JP4015354B2 - Gasification furnace monitoring device - Google Patents

Gasification furnace monitoring device Download PDF

Info

Publication number
JP4015354B2
JP4015354B2 JP2000296928A JP2000296928A JP4015354B2 JP 4015354 B2 JP4015354 B2 JP 4015354B2 JP 2000296928 A JP2000296928 A JP 2000296928A JP 2000296928 A JP2000296928 A JP 2000296928A JP 4015354 B2 JP4015354 B2 JP 4015354B2
Authority
JP
Japan
Prior art keywords
fluid
flow rate
pressure
cleaning
gasification furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000296928A
Other languages
Japanese (ja)
Other versions
JP2002105464A (en
Inventor
克彦 横濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000296928A priority Critical patent/JP4015354B2/en
Publication of JP2002105464A publication Critical patent/JP2002105464A/en
Application granted granted Critical
Publication of JP4015354B2 publication Critical patent/JP4015354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、微粉炭用ガス化炉内等の、高温の含粉体ガスが通流するガス化炉内の状況を、機器収納部内に収納された撮像手段により透明窓を通して撮像可能に構成されたガス化炉内撮像装置を用いて前記ガス化炉内のガスの状態を監視するガス化炉内監視装置に関する。
【0002】
【従来の技術】
図3は微粉炭をガス化する石炭ガス化装置の要部を示す構成図である。図において200はガス化炉であり、01は微粉炭及びチャーを溶融させて高温ガスを発生させる燃焼段を構成するコンバスタ、02は前記コンバスタ1で発生した高温ガスにより後述するリダクタバーナ05から噴出される微粉炭を加熱し熱分解させるガス化段を構成するリダクタである。
前記コンバスタ01には、微粉炭供給装置07から窒素等の搬送ガスにより搬送された微粉炭をガス化剤供給管06からのガス化剤とともに該コンバスタ01内に噴出させるコンバスタバーナ03、及びガス分離後のチャーを該コンバスタ01内に噴出させるチャーバーナ04が設けられている。また、前記リダクタ02には、前記微粉炭供給装置07から前記搬送ガスにより搬送された微粉炭を前記リダクタ02内に噴出させるリダクタバーナ05が設けられている。
【0003】
015は搬送ガス管で、該搬送ガス管015内の搬送ガスにより微粉炭供給装置07からの微粉炭を前記コンバスタバーナ03及びリダクタバーナ5に搬送するとともに、生成ガス分離後のチャーをチャーバーナ04に搬送する。011は前記リダクタ02にて生成された熱分解ガスを搬送するための生成ガス管、012は該生成ガス管011を送られてきた前記熱分解ガスからチャーを分離するサイクロンであり、該サイクロン012にて分離されたチャーはチャー供給装置013によりチャー供給管014及び前記チャーバーナ04を介して前記コンバスタ01に供給されるようになっている。04はガス化炉の起動時における軽油燃焼用の下部コンバスタである。
【0004】
かかる石炭ガス化装置において、前記コンバスタ01においては、前記コンバスタバーナ03から搬送ガスにより搬送された微粉炭が噴出されるとともに、前記のようにチャーバーナ04からチャーが供給され、ガス化剤により高温、高負荷燃焼が行われる。かかる燃焼によって発生する2000℃程度の高温ガスは、上方にある前記リダクタ02に送られる。一方、該コンバスタ01における高温燃焼によって前記石炭中の灰分が溶融化され、溶融スラグとなって、前記下部コンバスタ041下方のスラグホールから自然落下し、系外に排出される。
【0005】
また、前記リダクタ02においては、前記リダクタバーナ05から前記のように搬送ガスにより搬送された微粉炭が噴出され、前記コンバスタ01からの高温ガスによって熱分解され、ガス化が行われる。かかるガス化作用により生成された生成ガスは、該リダクタ02から送出され、生成ガス管011を通って前記サイクロン012に入り、前記のようにチャーの分離がなされた後、ガスタービン等の使用先に送られる。
【0006】
かかる石炭ガス化装置においては、ガス化炉200内部における流動スラグの状況等の、炉内の燃焼状況を監視するための炉内撮像装置100が、炉壁に取り付けられている。21は前記炉内撮像装置100に接続された画像処理装置である。
かかる炉内撮像装置100は、本体の内部にカメラ等の撮像手段が設けられた機器収納部とガス化炉内とを透明窓により遮蔽し、前記撮像手段により透明窓を通して前記ガス化炉内を撮像するように構成されており、その中の一つに特許第2891672号の発明がある。
【0007】
かかる発明においては、撮影部を構成する複数の筒部材の間に形成された円筒状空間の一つと、前記各筒部材の先端側に形成された透明な監視窓を介して入射した光像を電気信号に変換するビデオカメラが配置されている前記筒部材中心部空間とに前記撮影部の元端側から冷却エアーを注入して撮影部を冷却するとともに、この冷却エアーを前記監視窓から前記撮影部の外側に放出させるように構成されている。
【0008】
【発明が解決しようとする課題】
前記ガス化炉200の炉内は、運転時には10〜30kgf/cm程度の圧力を有する高温の含粉体ガスが通流していることから、かかる炉内に臨んで取り付けられている炉内撮像装置100にあっては、前記のような高温高圧の炉内と、カメラ等の撮像手段が設けられた機器収納部との間のガスシールを充分になして、炉内ガスの機器収納部への侵入を確実に防止することが要求される。
【0009】
しかしながら、前記特許第2891672号にて提供されている従来技術にあっては、透明な監視窓の周囲を筒部材の開口部内周に固定しているにとどまるため、前記のような高温高圧の炉内監視に用いる場合には、高圧の炉内と常圧のビデオカメラ配置空間との圧力差により、監視窓のシール部にシール不良が発生し易く、かかるシール不良により炉内ガスがビデオカメラ配置空間に侵入して、これら内部機器の機能不良や破損を誘発するという問題点を有している。
【0010】
また、かかる炉内撮像装置100にあっては、カメラ等の炉内撮像機器が収納されている内部空間は、機器の機能を維持するため、温度上昇を抑制して一定温度以下に保持することを要するが、前記従来技術にあっては、炉内と撮像機器が収納されている内部空間との間は透明な監視窓により遮蔽されているにとどまり、該内部空間の温度の調整手段を有しないため、炉内から監視窓を通しての伝熱あるいは輻射により前記内部空間の温度が前記撮像機器の耐熱温度よりも上昇して、撮像機器の機能不良や破損発生の恐れがあるという問題点を有している。
【0011】
本発明はかかる従来技術の課題に鑑み、ガス化炉等の高温高圧ガスが通流するガス化炉の内部を監視するガス化炉内監視装置において、高圧のガス化炉内と撮像機器収納空間との圧力差による監視用透明窓部のシール不良及びこれによる撮像機器の機能不良や破損の発生を防止するとともに、前記撮像機器収納空間内の温度を常時撮像機器の耐熱温度以下に保持して、該撮像機器の過熱による機能不良や破損の発生を防止して、撮像機器の耐久性を向上するとともに、前記監視窓部を常時清浄に保持することを目的とする。
【0012】
【課題を解決するための手段】
本発明はかかる課題を解決するもので、高温の含粉体ガスが通流するガス化炉内に臨んで設置され、本体の内部にカメラを含む撮像手段が設けられた機器収納部と、該機器収納部と前記ガス化炉とを遮蔽する透明窓とを備え、前記撮像手段により前記透明窓を通して前記ガス化炉内を撮像可能に構成されたガス化炉内撮像装置を用いて前記ガス化炉内のガスの状態を監視するガス化炉内監視装置において、
前記本体の内部に、前記透明窓を洗浄する洗浄流体が通流する洗浄流体通路と、前記機器収納部を循環して前記撮像手段を冷却する冷却流体が通流する冷却流体通路とを設けるとともに、流体供給源からの流体が通流する流体管路を洗浄流体管路及び冷却流体管路に分岐し、該洗浄流体管路を前記本体の洗浄流体通路に接続するとともに該冷却流体管路を前記本体の冷却流体通路に接続し、前記冷却流体管路及び洗浄流体管路の何れか一方または双方にこれらの管路を通流する流体の流量を調整する流量調整弁を設け、更に前記機器収納部からの冷却流体通路出口と前記流体供給源の流体入口とを接続する流体戻り管を設け、前記撮像手段冷却後の流体を再循環させるように構成したことを特徴とするガス化炉内監視装置を提案する。
【0013】
この場合に、前記洗浄流体管路の途中に、水等の洗浄液が通流する洗浄液注入管を接続すると共に、該洗浄液注入管の管路を開閉する洗浄液注入弁を設ける
【0014】
又、請求項2記載の発明は、前記本発明に加えて、前記ガス化炉内の圧力を検出するガス化炉圧力検出器と、前記機器収納部内の圧力を検出する内部圧力検出器と、前記ガス化炉内圧力と機器収納部内圧力とを比較し該機器収納部内圧力がガス化炉内圧力以上になるように前記流量調整弁の開度を調整する流量調整弁制御装置とを備えることを特徴とする。
【0015】
請求項記載の発明は、前記本発明に加えて、前記分岐位置上流側に前記流体供給源からの流体管路を流れる流体の流量を調整する流量調整元弁を設けると共に、前記機器収納部の内部温度を検出する内部温度検出器と、該内部温度の検出値と予め設定された内部温度の基準値とを比較し前記内部温度が前記基準値以下になるように前記流量調整元弁の開度を調整する流量調整元弁制御装置とを備えたことを特徴とする。
【0016】
かかる発明によれば、ガス化炉内撮像装置の流体通路を、透明窓を洗浄するための洗浄流体通路と、機器収納部を循環して撮像手段を冷却する冷却流体通路との並行流路に構成し、双方の流体通路における流体の流量を調整する流量調整弁を設けたので、該流量調整弁によって前記冷却流体流量を調整することにより、機器収納部内の圧力をガス化炉内圧力よりも高く保持してガス化炉側から機器収納部内へのガスの侵入を防止できるとともに、前記流量調整元弁の開度を調整することにより機器収納部内の温度を内部機器温度の許容値以下に保持することができる。
これにより、機器収納部内への侵入ガスによる、あるいは機器収納部内の温度上昇に伴う内部機器の機能不良や破損の誘発が防止される。
【0017】
請求項のように構成すれば、流量調整弁制御装置においては、機器収納部内圧力がガス化炉内圧力よりも大きくなるような機器収納部内に供給される冷却空気の流量、及び該流量になるような前記流量調整弁の開度を算出して該流量調整弁に出力する。
これにより、該流量調整弁は前記機器収納部内の圧力がガス化炉内圧力よりも常に大きくなるように、その開度つまり流量を制御されることとなり、機器が収納されている機器収納部内の圧力は常時ガス化炉内圧力よりも大きくなって、ガス化炉内の高温高圧ガスの機器収納部内への侵入が阻止される。
【0018】
請求項のように構成すれば、流量調整元弁制御装置においては、機器収納部の内部温度検出値が基準値即ち許容上限温度よりも小さくなるように管路を流れる流体の流量、及び該流量になるような前記流量調整元弁の開度を算出して該流量調整元弁に出力する。
これにより、該流量調整元弁は前記機器収納部内の温度が機器の許容上限温度よりも常に小さくなるように、その開度つまり流量を制御されることとなる。
従って、前記CCDカメラ、変換器等の機器が収納されている機器収納部内の温度は常時収納機器の許容上限温度以下に保持されることとなり、ガス化炉から透明窓を通しての伝熱あるいは輻射による機器収納部内の温度上昇が抑制され、かかる温度上昇に伴う前記機器の機能不良や破損の誘発が防止される。
【0019】
【発明の実施の形態】
以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
【0020】
図1は本発明の実施例に係る石炭ガス化炉用炉内監視装置の全体構成図、図2は炉内撮像装置の先端部近傍の断面図である。また、図3は本発明が適用される石炭ガス化装置の構成図である。
【0021】
図3に示される石炭ガス化装置の構成および動作は前記した通りであり、本発明はガス化炉200に取り付けられて炉内の状況を撮像する炉内撮像装置100を含む炉内監視装置に係るものである。
かかる炉内監視装置の全体構成を示す図1において、100は炉内撮像装置で、つぎのように構成されている。
6は円筒状の外筒、4は円筒状の内筒、5は該外筒6の内側と内筒4の外側との間に設けられた中間筒である。前記外筒6の内周と中間筒5の外周との間には環状の洗浄空気通路2が形成され、また前記中間筒5の内周と内筒4の外周との間には環状の冷却空気通路3が形成され、さらに前記内筒4の内部には冷却空気出口通路30が形成されている。
【0022】
1は透明な耐熱ガラスからなる透明窓で、前記中間筒5の先端部に、外周にシールを施され、外面を炉内101に面し固定リング43(図2参照)を介して固定されている。39は前記透明窓1の内面と前記中間筒5の内周面とにより区画形成された機器収納部で、該機器収納部39には前記透明窓1の背部に位置してCCDカメラ32、該CCDカメラ32からの撮像信号を電気信号に変換する変換器33等が収納されている。38は前記該CCDカメラ32及び変換器33の取付台である(図2参照)。
7は前記中間筒5の先端部に円周方向に沿って複数個穿孔された噴出孔で、前記洗浄空気通路2の先端部側(炉内101側)から前記透明窓1の外面に向けて穿孔され、前記洗浄空気通路2を通った洗浄空気40が前記透明窓1の外面にむら無く吹き付けられるように配されている。前記中間筒5の根元部にはボス部5aが形成され、該ボス部5aの両面に前記外筒6の根元部及び内筒4の根元部が夫々固定されている。
【0023】
9は前記中間筒5のボス部5aに設けられた冷却空気入口で、前記冷却空気通路3に連通されている。8は前記外筒6の根元部近傍に設けられた洗浄空気入口で、前記洗浄空気通路2に連通されている。31は空気出口室で、前記冷却空気出口通路30が開口されている。53は該空気出口室31を覆うカバーである。
また21は前記機器収納部39内の変換器33からの撮像信号(電気信号)が回線021を介して入力され、該撮像信号に所要の処理を施す画像処理装置である(該画像処理装置21は公知のものであるので詳細な説明は省略する)。
【0024】
14は空気圧縮機等の空気供給源、20は該空気供給源からの加圧空気が通流する空気管である。該空気管20は冷却空気管10と洗浄空気管11とに分岐されている。そして該冷却空気管10は前記冷却空気通路3の冷却空気入口9に接続され、洗浄空気管11は前記洗浄空気通路2の洗浄空気入口8に接続されている。12は前記冷却空気管10に設けられて、その管路面積即ち冷却空気の流量を調整する絞り弁である。また13は前記空気管20に設けられて、その管路面積即ち前記空気供給源14からの空気の流量を調整する空気元弁である。
19は前記洗浄空気管11の途中に接続される水注入管、18は該水注入管19の管路を開閉する水注入弁である。
【0025】
23は前記炉内101の圧力を検出する炉内圧力検出器、22は前記空気出口室31の圧力即ち前記機器収納部39の圧力を検出する本体内圧力検出器である。また50は前記機器収納部39内における前記CCDカメラ32、変換器33等の機器の温度(機器収納部39内における前記機器の近傍の温度でも良い)を検出する温度検出器である。
15は制御装置であり、前記空気元弁13の開度を制御する空気元弁制御装置16及び前記絞り弁12の開度を制御する絞り弁制御装置17からなる。該空気元弁制御装置16には、前記温度検出器50からの機器収納部39内の温度検出信号が回線37を介して入力されている。また前記絞り弁制御装置17には、前記炉内圧力検出器23からの炉内圧力の検出信号が回線35を介して入力され、前記本体内圧力検出器22からの機器収納部内圧力の検出信号が回線36を介して入力されている。
【0026】
かかる構成からなるガス化炉の炉内監視装置において、前記空気供給源14から送り出された加圧空気は前記空気元弁13により流量を制御されて空気管20を通流してから冷却空気管10と洗浄空気管11とに分流する。該冷却空気管10に導入された冷却空気41は前記絞り弁12により流量を制御されて、図の実線矢印のように、前記炉内撮像装置100の冷却空気入口9及び冷却空気通路3を経て機器収納部39に入り、該機器収納部39内に設けられたCCDカメラ32、変換器33等の機器を冷却し昇温された後、冷却空気出口通路30を通って空気出口室31に導かれる。
そして、該空気出口室31の冷却空気41は空気戻り管51を通流し、途中で空気冷却器52により冷却、降温され、前記空気供給源14に戻される。
【0027】
一方、前記洗浄空気管11に導入された洗浄空気40は、図の破線矢印のように、炉内撮像装置100の洗浄空気入口8及び洗浄空気通路2を経て、該洗浄空気通路2先端部に設けられた複数の噴出孔7から前記透明窓1の外面に万遍なく吹き付けられ、該外面を洗浄する。
また、前記透明窓1外面の汚れが著しい場合には前記水注入弁18を開き、洗浄水を前記洗浄空気管11内に投入し、洗浄空気とともに噴出孔7から前記透明窓1の外面に吹き付ける。これにより、空気と水との混合流によって透明窓1の汚れを確実に除去することができ、該透明窓1は常時清浄に保持される。
【0028】
次に、前記絞り弁制御装置17においては、前記本体内圧力検出器22からの機器収納部内圧力検出値Pと炉内圧力検出器23からの炉内圧力検出値Pとの差圧ΔP=P―Pを算出する。そして該絞り弁制御装置17においては、前記差圧ΔP<0、つまり炉内圧力Pが機器収納部内圧力Pよりも高いときには、機器収納部39内の圧力Pを炉内圧力P以上にせしめる流量に相当する前記絞り弁12の開度を算出し絞り弁12に出力する。これを受けて該絞り弁12はその開度が大きくなり、冷却空気41の流量が増加して機器収納部39内の圧力Pが炉内圧力P以上となる。
【0029】
即ち、該絞り弁制御装置17においては、前記差圧ΔP>0、つまりP>Pになるような機器収納部39内に供給される冷却空気41の流量、及び該流量になるような前記絞り弁12の開度を算出して、該絞り弁12に出力する。
これにより、該絞り弁12は前記絞り弁制御装置17によって、前記機器収納部39内の圧力Pが炉内圧力Pよりも常に大きくなるように、その開度つまり流量を制御されることとなる。従って、前記CCDカメラ32、変換器33等の機器が収納されている機器収納部39内の圧力は常時炉内101の圧力よりも大きくなっており、炉内101の高温高圧ガスが機器収納部39内に侵入するのが阻止され、かかる侵入ガスによる前記機器の機能不良や破損の誘発が防止される。
【0030】
また、前記空気元弁制御装置16においては、前記温度検出器50からの機器収納部39内の温度検出値Tと、予め設定されている前記CCDカメラ32、変換器33等の機器収納部39内収納機器の許容上限温度Tとを比較する。そして該空気元弁制御装置16においては、機器収納部39内の温度Tを前記許容上限温度T以下にせしめる空気の流量に相当する前記空気元弁13の開度を算出する。これを受けて該空気元弁13はその開度が大きくなり、空気管20を流れる空気の流量が増加して機器収納部39内の温度Tが前記許容上限温度T以下となる。
【0031】
即ち該空気元弁制御装置16においては、前記温度検出値Tが前記許容上限温度Tよりも小さくなる、つまりT>Tとなるように空気管20を流れる空気の流量、及び該流量になるような前記空気元弁16の開度を算出して該空気元弁16に出力する。
これにより、該空気元弁16は前記空気元弁制御装置16によって、前記機器収納部39内の温度Tが収納機器の許容上限温度Tよりも常に小さくなるように、その開度つまり流量を制御されることとなる。
従って、前記CCDカメラ32、変換器33等の機器が収納されている機器収納部39内の温度は常時収納機器の許容上限温度以下に保持されることとなり、炉内101から透明窓1を通しての伝熱あるいは輻射による機器収納部39内の温度上昇が抑制され、かかる温度上昇に伴う前記機器の機能不良や破損の誘発が防止される。
【0032】
尚、前記洗浄空気管11の内径を冷却空気管10の内径よりも十分に大きく構成し、絞り弁12を洗浄空気管11に設けることもできる。
また、前記絞り弁12を固定式の絞りとして前記絞り弁制御装置17を省略し、また、前記空気元弁13を手動式として前記空気元弁制御装置16を省略することも可能である。
【0033】
【発明の効果】
以上記載の如く本発明によれば、ガス化炉内撮像装置の流体通路を、透明窓を洗浄するための洗浄流体通路と、機器収納部を循環して撮像手段を冷却する冷却流体通路との並行流路に構成し、双方の流体通路における流体の流量を調整する流量調整弁を設けたので、該流量調整弁によって前記冷却流体流量を調整することにより、機器収納部内の圧力をガス化炉内圧力よりも高く保持してガス化炉側から機器収納部内へのガスの侵入を防止できるとともに、機器収納部内の温度を内部機器温度の許容値以下に保持することができる。
【0034】
これにより、機器収納部内への侵入ガスによる、あるいは機器収納部内の温度上昇に伴う内部機器の機能不良や破損の誘発が防止され、撮像機器の耐久性が向上するとともに、透明窓部を常時清浄に保持することができる。
【図面の簡単な説明】
【図1】 本発明の実施例に係る石炭ガス化炉用炉内監視装置の全体構成図である。
【図2】 炉内撮像装置の先端部近傍の断面図である。
【図3】 本発明が適用される石炭ガス化装置の構成図である。
【符号の説明】
1 透明窓
2 洗浄空気通路
3 冷却空気通路
4 内筒
5 中間筒
6 外筒
7 噴出孔
10 冷却空気管
11 洗浄空気管
12 絞り弁
13 空気元弁
14 空気供給源
15 制御装置
16 空気元弁制御装置
17 絞り弁制御装置
18 水注入弁
19 水注入管
21 画像処理装置
20 空気管
22 本体内圧力検出器
23 炉内圧力検出器
30 冷却空気出口通路
31 空気出口室
32 CCDカメラ
33 変換器
39 機器収納部
40 洗浄空気
41 冷却空気
50 温度検出器
100 炉内撮像装置
101 炉内
[0001]
BACKGROUND OF THE INVENTION
The present invention is configured so that the situation in a gasification furnace through which a high-temperature powder-containing gas flows, such as in a gasification furnace for pulverized coal, can be imaged through a transparent window by an imaging means housed in an equipment storage section. The present invention relates to a gasification furnace monitoring device that monitors the state of gas in the gasification furnace using a gasification furnace imaging device.
[0002]
[Prior art]
FIG. 3 is a block diagram showing a main part of a coal gasifier for gasifying pulverized coal. In the figure, 200 is a gasification furnace, 01 is a combustor that constitutes a combustion stage that melts pulverized coal and char to generate a high-temperature gas, and 02 is jetted from a reductor burner 05 described later by the high-temperature gas generated in the combustor 1. It is a reductor which comprises the gasification stage which heats and thermally decomposes pulverized coal.
The combustor 01 includes a combustor burner 03 for jetting pulverized coal transported by a transport gas such as nitrogen from the pulverized coal supply device 07 into the combustor 01 together with a gasifying agent from a gasifying agent supply pipe 06, and gas separation. A char burner 04 for ejecting the subsequent char into the combustor 01 is provided. The reductor 02 is provided with a reductor burner 05 that ejects the pulverized coal transported by the transport gas from the pulverized coal supply device 07 into the reductor 02.
[0003]
Reference numeral 015 denotes a carrier gas pipe. The pulverized coal from the pulverized coal supply device 07 is conveyed to the combustor burner 03 and the reductor burner 5 by the carrier gas in the carrier gas pipe 015, and the char after the product gas separation is transferred to the char burner 04. Transport. 011 is a product gas pipe for transporting the pyrolysis gas generated in the reductor 02, 012 is a cyclone for separating char from the pyrolysis gas sent through the product gas pipe 011, and the cyclone 012 The char separated in (1) is supplied to the combustor 01 by the char supply device 013 through the char supply pipe 014 and the char burner 04. 04 is a lower combustor for light oil combustion when the gasifier is started.
[0004]
In such a coal gasifier, in the combustor 01, the pulverized coal transported by the transport gas from the combustor burner 03 is ejected, and the char is supplied from the char burner 04 as described above, and is heated by the gasifying agent. High-load combustion is performed. A high-temperature gas of about 2000 ° C. generated by such combustion is sent to the above-described reductor 02. On the other hand, the ash content in the coal is melted by high-temperature combustion in the combustor 01 to form molten slag, which naturally falls from the slag hole below the lower combustor 041 and is discharged out of the system.
[0005]
In the reductor 02, the pulverized coal transported by the transport gas as described above is ejected from the reductor burner 05, and is thermally decomposed by the high-temperature gas from the combustor 01 to be gasified. The product gas generated by the gasification action is sent out from the reductor 02, enters the cyclone 012 through the product gas pipe 011 and is separated from char as described above. Sent to.
[0006]
In such a coal gasifier, an in-furnace imaging apparatus 100 for monitoring the combustion state in the furnace, such as the state of fluid slag in the gasification furnace 200, is attached to the furnace wall. Reference numeral 21 denotes an image processing apparatus connected to the in-furnace imaging apparatus 100.
The in-furnace imaging apparatus 100 shields a device storage unit provided with imaging means such as a camera inside the main body and the inside of the gasification furnace with a transparent window, and the inside of the gasification furnace is passed through the transparent window by the imaging means. It is comprised so that it may image, and there exists invention of patent 2891672 in one of them.
[0007]
In such an invention, an optical image incident through one of the cylindrical spaces formed between the plurality of cylindrical members constituting the photographing unit and the transparent monitoring window formed on the distal end side of each cylindrical member is obtained. Cooling air is injected from the front end side of the imaging unit to the cylindrical member central space where the video camera for converting to an electrical signal is arranged, and the cooling air is sent from the monitoring window to the It is comprised so that it may discharge | release to the outer side of an imaging | photography part.
[0008]
[Problems to be solved by the invention]
In the furnace of the gasification furnace 200, since a high-temperature powder-containing gas having a pressure of about 10 to 30 kgf / cm 2 flows during operation, the in-furnace imaging attached facing the furnace is performed. In the apparatus 100, the gas seal between the inside of the high-temperature and high-pressure furnace as described above and the equipment storage section provided with the imaging means such as a camera is sufficiently provided to the equipment storage section of the furnace gas. It is required to surely prevent the intrusion.
[0009]
However, in the prior art provided in the above-mentioned Japanese Patent No. 2891672, the periphery of the transparent monitoring window is only fixed to the inner periphery of the opening of the cylindrical member. When used for internal monitoring, due to the pressure difference between the high-pressure furnace and the normal-pressure video camera installation space, a seal failure is likely to occur in the seal part of the monitoring window, and the gas inside the furnace is placed in the video camera due to such a seal failure. There is a problem of intruding into the space and inducing malfunctions and breakage of these internal devices.
[0010]
Further, in the in-furnace imaging apparatus 100, the internal space in which the in-furnace imaging apparatus such as a camera is accommodated should be kept below a certain temperature by suppressing the temperature rise in order to maintain the function of the apparatus. However, in the prior art, the space between the interior of the furnace and the internal space in which the imaging device is accommodated is only shielded by a transparent monitoring window, and there is a means for adjusting the temperature of the internal space. Therefore, there is a problem that the temperature of the internal space rises above the heat-resistant temperature of the imaging device due to heat transfer or radiation from the inside of the furnace through the monitoring window, which may cause malfunction or damage of the imaging device. is doing.
[0011]
In view of the problems of the conventional technology, the present invention provides a gasification furnace monitoring device for monitoring the inside of a gasification furnace through which a high-temperature high-pressure gas flows, such as a gasification furnace. The transparent window part for monitoring due to the pressure difference between the image pickup device and the malfunction or damage of the image pickup device due to this is prevented, and the temperature in the image pickup device storage space is always kept below the heat resistant temperature of the image pickup device. An object of the present invention is to prevent malfunctions and damages due to overheating of the imaging device, to improve the durability of the imaging device, and to keep the monitoring window portion clean at all times.
[0012]
[Means for Solving the Problems]
The present invention solves such a problem, and is installed facing a gasification furnace through which a high-temperature powder-containing gas flows, and an apparatus storage section provided with imaging means including a camera inside the main body, The gasification using an imaging apparatus in a gasification furnace comprising a transparent window that shields an equipment storage section and the gasification furnace, and configured to be able to image the inside of the gasification furnace through the transparent window by the imaging means. In the gasification furnace monitoring device that monitors the state of gas in the furnace,
Provided inside the main body are a cleaning fluid passage through which a cleaning fluid for cleaning the transparent window flows, and a cooling fluid passage through which a cooling fluid that circulates through the device housing and cools the imaging means flows. A fluid conduit through which a fluid from a fluid supply flows is branched into a cleaning fluid conduit and a cooling fluid conduit, and the cleaning fluid conduit is connected to the cleaning fluid passage of the main body and the cooling fluid conduit is Connected to the cooling fluid passage of the main body, and provided with a flow rate adjusting valve for adjusting the flow rate of the fluid flowing through either one or both of the cooling fluid conduit and the cleaning fluid conduit, A gasification furnace characterized in that a fluid return pipe for connecting a cooling fluid passage outlet from a storage portion and a fluid inlet of the fluid supply source is provided to recirculate the fluid after cooling the imaging means . A monitoring device is proposed.
[0013]
In this case, a cleaning liquid injection pipe through which a cleaning liquid such as water flows is connected in the middle of the cleaning fluid pipe, and a cleaning liquid injection valve for opening and closing the pipe of the cleaning liquid injection pipe is provided .
[0014]
In addition to the present invention, the invention described in claim 2 is a gasification furnace pressure detector that detects a pressure in the gasification furnace, an internal pressure detector that detects a pressure in the equipment storage section, Ru and a flow rate adjusting valve control apparatus wherein the gasifier pressure and compares the equipment storage section pressure the instrument housing section pressure to adjust the opening of the flow regulating valve so that the above internal pressure gasifier It is characterized by that.
[0015]
According to a third aspect of the present invention, in addition to the present invention, a flow rate adjusting source valve for adjusting a flow rate of the fluid flowing through the fluid pipe from the fluid supply source is provided on the upstream side of the branch position, and the device storage portion An internal temperature detector for detecting the internal temperature of the flow rate, and comparing the detected value of the internal temperature with a preset reference value of the internal temperature so that the internal temperature is equal to or less than the reference value. And a flow rate adjusting source valve control device for adjusting the opening degree.
[0016]
According to this invention, the fluid passage of the imaging apparatus in the gasification furnace is formed into a parallel flow path of a cleaning fluid passage for cleaning the transparent window and a cooling fluid passage for circulating the equipment housing portion to cool the imaging means. And a flow rate adjusting valve for adjusting the flow rate of the fluid in both fluid passages is provided, and by adjusting the cooling fluid flow rate by the flow rate adjusting valve, the pressure in the equipment housing portion is made to be higher than the gasifier pressure. Keeping it high to prevent gas from entering the equipment storage from the gasifier side, and keeping the temperature inside the equipment storage below the permissible value of internal equipment by adjusting the opening of the flow control valve can do.
As a result, it is possible to prevent malfunction or damage of the internal device due to gas entering the device storage portion or due to a temperature rise in the device storage portion.
[0017]
According to the second aspect of the present invention, in the flow rate adjusting valve control device, the flow rate of the cooling air supplied into the device storage unit such that the pressure in the device storage unit becomes larger than the pressure in the gasification furnace, and the flow rate. The opening degree of the flow rate adjusting valve is calculated and output to the flow rate adjusting valve.
As a result, the flow rate adjustment valve is controlled in its opening degree, that is, the flow rate so that the pressure in the device storage unit is always greater than the pressure in the gasifier, and the flow rate adjustment valve in the device storage unit in which the device is stored. The pressure is always higher than the pressure in the gasification furnace, and the high temperature and high pressure gas in the gasification furnace is prevented from entering the equipment storage section.
[0018]
According to the third aspect of the present invention, in the flow adjustment source valve control device, the flow rate of the fluid flowing through the pipe line so that the internal temperature detection value of the device storage portion becomes smaller than the reference value, that is, the allowable upper limit temperature, and The degree of opening of the flow rate adjustment source valve is calculated so as to obtain a flow rate and output to the flow rate adjustment source valve.
Thus, the opening degree, that is, the flow rate of the flow rate adjusting source valve is controlled so that the temperature in the device housing portion is always lower than the allowable upper limit temperature of the device.
Therefore, the temperature in the device storage unit in which the devices such as the CCD camera and the converter are stored is always kept below the allowable upper limit temperature of the storage device, which is caused by heat transfer or radiation from the gasification furnace through the transparent window. The temperature rise in the device storage portion is suppressed, and the malfunction of the device and the induction of damage due to the temperature rise are prevented.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
[0020]
FIG. 1 is an overall configuration diagram of an in-furnace monitoring apparatus for a coal gasification furnace according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of the vicinity of the tip of the in-furnace imaging apparatus. FIG. 3 is a block diagram of a coal gasifier to which the present invention is applied.
[0021]
The configuration and operation of the coal gasifier shown in FIG. 3 are as described above, and the present invention is applied to an in-furnace monitoring apparatus including an in-furnace imaging apparatus 100 that is attached to the gasification furnace 200 and images the state in the furnace. It is concerned.
In FIG. 1 showing the overall configuration of such an in-furnace monitoring apparatus, reference numeral 100 denotes an in-furnace imaging apparatus, which is configured as follows.
6 is a cylindrical outer cylinder, 4 is a cylindrical inner cylinder, and 5 is an intermediate cylinder provided between the inner side of the outer cylinder 6 and the outer side of the inner cylinder 4. An annular cleaning air passage 2 is formed between the inner periphery of the outer cylinder 6 and the outer periphery of the intermediate cylinder 5, and an annular cooling air is formed between the inner periphery of the intermediate cylinder 5 and the outer periphery of the inner cylinder 4. An air passage 3 is formed, and a cooling air outlet passage 30 is formed inside the inner cylinder 4.
[0022]
Reference numeral 1 denotes a transparent window made of transparent heat-resistant glass. A seal is applied to the outer periphery of the end of the intermediate cylinder 5, and the outer surface faces the furnace 101 and is fixed through a fixing ring 43 (see FIG. 2). Yes. 39 is a device storage section defined by an inner surface of the transparent window 1 and an inner peripheral surface of the intermediate cylinder 5, and the device storage section 39 is located behind the transparent window 1 with a CCD camera 32, A converter 33 and the like for converting an image pickup signal from the CCD camera 32 into an electric signal are accommodated. Reference numeral 38 denotes a mounting base for the CCD camera 32 and the converter 33 (see FIG. 2).
A plurality of ejection holes 7 are perforated along the circumferential direction at the distal end portion of the intermediate cylinder 5 from the distal end side (inside the furnace 101 side) of the cleaning air passage 2 toward the outer surface of the transparent window 1. The cleaning air 40 that has been perforated and passed through the cleaning air passage 2 is disposed so as to be evenly blown to the outer surface of the transparent window 1. A boss portion 5a is formed at the root portion of the intermediate cylinder 5, and the root portion of the outer cylinder 6 and the root portion of the inner cylinder 4 are fixed to both surfaces of the boss portion 5a.
[0023]
A cooling air inlet 9 is provided in the boss portion 5 a of the intermediate cylinder 5 and communicates with the cooling air passage 3. A cleaning air inlet 8 is provided in the vicinity of the root of the outer cylinder 6 and communicates with the cleaning air passage 2. 31 is an air outlet chamber, and the cooling air outlet passage 30 is opened. A cover 53 covers the air outlet chamber 31.
Reference numeral 21 denotes an image processing apparatus that receives an imaging signal (electrical signal) from the converter 33 in the device storage unit 39 via the line 021 and performs a required process on the imaging signal (the image processing apparatus 21). Is well known and will not be described in detail).
[0024]
14 is an air supply source such as an air compressor, and 20 is an air pipe through which pressurized air from the air supply source flows. The air pipe 20 is branched into a cooling air pipe 10 and a cleaning air pipe 11. The cooling air pipe 10 is connected to the cooling air inlet 9 of the cooling air passage 3, and the cleaning air pipe 11 is connected to the cleaning air inlet 8 of the cleaning air passage 2. A throttle valve 12 is provided in the cooling air pipe 10 to adjust the pipe area, that is, the flow rate of the cooling air. Reference numeral 13 denotes an air source valve which is provided in the air pipe 20 and adjusts the pipe area, that is, the flow rate of air from the air supply source 14.
Reference numeral 19 denotes a water injection pipe connected in the middle of the cleaning air pipe 11, and 18 denotes a water injection valve for opening and closing the pipe of the water injection pipe 19.
[0025]
23 is a furnace pressure detector for detecting the pressure in the furnace 101, and 22 is a pressure detector in the main body for detecting the pressure in the air outlet chamber 31, that is, the pressure in the equipment storage section 39. Reference numeral 50 denotes a temperature detector that detects the temperature of the devices such as the CCD camera 32 and the converter 33 in the device storage unit 39 (may be a temperature near the device in the device storage unit 39).
A control device 15 includes an air source valve control device 16 that controls the opening degree of the air source valve 13 and a throttle valve control device 17 that controls the opening degree of the throttle valve 12. A temperature detection signal in the device storage unit 39 from the temperature detector 50 is input to the air source valve control device 16 via a line 37. Further, the throttle valve controller 17 receives a furnace pressure detection signal from the furnace pressure detector 23 via a line 35, and a device storage unit pressure detection signal from the main body pressure detector 22. Is input via the line 36.
[0026]
In the in-furnace monitoring apparatus of the gasification furnace having such a configuration, the pressurized air sent from the air supply source 14 is controlled in flow rate by the air source valve 13 and flows through the air pipe 20 before the cooling air pipe 10. And the cleaning air pipe 11. The flow rate of the cooling air 41 introduced into the cooling air pipe 10 is controlled by the throttle valve 12 and passes through the cooling air inlet 9 and the cooling air passage 3 of the in-furnace imaging device 100 as indicated by the solid line arrow in the figure. After entering the device storage section 39 and cooling the devices such as the CCD camera 32 and the converter 33 provided in the device storage section 39 and raising the temperature, they are guided to the air outlet chamber 31 through the cooling air outlet passage 30. It is burned.
Then, the cooling air 41 in the air outlet chamber 31 flows through the air return pipe 51, is cooled and cooled by the air cooler 52 on the way, and is returned to the air supply source 14.
[0027]
On the other hand, the cleaning air 40 introduced into the cleaning air pipe 11 passes through the cleaning air inlet 8 and the cleaning air passage 2 of the in-furnace imaging apparatus 100 and reaches the tip of the cleaning air passage 2 as indicated by the broken line arrows in the figure. The outer surface of the transparent window 1 is sprayed uniformly from the plurality of ejection holes 7 provided to clean the outer surface.
When the outer surface of the transparent window 1 is very dirty, the water injection valve 18 is opened, and cleaning water is introduced into the cleaning air pipe 11 and sprayed to the outer surface of the transparent window 1 from the ejection hole 7 together with the cleaning air. . Thereby, the contamination of the transparent window 1 can be reliably removed by the mixed flow of air and water, and the transparent window 1 is always kept clean.
[0028]
Next, in the throttle valve control device 17, the differential pressure ΔP between the device housing pressure detection value P 2 from the main body pressure detector 22 and the furnace pressure detection value P 1 from the furnace pressure detector 23. = P 2 -P 1 is calculated. And in the narrowed valve control device 17, the differential pressure [Delta] P <0, that is, when the furnace pressure P 1 is higher than the equipment storage section pressure P 2 is inner pressure P 1 of the pressure P 2 in the equipment storage section 39 The opening degree of the throttle valve 12 corresponding to the flow rate shown above is calculated and output to the throttle valve 12. In response to this the narrowed Riben 12 its opening is increased, the pressure P 2 in the device housing unit 39 is inner pressure P 1 or more flow rate of the cooling air 41 is increased.
[0029]
That is, in the throttle valve control device 17, the flow rate of the cooling air 41 supplied into the device storage unit 39 so as to satisfy the differential pressure ΔP> 0, that is, P 2 > P 1 , and the flow rate. The opening of the throttle valve 12 is calculated and output to the throttle valve 12.
As a result, the throttle valve 12 is controlled by the throttle valve control device 17 so that the opening, that is, the flow rate thereof, is controlled so that the pressure P 2 in the equipment storage section 39 is always higher than the furnace pressure P 1. It becomes. Therefore, the pressure in the device storage unit 39 in which devices such as the CCD camera 32 and the converter 33 are stored is always higher than the pressure in the furnace 101, and the high-temperature high-pressure gas in the furnace 101 is stored in the device storage unit. Intrusion into 39 is prevented, and the malfunction and breakage of the equipment due to such intrusion gas are prevented.
[0030]
In the air source valve control device 16, the temperature detection value T 1 in the device storage unit 39 from the temperature detector 50 and the device storage units such as the CCD camera 32 and the converter 33 that are set in advance. The allowable upper limit temperature T 0 of the storage device in 39 is compared. In the air source valve control device 16, the opening degree of the air source valve 13 corresponding to the flow rate of air that causes the temperature T 1 in the device housing portion 39 to be equal to or lower than the allowable upper limit temperature T 0 is calculated. In response to this, the opening of the air source valve 13 is increased, the flow rate of the air flowing through the air pipe 20 is increased, and the temperature T 1 in the device storage section 39 becomes equal to or lower than the allowable upper limit temperature T 0 .
[0031]
That is, in the spatial Kimoto valve control device 16, the temperature detection value T 1 is smaller than the allowable upper limit temperature T 0, i.e. T 0> T 1 to become like the air flowing through the air pipe 20 flow, and the The opening degree of the air main valve 16 is calculated so as to obtain a flow rate and is output to the air main valve 16.
As a result, the air source valve 16 is opened by the air source valve control device 16 so that the temperature T 1 in the device storage unit 39 is always lower than the allowable upper limit temperature T 0 of the storage device, that is, its opening, that is, the flow rate. Will be controlled.
Accordingly, the temperature in the device storage unit 39 in which devices such as the CCD camera 32 and the converter 33 are stored is always kept below the allowable upper limit temperature of the storage device, and the temperature from the furnace 101 through the transparent window 1 is maintained. The temperature rise in the device storage unit 39 due to heat transfer or radiation is suppressed, and the malfunction of the device and the induction of damage due to the temperature increase are prevented.
[0032]
The inner diameter of the cleaning air pipe 11 can be made sufficiently larger than the inner diameter of the cooling air pipe 10, and the throttle valve 12 can be provided in the cleaning air pipe 11.
It is also possible to omit the throttle valve control device 17 using the throttle valve 12 as a fixed throttle, and to omit the air source valve control device 16 using the air source valve 13 as a manual type.
[0033]
【The invention's effect】
As described above, according to the present invention, the fluid passage of the gasification furnace internal imaging device includes the cleaning fluid passage for cleaning the transparent window and the cooling fluid passage for cooling the imaging means by circulating through the device storage portion. Since the flow rate adjusting valve that adjusts the flow rate of the fluid in both fluid passages is provided in the parallel flow path, the pressure in the equipment storage portion is adjusted to the gasification furnace by adjusting the cooling fluid flow rate by the flow rate adjusting valve. While maintaining higher than the internal pressure, it is possible to prevent the gas from entering from the gasification furnace side into the equipment housing portion, and it is possible to keep the temperature inside the equipment housing portion below the allowable value of the internal equipment temperature.
[0034]
This prevents malfunctions and breakage of internal equipment due to gas entering the equipment housing or due to temperature rise inside the equipment housing, improving the durability of the imaging equipment and constantly cleaning the transparent window. Can be held in.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an in-furnace monitoring apparatus for a coal gasifier according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the vicinity of the tip of the in-furnace imaging apparatus.
FIG. 3 is a configuration diagram of a coal gasifier to which the present invention is applied.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Transparent window 2 Washing air path 3 Cooling air path 4 Inner cylinder 5 Intermediate cylinder 6 Outer cylinder 7 Injection hole 10 Cooling air pipe 11 Washing air pipe 12 Throttle valve 13 Air source valve 14 Air supply source 15 Controller 16 Air source valve control Device 17 Throttle valve control device 18 Water injection valve 19 Water injection tube 21 Image processing device 20 Air tube 22 In-body pressure detector 23 In-furnace pressure detector 30 Cooling air outlet passage 31 Air outlet chamber 32 CCD camera 33 Converter 39 Equipment Storage unit 40 Cleaning air 41 Cooling air 50 Temperature detector 100 In-furnace imaging device 101 In-furnace

Claims (4)

高温の含粉体ガスが通流するガス化炉内に臨んで設置され、本体の内部にカメラを含む撮像手段が設けられた機器収納部と、該機器収納部と前記ガス化炉とを遮蔽する透明窓とを備え、前記撮像手段により前記透明窓を通して前記ガス化炉内を撮像可能に構成されたガス化炉内撮像装置を用いて前記ガス化炉内のガスの状態を監視するガス化炉内監視装置において、
前記本体の内部に、前記透明窓を洗浄する洗浄流体が通流する洗浄流体通路と、前記機器収納部を循環して前記撮像手段を冷却する冷却流体が通流する冷却流体通路とを設けるとともに、流体供給源からの流体が通流する流体管路を洗浄流体管路及び冷却流体管路に分岐し、該洗浄流体管路を前記本体の洗浄流体通路に接続するとともに該冷却流体管路を前記本体の冷却流体通路に接続し、前記冷却流体管路及び洗浄流体管路の何れか一方または双方にこれらの管路を通流する流体の流量を調整する流量調整弁を設け、更に前記機器収納部からの冷却流体通路出口と前記流体供給源の流体入口とを接続する流体戻り管を設け、前記撮像手段冷却後の流体を再循環させるように構成したことを特徴とするガス化炉内監視装置。
A device storage unit that is installed facing a gasification furnace through which a high-temperature powder-containing gas flows and has an imaging means including a camera inside the main body, and shields the device storage unit and the gasification furnace Gasification for monitoring the state of gas in the gasification furnace using an imaging apparatus in the gasification furnace configured to image the inside of the gasification furnace through the transparent window by the imaging means. In the furnace monitoring device,
Provided inside the main body are a cleaning fluid passage through which a cleaning fluid for cleaning the transparent window flows, and a cooling fluid passage through which a cooling fluid that circulates through the device housing and cools the imaging means flows. A fluid conduit through which a fluid from a fluid supply flows is branched into a cleaning fluid conduit and a cooling fluid conduit, and the cleaning fluid conduit is connected to the cleaning fluid passage of the main body and the cooling fluid conduit is Connected to the cooling fluid passage of the main body, and provided with a flow rate adjusting valve for adjusting the flow rate of the fluid flowing through either one or both of the cooling fluid conduit and the cleaning fluid conduit, A gasification furnace characterized in that a fluid return pipe for connecting a cooling fluid passage outlet from a storage portion and a fluid inlet of the fluid supply source is provided to recirculate the fluid after cooling the imaging means. Monitoring device.
前記ガス化炉内の圧力を検出するガス化炉圧力検出器と、前記機器収納部内の圧力を検出する内部圧力検出器と、前記ガス化炉内圧力と機器収納部内圧力とを比較し該機器収納部内圧力がガス化炉内圧力以上になるように前記流量調整弁の開度を調整する流量調整弁制御装置とを備えたことを特徴とする請求項記載のガス化炉内監視装置。A gasifier pressure detector for detecting the pressure in the gasifier, an internal pressure detector for detecting a pressure in the equipment storage section, and comparing the pressure in the gasifier with the pressure in the equipment storage section gasifier monitoring apparatus according to claim 1, further comprising a storage section pressure and the flow rate adjustment valve controller for adjusting the opening of the flow regulating valve so that the above internal pressure gasifier. 前記分岐位置上流側に前記流体供給源からの流体管路を流れる流体の流量を調整する流量調整元弁を設けると共に、前記機器収納部の内部温度を検出する内部温度検出器と、該内部温度の検出値と予め設定された内部温度の基準値とを比較し前記内部温度が前記基準値以下になるように前記流量調整元弁の開度を調整する流量調整元弁制御装置とを備えたことを特徴とする請求項記載のガス化炉内監視装置。Provided on the upstream side of the branch position is a flow rate adjusting source valve for adjusting the flow rate of the fluid flowing through the fluid line from the fluid supply source, and an internal temperature detector for detecting the internal temperature of the device storage unit, and the internal temperature And a flow rate adjustment source valve control device for adjusting the opening of the flow rate adjustment source valve so that the internal temperature is equal to or lower than the reference value. gasifier monitoring apparatus according to claim 1, wherein a. 前記洗浄流体管路の途中に、水等の洗浄液が通流する洗浄液注入管を接続すると共に、該洗浄液注入管の管路を開閉する洗浄液注入弁を設けてなることを特徴とする請求項記載のガス化炉内監視装置。In the middle of the cleaning fluid line, together with the cleaning liquid such as water connects the cleaning solution injection tube flowing through, according to claim 1, characterized by comprising providing a cleaning solution injection valve for opening and closing the pipe line of the washing liquid filling tube The gasification furnace monitoring apparatus as described.
JP2000296928A 2000-09-28 2000-09-28 Gasification furnace monitoring device Expired - Lifetime JP4015354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000296928A JP4015354B2 (en) 2000-09-28 2000-09-28 Gasification furnace monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000296928A JP4015354B2 (en) 2000-09-28 2000-09-28 Gasification furnace monitoring device

Publications (2)

Publication Number Publication Date
JP2002105464A JP2002105464A (en) 2002-04-10
JP4015354B2 true JP4015354B2 (en) 2007-11-28

Family

ID=18779121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000296928A Expired - Lifetime JP4015354B2 (en) 2000-09-28 2000-09-28 Gasification furnace monitoring device

Country Status (1)

Country Link
JP (1) JP4015354B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657995B2 (en) 2012-10-24 2017-05-23 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
US10571195B2 (en) 2016-03-31 2020-02-25 Mitsubishi Heavy Industries, Ltd. Furnace monitoring device and gasification unit provided with same
EP4212952A4 (en) * 2020-09-08 2024-04-10 JFE Steel Corporation Structure observation device and observation method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100955497B1 (en) 2010-01-30 2010-04-30 주식회사지이티 Monitor camera for furnace
KR101256353B1 (en) * 2011-05-04 2013-04-25 주식회사 에스엔엔씨 Kiln surveillance cameras
JP2014237101A (en) * 2013-06-10 2014-12-18 日揮株式会社 Interior portion observation window
GB2527545B (en) 2014-06-25 2018-02-07 International Moisture Analysers Ltd Sight glass apparatus
DE102016114409A1 (en) * 2016-08-04 2018-02-08 Franke Industrieofen-Service GmbH Instrument holder and method for liquid-free instrument cooling and system for liquid-free indoor monitoring of high-temperature systems
JP6948696B2 (en) * 2017-06-29 2021-10-13 フジクス株式会社 Camera device with dirt removal function

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9657995B2 (en) 2012-10-24 2017-05-23 Mitsubishi Heavy Industries Environmental & Chemical Engineering Co., Ltd. Device for monitoring inside of high-temperature furnace, and system for monitoring inside of high-temperature furnace provided with same
US10571195B2 (en) 2016-03-31 2020-02-25 Mitsubishi Heavy Industries, Ltd. Furnace monitoring device and gasification unit provided with same
EP4212952A4 (en) * 2020-09-08 2024-04-10 JFE Steel Corporation Structure observation device and observation method
US12092945B2 (en) 2020-09-08 2024-09-17 Jfe Steel Corporation Structure observation device and observation method

Also Published As

Publication number Publication date
JP2002105464A (en) 2002-04-10

Similar Documents

Publication Publication Date Title
JP4015354B2 (en) Gasification furnace monitoring device
JP6045295B2 (en) High-temperature furnace monitoring device and high-temperature furnace monitoring system equipped with the same
EP1493966A1 (en) Ash fusing system, method of operating the system, and gasification fusing system for waste
US10571195B2 (en) Furnace monitoring device and gasification unit provided with same
US20150027560A1 (en) Gasification reactor
US9709270B2 (en) Fluidized bed gasification furnace
JP5037161B2 (en) Cyclone-type solid-gas separator and carbonization apparatus equipped with the solid-gas separator
JP6490750B2 (en) Observation device and cooling mechanism
JP5449690B2 (en) High-temperature atmosphere furnace observation device
KR20140063893A (en) Slag monitoring device for coal gasifier and coal gasifier
US5953898A (en) Power generation method including control of temperature of flue gases entering a high temperature ceramic filter
JP6611626B2 (en) Operation method of waste gasification melting furnace
KR100504385B1 (en) Monitor Camera With Air Curtain For Use with Furnace
JP2013139528A (en) Gasification apparatus
EP1496310A1 (en) Fusion furnace, gasification fusion furnace, and method of processing waste
JP3977509B2 (en) Char cooling device recovered by solid-gas separator
JPH06313540A (en) Peep window device for furnace
JPH06184561A (en) Method for preventing plugging of coal blowing nozzle of coal gasifier and nozzle structure therefor
JPS6158114B2 (en)
JP2001271073A (en) Coal gasification apparatus
JPH0762359A (en) Slag flow-down monitor for gas producer from coal
KR102178347B1 (en) FBHE Fluidization Monitoring System
JP2001271072A (en) Coal gasification apparatus
JPH02219893A (en) Entrained bed type of pulverized solid fuel gasifier and operation thereof
JPH09318013A (en) Combustion state monitoring device for pressure fluidized bed boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20000929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4015354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250