイオン二次電池内で安定して存在する。すなわち、微粒子混合物を発泡させることで作製されたセパレータの絶縁性が向上する。   Here, the thermally expandable fine particles may be a copolymer of a foaming monomer and a stabilizing monomer having a higher stability in the lithium ion secondary battery than the foamable monomer. The fine particles are stably present in the lithium ion secondary battery. That is, the insulating property of the separator produced by foaming the fine particle mixture is improved.

また、発泡性モノマーはジアゾ化合物を含んでいてもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   Further, the foamable monomer may contain a diazo compound, and in this case, the thermally expandable fine particles can be easily foamed.

また、ジアゾ化合物は、化学式IまたはIIで示される構造を有していてもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   Further, the diazo compound may have a structure represented by the chemical formula I or II, and in this case, the thermally expandable fine particles can be easily foamed.

また、発泡性モノマーの発泡温度が120℃以上250℃以下であってもよく、この場合、熱膨張性微粒子を容易に発泡させることができる。   Further, the foaming temperature of the foamable monomer may be 120 ° C. or more and 250 ° C. or less. In this case, the thermally expandable fine particles can be easily foamed.

以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。   The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記実施形態では、リチウムイオン二次電池に本発明を適用したが、他の非水電解質二次電池に適用してもよいことはもちろんである。   For example, in the above embodiment, the present invention is applied to a lithium ion secondary battery, but it is needless to say that the present invention may be applied to other nonaqueous electrolyte secondary batteries.

10、10a、10b リチウムイオン二次電池
20 正極
21 集電体
22 正極活物質層
30 負極
31 集電体
32 負極活物質層
40 セパレータ層

10, 10a, 10b Lithium ion secondary battery 20 Positive electrode 21 Current collector 22 Positive electrode active material layer 30 Negative electrode 31 Current collector 32 Negative electrode active material layer 40 Separator layer

Claims (8)

非水電解質二次電池の電解液に膨潤する膨潤性微粒子と、
前記電解液への膨潤性が前記膨潤性微粒子より低く、かつ熱膨張性を有する熱膨張性微粒子と、を含み、
平均粒子径が0.05μm〜0.5μmであることを特徴とする、非水電解質二次電池用微粒子混合物。
Swellable fine particles that swell in the electrolyte of the non-aqueous electrolyte secondary battery;
A thermally expandable fine particle having a swelling property to the electrolyte solution lower than that of the swellable fine particle and having a heat expandability,
A fine particle mixture for a non-aqueous electrolyte secondary battery, wherein the average particle size is 0.05 μm to 0.5 μm.
前記熱膨張性微粒子は、発泡性モノマーと前記発泡性モノマーよりも非水電解質二次電池内での安定性が高い安定化用モノマーとの共重合体であることを特徴とする、請求項1記載の非水電解質二次電池用微粒子混合物。   The heat-expandable fine particle is a copolymer of a foaming monomer and a stabilizing monomer having higher stability in a non-aqueous electrolyte secondary battery than the foamable monomer. The fine particle mixture for a non-aqueous electrolyte secondary battery as described. 前記発泡性モノマーはジアゾ化合物を含むことを特徴とする、請求項2記載の非水電解質二次電池用微粒子混合物。 The fine particle mixture for a nonaqueous electrolyte secondary battery according to claim 2, wherein the foamable monomer contains a diazo compound. 前記ジアゾ化合物は、以下の化学式Iで示される構造を有することを特徴とする、請求項3記載の非水電解質二次電池用微粒子混合物。
Figure 0006349080
化学式I中、R1は水素原子又はメチル基、R2は水素又は炭素数1〜6のアルキル基、R3は水素又は炭素数1〜6のアルキル基、R4は水素、メチル基、アクリル基、メタクリル基、またはグリシジル基、Xは直結又は炭素数1〜6のアルキレン基を表す。
The fine particle mixture for a nonaqueous electrolyte secondary battery according to claim 3, wherein the diazo compound has a structure represented by the following chemical formula I:
Figure 0006349080
In Chemical Formula I, R1 is a hydrogen atom or a methyl group, R2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, R3 is hydrogen or an alkyl group having 1 to 6 carbon atoms, R4 is hydrogen, a methyl group, an acryl group, or a methacryl group. Or a glycidyl group, X represents a direct bond or an alkylene group having 1 to 6 carbon atoms.
前記ジアゾ化合物は、以下の化学式IIで示される構造を有することを特徴とする、請求項3または4記載の非水電解質二次電池用微粒子混合物。
Figure 0006349080
化学式II中、R1は水素原子又はメチル基、R2は水素又は炭素数1〜6のアルキル基、Aはメチレン基又はカルボニル基、Qはメチレン基又はメチン基、Tは直結、二重結合、メチレン基、酸素、またはNH基を表し、Xは直結又は炭素数1〜6のアルキレン基を表す。
5. The fine particle mixture for a nonaqueous electrolyte secondary battery according to claim 3, wherein the diazo compound has a structure represented by the following chemical formula II.
Figure 0006349080
In Formula II, R1 is a hydrogen atom or methyl group, R2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, A is a methylene group or carbonyl group, Q is a methylene group or methine group, T is a direct bond, a double bond, methylene group, an oxygen or display the NH group,, X is to display the direct or alkylene group having 1 to 6 carbon atoms.
前記発泡性モノマーの発泡温度が120℃以上250℃以下であることを特徴とする請求項2〜5のいずれか1項に記載の非水電解質二次電池用微粒子混合物。   The fine particle mixture for a non-aqueous electrolyte secondary battery according to any one of claims 2 to 5, wherein a foaming temperature of the foamable monomer is 120 ° C or higher and 250 ° C or lower. 電極活物質層と、
前記電極活物質層上に設けられ、請求項1〜6のいずれか1項に記載の非水電解質二次電池用微粒子混合物が発泡したセパレータと、を有し、
前記セパレータは、前記セパレータ内で分散し、かつ発泡した前記熱膨張性微粒子と、前記セパレータ内で分散した前記膨潤性微粒子と、を含むことを特徴とする、非水電解質二次電池用電極。
An electrode active material layer;
Wherein provided on the electrode active material layer, have a, a separator for a non-aqueous electrolyte secondary battery particulate mixture was foamed according to any one of claims 1 to 6,
The electrode for a non-aqueous electrolyte secondary battery , wherein the separator includes the thermally expandable fine particles dispersed and foamed in the separator and the swellable fine particles dispersed in the separator .
請求項7記載の非水電解質二次電池用電極を含むことを特徴とする、非水電解質二次電池。

A nonaqueous electrolyte secondary battery comprising the electrode for a nonaqueous electrolyte secondary battery according to claim 7.

JP2013254281A 2013-12-09 2013-12-09 Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP6349080B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013254281A JP6349080B2 (en) 2013-12-09 2013-12-09 Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR1020140172506A KR102253022B1 (en) 2013-12-09 2014-12-03 Particulate composite for non-aqueous electrolyte rechargeable battery electrolyte secondary battery, electrode for non-aqueous electrolyte rechargeable battery electrolyte secondary battery, and non-aqueous electrolyte rechargeable battery electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013254281A JP6349080B2 (en) 2013-12-09 2013-12-09 Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2015115107A JP2015115107A (en) 2015-06-22
JP6349080B2 true JP6349080B2 (en) 2018-06-27

Family

ID=53515186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013254281A Active JP6349080B2 (en) 2013-12-09 2013-12-09 Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (2)

Country Link
JP (1) JP6349080B2 (en)
KR (1) KR102253022B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536900B2 (en) * 2016-01-13 2019-07-03 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
FR3082843A1 (en) * 2018-06-25 2019-12-27 Arkema France POLYMERIC BLOWING AGENT
CN112768841A (en) * 2021-01-15 2021-05-07 惠州锂威电子科技有限公司 Diaphragm for lithium ion battery and lithium ion battery
KR20240060362A (en) 2022-10-28 2024-05-08 김도희 Pores cleansing duo

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1092416A (en) * 1996-09-20 1998-04-10 Asahi Chem Ind Co Ltd Electrode and manufacture thereof and battery using the electrode
JP2001332302A (en) * 2000-05-22 2001-11-30 Toshiba Battery Co Ltd Gel electrolyte precursor, nonaqueous secondary cell and method of manufacturing nonaqueous secondary cell
JP4929540B2 (en) * 2001-07-10 2012-05-09 株式会社デンソー Non-aqueous electrolyte secondary battery
JP4016630B2 (en) * 2001-10-15 2007-12-05 松下電器産業株式会社 Method for manufacturing lithium ion battery
JP4099969B2 (en) * 2001-10-15 2008-06-11 松下電器産業株式会社 Battery and manufacturing method thereof
JP2004111157A (en) * 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
JPWO2007069622A1 (en) * 2005-12-13 2009-05-21 日清紡ホールディングス株式会社 Molded body or foam molded body containing water-swellable substance, production method thereof, and use method thereof
JP2009021223A (en) * 2007-06-11 2009-01-29 Panasonic Corp Battery pack and equipment equipped with battery
US8999561B2 (en) * 2010-05-12 2015-04-07 Uchicago Argonne, Llc Materials for electrochemical device safety
JP5991851B2 (en) * 2012-05-15 2016-09-14 積水化学工業株式会社 Thermally expandable microcapsules

Also Published As

Publication number Publication date
KR20150067034A (en) 2015-06-17
KR102253022B1 (en) 2021-05-14
JP2015115107A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
EP3667778B1 (en) Carbon-sulfur composite, preparation method therefor, and lithium secondary battery comprising same
JP6372680B2 (en) Non-aqueous electrolyte secondary battery microcapsule, non-aqueous electrolyte secondary battery separator, non-aqueous electrolyte secondary battery electrode, non-aqueous electrolyte secondary battery electrode active material layer, and non-aqueous electrolyte Secondary battery
CN104577197B (en) Rechargeable nonaqueous electrolytic battery
JP6412689B2 (en) Lithium ion secondary battery negative electrode water based slurry (slurry), lithium ion secondary battery negative electrode active material layer, and lithium ion secondary battery
JP6699877B2 (en) Lithium-sulfur battery electrolyte and lithium-sulfur battery containing the same
JP2016126856A (en) Binder for secondary battery, separator for secondary battery, and secondary battery
JP6304746B2 (en) Lithium ion secondary battery
JP5890860B2 (en) Lithium ion secondary battery and its electrolyte
JP2016197508A (en) Nonaqueous electrolytic liquid additive, nonaqueous electrolytic liquid and lithium ion secondary battery
JP2015109235A (en) Lithium ion secondary battery
KR20160081692A (en) Silicon-based anode active material, method of preparing the same, anode including the silicon-based anode active material, and lithium secondary battery including the anode
JP2015018713A (en) Nonaqueous electrolytic solution and lithium-ion secondary battery using the same
JP6349080B2 (en) Fine particle mixture for non-aqueous electrolyte secondary battery, electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5619645B2 (en) Nonaqueous electrolyte secondary battery
JP2018101519A (en) Binder for secondary cell, binder resin composition for secondary cell, electrode for secondary cell, and secondary cell
JP6592256B2 (en) Lithium ion secondary battery
JP6664482B2 (en) Electrolyte solution containing polydopamine, lithium-sulfur battery containing the same
JP6191602B2 (en) Lithium ion secondary battery
JP5105807B2 (en) Lithium polymer battery
JP2015090859A (en) Nonaqueous electrolyte secondary battery
JP2016028376A (en) Binder for secondary batteries, secondary battery separator and secondary battery
JP6403943B2 (en) Lithium ion secondary battery, method for producing the same, and method for using the same
JP2018125219A (en) Electrolyte solution for lithium ion secondary battery
JP2015043298A (en) Nonaqueous electrolytic solution, and lithium ion secondary battery using nonaqueous electrolytic solution
CN112490500A (en) Electrolyte for electricity storage device, and method for manufacturing electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180604

R150 Certificate of patent or registration of utility model

Ref document number: 6349080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250