JP4016625B2 - Hermetic rotary compressor - Google Patents

Hermetic rotary compressor Download PDF

Info

Publication number
JP4016625B2
JP4016625B2 JP2001293831A JP2001293831A JP4016625B2 JP 4016625 B2 JP4016625 B2 JP 4016625B2 JP 2001293831 A JP2001293831 A JP 2001293831A JP 2001293831 A JP2001293831 A JP 2001293831A JP 4016625 B2 JP4016625 B2 JP 4016625B2
Authority
JP
Japan
Prior art keywords
compression mechanism
air chamber
compression
main bearing
crankshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001293831A
Other languages
Japanese (ja)
Other versions
JP2003097467A (en
Inventor
学 阪井
寛 松永
雄史 橋本
秀幸 神崎
博志 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001293831A priority Critical patent/JP4016625B2/en
Publication of JP2003097467A publication Critical patent/JP2003097467A/en
Application granted granted Critical
Publication of JP4016625B2 publication Critical patent/JP4016625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、空気調和装置あるいは冷蔵庫などに用いられる密閉型回転式圧縮機に関するものである。
【0002】
【従来の技術】
従来技術の密閉型回転式圧縮機について図を用いて説明する。図6は従来の密閉型回転式圧縮機を示す軸方向断面図、図7は図6におけるB−B’断面図である。図6および7において、1は密閉容器であり内部に電動機部2および電動機部2によって駆動される圧縮機構部3が収納されている。圧縮機構部3は、電動機部2の回転力をこの圧縮機構部3に伝達するためのクランク軸5の一部分に形成された偏心軸部4と、偏心軸部4に回転自在に嵌合するピストン6と、円柱状の気室を有するシリンダ7と、シリンダ7に設けられた径方向溝に摺動自在に嵌合して設置されたベーン8と、ベーン8をピストン6に押接させるためのバネ9と、シリンダ7の軸方向一端に設置され、圧縮機構部3の吐出孔10を有する吐出凹部11が設けられた主軸受12と、シリンダ7の軸方向他端に設置された副軸受13とで構成されている。
【0003】
主軸受12に設けられた吐出凹部11は、圧縮機構部3で冷媒ガスを圧縮し、吐出する際に、吐出抵抗を抑えるとともに、いわゆるデッドボリュームを小さくして圧縮効率を向上させるために、この部分を掘り込んだ形状として、厚みを薄くしている。
【0004】
圧縮機構部3は、主軸受12の外周部で、密閉容器1内部に溶接固定されており、密閉容器1内部空間を、電動機部2の設置されている電動機部側空間14と、その反対側の反電動機部側空間15とに仕切られている。また、主軸受12の外周部には、電動機部側空間14と反電動機部側空間15とを連通させる連通孔16が複数個設けられている。これら複数の連通孔16は図7に示すように主軸受12の外周にほぼ対称形状に設けられている。
【0005】
上記構成により、圧縮機構部3の吸入孔(図示せず)から吸入された冷媒ガスは、圧縮機構部で圧縮され、吐出孔10から密閉容器1内部へ吐出された後、吐出管18から圧縮機外部へ吐出される。
【0006】
また、密閉容器1の底部には冷凍機油溜まり17が設けられており、冷凍機油は主軸5に設けられた潤滑孔(図示せず)より汲み上げられ、圧縮機構部3の各摺動部を潤滑した後、クランク軸5と主軸受12上端の隙間より、電動機部側空間14に戻される。その後、冷凍機油は複数個の連通孔16を通って再度冷凍機油溜まり17に戻される。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の圧縮機では、主軸受12に吐出凹部11を設けているために、主軸受12の剛性が部分的に低下する原因となっていた。特に、連通孔16と吐出凹部11が近い場合、その影響による主軸受12の剛性低下は避けられず、圧縮機の運転時の騒音が上昇する要因となっていた。
【0008】
また、クランク軸5から主軸受12に軸受荷重が作用するが、主軸受12の吐出凹部11方向は剛性が低いので、特にこの方向の主軸受12の摩耗量が大きくなり、信頼性を低下させる原因となっていた。
【0009】
また、上記課題の解決のために、連通孔16の面積を小さくした場合、圧縮機構部3を潤滑した後、クランク軸5と主軸受12上端の隙間より電動機部側空間14に戻された冷凍機油が、反電動機部側空間15の冷凍機油溜まり17に落下しにくくなる。そのため、圧縮機外部へ吐出される冷凍機油の量が極端に増加し、冷凍サイクルの性能低下を招くばかりか、冷凍機油溜まり17の油面レベルが低下し、圧縮機自体の信頼性を低下させる原因となっていた。
【0010】
また、圧縮機構部3のベーン8は、圧縮機の運転に伴って往復運動を行うが、通常冷凍機油溜まり17の油面レベルはベーン8の下端よりも上方にあるため、ベーンの運動により油面は激しく攪拌される。そのため、ベーンに対向する位置に有る連通孔から潤滑油が電動機側空間にはじき飛ばされ、吐出ガスと一緒に圧縮機外部へ吐出される冷凍機油の量が極端に増加し、冷凍サイクルの性能低下を招くばかりか、冷凍機油溜まり17の油面レベルが低下し、圧縮機自体の信頼性を低下させる原因となっていた。
【0011】
また、主軸受12は外周面を切削加工した後に密閉容器1内部に溶接固定しているが、主軸受12の外周面を切削加工する際に、連通孔16があるとこの部分で主軸受の外周部が弾性変形しやすい。そのため、切削加工後の主軸受12外周面の精度が十分に出ず、密閉容器1内部に挿入しにくくなったり、あるいは主軸受12の外周面と密閉容器1内壁との間に必要以上の隙間が生じ、溶接固定強度不足、さらには騒音アップの原因にもなっていた。
【0012】
本発明は、上記のような従来の課題を解決するためのものであり、主軸受の外周部に複数個設けられた連通孔の面積を最適化することにより、主軸受の剛性を確保するとともに、圧縮機外部へ吐出される冷凍機油の量を低減し、低騒音、高信頼性の密閉型回転式圧縮機を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記課題を解決するために本発明は、主軸受の外周部に設けられた複数個の連通孔の面積を最適化するものである。具体的には、主軸受に設けられた吐出凹部に最も近い位置の連通孔の面積を、他の連通孔の面積に比べて小さくするものである。これにより、主軸受の剛性を確保することができるとともに、圧縮機外部へ吐出される冷凍機油の量を低減することができ、低騒音、高信頼性の密閉型回転式圧縮機を得ることができる。
【0014】
【発明の実施の形態】
上記課題を解決するための請求項1に記載の発明は、密閉容器内部に、電動機部と、この電動機部によって駆動される圧縮機構部を設置し、圧縮機構部を電動機部の回転力をこの圧縮機構部に伝達するための偏心軸部を有するクランク軸と、偏心軸部に回転自在に嵌合して設置されたピストンと、円柱状の気室を有するシリンダと、このシリンダに設けられた溝に摺動自在に嵌合して設置されたベーンと、シリンダの軸方向一端に設置され圧縮機構部の吐出孔を有する吐出凹部が設けられた主軸受と、シリンダの軸方向他端に設置された副軸受とで構成し、主軸受の外周部で密閉容器内部に固定して密閉容器内部空間を電動機部側空間と、反電動機部側空間とに仕切るとともに、これら内部空間を連通させる連通孔を主軸受外周部に複数個設け、複数個の連通孔のうち吐出凹部に最も近い1箇所もしくは複数箇所の連通孔の面積を他の連通孔の面積に比べて小さくしたものである。
【0015】
さらに、請求項2に記載の発明は、請求項1に記載の発明に加えて、複数個の連通孔のうち、吐出凹部に最も近い位置の連通孔をなくしたものである。
【0016】
上記の構成によれば、主軸受に吐出凹部を設けることによるその付近の剛性の低下を、複数の連通孔のうち吐出凹部に最も近い1箇所もしくは複数箇所の連通孔の面積を他の連通孔の面積に比べて小さくすることにより補うことができ、主軸受の部分的な剛性低下を防ぐことができる。
【0017】
請求項3に記載の発明は、密閉容器内部に、上方に電動機部と、下方に電動機部によって駆動される圧縮機構部を設置し、圧縮機構部を電動機部の回転力をこの圧縮機構部に伝達するための偏心軸部を有するクランク軸と、偏心軸部に回転自在に嵌合して設置されたピストンと、円筒状の気室を有するシリンダと、シリンダに設けられた溝に摺動自在に嵌合して設置されたベーンと、シリンダの軸方向一端に設置され圧縮機構部の吐出孔を有する吐出凹部が設けられた主軸受と、シリンダの軸方向他端に設置された副軸受とで構成し、主軸受の外周部で密閉容器内部に固定して密閉容器内部空間を電動機部側空間と、反電動機部側空間とに仕切るとともに、これら内部空間を連通させる連通孔を主軸受外周部に複数個設け、これら連通孔の面積の総和を密閉容器断面の面積に対して10%〜30%としたものである。
【0018】
この構成によれば、主軸受の剛性を十分に保つことができるとともに、圧縮機構部を潤滑した後の冷凍機油が連通孔を通って反電動機部側空間の冷凍機油溜まりに落下しやすくなり、冷凍機油溜まりの油面レベルの低下を防ぐことができる。
【0019】
請求項4に記載の発明は、密閉容器内部に、上方に電動機部、下方に電動機部によって駆動される圧縮機構部を設置し、圧縮機構部を電動機部の回転力をこの圧縮機構部に伝達するための偏心軸部を有するクランク軸と、偏心軸部に回転自在に嵌合して設置されたピストンと、円柱状の気室を有するシリンダと、このシリンダに設けられた溝に摺動自在に嵌合して設置されたベーンと、シリンダの軸方向一端に設置され圧縮機構部の吐出孔を有する吐出凹部が設けられた主軸受と、シリンダの軸方向他端に設置された副軸受とで構成し、主軸受の外周部で密閉容器内部に固定して密閉容器内部空間を電動機部側空間と、反電動機部側空間とに仕切るとともに、これら内部空間を連通させる連通孔を主軸受外周部に複数個設け、これら複数の連通孔をベーンと重なる位置を避けて配置したものである。
【0020】
この構成によれば、ベーンの往復運動によって冷凍機油溜まりの油面が激しく攪拌されたとしても、ベーン上部に連通孔が存在しないので連通孔を通って電動機部側空間へ冷凍機油が流出しにくく、圧縮機外部へ吐出される冷凍機油の量が増加することはなくなるとともに、冷凍機油溜まりの油面レベルの低下を防ぐことができる。
【0021】
請求項5に記載の発明は、密閉容器内部に電動機部と、電動機部によって駆動される圧縮機構部を設置し、圧縮機構部を電動機部の回転力をこの圧縮機構部に伝達するための偏心軸部を有するクランク軸と、偏心軸部に回転自在に嵌合して設置されたピストンと、円柱状の気室を有するシリンダと、このシリンダに設けられた溝に摺動自在に嵌合して設置されたベーンと、シリンダの軸方向一端に設置され圧縮機構部の吐出孔を有する吐出凹部が設けられた主軸受と、シリンダの軸方向他端に設置された副軸受とで構成し、主軸受の外周部で密閉容器内部に固定して前記密閉容器内部空間を電動機部側空間と、反電動機部側空間とに仕切るとともに、これら内部空間を連通させる円周方向に長円形状の連通孔を主軸受外周部に複数個設け、これら連通孔の長手方向中心付近で外周側の主軸受肉厚を厚くしたものである。
【0022】
そして、この構成によれば、主軸受の外周面を切削加工するときに、特に連通孔の長手方向中心付近で剛性が比較的低下するが、連通孔の長手方向中心付近での外周側肉厚を厚くして剛性を上げているので、スプリングバックが発生しにくくなり、主軸受の外周面を高精度で切削加工することができる。
【0023】
請求項6に記載の発明は、前記請求項1〜5に記載の発明に加えて、複数個の連通孔は、主軸受の素材に設けられた鋳抜き孔としたものである。
【0024】
そして、この構成によれば、複数の連通孔を加工により設ける必要はなく、主軸受の素材に予め鋳抜き孔を設けておくことにより同様の作用、効果を得ることができ、加工コスト削減の効果を得ることができる。
【0025】
【実施例】
以下、本発明の実施例について図面を参照して説明する。なお、本実施例において、前記従来の技術で示した構成と同一箇所については、同一の符号を付して詳細な説明を省略し、異なる箇所についてのみ説明する。
【0026】
(実施例1)
図1および図2において、主軸受12に設けられた複数個の連通孔16のうち、吐出凹部11に近い2箇所の連通孔16aの面積S5、S6を、他の連通孔の面積S1、S2,S3,S4に比べて小さくしている。
【0027】
上記構成により、主軸受12に吐出凹部11を設けることによるその付近の剛性の低下を、吐出凹部11に近い2箇所の連通孔16aの面積を他の連通孔16の面積に比べて小さくしていることにより補うことができ、主軸受12の部分的な剛性低下を防ぐことができる。
【0028】
なお、上記実施例では、吐出凹部に近い2箇所の連通孔の面積を他の連通孔の面積に比べて小さくしたが、連通孔の大きさおよび配置によっては、吐出凹部に最も近い1箇所のみ、もしくは、3箇所以上の連通孔の面積を小さくした場合でも同様の作用効果を得ることができる。さらには、面積を小さくせず、連通孔自体をなくしても同様の作用効果を得ることができる。
【0029】
(実施例2)
図2において、密閉容器1の内径をφD、主軸受12に設けられた連通孔16、16aの面積をS1、S2、S3、S4、S5、S6とし、前記密閉容器1の断面積をAとしたとき、
A=π/4×(D×D)
また、連通孔の面積の和をSとしたとき、
S=S1+S2+S3+S4+S5+S6
とし、密閉容器1の断面積Aに対する連通孔面積の総和Sの割合(S/A)を10%〜30%としている。
【0030】
密閉容器1の断面積Aに対する連通孔面積の総和Sの割合(S/A)を小さくすると、主軸受12の剛性が上がるので、圧縮機運転時の騒音レベルNは低下する。しかしながら、(S/A)を小さくし過ぎると、圧縮機運転時に圧縮機外部へ吐出される冷凍機油の量Qが急激に増加する。これは、圧縮機構部3を潤滑した後、クランク軸5と主軸受12上端の隙間より電動機部側空間14に戻された冷凍機油が、反電動機部側空間15の冷凍機油溜まり17に落下しにくくなるためである。図3に(S/A)の値に対する圧縮機外部へ吐出される冷凍機油の量Q、および圧縮機運転時の騒音レベルNとの変化を示す特性図を示す。
【0031】
上記の通り、前記密閉容器1の断面積Aに対する連通孔の面積の総和S(S/A)を10%〜30%とすることにより、主軸受12の剛性を必要以上に保つことができるとともに、圧縮機構3から電動機部側空間14に戻された冷凍機油が、反電動機部側空間15の冷凍機油溜まり17に十分落下し、圧縮機外部へ吐出される冷凍機油の量を抑えることができるとともに、冷凍機油溜まり17の油面レベルの低下を防止することができる。
【0032】
(実施例3)
図4において、主軸受12に設けられた複数個の連通孔16のうち、圧縮機構部3のベーン8に最も近い位置の連通孔をなくしている。上記構成により、圧縮機構部3のベーン8は、圧縮機の運転に伴って往復運動を行うが、冷凍機油溜まり17の油面レベルは通常ベーン8の下端より上方にあるため油面を激しく攪拌する。しかしながら、冷凍機油溜まり17の油面を激しく攪拌したとしても、ベーン8上部の連通孔をなくしているので連通孔を通って電動機部側空間14へ冷凍機油が流出しにくく、圧縮機外部へ吐出される冷凍機油の量が増加することはなくなるとともに、冷凍機油溜まり17の油面レベルの低下を防ぐことができる。
【0033】
(実施例4)
図5において、主軸受12の外周部に設けられた円周方向に長円形状の連通孔16の形状を、これら連通孔16の長手方向端部での外周側の主軸受径方向肉厚e1に対して、長手方向中心部での外周側の主軸受径方向肉厚e2を厚くしたものである。すなわち、
e1<e2
としている。
【0034】
上記構成により、主軸受12の外周面を切削加工する際に、特に連通孔16の長手方向中心付近で剛性が比較的低いために、スプリングバックが発生しようとするが、連通孔16の長手方向中心付近の外周側径方向肉厚e2を厚くして剛性を上げているので、スプリングバックが発生しにくくなり、主軸受の外周面を高精度で切削加工することができる。
【0035】
(実施例5)
前記実施例1〜実施例4において、主軸受12に設けられた複数個の連通孔16は、主軸受12の素材に設けられた鋳抜き孔としたものである。上記構成により、複数の連通孔16を加工により設ける必要はなく、主軸受の素材に予め鋳抜き孔を設けておくことにより同様の作用、効果を得ることができ、加工コスト削減の効果を得ることができる。
【0036】
なお、以上実施例を複数組み合わせた場合、さらにはすべてを組み合わせた場合には、なお一層の作用、効果を得ることができるのはいうまでもない。
【0037】
【発明の効果】
上記実施例から明らかなように、請求項1または2に記載の発明によれば、主軸受に設けられた複数個の連通孔のうち、吐出凹部に最も近い1箇所もしくは複数箇所の連通孔の面積を、他の連通孔の面積に比べて小さくしているので、主軸受に吐出凹部を設けることによるその付近の剛性の低下を補うことができ、主軸受の部分的な剛性低下を防ぐことができ、圧縮機運転時の騒音が上昇することを抑えることができ、低騒音の圧縮機を得ることができるとともに、主軸受の摩耗が部分的に大きくなるようなことはなく、低騒音、高信頼性の圧縮機を得ることができる。
【0038】
また、請求項3に記載の発明によれば、主軸受に設けられた複数個の連通孔の面積の和を、密閉容器断面の面積に対して10%〜30%としているので、主軸受の剛性を十分に保つことができるとともに、圧縮機構部を潤滑した後の冷凍機油が、連通孔を通って、反電動機部側空間の冷凍機油溜まりに落下しやすくなり、圧縮機外部へ吐出される冷凍機油の量を抑えることができるとともに、冷凍機油溜まりの油面レベルの低下を防ぐことができので、低騒音、高信頼性の圧縮機を得ることができる。
【0039】
また、請求項4に記載の発明によれば、主軸受に設けられた複数個の連通孔は周方向でベーンと重なる位置を避けて配置されているので、ベーンの往復運動によって、冷凍機油溜まりの油面を激しく攪拌したとしても、連通孔を通って電動機部側空間へ冷凍機油が流出しにくくなり、圧縮機外部へ吐出される冷凍機油の量が増加することがなくなるとともに、冷凍機油溜まりの油面レベルの低下を防ぐことができ、高信頼性の圧縮機を得ることができる。
【0040】
また、請求項5に記載の発明によれば、円周方向に長円形状の連通孔を主軸受外周部に複数個設け、これら連通孔の長手方向中心付近の外周側の主軸受の肉厚を厚くしているので、主軸受の外周面を切削加工するときに、連通孔の長手方向中心付近の外周側の肉厚を厚くして剛性を上げているので、スプリングバックが発生しにくくなり、主軸受の外周面を高精度で切削加工することができ、圧縮機組み立て時に、主軸受外周面の精度不良による密閉容器内壁との間に、必要以上の隙間が生じるようなことはなく、低騒音の圧縮機を得ることができるとともに、溶接固定の強度不足が発生するようなことはない。
【0041】
また、請求項6に記載の発明によれば、請求項1〜5に記載の発明に加えて、複数個の連通孔は、主軸受の素材に設けられた鋳抜き孔としているので、複数の連通孔を加工により設ける必要はなく、主軸受の素材に予め鋳抜き孔を設けておくことにより同様の作用、効果を得ることができ、加工コストの低減をはかることができる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す密閉型回転式圧縮機の縦断面図
【図2】図1のA−A’断面図
【図3】本発明の別の実施例における密閉容器の断面積Aと連通孔の面積の和Sの比(S/A)に対する圧縮機外部へ吐出される冷凍機油の相対量Qと圧縮機運転時の騒音相対レベルNの変化を説明する図
【図4】本発明の別の実施例を示す密閉型回転式圧縮機の主軸受部分での横断面図
【図5】本発明の別の実施例を示す密閉型回転式圧縮機の主軸受部分での横断面図
【図6】従来の密閉型回転式圧縮機の縦断面図
【図7】図6のB−B’断面図
【符号の説明】
1 密閉容器
3 圧縮機構部
8 ベーン
10 吐出孔
11 吐出凹部
12 主軸受
14 電動機部側空間
15 反電動機部側空間
16 連通孔
16a 連通孔(吐出凹部に近い側)
17 冷凍機油溜まり
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hermetic rotary compressor used in an air conditioner or a refrigerator.
[0002]
[Prior art]
A prior art hermetic rotary compressor will be described with reference to the drawings. 6 is an axial sectional view showing a conventional hermetic rotary compressor, and FIG. 7 is a sectional view taken along line BB ′ in FIG. 6 and 7, reference numeral 1 denotes an airtight container, in which an electric motor unit 2 and a compression mechanism unit 3 driven by the electric motor unit 2 are housed. The compression mechanism section 3 includes an eccentric shaft section 4 formed on a part of the crankshaft 5 for transmitting the rotational force of the electric motor section 2 to the compression mechanism section 3, and a piston that is rotatably fitted to the eccentric shaft section 4. 6, a cylinder 7 having a cylindrical air chamber, a vane 8 slidably fitted in a radial groove provided in the cylinder 7, and a vane 8 for pressing the vane 8 against the piston 6. A spring 9, a main bearing 12 provided at one end in the axial direction of the cylinder 7 and provided with a discharge recess 11 having a discharge hole 10 of the compression mechanism portion 3, and a sub-bearing 13 installed at the other end in the axial direction of the cylinder 7 It consists of and.
[0003]
The discharge recess 11 provided in the main bearing 12 suppresses the discharge resistance when compressing and discharging the refrigerant gas by the compression mechanism unit 3 and reduces the so-called dead volume to improve the compression efficiency. The thickness is made thin as the shape which dug the part.
[0004]
The compression mechanism part 3 is welded and fixed inside the sealed container 1 at the outer periphery of the main bearing 12, and the inner space of the sealed container 1 is divided into a motor part side space 14 in which the motor part 2 is installed and the opposite side. It is partitioned with the non-motor portion side space 15. In addition, a plurality of communication holes 16 are provided in the outer peripheral portion of the main bearing 12 to communicate the motor portion side space 14 and the counter motor portion side space 15. The plurality of communication holes 16 are provided in a substantially symmetrical shape on the outer periphery of the main bearing 12 as shown in FIG.
[0005]
With the above configuration, the refrigerant gas sucked from the suction hole (not shown) of the compression mechanism unit 3 is compressed by the compression mechanism unit, discharged from the discharge hole 10 into the sealed container 1, and then compressed from the discharge pipe 18. It is discharged outside the machine.
[0006]
In addition, a refrigerator oil reservoir 17 is provided at the bottom of the sealed container 1, and the refrigerator oil is pumped up from a lubrication hole (not shown) provided in the main shaft 5 to lubricate each sliding portion of the compression mechanism unit 3. After that, it is returned to the motor unit side space 14 through the gap between the crankshaft 5 and the upper end of the main bearing 12. Thereafter, the refrigerating machine oil is returned again to the refrigerating machine oil reservoir 17 through the plurality of communication holes 16.
[0007]
[Problems to be solved by the invention]
However, in the conventional compressor, since the discharge recess 11 is provided in the main bearing 12, the rigidity of the main bearing 12 is partially reduced. In particular, when the communication hole 16 and the discharge recess 11 are close to each other, a decrease in rigidity of the main bearing 12 due to the influence is unavoidable, which causes a noise increase during operation of the compressor.
[0008]
Further, although a bearing load acts on the main bearing 12 from the crankshaft 5, since the rigidity of the discharge recess 11 direction of the main bearing 12 is low, the amount of wear of the main bearing 12 in this direction is particularly large, and the reliability is lowered. It was the cause.
[0009]
Further, in order to solve the above problem, when the area of the communication hole 16 is reduced, the refrigeration returned to the motor unit side space 14 through the gap between the crankshaft 5 and the upper end of the main bearing 12 after lubricating the compression mechanism unit 3. It becomes difficult for machine oil to fall into the refrigerating machine oil sump 17 in the anti-motor unit side space 15. Therefore, the amount of refrigerating machine oil discharged to the outside of the compressor is extremely increased, leading to a decrease in the performance of the refrigerating cycle, and the oil level of the refrigerating machine oil reservoir 17 is lowered, thereby reducing the reliability of the compressor itself. It was the cause.
[0010]
The vane 8 of the compression mechanism unit 3 reciprocates with the operation of the compressor. Usually, since the oil level of the refrigerating machine oil reservoir 17 is above the lower end of the vane 8, the oil is moved by the movement of the vane. The surface is vigorously stirred. As a result, the lubricating oil is repelled from the communication hole at the position facing the vane to the motor side space, and the amount of refrigerating machine oil discharged to the outside of the compressor together with the discharge gas increases extremely, resulting in a decrease in performance of the refrigerating cycle. In addition to this, the oil level of the refrigerator oil sump 17 is lowered, which causes the reliability of the compressor itself to be lowered.
[0011]
In addition, the main bearing 12 is welded and fixed inside the sealed container 1 after the outer peripheral surface is cut, but when the outer peripheral surface of the main bearing 12 is cut, if there is a communication hole 16, this portion of the main bearing 12 The outer periphery is easily elastically deformed. Therefore, the accuracy of the outer peripheral surface of the main bearing 12 after cutting is not sufficient, and it becomes difficult to insert into the sealed container 1, or a gap more than necessary is provided between the outer peripheral surface of the main bearing 12 and the inner wall of the sealed container 1. As a result, the weld fixing strength was insufficient and the noise was increased.
[0012]
The present invention is for solving the above-described conventional problems, and by securing the rigidity of the main bearing by optimizing the area of a plurality of communication holes provided in the outer peripheral portion of the main bearing. An object of the present invention is to provide a hermetic rotary compressor that reduces the amount of refrigerating machine oil discharged to the outside of the compressor and is low in noise and highly reliable.
[0013]
[Means for Solving the Problems]
In order to solve the above problems, the present invention optimizes the areas of a plurality of communication holes provided in the outer peripheral portion of the main bearing. Specifically, the area of the communication hole closest to the discharge recess provided in the main bearing is made smaller than the areas of the other communication holes. As a result, the rigidity of the main bearing can be ensured, the amount of refrigerating machine oil discharged to the outside of the compressor can be reduced, and a low-noise, high-reliability hermetic rotary compressor can be obtained. it can.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The invention described in claim 1 for solving the above-mentioned problem is that an electric motor part and a compression mechanism part driven by the electric motor part are installed inside the sealed container, and the rotational force of the electric motor part is controlled by the compression mechanism part. A crankshaft having an eccentric shaft portion for transmitting to the compression mechanism portion, a piston rotatably fitted to the eccentric shaft portion, a cylinder having a cylindrical air chamber, and a cylinder A vane installed slidably in the groove, a main bearing installed at one end of the cylinder in the axial direction and having a discharge recess with a discharge hole in the compression mechanism, and installed at the other end in the axial direction of the cylinder The secondary bearing is configured to be fixed inside the sealed container at the outer periphery of the main bearing to partition the sealed container inner space into a motor unit side space and a counter motor side space, and to communicate these inner spaces. Multiple holes on the outer periphery of the main bearing It is obtained by smaller than the area of the communication hole of the closest one place or a plurality of locations in the discharge recess of the plurality of communication holes to the area of the other communication holes.
[0015]
Furthermore, the invention described in claim 2 is obtained by eliminating the communication hole at a position closest to the discharge recess from the plurality of communication holes in addition to the invention described in claim 1.
[0016]
According to the above configuration, the lowering of rigidity in the vicinity due to the provision of the discharge recess in the main bearing is caused by reducing the area of one or a plurality of communication holes closest to the discharge recess among the plurality of communication holes to the other communication holes. This can be compensated for by making it smaller than the area, and a partial reduction in rigidity of the main bearing can be prevented.
[0017]
According to a third aspect of the present invention, an electric motor part is installed in the upper part of the hermetic container, and a compression mechanism part driven by the electric motor part is installed in the lower part, and the compression mechanism part uses the rotational force of the motor part as the compression mechanism part. A crankshaft having an eccentric shaft portion for transmission, a piston rotatably fitted to the eccentric shaft portion, a cylinder having a cylindrical air chamber, and a groove provided in the cylinder are slidable A main bearing provided with a discharge recess having a discharge hole of a compression mechanism installed at one axial end of the cylinder, and a sub-bearing installed at the other axial end of the cylinder. The outer space of the main bearing is fixed to the inside of the sealed container to partition the inner space of the sealed container into a motor part side space and an anti-motor part side space, and a communication hole for communicating these inner spaces is provided on the outer periphery of the main bearing. The surface of these communication holes It is obtained by 10% to 30% of the area of the sealed container section the sum of.
[0018]
According to this configuration, the rigidity of the main bearing can be sufficiently maintained, and the refrigerating machine oil after lubricating the compression mechanism part can easily fall through the communication hole into the refrigerating machine oil reservoir in the counter-motor part side space. It is possible to prevent the oil level of the refrigerator oil sump from being lowered.
[0019]
According to a fourth aspect of the present invention, an electric motor part is installed in the upper part of the sealed container, and a compression mechanism part driven by the electric motor part is installed in the lower part, and the rotational force of the motor part is transmitted to the compression mechanism part. A crankshaft having an eccentric shaft portion, a piston rotatably fitted to the eccentric shaft portion, a cylinder having a cylindrical air chamber, and a groove provided in the cylinder are slidable A main bearing provided with a discharge recess having a discharge hole of a compression mechanism installed at one axial end of the cylinder, and a sub-bearing installed at the other axial end of the cylinder. The outer space of the main bearing is fixed to the inside of the sealed container to partition the inner space of the sealed container into a motor part side space and an anti-motor part side space, and a communication hole for communicating these inner spaces is provided on the outer periphery of the main bearing. part plurality provided, the plurality of communication The hole in which is arranged to avoid the positions overlapping the vane.
[0020]
According to this configuration, even if the oil level of the refrigerating machine oil sump is vigorously stirred by the reciprocating motion of the vane, there is no communication hole in the upper part of the vane, so that the refrigerating machine oil hardly flows out to the motor unit side space through the communication hole. The amount of the refrigerating machine oil discharged to the outside of the compressor is not increased, and the oil level of the refrigerating machine oil reservoir can be prevented from being lowered.
[0021]
According to the fifth aspect of the present invention, an electric motor unit and a compression mechanism unit driven by the electric motor unit are installed inside the sealed container, and the compression mechanism unit is eccentric to transmit the rotational force of the electric motor unit to the compression mechanism unit. A crankshaft having a shaft portion, a piston that is rotatably fitted to the eccentric shaft portion, a cylinder having a cylindrical air chamber, and a groove provided in the cylinder are slidably fitted. And a main bearing provided with a discharge recess having a discharge hole of the compression mechanism portion installed at one end in the axial direction of the cylinder, and a sub-bearing installed at the other end in the axial direction of the cylinder, The outer space of the main bearing is fixed inside the sealed container to partition the sealed container inner space into a motor unit side space and an anti-motor unit side space, and an elliptical communication in the circumferential direction that connects these inner spaces. Provide multiple holes on the outer periphery of the main bearing. It is obtained by thickening the main bearing wall thickness of the outer peripheral side near the longitudinal center of the Luo communicating hole.
[0022]
According to this configuration, when cutting the outer peripheral surface of the main bearing, the rigidity is relatively reduced particularly in the vicinity of the center in the longitudinal direction of the communication hole. Since the rigidity is increased by increasing the thickness, the spring back hardly occurs and the outer peripheral surface of the main bearing can be cut with high accuracy.
[0023]
According to a sixth aspect of the present invention, in addition to the first to fifth aspects of the present invention, the plurality of communication holes are cast holes provided in the material of the main bearing.
[0024]
And according to this structure, it is not necessary to provide a plurality of communication holes by machining, and by providing a cast hole in the material of the main bearing in advance, the same action and effect can be obtained, and the machining cost can be reduced. An effect can be obtained.
[0025]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. In the present embodiment, the same parts as those shown in the prior art are denoted by the same reference numerals, detailed description thereof will be omitted, and only different parts will be described.
[0026]
Example 1
1 and 2, the areas S5 and S6 of the two communication holes 16a close to the discharge recess 11 among the plurality of communication holes 16 provided in the main bearing 12 are the areas S1 and S2 of the other communication holes. , S3 and S4 are made smaller.
[0027]
With the above configuration, the rigidity of the vicinity due to the provision of the discharge recess 11 in the main bearing 12 is reduced, and the area of the two communication holes 16 a close to the discharge recess 11 is made smaller than the areas of the other communication holes 16. Therefore, it is possible to compensate for this, and a partial reduction in rigidity of the main bearing 12 can be prevented.
[0028]
In the above embodiment, the area of the two communication holes close to the discharge recess is smaller than the area of the other communication holes. However, depending on the size and arrangement of the communication holes, only one position closest to the discharge recess is provided. Alternatively, the same effect can be obtained even when the area of the three or more communication holes is reduced. Furthermore, the same effect can be obtained without reducing the area and without the communication hole itself.
[0029]
(Example 2)
2, the inner diameter of the sealed container 1 is φD, the areas of the communication holes 16 and 16a provided in the main bearing 12 are S1, S2, S3, S4, S5, and S6, and the sectional area of the sealed container 1 is A. When
A = π / 4 × (D × D)
When the sum of the areas of the communication holes is S,
S = S1 + S2 + S3 + S4 + S5 + S6
The ratio (S / A) of the total sum S of communication hole areas to the cross-sectional area A of the sealed container 1 is 10% to 30%.
[0030]
If the ratio (S / A) of the communication hole area sum S to the cross-sectional area A of the hermetic container 1 is reduced, the rigidity of the main bearing 12 increases, so the noise level N during compressor operation decreases. However, if (S / A) is made too small, the amount Q of refrigerating machine oil discharged to the outside of the compressor during the operation of the compressor increases rapidly. This is because the refrigerating machine oil returned to the motor unit side space 14 through the gap between the crankshaft 5 and the upper end of the main bearing 12 after lubricating the compression mechanism unit 3 falls into the refrigerating machine oil reservoir 17 in the counter motor unit side space 15. This is because it becomes difficult. FIG. 3 is a characteristic diagram showing changes in the amount Q of refrigeration oil discharged to the outside of the compressor and the noise level N during operation of the compressor with respect to the value of (S / A).
[0031]
As described above, the rigidity of the main bearing 12 can be maintained more than necessary by setting the total sum S (S / A) of the communication holes with respect to the cross-sectional area A of the sealed container 1 to 10% to 30%. The refrigerating machine oil returned to the motor unit side space 14 from the compression mechanism 3 sufficiently falls into the refrigerating machine oil reservoir 17 in the counter motor unit side space 15 and the amount of refrigerating machine oil discharged to the outside of the compressor can be suppressed. At the same time, it is possible to prevent the oil level of the refrigerator oil reservoir 17 from being lowered.
[0032]
(Example 3)
In FIG. 4, among the plurality of communication holes 16 provided in the main bearing 12, the communication hole closest to the vane 8 of the compression mechanism unit 3 is eliminated. With the above configuration, the vane 8 of the compression mechanism unit 3 reciprocates with the operation of the compressor, but the oil level of the refrigerator oil sump 17 is normally above the lower end of the vane 8, and the oil level is vigorously stirred. To do. However, even if the oil surface of the refrigerator oil reservoir 17 is vigorously stirred, the communication hole in the upper part of the vane 8 is eliminated, so that it is difficult for the refrigerator oil to flow out to the motor unit side space 14 through the communication hole and discharged to the outside of the compressor. The amount of the refrigerating machine oil to be increased is not increased, and a decrease in the oil level of the refrigerating machine oil reservoir 17 can be prevented.
[0033]
(Example 4)
In FIG. 5, the shape of the communication hole 16 that is oval in the circumferential direction provided on the outer peripheral portion of the main bearing 12 is changed to the main bearing radial thickness e <b> 1 on the outer peripheral side at the longitudinal ends of the communication holes 16. On the other hand, the main bearing radial thickness e2 on the outer peripheral side at the longitudinal center is increased. That is,
e1 <e2
It is said.
[0034]
With the above configuration, when cutting the outer peripheral surface of the main bearing 12, spring stiffness is likely to occur because the rigidity is relatively low particularly in the vicinity of the center of the communication hole 16 in the longitudinal direction. Since the outer peripheral radial thickness e2 in the vicinity of the center is increased to increase the rigidity, the spring back hardly occurs and the outer peripheral surface of the main bearing can be cut with high accuracy.
[0035]
(Example 5)
In the first to fourth embodiments, the plurality of communication holes 16 provided in the main bearing 12 are formed as cast holes provided in the material of the main bearing 12. With the above-described configuration, it is not necessary to provide a plurality of communication holes 16 by machining, and the same action and effect can be obtained by providing a hole in the main bearing material in advance, thereby obtaining an effect of reducing machining costs. be able to.
[0036]
Needless to say, when a plurality of embodiments are combined as described above, or when all the embodiments are combined, still further functions and effects can be obtained.
[0037]
【The invention's effect】
As is clear from the above embodiment, according to the invention described in claim 1 or 2, of the plurality of communication holes provided in the main bearing, one or a plurality of communication holes closest to the discharge recess are provided. Since the area is smaller than the area of other communication holes, it is possible to compensate for the decrease in rigidity in the vicinity due to the discharge recess in the main bearing, and to prevent a partial decrease in rigidity of the main bearing. It is possible to suppress an increase in noise during the operation of the compressor, to obtain a low noise compressor, and the main bearing wear is not partially increased. A highly reliable compressor can be obtained.
[0038]
Further, according to the invention described in claim 3, since the sum of the areas of the plurality of communication holes provided in the main bearing is 10% to 30% with respect to the area of the cross section of the sealed container, The rigidity of the refrigerating machine oil after lubricating the compression mechanism can be easily dropped to the refrigerating machine oil reservoir in the space opposite to the electric motor and discharged outside the compressor. Since the amount of the refrigerating machine oil can be suppressed and the oil level of the refrigerating machine oil reservoir can be prevented from being lowered, a low noise and highly reliable compressor can be obtained.
[0039]
According to the invention described in claim 4, since the plurality of communication holes provided in the main bearing are arranged so as to avoid the position overlapping the vane in the circumferential direction, the refrigerating machine oil sump is caused by the reciprocating motion of the vane. Even if the oil level is vigorously stirred , the refrigeration oil does not easily flow out to the motor unit side space through the communication hole, and the amount of refrigeration oil discharged to the outside of the compressor does not increase, and the refrigeration oil reservoir The oil level can be prevented from being lowered, and a highly reliable compressor can be obtained.
[0040]
According to the invention described in claim 5, a plurality of elliptical communication holes are provided in the circumferential direction of the main bearing, and the thickness of the main bearing on the outer peripheral side near the center in the longitudinal direction of these communication holes. Therefore, when cutting the outer peripheral surface of the main bearing, the thickness of the outer peripheral side near the longitudinal center of the communication hole is increased to increase the rigidity, so that it is difficult for spring back to occur. , The outer peripheral surface of the main bearing can be cut with high accuracy, and when assembling the compressor, there is no such a large gap as necessary between the inner wall of the sealed container due to poor accuracy of the outer surface of the main bearing, A low noise compressor can be obtained, and there is no case where the strength of welding fixing is insufficient.
[0041]
According to the invention described in claim 6, in addition to the inventions described in claims 1-5, the plurality of communication holes are cast holes provided in the material of the main bearing. It is not necessary to provide the communication hole by machining, and by providing a cast hole in the material of the main bearing in advance, the same action and effect can be obtained, and the machining cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a hermetic rotary compressor showing an embodiment of the present invention. FIG. 2 is a sectional view taken along the line AA ′ of FIG. 1. FIG. The figure explaining the change of the relative quantity Q of the refrigerating machine oil discharged to the exterior of the compressor with respect to the ratio (S / A) of the sum S of the cross-sectional area A and the area of the communicating hole, and the noise relative level N during the compressor operation 4 is a cross-sectional view of the main bearing portion of a hermetic rotary compressor showing another embodiment of the present invention. FIG. 5 is a main bearing portion of a hermetic rotary compressor showing another embodiment of the present invention. Fig. 6 is a longitudinal sectional view of a conventional hermetic rotary compressor. Fig. 7 is a sectional view taken along line BB 'of Fig. 6.
DESCRIPTION OF SYMBOLS 1 Airtight container 3 Compression mechanism part 8 Vane 10 Discharge hole 11 Discharge recessed part 12 Main bearing 14 Motor part side space 15 Anti-motor part side space 16 Communication hole 16a Communication hole (The side near a discharge recessed part)
17 Refrigerating machine oil sump

Claims (6)

圧縮機構部と、圧縮機構部を駆動する電動機部と、前記電動機部と圧縮機構部とを連結して動力を伝達するクランク軸と、前記圧縮機構部、電動機部およびクランク軸を収納する密閉容器とからなり、
前記圧縮機構部は円柱状の気室を有するシリンダと、前記シリンダに設けられた径方向溝に出没自在に収納されて先端が気室内に存在するベーンと、前記気室内に収納されて気室内周面およびベーン先端に外周面を接触させながら偏芯運動を行う円筒形状のピストンと、前記気室を貫通するクランク軸の気室貫通部に形成されて前記ピストンの内周面と回転自在に嵌合する偏芯軸部と、前記シリンダの軸方向端面にそれぞれ配置されてクランク軸を軸支すると同時に気室を閉塞して圧縮室を形成する主軸受けと副軸受とから構成され、
前記主軸受けは圧縮室と圧縮機構部外部とを連通する吐出孔と、この吐出孔の反圧縮室側開口部に設けた吐出凹部とを有し、外周部が密閉容器の内壁面に固定されて密閉容器内部空間を電動機部側空間と反電動機部側空間とに仕切るとともに、電動機部側空間と反電動機部側空間とを連通させる連通孔を外周部に複数個設けた密閉型回転式圧縮機であって、
前記複数個の連通孔のうち、少なくとも吐出凹部に最も近い位置にある連通孔の面積が、他の連通孔の面積よりも小さいことを特徴とする密閉型回転式圧縮機。
A compression mechanism, an electric motor that drives the compression mechanism, a crankshaft that connects the electric motor and the compression mechanism to transmit power, and a sealed container that houses the compression mechanism, the electric motor, and the crankshaft And consist of
The compression mechanism portion includes a cylinder having a cylindrical air chamber, a vane that is retractable and retracted in a radial groove provided in the cylinder, and that has a tip in the air chamber, and is stored in the air chamber. A cylindrical piston that performs eccentric motion while bringing the outer peripheral surface into contact with the peripheral surface and the tip of the vane, and an air chamber penetrating portion of the crankshaft that penetrates the air chamber so as to be rotatable with the inner peripheral surface of the piston An eccentric shaft portion to be fitted, and a main bearing and a sub-bearing which are respectively arranged on the axial end surfaces of the cylinder and support the crankshaft and simultaneously close the air chamber to form a compression chamber,
The main bearing has a discharge hole that communicates between the compression chamber and the outside of the compression mechanism section, and a discharge recess provided in the opening opposite to the compression chamber of the discharge hole, and the outer peripheral portion is fixed to the inner wall surface of the sealed container. In addition to partitioning the sealed container interior space into a motor part side space and a counter motor part side space, a hermetic rotary compression with a plurality of communication holes in the outer peripheral part communicating the motor part side space and the counter motor part side space. Machine,
A hermetic rotary compressor characterized in that, among the plurality of communication holes, at least the area of the communication hole located closest to the discharge recess is smaller than the area of the other communication holes.
請求項1記載の密閉型回転式圧縮機であって、連通孔の位置を周方向で吐出凹部と重ならないように配置したことを特徴とする密閉型回転式圧縮機。2. The hermetic rotary compressor according to claim 1, wherein the position of the communication hole is arranged so as not to overlap the discharge recess in the circumferential direction. 圧縮機構部と、圧縮機構部を駆動する電動機部と、前記電動機部と圧縮機構部とを連結して動力を伝達するクランク軸と、前記圧縮機構部、電動機部およびクランク軸を収納する密閉容器とからなり、
前記圧縮機構部は円柱状の気室を有するシリンダと、前記シリンダに設けられた径方向溝に出没自在に収納されて先端が気室内に存在するベーンと、前記気室内に収納されて気室内周面およびベーン先端に外周面を接触させながら偏芯運動を行う円筒形状のピストンと、前記気室を貫通するクランク軸の気室貫通部に形成されて前記ピストンの内周面と回転自在に嵌合する偏芯軸部と、前記シリンダの軸方向端面にそれぞれ配置されてクランク軸を軸支すると同時に気室を閉塞して圧縮室を形成する主軸受けと副軸受とから構成され、
前記主軸受けは圧縮室と圧縮機構部外部とを連通する吐出孔と、この吐出孔の反圧縮室側開口部に設けた吐出凹部とを有し、外周部が密閉容器の内壁面に固定されて密閉容器内部空間を電動機部側空間と反電動機部側空間とに仕切るとともに、電動機部側空間と反電動機部側空間とを連通させる連通孔を外周部に複数個設けた密閉型回転式圧縮機であって、
前記複数の連通孔面積の総和が、前記密閉容器径方向断面積の10%以上30%以下であることを特徴とする密閉型回転式圧縮機。
A compression mechanism, an electric motor that drives the compression mechanism, a crankshaft that connects the electric motor and the compression mechanism to transmit power, and a sealed container that houses the compression mechanism, the electric motor, and the crankshaft And consist of
The compression mechanism portion includes a cylinder having a cylindrical air chamber, a vane that is retractable and retracted in a radial groove provided in the cylinder, and that has a tip in the air chamber, and is stored in the air chamber. A cylindrical piston that performs eccentric motion while bringing the outer peripheral surface into contact with the peripheral surface and the tip of the vane, and an air chamber penetrating portion of the crankshaft that penetrates the air chamber so as to be rotatable with the inner peripheral surface of the piston An eccentric shaft portion to be fitted, and a main bearing and a sub-bearing which are respectively arranged on the axial end surfaces of the cylinder and support the crankshaft and simultaneously close the air chamber to form a compression chamber,
The main bearing has a discharge hole that communicates between the compression chamber and the outside of the compression mechanism section, and a discharge recess provided in the opening opposite to the compression chamber of the discharge hole, and the outer peripheral portion is fixed to the inner wall surface of the sealed container. In addition to partitioning the sealed container interior space into a motor part side space and a counter motor part side space, a hermetic rotary compression with a plurality of communication holes in the outer peripheral part communicating the motor part side space and the counter motor part side space. Machine,
The hermetic rotary compressor characterized in that the sum of the plurality of communication hole areas is 10% or more and 30% or less of the cross-sectional area in the radial direction of the hermetic container.
圧縮機構部と、圧縮機構部を駆動する電動機部と、前記電動機部と圧縮機構部とを連結して動力を伝達するクランク軸と、前記圧縮機構部、電動機部およびクランク軸を収納する密閉容器とからなり、
前記圧縮機構部は円柱状の気室を有するシリンダと、前記シリンダに設けられた径方向溝に出没自在に収納されて先端が気室内に存在するベーンと、前記気室内に収納されて気室内周面およびベーン先端に外周面を接触させながら偏芯運動を行う円筒形状のピストンと、前記気室を貫通するクランク軸の気室貫通部に形成されて前記ピストンの内周面と回転自在に嵌合する偏芯軸部と、前記シリンダの軸方向端面にそれぞれ配置されてクランク軸を軸支すると同時に気室を閉塞して圧縮室を形成する主軸受けと副軸受とから構成され、
前記主軸受けは圧縮室と圧縮機構部外部とを連通する吐出孔と、この吐出孔の反圧縮室側開口部に設けた吐出凹部とを有し、外周部が密閉容器の内壁面に固定されて密閉容器内部空間を電動機部側空間と反電動機部側空間とに仕切るとともに、電動機部側空間と反電動機部側空間とを連通させる連通孔を外周部に複数個設けた密閉型回転式圧縮機であって、
前記連通孔は周方向でベーンと重なる位置を避けて配置されていることを特徴とする密閉型回転式圧縮機。
A compression mechanism, an electric motor that drives the compression mechanism, a crankshaft that connects the electric motor and the compression mechanism to transmit power, and a sealed container that houses the compression mechanism, the electric motor, and the crankshaft And consist of
The compression mechanism portion includes a cylinder having a cylindrical air chamber, a vane that is retractable and retracted in a radial groove provided in the cylinder, and that has a tip in the air chamber, and is stored in the air chamber. A cylindrical piston that performs eccentric motion while bringing the outer peripheral surface into contact with the peripheral surface and the tip of the vane, and an air chamber penetrating portion of the crankshaft that penetrates the air chamber so as to be rotatable with the inner peripheral surface of the piston An eccentric shaft portion to be fitted, and a main bearing and a sub-bearing which are respectively arranged on the axial end surfaces of the cylinder and support the crankshaft and simultaneously close the air chamber to form a compression chamber,
The main bearing has a discharge hole that communicates between the compression chamber and the outside of the compression mechanism section, and a discharge recess provided in the opening opposite to the compression chamber of the discharge hole, and the outer peripheral portion is fixed to the inner wall surface of the sealed container. In addition to partitioning the sealed container interior space into a motor part side space and a counter motor part side space, a hermetic rotary compression with a plurality of communication holes in the outer peripheral part communicating the motor part side space and the counter motor part side space. Machine,
The hermetic rotary compressor is characterized in that the communication hole is disposed so as to avoid a position overlapping with the vane in the circumferential direction.
圧縮機構部と、圧縮機構部を駆動する電動機部と、前記電動機部と圧縮機構部とを連結して動力を伝達するクランク軸と、前記圧縮機構部、電動機部およびクランク軸を収納する密閉容器とからなり、
前記圧縮機構部は円柱状の気室を有するシリンダと、前記シリンダに設けられた径方向溝に出没自在に収納されて先端が気室内に存在するベーンと、前記気室内に収納されて気室内周面およびベーン先端に外周面を接触させながら偏芯運動を行う円筒形状のピストンと、前記気室を貫通するクランク軸の気室貫通部に形成されて前記ピストンの内周面と回転自在に嵌合する偏芯軸部と、前記シリンダの軸方向端面にそれぞれ配置されてクランク軸を軸支すると同時に気室を閉塞して圧縮室を形成する主軸受けと副軸受とから構成され、
前記主軸受けは圧縮室と圧縮機構部外部とを連通する吐出孔と、この吐出孔の反圧縮室側開口部に設けた吐出凹部とを有し、外周部が密閉容器の内壁面に固定されて密閉容器内部空間を電動機部側空間と反電動機部側空間とに仕切るとともに、電動機部側空間と反電動機部側空間とを連通させる連通孔を外周部に複数個設けた密閉型回転式圧縮機であって、
前記連通孔は周方向に延設された長円形状で、外周側の主軸受径方向肉厚を長手方向両端部に比べて中央部で大きくするように構成したことを特徴とする、密閉型回転式圧縮機。
A compression mechanism, an electric motor that drives the compression mechanism, a crankshaft that connects the electric motor and the compression mechanism to transmit power, and a sealed container that houses the compression mechanism, the electric motor, and the crankshaft And consist of
The compression mechanism portion includes a cylinder having a cylindrical air chamber, a vane that is retractable and retracted in a radial groove provided in the cylinder, and that has a tip in the air chamber, and is stored in the air chamber. A cylindrical piston that performs eccentric motion while bringing the outer peripheral surface into contact with the peripheral surface and the tip of the vane, and an air chamber penetrating portion of the crankshaft that penetrates the air chamber so as to be rotatable with the inner peripheral surface of the piston An eccentric shaft portion to be fitted, and a main bearing and a sub-bearing which are respectively arranged on the axial end surfaces of the cylinder and support the crankshaft and simultaneously close the air chamber to form a compression chamber,
The main bearing has a discharge hole that communicates between the compression chamber and the outside of the compression mechanism section, and a discharge recess provided in the opening opposite to the compression chamber of the discharge hole, and the outer peripheral portion is fixed to the inner wall surface of the sealed container. In addition to partitioning the sealed container interior space into a motor part side space and a counter motor part side space, a hermetic rotary compression with a plurality of communication holes in the outer peripheral part communicating the motor part side space and the counter motor part side space. Machine,
The communication hole has an elliptical shape extending in the circumferential direction, and is configured so that the main bearing radial thickness on the outer peripheral side is larger at the center than at both ends in the longitudinal direction. Rotary compressor.
複数個の連通孔は、主軸受の素材に設けられた鋳抜き孔とした請求項1〜5のいずれかに記載の密閉型回転式圧縮機。The hermetic rotary compressor according to claim 1, wherein the plurality of communication holes are cast holes provided in a material of the main bearing.
JP2001293831A 2001-09-26 2001-09-26 Hermetic rotary compressor Expired - Fee Related JP4016625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001293831A JP4016625B2 (en) 2001-09-26 2001-09-26 Hermetic rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001293831A JP4016625B2 (en) 2001-09-26 2001-09-26 Hermetic rotary compressor

Publications (2)

Publication Number Publication Date
JP2003097467A JP2003097467A (en) 2003-04-03
JP4016625B2 true JP4016625B2 (en) 2007-12-05

Family

ID=19115545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001293831A Expired - Fee Related JP4016625B2 (en) 2001-09-26 2001-09-26 Hermetic rotary compressor

Country Status (1)

Country Link
JP (1) JP4016625B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351833A (en) * 2015-07-13 2017-01-25 三菱电机株式会社 Compressor

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329156A (en) * 2005-05-30 2006-12-07 Daikin Ind Ltd Rotary compressor
JP2007056680A (en) * 2005-08-22 2007-03-08 Sanyo Electric Co Ltd Rotary compressor
JP6432657B1 (en) 2017-08-24 2018-12-05 株式会社富士通ゼネラル Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351833A (en) * 2015-07-13 2017-01-25 三菱电机株式会社 Compressor
CN106351833B (en) * 2015-07-13 2018-07-20 三菱电机株式会社 Compressor

Also Published As

Publication number Publication date
JP2003097467A (en) 2003-04-03

Similar Documents

Publication Publication Date Title
US9074600B2 (en) Rotary compressor
KR101529928B1 (en) Rotary compressor
US7641454B2 (en) Two-stage rotary compressor
JP2017150425A (en) Two-cylinder type sealed compressor
WO2007123074A1 (en) Compressor
JP4016625B2 (en) Hermetic rotary compressor
CN114060274A (en) Pump body structure, compressor and air conditioner
JP6057535B2 (en) Refrigerant compressor
CN210050033U (en) Rotary compressor and heat exchange equipment
KR20210012231A (en) Rotary comppresor
CN107120278B (en) Rotary compressor and air conditioner with same
JPH06264881A (en) Rotary compressor
US11473581B2 (en) Rotary compressor
JP2005344600A (en) Hermetic compressor
WO2016016917A1 (en) Scroll compressor
JP2009127517A (en) Enclosed compressor
JPH06346878A (en) Rotary compressor
JP2003065236A (en) Hermetic electric compressor
JP3980623B2 (en) Hermetic electric compressor
JP2017008819A (en) Rotary compressor
JP2019035391A (en) Compressor
JP6731655B2 (en) Rotary compressor
KR101454244B1 (en) Reciprocating compressor and refrigerating machine having the same
JPH0826864B2 (en) Hermetic rotary compressor
JP6464583B2 (en) Rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050411

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070910

R151 Written notification of patent or utility model registration

Ref document number: 4016625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees