JP4015757B2 - Electrode dust collector electrode unit - Google Patents

Electrode dust collector electrode unit Download PDF

Info

Publication number
JP4015757B2
JP4015757B2 JP18835598A JP18835598A JP4015757B2 JP 4015757 B2 JP4015757 B2 JP 4015757B2 JP 18835598 A JP18835598 A JP 18835598A JP 18835598 A JP18835598 A JP 18835598A JP 4015757 B2 JP4015757 B2 JP 4015757B2
Authority
JP
Japan
Prior art keywords
electrode
ladder
plate
screw rods
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18835598A
Other languages
Japanese (ja)
Other versions
JP2000015137A (en
Inventor
栄一 田尻
信正 渡辺
幸博 石栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WATANABE, CO. LTD.
Original Assignee
WATANABE, CO. LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WATANABE, CO. LTD. filed Critical WATANABE, CO. LTD.
Priority to JP18835598A priority Critical patent/JP4015757B2/en
Publication of JP2000015137A publication Critical patent/JP2000015137A/en
Application granted granted Critical
Publication of JP4015757B2 publication Critical patent/JP4015757B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrostatic Separation (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン、焼却炉等の排気ガス処理、あるいは、気体中に浮遊している粉塵を集塵するための電気集塵器用の電極ユニットに関するものであり、特に、電極体を平板状のユニットとして構成し、これらを適宜個数重ね合わせることで排気ガス処理能力を自在に調整できる電極ユニットに関するものである。
【0002】
【従来の技術】
焼却炉等に発生するダイオキシン、あるいPCB等の有害物質による環境汚染が大きな社会問題となってきており、こうした有害物質の無害化技術の開発が急務となっている。
現在、有害物質の除去の方法としては、a.オゾン、b.紫外線、c.電子線、d.プラズマ等による分解除去が有効であるとされているが、これらの発生方法を考えた時に、量の多少を無視すれば上記a〜dのいずれもがコロナ放電に伴って発生することが知られている。したがって、排気ガス処理にとって最適なコロナ放電状態を作りだすことができれば、有害物質の分解を効率的に進めることが可能となる。
【0003】
現在までにコロナ放電状態をつくり出す電極ユニットとして、たとえば、特開昭63−183211号、特開平2−173311号等に開示されたもの等が知られている。
上記公報に記載された排気ガス処理装置の電極ユニットは、円筒状に形成されたセラミックスや有機ガラスからなる材料で形成した絶縁層と、この絶縁層の中央に支持具によって支持されるネジ棒からなる第1電極と、さらに絶縁層の外側に被覆したアルミ箔等からなる第2電極等から構成されており、両電極間に高圧電圧を印加することで円筒状絶縁層の中心部にコロナ放電状態を生成し、この放電雰囲気中に排気ガスを流すことによってガス中の有害物質を分解集塵するものである。
この電極ユニットは、種々の実験の結果、現在では直径数十ミリの円筒状絶縁層の中心に直径3〜6mmのネジ棒を配置し、その円筒状絶縁層の周囲外側に被覆した薄膜電極との間に交流電圧を印加し放電させたもの(即ち電極間の距離が十数mm程度のもの)が、最も効率的な放電状態を生み出すことができるものとされている。
【0004】
ところで、上記のような円筒状の電極ユニットを使用して焼却炉等のような多量の排気ガスを処理しようとすると、排気ガスの流量にあわせて少なくても数百本〜数千本の円筒状ユニットを束ね、さらに円筒状の一端から全ての円筒内に略均等に排気ガスを導入する必要があり、上記構成からなる電極ユニットでは実際の施設へ採用することは極めて困難となる。また、上記電極ユニットでは円筒の中心部にネジ棒を支持する支持部材が必要となり、支持部材が排気ガスのスムーズな流れを阻害し、排気ガス処理効率が悪くなるという問題もある。さらに、最適な電極間距離とするために、円筒状絶縁層の中心部にネジ棒を精度良く配置する必要があり、製造コストの面で問題がある。
【0005】
また、上記構造の電極ユニットを利用して大量の排気ガスを少ない数の電極ユニットで処理しようとしてユニット毎の円筒状絶縁層の直径を大きすることも考えられるが、この場合もユニット毎に電極間の距離を十数mm程度に維持する必要があり、円筒状絶縁層の直径をいくら大きしたとしても中心部に配置する電極の直径もそれに対応して太くしなければならず、結局、円筒内に形成されるガス通過面積を大きくすることは実際上で困難となる。したがって、この場合でも大量の排気ガスを処理するには電極ユニットの使用本数を必然的に多くせざるを得ない。
【0006】
このようなことから本発明者らは、焼却炉等のような多量の排気ガスに対しても十分に対応でき、さらに処理する排気ガスの量に応じて、組み合わせを自由に変更できる電極ユニットについて開発を進めた結果、取扱が容易であり且つ安価に製造することができる新規な電極ユニットの開発に成功した。
【0007】
【発明が解決しようとする課題】
本発明は、所定の長さ、直径を有する対向する導電体間に、前記対向する導電体に対して所定の間隔で複数の導電性棒状体を配置、固定してなる梯子状電極と、同梯子状電極を挟むように両面に配置した板状絶縁部材と、該絶縁部材の表面に配置した平板電極とを備え、前記両電極間に高圧交番電圧を印加して両電極間にコロナ放電をさせ、同コロナ放電雰囲気中に処理ガスを通過させ、集塵を行うようにしたことを特徴とする電気集塵器用電極ユニットであり、このユニットによって上記従来の電極が有する問題点を解決する。
本発明は梯子状電極および平板電極を利用して電極ユニットを平板状あるいは箱型に構成することで、平板状ユニットを多数積み重ねるだけで大量の排気ガス処理用電極を容易に構成することができる。また電極ユニットが平板状あるいは箱型であるため、従来の円筒状の電極ユニットを束ねた場合に生じる無駄なスペースを排除でき、少ないユニット数で同等のガス処理が可能である。電極ユニット内に配置する梯子状電極をステンレス製のネジ棒で構成可能としたため製造コストの大幅な低減を図ることができる。
【0008】
【課題を解決するための手段】
このため、本発明が採用した技術解決手段は、
導電体からなる縦ネジ棒1a、1bを対向して配置し、このネジ棒間に所定の間隔で複数の導電体からなる横ネジ棒1cを配置、固定してなる梯子状電極1と、前記梯子状電極1に対して所定の間隔を以て配置した板状絶縁部材4、4と、該絶縁部材4、4の外側表面に配置した平板電極5とを備え、前記梯子状電極1と前記平板電極5とを交流電源に接続し、前記両電極間で発生したコロナ放電雰囲気中を処理ガスが通過できるようにしたことを特徴とする電気集塵器用電極ユニットである。
また、前記平板電極1の外側にさらに絶縁部材6を配置してなることを特徴とする電気集塵器用電極ユニット。
また、所定の間隔を以て形成された複数の電極支持溝22を有する電極支持部材23と、導電体からなる縦ネジ棒21a、21bを対向して配置しこのネジ棒間に所定の間隔で複数の導電体からなる横ネジ棒21cを配置、固定してなる梯子状電極21と、板状絶縁部材26によって挟持された平板電極25と、前記電極支持部材23の両端部に配置固定する端部絶縁材24を備え、前記電極支持部材23を対向させて配置し、前記電極支持部材23の両端部に端部絶縁材24を設け、さらに互いに対向する電極支持溝22内に交互に前記梯子状電極21および前記平板電極25を挿入支持し、前記梯子状電極21と平板電極25とを交流電源に接続したことを特徴とする電気集塵器用電極ユニット。
また、前記複数の導電体からなる横ネジ棒1c、21cは、同径のステンレスネジ棒から成ることを特徴とする電気集塵器用電極ユニットである。
また、前記複数の導電体からなる横ネジ棒1c、21cには、平板電極と対応する位置に所定形状の溝10、11、12が形成されてなることを特徴とする電気集塵器用電極ユニットである。
また、前記板状絶縁部材4、4の間にはそれらを所定距離保って配置するための一対の支持部材3が配置され、この支持部材に形成した電極支持溝内に前記梯子状電極を構成する対向する縦ネジ棒1a、1bを収納配置してなることを特徴とする電気集塵器用電極ユニットである。
また、前記梯子状電極は、ネジ棒を折り曲げ加工して形成し、この梯子状電極に平板電極との間隔保持材としてのスペーサを設けてなることを特徴とする電気集塵器用電極ユニットである。
【0009】
【実施の形態】
以下、図面に基づいて本発明の第1実施形態を説明する。
図1は本発明に係る集塵器用電極ユニットの概略斜視図、図2は同電極ユニットの平面図、立面図、側面図、図3は支持部材と梯子状電極との配置関係図、図4は本電極ユニットの放電状態を説明する図である。
【0010】
第1実施形態の集塵器用電極ユニットは最小単位としての電極ユニットであり、図1、図2において1は同一規格のネジ棒によって構成された梯子状電極であり、この梯子状電極1は対向する導電体を構成するネジ棒1a、1b(以下縦ネジ棒という)と、この縦ネジ棒1a、1bに対して略直角に配置、固定した導電性棒状体からなるネジ棒(以下横ネジ棒という)1c・・を備えている。
縦ネジ棒1a、1bと横ネジ棒1c・・は溶接により接続固定され、縦ネジ棒の一方1bは交流電源2に接続できるよう図1、図2に示すように他方よりも長く形成されている。
【0011】
横ネジ棒1c・・にはネジ山毎に発生するコロナが平板電極5(後述する)にまで安定して伸びるように図4に示すように平板電極5に対向する部位に扇型10、長方形型11等の溝が形成されている。この溝は各横ネジ棒1c・・毎に同じ形状のものとするのが望ましいが、横ネジ棒毎に変えることも可能であり、また溝に代えて横ネジ棒の平板電極に対向する部位を面取りして角部を形成してもよいことは当然である。
前記梯子状電極1には、本例では直径5〜6ミリの市販のステンレス製のネジ棒を使用しており、縦ネジ棒1a、1bの間隔(図中L)は400ミリ以上、また横ネジ棒1c・・同志のピッチPは放電状態を見ながら適当な間隔(例えば40ミリ〜100ミリ程度の間隔の中から適当な間隔)としてある。
なお、上記例では縦ネジ棒、横ネジ棒とも同一規格のネジ棒を使用し、コストの低減を図っているが、縦ネジ棒は後述するように放電には寄与しないため、所定の電流を流すことができる単なる丸棒あるいは電線等を使用することも可能である。また、縦ネジ棒、横ネジ棒の代わりに導電性のある棒体(断面丸、三角、四角等の棒状体)を使用して、梯子状電極を形成しても平板電極との間にコロナ放電を発生させることが可能である。
【0012】
前記梯子状電極1の両面には、梯子状電極1を挟むように数ミリの板厚からなる板状絶縁部材4、4が支持部材3を介して対向して配置固定される。
前記支持部材3は、図3に示すような電極支持溝3aを備え、この電極支持溝3a内に梯子状電極1を構成する縦ネジ棒1a、1bが収納固定されている。前記支持部材3は絶縁性材料からなる角材によって形成されており、支持部材3の厚さ(即ち板状絶縁部材4、4同志の間隔)は、ネジ棒電極と平板電極5との間の距離が最適な距離となる厚さとして設定されるが、これまでの実験結果からこの厚さは電極間の間隔が10〜20ミリ程度とすることが望ましいことが判明している。なお、電極支持溝3aを利用して梯子状電極を支持する構成としたため、この電極支持溝3aによって梯子状電極と平板電極(後述する)との距離の管理が極めて容易になるとともに電極ユニットの組立も容易となる。
一方、板状絶縁部材4、4は図1、図2に示すように支持部材3を挟む形で支持部材3に適宜手段によって固定されており、板状絶縁部材4、4の外側表面には、横ネジ棒1c・・が配置される範囲に対応して平板電極5が取りつけられている。また、平板電極5の外側には平板電極を被覆するように絶縁部材6(図3参照)が配置され安全性が確保されている。
前記絶縁部材4、6および支持部材3は本実施形態ではガラス材(板ガラス)を使用しているが、絶縁性を有するセラミックス等の材料を使用することも可能である。また、前記平板電極5はたとえばアルミ材などからなる薄膜、薄板等で構成するが、平板電極5を電極ユニットの外周よりも外に延長した場合、この延長部分が電極ユニット内の熱の放散効果を果たすラジエータとしての機能を果たすことも可能である。
【0013】
上記構成からなる電極ユニットでは、梯子状電極1の片側縦ネジ棒1bと平板電極5との間に交流電源を印加すると、横ネジ棒1c・・の各ネジ山と溝とによって形成される角10a、11a、12a(図4参照)毎に平板電極5、5との間で放電がはじまり、板状絶縁部材4、4同士の間で各横ネジ棒毎に全長に渡って安定したコロナ放電状態が得られる。特に梯子状電極にネジ棒を使用した場合、鋭利な形状をしたネジ山毎にコロナ放電が発生するため安定した放電状態を得ることができる。
そして、処理すべき排気ガスを図1に示すように板状絶縁部材4、4同士の間の放電雰囲気中に、例えばA方向からB方向に向けて流すと、この排気ガスはコロナ放電中を通過することになり、この結果、有害物質がコロナ放電中で公知の理論により分解、吸着等により除去される。なおコロナ放電は、各横ネジ棒1c・・毎に平板電極5との間で発生するため、排気ガスは横ネジ棒の数に対応して発生したコロナ放電雰囲気中を通過しながらユニット内を通過することになる。また、上記電極ユニットでは平板電極を梯子状電極の両面に配置したが、片側のみでも良いことは当然である。
【0014】
次に上記電極ユニットの使用例を図5を参照して説明すると、図5は上記最小単位の電極ユニットを20個組み合わせた例である。この例では送風機などによってA方向から流された排気ガスは各ユニット内のコロナ放電雰囲気中を通過して処理され清浄ガスとなってユニットからB方向に排出される。
【0015】
つづいて、本発明に係わる第2実施形態を説明する。
前述の第1実施形態は、一つの梯子状電極とこれに対応した2枚の平板電極とによって一つの最小単位としての電極ユニットを構成しているが、第2実施例は複数の梯子状電極とこれに対応した複数の平板電極からなるもの組み合わせて大型の一つの箱型をした電極ユニットを構成した点に特徴があり、これによって1ユニットによる処理能力を大きくするとともに、ユニットの組み立て性を良くしている。
図6は第2実施形態に係わる電極ユニット全体の斜視図と、そのユニットを構成する梯子状電極、平板状電極の斜視図であり、図7は同電極ユニットの平面図である。
【0016】
この電極ユニット20は、板状の2枚の電極支持部材23、端部絶縁材24を備えており、対向した電極支持部材23、23および端部絶縁材24とによって囲まれた箱型空間内に、複数の梯子状電極21と平板電極25を支持できるようになっている。
電極支持部材23は、ガラスやセラミックス等の絶縁材で構成され、図7に示すように、梯子状電極と平板電極を支持する複数の電極支持溝22を備えている。
前記電極支持溝22は梯子状電極21と平板電極25との間の距離が最適な距離となるように溝ピッチが形成されており、この電極支持溝22によって梯子状電極21と平板電極25との距離の管理が極めて容易となり、さらに電極ユニットの組立も容易となる。
【0017】
梯子状電極21は縦ネジ棒21a、21bと横ネジ棒21cとを溶接して図6に示す如く梯子状に形成されており、一方の縦ネジ棒21aは交流電源2に接続できるよう他方よりも長く形成されている。また平板電極25は、平板電極25を2枚の板状絶縁部材(板ガラスやセラミックス等)26、26で挟持した合わせガラス状に構成されており、平板電極25には交流電源2に接続するためのリード線27が取りつけられている。
前記電極支持部材23を対向して配置し、対向する2枚の電極支持部材の電極支持溝22内に図7に示すように交互に梯子状電極21と平板状電極25を挿入固定し、さらに、電極支持部材23の両端部に端部絶縁材24を固定することで箱型をした電極ユニットが構成されている。そして、梯子状電極の長端部及び平板電極のリード線は導電体28a、28bに接続され(図6参照)、各導電体間に交流電源が接続される。
【0018】
こうして構成した電極ユニットでは、電極ユニット内のコロナ放電雰囲気中に図6に示す矢印方向に排気ガスを流すことにより排ガス処理が行われ、清浄ガスとなって電極ユニットからB方向に排出される。
上記第2実施形態の電極ユニットは複数の梯子状電極と平板電極を組み合わせたものを箱型のユニットとして構成したため、第1実施形態のように最小単位のユニットを複数組み付ける必要がなくなり、電極ユニットの取扱が容易となる。また、予め箱状に組み立てておいた電極支持部材23の対向する電極支持溝22内に、梯子状電極21および平板状電極25を後から挿入するだけで簡単に電極ユニットを構成することができる。さらに梯子状電極および平板状電極を導電体28a、28bを介して交流電源に接続可能としたため、配線のとりまわしを極めて簡素化することができる。
【0019】
なお、梯子状電極の構成素材は必ずしもネジ棒に限定することはなく、平板電極との間に放電現象は発生するものであれば、種々のものを使用することができ、またその形状も図8(イ)に示すように折り曲げ加工したものを使用することもできる(なお、本明細書中では梯子電極は図8(イ)に示す形状を含む広い意味で定義されている)。図8(イ)に示す形状の梯子状電極を使用した場合には、前述の支持部材の代わりに図8(ロ)に示すような平板電極との間隔を一定に保持する支持部材としてのスペーサを使用することもでき、こうすることで電極支持部材に形成する電極支持溝が不要となり溝加工を省略することも可能である。さらに、平板電極の素材もシート材、板材など、またその大きさも自由に変更できることは当然である。
また、第1実施形態の支持部材3、板状絶縁部材4、あるいは、第2実施形態の電極支持部材23、端部絶縁材24を一体のガラス成形品として構成することも可能であり、こうすることにより支持部材、絶縁部材の接続部の接着不良等が原因の絶縁不良等の事態を回避することができる。
さらに、上記形態の放電電極ユニットは、排気ガス処理等に利用できるだけでなく、オゾン発生器の放電電極にも適用できることは当然である。
本発明はその精神又は主要な特徴から逸脱することなく他の色々な形で実施することができ、また、前述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。
【0020】
【発明の効果】
以上詳細に述べた如く本発明は、電極ユニットを平板状に形成したため、電極ユニットを適宜枚数組み合わせることで処理ガス量に応じた電気集塵器用の電極を容易に構成することができる。また電極ユニットが平板状であるため、従来の円筒状の電極ユニットを束ねた場合に生じる無駄なスペースを排除でき、少ないユニット数で同等のガス処理が可能である。電源と接続された梯子状電極および平板電極が支持部材内に収納され、外部に露出しない構成となっているため、極めて安全性が高い、等々の優れた作用効果を奏することができる。
【図面の簡単な説明】
【図1】本発明に係る集塵器用電極体の概略斜視図である。
【図2】同電極の平面図、立面図、側面図である。
【図3】支持部材と梯子状電極との配置関係図である。
【図4】本電極の放電状態を説明する図である。
【図5】本電極に使用状態を説明する図である。
【図6】第2実施形態に係わる電極ユニット全体の斜視図と、そのユニットを構成する梯子状電極、平板状電極の斜視図である。
【図7】同電極ユニットの平面図である。
【図8】(イ)は梯子状電極の変形例を示す図であり、(ロ)は折り曲げ形成した梯子状電極とスペーサとの関係を示す平面図および側面図である。
【符号の説明】
1 梯子状電極
1a、1b 対向する導電体(縦ネジ棒)
1c 横ネジ棒
2 交流電源
3 支持部材
4、6 絶縁部材
5 平板電極
10、11、12 溝
21 梯子状電極
22 電極支持溝
23 電極支持部材
24 端部絶縁材
25 平板電極
26 板状絶縁部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode unit for an exhaust gas treatment for an engine, an incinerator or the like, or an electric dust collector for collecting dust floating in the gas. The present invention relates to an electrode unit that is configured as a unit, and the exhaust gas processing capacity can be freely adjusted by appropriately superposing these units.
[0002]
[Prior art]
Environmental pollution due to harmful substances such as dioxins and PCBs generated in incinerators has become a major social problem, and the development of detoxification technology for such harmful substances is an urgent issue.
Currently, methods for removing harmful substances include: a. Ozone, b. Ultraviolet light, c. An electron beam, d. Although it is said that decomposition and removal by plasma or the like is effective, when considering these generation methods, it is known that any of the above a to d is generated with corona discharge if the amount is neglected. ing. Therefore, if an optimal corona discharge state for exhaust gas treatment can be created, it is possible to efficiently promote decomposition of harmful substances.
[0003]
As electrode units for producing a corona discharge state up to now, for example, those disclosed in JP-A-63-183211, JP-A-2-173311 and the like are known.
The electrode unit of the exhaust gas treatment apparatus described in the above publication includes an insulating layer formed of a material made of ceramic or organic glass formed in a cylindrical shape, and a screw rod supported by a support tool at the center of the insulating layer. And a corona discharge at the center of the cylindrical insulating layer by applying a high voltage between the two electrodes. A state is generated, and exhaust gas is allowed to flow in the discharge atmosphere to decompose and collect harmful substances in the gas.
As a result of various experiments, this electrode unit has a thin-film electrode that is formed by arranging a screw rod having a diameter of 3 to 6 mm at the center of a cylindrical insulating layer having a diameter of several tens of millimeters and covering the outer periphery of the cylindrical insulating layer. It is supposed that the most efficient discharge state can be produced by applying an alternating voltage between the electrodes and discharging them (that is, the distance between the electrodes is about 10 mm or more).
[0004]
By the way, when trying to process a large amount of exhaust gas such as an incinerator using the cylindrical electrode unit as described above, at least hundreds to thousands of cylinders according to the flow rate of the exhaust gas. It is necessary to bundle exhaust-like units and introduce exhaust gas substantially uniformly into all the cylinders from one end of the cylindrical shape, and it is extremely difficult to employ the electrode unit having the above configuration in an actual facility. In addition, the electrode unit requires a support member that supports the screw rod at the center of the cylinder, and the support member hinders a smooth flow of exhaust gas, resulting in poor exhaust gas treatment efficiency. Further, in order to obtain an optimum inter-electrode distance, it is necessary to accurately arrange the screw rod at the center of the cylindrical insulating layer, which causes a problem in terms of manufacturing cost.
[0005]
In addition, it is conceivable to increase the diameter of the cylindrical insulating layer for each unit in order to process a large amount of exhaust gas with a small number of electrode units using the electrode unit having the above structure. The distance between them needs to be maintained at about a few tens of millimeters, and no matter how large the diameter of the cylindrical insulating layer is, the diameter of the electrode arranged at the center must be correspondingly increased. It is practically difficult to increase the gas passage area formed inside. Therefore, even in this case, in order to process a large amount of exhaust gas, the number of electrode units used must be increased.
[0006]
For these reasons, the present inventors are able to sufficiently cope with a large amount of exhaust gas such as an incinerator and the like, and further about an electrode unit whose combination can be freely changed according to the amount of exhaust gas to be processed. As a result of the development, we succeeded in developing a new electrode unit that is easy to handle and can be manufactured at low cost.
[0007]
[Problems to be solved by the invention]
The present invention relates to a ladder-like electrode formed by arranging and fixing a plurality of conductive rod-like bodies at predetermined intervals with respect to the opposing conductors between opposing conductors having a predetermined length and diameter. A plate-like insulating member arranged on both surfaces so as to sandwich the ladder-like electrode, and a flat plate electrode arranged on the surface of the insulating member, and a high voltage alternating voltage is applied between the electrodes to cause corona discharge between the electrodes. The electrode unit for the electrostatic precipitator is characterized in that the processing gas is passed through the corona discharge atmosphere to collect the dust, and this unit solves the problems of the conventional electrodes.
In the present invention, the electrode unit is configured in a flat plate shape or a box shape using the ladder electrode and the flat plate electrode, so that a large number of exhaust gas processing electrodes can be easily configured only by stacking a large number of flat plate units. . In addition, since the electrode unit has a flat plate shape or a box shape, useless space generated when bundling conventional cylindrical electrode units can be eliminated, and an equivalent gas treatment can be performed with a small number of units. Since the ladder electrode disposed in the electrode unit can be configured with a stainless steel screw rod, the manufacturing cost can be greatly reduced.
[0008]
[Means for Solving the Problems]
For this reason, the technical solution means adopted by the present invention is:
Ladder-like electrode 1 in which vertical screw rods 1a and 1b made of a conductor are arranged to face each other , and horizontal screw rods 1c made of a plurality of conductors are arranged and fixed between the screw rods , It comprises plate-like insulating members 4, 4 arranged at a predetermined interval with respect to the ladder-like electrode 1, and a plate electrode 5 arranged on the outer surface of the insulating members 4, 4, and the ladder-like electrode 1 and the plate electrode 5 is an electrode unit for an electrostatic precipitator, characterized in that a processing gas can pass through a corona discharge atmosphere generated between the two electrodes connected to an AC power source.
An electrode unit for an electrostatic precipitator, wherein an insulating member 6 is further arranged outside the flat plate electrode 1.
In addition, an electrode support member 23 having a plurality of electrode support grooves 22 formed with a predetermined interval and vertical screw rods 21a and 21b made of a conductor are arranged to face each other, and a plurality of gaps are provided between the screw rods at a predetermined interval. Ladder-shaped electrode 21 in which horizontal screw rod 21c made of a conductor is disposed and fixed , flat plate electrode 25 sandwiched by plate-shaped insulating member 26, and end insulation that is disposed and fixed at both ends of electrode support member 23. comprising a timber 24, the electrode support member 23 and disposed opposite the end portion the insulating material 24 at both ends of the electrode support member 23 is provided, further wherein the ladder-shaped electrode alternately opposing electrode support groove 22 21 and the plate electrode 25 are inserted and supported, and the ladder electrode 21 and the plate electrode 25 are connected to an AC power source.
The horizontal screw rod 1c formed of the plurality of conductors, 21c is an electric precipitator dexterity electrode unit, characterized in that it consists scan Tenresuneji rod having the same diameter.
Further, in the horizontal screw rods 1c, 21c made of the plurality of conductors , grooves 10, 11, 12 having a predetermined shape are formed at positions corresponding to the flat plate electrodes. It is.
A pair of support members 3 are arranged between the plate-like insulating members 4 and 4 so as to keep them at a predetermined distance, and the ladder-like electrode is configured in an electrode support groove formed in the support member. It is an electrode unit for electrostatic precipitators, characterized in that the opposing vertical screw rods 1a, 1b are housed and arranged.
The ladder-like electrode is an electrode unit for an electrostatic precipitator, wherein the ladder-like electrode is formed by bending a screw rod , and a spacer is provided on the ladder-like electrode as a spacer for maintaining a distance from the flat plate electrode. .
[0009]
[Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
1 is a schematic perspective view of an electrode unit for a dust collector according to the present invention, FIG. 2 is a plan view, an elevation view, and a side view of the electrode unit, and FIG. 3 is an arrangement relation diagram between a support member and a ladder electrode, 4 is a diagram for explaining a discharge state of the electrode unit.
[0010]
The electrode unit for the dust collector of the first embodiment is an electrode unit as a minimum unit. In FIG. 1 and FIG. 2, reference numeral 1 denotes a ladder electrode constituted by screw rods of the same standard. Screw rods 1a and 1b (hereinafter referred to as vertical screw rods) constituting the conductor to be connected and screw rods (hereinafter referred to as horizontal screw rods) composed of conductive rods arranged and fixed substantially perpendicular to the vertical screw rods 1a and 1b. 1c ··).
The vertical screw rods 1a and 1b and the horizontal screw rod 1c are connected and fixed by welding, and one of the vertical screw rods 1b is formed longer than the other as shown in FIGS. Yes.
[0011]
As shown in FIG. 4, the horizontal screw rod 1c... Has a rectangular shape 10 at the portion facing the flat plate electrode 5 so that the corona generated for each screw thread extends stably to the flat plate electrode 5 (described later). Grooves such as the mold 11 are formed. This groove is preferably of the same shape for each horizontal screw rod 1c... But can be changed for each horizontal screw rod, and the portion facing the flat plate electrode of the horizontal screw rod instead of the groove Of course, the corners may be formed by chamfering.
In this example, a commercially available stainless steel screw rod having a diameter of 5 to 6 mm is used for the ladder electrode 1, and the interval between the vertical screw rods 1 a and 1 b (L in the figure) is 400 mm or more, and the horizontal The pitch P between the screw rods 1c is set to an appropriate interval (for example, an appropriate interval from an interval of about 40 mm to 100 mm) while observing the discharge state.
In the above example, both the vertical and horizontal screw rods use the same standard screw rods to reduce the cost. However, as described later, the vertical screw rods do not contribute to discharge, so a predetermined current is applied. It is also possible to use a simple round bar or electric wire that can flow. In addition, even if a ladder-shaped electrode is formed using a conductive rod (rod-shaped body such as round, triangular, square, etc.) instead of vertical and horizontal screw rods, It is possible to generate a discharge.
[0012]
On both surfaces of the ladder-like electrode 1, plate-like insulating members 4, 4 having a thickness of several millimeters are arranged and fixed facing each other with a support member 3 so as to sandwich the ladder-like electrode 1.
The support member 3 includes an electrode support groove 3a as shown in FIG. 3, and vertical screw rods 1a and 1b constituting the ladder electrode 1 are housed and fixed in the electrode support groove 3a. The support member 3 is formed of a square bar made of an insulating material, and the thickness of the support member 3 (that is, the interval between the plate-like insulating members 4 and 4) is the distance between the screw rod electrode and the plate electrode 5. Is set as the optimum thickness, but it has been found from the experimental results so far that the distance between the electrodes is preferably about 10 to 20 mm. In addition, since it was set as the structure which supports a ladder-shaped electrode using the electrode support groove | channel 3a, management of the distance of a ladder-shaped electrode and a flat plate electrode (after-mentioned) becomes very easy by this electrode support groove | channel 3a, and an electrode unit Assembly is also easy.
On the other hand, as shown in FIGS. 1 and 2, the plate-like insulating members 4 and 4 are fixed to the support member 3 by appropriate means with the support member 3 sandwiched between them. The flat plate electrode 5 is attached corresponding to the range in which the horizontal screw rods 1c. Moreover, the insulating member 6 (refer FIG. 3) is arrange | positioned so that a flat electrode may be coat | covered on the outer side of the flat electrode 5, and the safety | security is ensured.
In the present embodiment, the insulating members 4 and 6 and the supporting member 3 are made of a glass material (sheet glass), but it is also possible to use a material such as ceramics having insulation properties. The flat plate electrode 5 is made of, for example, a thin film or a thin plate made of an aluminum material. When the flat plate electrode 5 is extended outside the outer periphery of the electrode unit, the extended portion has a heat dissipation effect in the electrode unit. It is also possible to fulfill the function as a radiator that fulfills the above.
[0013]
In the electrode unit configured as described above, when an AC power source is applied between the one-side vertical screw rod 1b of the ladder electrode 1 and the flat plate electrode 5, the angle formed by each screw thread and groove of the horizontal screw rod 1c. Corona discharge is stable over the entire length of each horizontal screw rod between the plate-like insulating members 4, 4 every 10a, 11a, 12a (see FIG. 4), and discharge starts between the plate electrodes 5, 5. A state is obtained. In particular, when a screw rod is used for the ladder-like electrode, a corona discharge is generated for each sharply formed screw thread, so that a stable discharge state can be obtained.
Then, when the exhaust gas to be processed is flowed in the discharge atmosphere between the plate-like insulating members 4 and 4 as shown in FIG. 1, for example, from the A direction to the B direction, the exhaust gas is subjected to corona discharge. As a result, harmful substances are removed in the corona discharge by decomposition, adsorption or the like according to a known theory. Since corona discharge is generated between the horizontal screw rods 1c and the flat plate electrode 5, the exhaust gas passes through the corona discharge atmosphere generated corresponding to the number of horizontal screw rods and passes through the unit. Will pass. Further, in the above electrode unit, the flat plate electrodes are arranged on both sides of the ladder electrode, but it is natural that only one side may be provided.
[0014]
Next, a usage example of the electrode unit will be described with reference to FIG. 5. FIG. 5 is an example in which 20 electrode units of the minimum unit are combined. In this example, the exhaust gas flowed from the A direction by a blower or the like passes through the corona discharge atmosphere in each unit, is processed, becomes a clean gas, and is discharged from the unit in the B direction.
[0015]
Next, a second embodiment according to the present invention will be described.
In the first embodiment described above, an electrode unit as one minimum unit is constituted by one ladder-like electrode and two plate electrodes corresponding thereto, but the second embodiment has a plurality of ladder-like electrodes. And a plurality of flat plate electrodes corresponding to this, it is characterized in that it constitutes a single large box-shaped electrode unit, which increases the processing capacity of one unit and increases the assembly of the unit. I'm doing better.
FIG. 6 is a perspective view of the entire electrode unit according to the second embodiment, a perspective view of a ladder electrode and a plate electrode constituting the unit, and FIG. 7 is a plan view of the electrode unit.
[0016]
The electrode unit 20 includes two plate-like electrode support members 23 and an end insulating material 24, and is in a box-shaped space surrounded by the opposing electrode support members 23 and 23 and the end insulating material 24. In addition, a plurality of ladder electrodes 21 and plate electrodes 25 can be supported.
The electrode support member 23 is made of an insulating material such as glass or ceramics, and includes a plurality of electrode support grooves 22 that support the ladder electrode and the plate electrode as shown in FIG.
The electrode support groove 22 is formed with a groove pitch so that the distance between the ladder electrode 21 and the flat plate electrode 25 is an optimum distance. The distance management is extremely easy, and the assembly of the electrode unit is also facilitated.
[0017]
The ladder-like electrode 21 is formed in a ladder shape as shown in FIG. 6 by welding the vertical screw rods 21a and 21b and the horizontal screw rod 21c. One vertical screw rod 21a is connected to the AC power source 2 from the other so that it can be connected. Is also formed long. The flat plate electrode 25 is formed in a laminated glass shape in which the flat plate electrode 25 is sandwiched between two plate-like insulating members (plate glass, ceramics, etc.) 26 and 26, and the flat plate electrode 25 is connected to the AC power source 2. Lead wire 27 is attached.
The electrode support members 23 are arranged opposite to each other, and ladder-like electrodes 21 and plate-like electrodes 25 are alternately inserted and fixed in the electrode support grooves 22 of the two opposite electrode support members as shown in FIG. The box-shaped electrode unit is configured by fixing the end insulating material 24 to both ends of the electrode support member 23. The long end of the ladder electrode and the lead wire of the plate electrode are connected to the conductors 28a and 28b (see FIG. 6), and an AC power source is connected between the conductors.
[0018]
In the electrode unit configured in this way, exhaust gas treatment is performed by flowing exhaust gas in the direction of the arrow shown in FIG. 6 in the corona discharge atmosphere in the electrode unit, and the exhaust gas is discharged from the electrode unit in the B direction as clean gas.
Since the electrode unit of the second embodiment is configured as a box-shaped unit combining a plurality of ladder electrodes and flat plate electrodes, there is no need to assemble a plurality of minimum unit units as in the first embodiment. Is easy to handle. In addition, an electrode unit can be configured simply by inserting the ladder-like electrode 21 and the plate-like electrode 25 later into the opposing electrode support groove 22 of the electrode support member 23 that has been assembled in a box shape in advance. . Furthermore, since the ladder electrode and the plate electrode can be connected to the AC power supply via the conductors 28a and 28b, the wiring arrangement can be greatly simplified.
[0019]
The material constituting the ladder electrode is not necessarily limited to the screw rod, and various materials can be used as long as a discharge phenomenon occurs between the plate electrode and the shape of the ladder electrode. It is also possible to use one that is bent as shown in FIG. 8 (a) (in this specification, the ladder electrode is defined in a broad sense including the shape shown in FIG. 8 (a)). When the ladder-shaped electrode having the shape shown in FIG. 8 (a) is used, a spacer as a support member that maintains a constant distance from the flat plate electrode as shown in FIG. 8 (b) instead of the above-described support member. In this way, the electrode support groove formed in the electrode support member becomes unnecessary, and the groove processing can be omitted. Furthermore, it is a matter of course that the material of the flat plate electrode can be freely changed, such as a sheet material, a plate material, and the like.
Further, the support member 3 and the plate-like insulating member 4 of the first embodiment, or the electrode support member 23 and the end insulating material 24 of the second embodiment can be configured as an integrated glass molded product. By doing so, it is possible to avoid a situation such as an insulation failure due to an adhesion failure of the connecting portion of the support member and the insulation member.
Furthermore, it is natural that the discharge electrode unit of the above embodiment can be used not only for exhaust gas treatment and the like, but also for the discharge electrode of an ozone generator.
The present invention can be carried out in various other forms without departing from the spirit or main features thereof, and the above-described embodiments are merely examples in all respects and should not be interpreted in a limited manner. .
[0020]
【The invention's effect】
As described above in detail, according to the present invention, since the electrode unit is formed in a flat plate shape, an electrode for an electrostatic precipitator corresponding to the amount of processing gas can be easily configured by appropriately combining the number of electrode units. Further, since the electrode unit has a flat plate shape, a useless space generated when bundling conventional cylindrical electrode units can be eliminated, and an equivalent gas treatment can be performed with a small number of units. Since the ladder electrode and the flat plate electrode connected to the power source are housed in the support member and are not exposed to the outside, excellent operational effects such as extremely high safety can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an electrode body for a dust collector according to the present invention.
FIG. 2 is a plan view, an elevation view, and a side view of the electrode.
FIG. 3 is an arrangement relation diagram between a support member and a ladder electrode.
FIG. 4 is a diagram for explaining a discharge state of the main electrode.
FIG. 5 is a diagram for explaining a use state of the present electrode.
FIG. 6 is a perspective view of an entire electrode unit according to a second embodiment, and a perspective view of a ladder electrode and a plate electrode constituting the unit.
FIG. 7 is a plan view of the electrode unit.
8A is a view showing a modified example of the ladder electrode, and FIG. 8B is a plan view and a side view showing the relationship between the folded ladder electrode and the spacer.
[Explanation of symbols]
1 Ladder electrode 1a, 1b Opposing conductor (vertical screw rod)
1c Lateral screw rod 2 AC power source 3 Support member 4, 6 Insulation member 5 Flat plate electrodes 10, 11, 12 Groove 21 Ladder electrode 22 Electrode support groove 23 Electrode support member 24 End insulation 25 Flat plate electrode 26 Plate insulation member

Claims (7)

導電体からなる縦ネジ棒1a、1bを対向して配置し、このネジ棒間に所定の間隔で複数の導電体からなる横ネジ棒1cを配置、固定してなる梯子状電極1と、前記梯子状電極1に対して所定の間隔を以て配置した板状絶縁部材4、4と、該絶縁部材4、4の外側表面に配置した平板電極5とを備え、前記梯子状電極1と前記平板電極5とを交流電源に接続し、前記両電極間で発生したコロナ放電雰囲気中を処理ガスが通過できるようにしたことを特徴とする電気集塵器用電極ユニット。Ladder-like electrode 1 in which vertical screw rods 1a and 1b made of a conductor are arranged to face each other , and horizontal screw rods 1c made of a plurality of conductors are arranged and fixed between the screw rods , It comprises plate-like insulating members 4, 4 arranged at a predetermined interval with respect to the ladder-like electrode 1, and a plate electrode 5 arranged on the outer surface of the insulating members 4, 4, and the ladder-like electrode 1 and the plate electrode 5 is connected to an AC power source, and the treatment gas can pass through the corona discharge atmosphere generated between the two electrodes. 前記平板電極1の外側にさらに絶縁部材6を配置してなることを特徴とする請求項1に記載の電気集塵器用電極ユニット。The electrode unit for an electrostatic precipitator according to claim 1, wherein an insulating member (6) is further arranged outside the flat electrode (1). 所定の間隔を以て形成された複数の電極支持溝22を有する電極支持部材23と、導電体からなる縦ネジ棒21a、21bを対向して配置しこのネジ棒間に所定の間隔で複数の導電体からなる横ネジ棒21cを配置、固定してなる梯子状電極21と、板状絶縁部材26によって挟持された平板電極25と、前記電極支持部材23の両端部に配置固定する端部絶縁材24を備え、前記電極支持部材23を対向させて配置し、前記電極支持部材23の両端部に端部絶縁材24を設け、さらに互いに対向する電極支持溝22内に交互に前記梯子状電極21および前記平板電極25を挿入支持し、前記梯子状電極21と平板電極25とを交流電源に接続したことを特徴とする電気集塵器用電極ユニット。 An electrode support member 23 having a plurality of electrode support grooves 22 formed with a predetermined interval and vertical screw rods 21a and 21b made of a conductor are arranged to face each other, and a plurality of conductors are provided at a predetermined interval between the screw rods. A ladder-shaped electrode 21 formed by fixing and arranging a horizontal screw rod 21c, a flat plate electrode 25 sandwiched by a plate-like insulating member 26, and an end insulating material 24 arranged and fixed at both ends of the electrode support member 23. the provided, the electrode support member 23 and disposed opposite the electrode ends insulating material 24 at both ends of the support member 23 is provided, further wherein the ladder-shaped electrode 21 and alternately opposing electrode support groove 22 An electrode unit for an electrostatic precipitator, wherein the plate electrode 25 is inserted and supported, and the ladder electrode 21 and the plate electrode 25 are connected to an AC power source. 前記複数の導電体からなる横ネジ棒1c、21cは、同径のステンレスネジ棒から成ることを特徴とする請求項1または3に記載の電気集塵器用電極ユニット。 Wherein the plurality of conductive transverse threaded rod 1c made of, 21c, the electrical dust collecting dexterity electrode unit according to claim 1 or 3, characterized in that it consists scan Tenresuneji rod having the same diameter. 前記複数の導電体からなる横ネジ棒1c、21cには、平板電極と対応する位置に所定形状の溝10、11、12が形成されてなることを特徴とする請求項1〜請求項4のいずれか1項に記載の電気集塵器用電極ユニット。 The horizontal screw rods 1c, 21c made of a plurality of conductors are formed with grooves 10, 11, 12 having predetermined shapes at positions corresponding to the flat plate electrodes. The electrode unit for electric dust collectors of any one of Claims 1. 前記板状絶縁部材4、4の間にはそれらを所定距離保って配置するための一対の支持部材3が配置され、この支持部材に形成した電極支持溝内に前記梯子状電極を構成する対向する縦ネジ棒1a、1bを収納配置してなることを特徴とする請求項1に記載の電気集塵器用電極ユニット。A pair of support members 3 are arranged between the plate-like insulating members 4 and 4 so as to keep them at a predetermined distance, and are opposed to each other to constitute the ladder-like electrode in an electrode support groove formed in the support member. 2. The electrode unit for an electrostatic precipitator according to claim 1, wherein the vertical screw rods 1a and 1b are housed and arranged. 前記梯子状電極は、ネジ棒を折り曲げ加工して形成し、この梯子状電極に平板電極との間隔保持材としてのスペーサを設けてなることを特徴とする請求項1または請求項3に記載の電気集塵器用電極ユニット。4. The ladder-like electrode according to claim 1, wherein the ladder-like electrode is formed by bending a screw rod , and a spacer is provided on the ladder-like electrode as a spacer for maintaining a distance from the flat plate electrode. Electrode unit for electric dust collector.
JP18835598A 1998-07-03 1998-07-03 Electrode dust collector electrode unit Expired - Fee Related JP4015757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18835598A JP4015757B2 (en) 1998-07-03 1998-07-03 Electrode dust collector electrode unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18835598A JP4015757B2 (en) 1998-07-03 1998-07-03 Electrode dust collector electrode unit

Publications (2)

Publication Number Publication Date
JP2000015137A JP2000015137A (en) 2000-01-18
JP4015757B2 true JP4015757B2 (en) 2007-11-28

Family

ID=16222183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18835598A Expired - Fee Related JP4015757B2 (en) 1998-07-03 1998-07-03 Electrode dust collector electrode unit

Country Status (1)

Country Link
JP (1) JP4015757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110792498A (en) * 2019-11-15 2020-02-14 西安航空学院 Automobile exhaust emission pretreatment device capable of purifying flue gas

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006046628A1 (en) * 2004-10-28 2006-05-04 Hino Motors, Ltd. Exhaust gas cleaner
JP4540449B2 (en) * 2004-10-28 2010-09-08 日野自動車株式会社 Exhaust purification device
JP4556691B2 (en) * 2005-02-04 2010-10-06 トヨタ自動車株式会社 Exhaust gas purification device
KR101166068B1 (en) 2011-12-26 2012-07-23 광성(주) Electrostatic particulate matters removing system for ship
CN106733196B (en) * 2017-02-08 2019-10-22 珠海格力电器股份有限公司 Electrostatic modular structure, electrode assembly and its electrode plate structure

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5278175A (en) * 1975-12-25 1977-07-01 Chiyoda R & D Allllayer corona discharge method
JPS577270A (en) * 1980-06-13 1982-01-14 Hitachi Plant Eng & Constr Co Ltd Electric dust catcher
JPS5756056A (en) * 1980-09-19 1982-04-03 Fuji Electric Co Ltd Electrostatic precipitator
JP2503839Y2 (en) * 1989-10-06 1996-07-03 ナイルス部品 株式会社 Exhaust gas purification device
JP2987310B2 (en) * 1995-05-09 1999-12-06 住友重機械工業株式会社 Electrode for electrostatic precipitator
JP3411157B2 (en) * 1996-05-30 2003-05-26 株式会社コロナ Electric dust collector for air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110792498A (en) * 2019-11-15 2020-02-14 西安航空学院 Automobile exhaust emission pretreatment device capable of purifying flue gas
CN110792498B (en) * 2019-11-15 2020-09-25 西安航空学院 Automobile exhaust emission pretreatment device capable of purifying flue gas

Also Published As

Publication number Publication date
JP2000015137A (en) 2000-01-18

Similar Documents

Publication Publication Date Title
KR102336514B1 (en) Electrical precipitator and manufacturing method for precipitation unit
JP4015757B2 (en) Electrode dust collector electrode unit
JP2006100031A (en) Gas excitation apparatus with insulator coating layer supported electrode and gas excitation method
WO1992006917A1 (en) Active-species generator using covered small-gage wire electrode
JP2011011106A (en) Plasma reactor
CN107684977A (en) A kind of electrodecontamination structure and include its air cleaning unit
JP7295945B2 (en) new plasma air purifier
JP2004103257A (en) Ion generating element, ion generating device equipped with same, and electrical apparatus
US11291102B2 (en) Corona effect plasma device and plasma reactor
JP2004105517A (en) Ion generating element, method for producing the same, ion generator, and electric appliance with the generator
JPH1190265A (en) Film electric dust-collecting filter
KR100601394B1 (en) An air cleaner
CN109967247B (en) High-voltage electrostatic purifying device
KR100600756B1 (en) Surface discharge type air cleaning device
CN108472662A (en) Particle-like substance burner
JP4556691B2 (en) Exhaust gas purification device
JP2004261717A (en) Gas cleaning apparatus and discharge reaction body used for the same
CN103111168A (en) Large-air-volume low-concentration plasma exhaust gas treatment device
RU2393021C9 (en) Electric air cleaner
JP3585996B2 (en) Electric dust collector
KR20220025844A (en) A device for purifying particulates present in smoke and exhaust gases from combustion processes
KR102531601B1 (en) DBD plasma generator and manufacturing method thereof
JP5223424B2 (en) Dust collector
KR200312736Y1 (en) Ionizer for electric dust collector
KR102484322B1 (en) Electric precipitation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070914

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees