JP4014701B2 - Hydrogen separator - Google Patents

Hydrogen separator Download PDF

Info

Publication number
JP4014701B2
JP4014701B2 JP27245197A JP27245197A JP4014701B2 JP 4014701 B2 JP4014701 B2 JP 4014701B2 JP 27245197 A JP27245197 A JP 27245197A JP 27245197 A JP27245197 A JP 27245197A JP 4014701 B2 JP4014701 B2 JP 4014701B2
Authority
JP
Japan
Prior art keywords
hydrogen
separator
hydrogen separator
container
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27245197A
Other languages
Japanese (ja)
Other versions
JPH11116203A (en
Inventor
淳司 左近
孝行 川江
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP27245197A priority Critical patent/JP4014701B2/en
Publication of JPH11116203A publication Critical patent/JPH11116203A/en
Application granted granted Critical
Publication of JP4014701B2 publication Critical patent/JP4014701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素混合ガスより水素ガスのみを選択的に透過する水素分離膜を用いた水素分離装置の構造に関する。
【0002】
【従来の技術】
水素ガスは石油化学の基本素材ガスとして大量に使用され、またクリーンなエネルギー源として大きな期待が寄せられている。純度の高い水素ガスは、天然ガス、ナフサ等を原料として触媒により水素を含有するガスに変換し、その水素含有ガスから更に水素ガスを分離して得られる。
【0003】
具体的には、パラジウム又はパラジウム合金が水素ガスのみを選択的に透過する性質を利用して分離することができる。
通常は、セラミックス等のチューブ状多孔質基体の表面にパラジウム又はパラジウム合金の薄膜を被着した水素分離体が用いられる(特開昭62-273030号公報)。
【0004】
更に、このような水素分離体の処理能力の向上を図るべく、単位体積当たりの水素分離体の膜面積を向上することが行われており、複数の貫通孔を形成した一体構造(以下、モノリスという。)の多孔質基体を用い、貫通孔の内表面にパラジウム薄膜を被着した、いわゆるモノリスタイプの水素分離体が開示されている(特開平8-40703号公報)。
【0005】
ところで、パラジウムの水素分離能は、5〜10気圧、300〜500℃の高温高圧においてのみ発揮されるため、セラミックスからなる水素分離体の両端を当該水素分離体を収容する金属からなる密閉容器に固定すると、両者の熱膨張率の相違により水素分離体等が破損するおそれがある。
このため、水素分離体の一端のみを密閉容器と固定して、吊り下げ状に支持し、非支持側の端部を非固定の状態とすることにより水素分離体と密閉容器との熱膨張差を許容した水素分離装置が開示されている(特開平6-191802号公報)。
【0006】
【発明が解決しようとする課題】
しかしながら、上述の吊り下げ状の支持をモノリスタイプの水素分離体を用いた水素分離装置に適用しようとすると、以下に示すような問題点が生ずる。
【0007】
従前のチューブタイプの水素分離体では、チューブ状多孔質基体の外表面にパラジウム膜が成膜され、図3に示すように、導入口66から被処理ガスを密閉容器64内に導入すると、被処理ガス中に含まれる水素ガスはチューブ状の水素分離体65の内壁側に透過し、上室72を経由して導出口68から回収されるとともに、処理残ガスは回収口67から排出される。
【0008】
これに対しモノリスタイプの水素分離体85では、分離体85の単位体積当たりの膜面積を向上するべく、多孔質基体の貫通孔の内表面にパラジウム膜を成膜することが必須となり、図4に示すように、導入口86から被処理ガスを密閉容器84内に導入すると上室92を経由して分離体85の支持側の端部から貫通孔内に流入し、水素ガスはパラジウム膜を透過して分離体85の外周部へ放出される。
【0009】
従って、分離体85の非支持側の端部に更に隔壁を設けるか、或いは分離体85の非支持側の端部をフランジにより容器84外に連通する配管と接続する等の構造としなければ、分離した水素ガスと処理残ガスが混合してしまう。
しかしながら、このような構造では水素分離体の両端が密閉容器と固定されることになり水素分離体と密閉容器との熱膨張差に伴う不具合を回避することができない。
即ち、本発明ではモノリスタイプの水素分離体を用いた水素分離装置において、水素分離体の破損等、水素分離体と密閉容器との熱膨張差に伴う不具合を回避することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、多孔質基体の長手方向に多数の貫通孔を並列して形成し、当該貫通孔の内表面に水素分離膜を被着してなる複数基の水素分離体と、被処理ガスの導入口、分離残ガスを回収するための回収口、及び分離した水素ガスを取り出すための導出口を有する密閉容器と、からなる水素分離装置において、前記水素分離体若しくは当該水素分離体を個別に内蔵した有底容器の一端を、前記密閉容器を上下2室に分離するように設けられた隔壁板に固定し、吊り下げ状に支持することにより水素分離体と密閉容器との熱膨張差を許容するとともに、前記複数基の水素分離体の非支持側の端部に接続された、前記導入口若しくは回収口と連通する管状部材の一部に水素分離体の長手方向に対して直交するように、金属製のベローズの両端をフランジ構造としたフレキシブルホースを接続することにより、水素分離体と密閉容器との熱膨張差を許容する可撓部を設けたことを特徴とする水素分離装置である。
【0011】
上記の水素分離装置においては、水素分離膜が、パラジウム又はパラジウムを含有する合金よりなることが好ましい。
【0013】
また、本発明は、多孔質基体の長手方向に多数の貫通孔を並列して形成し、当該貫通孔の内表面に水素分離膜を被着してなる複数基の水素分離体と、上室に被処理ガスの導入口及び分離した水素ガスを取り出すための導出口、下室に分離残ガスを回収するための回収口を設けた密閉容器と、からなる水素分離装置において、前記水素分離体を個別に内蔵した有底容器の一端を、前記密閉容器を上下2室に分離するように設けられた隔壁板に固定し、吊り下げ状に支持することにより水素分離体と密閉容器との熱膨張差を許容、前記密閉容器に、前記複数基の水素分離体を個別に内蔵した有底容器の各開口端を、上室と連通するように隔壁板に対し、吊り下げ状に支持・固定するとともに、前記複数基の水素分離体の下端のみを下室と連通するように前記有底容器底部に固定し、かつ、前記複数基の水素分離体の上端を、前記導入口と連通するように管状部材を接続し、前記管状部材の一部に水素分離体の長手方向に対して直交するように、金属製のベローズの両端をフランジ構造としたフレキシブルホースを接続することにより、水素分離体と密閉容器との熱膨張差を許容する可撓部を設けたことを特徴とする水素分離装置である。
【0014】
【発明の実施の形態】
本発明は、水素分離装置の構造に係るものであるので、まず、一般的な水素分離装置の構成を図示の例により概説する。
水素分離装置は、例えば図5に示すように、容器本体102と蓋体103とからなる密閉容器104内に、複数本の水素分離体105を収容して構成される。
【0015】
容器本体102は上端開口部の外周縁部に外向フランジ109を有する有底筒体で、容器104外部に連通する導入口106、回収口107が形成されており、蓋体103は開口端の外周縁部に外向フランジ110を有するドーム型で、蓋体103の頂部中央には容器104外部に連通する導出口108が形成されている。
容器本体102と蓋体103は、外向フランジ109,110間に隔壁板111を気密的に挟持して容器104内部を上室112、下室113に区画した密閉容器104を構成する。
【0016】
水素分離体105はチューブ状の多孔質基体の外表面にパラシウム又はパラジウム合金の薄膜を被着したものであり、前記隔壁板111に上部開口端が上室112に開口した状態で気密的に固定され、下室113内に吊り下げ状に支持される。
なお、下部開口端は冠着部材により気密的に封止される。
【0017】
かかる構成の水素分離装置101においては、導入口106から被処理ガスが密閉容器104の下室113内に供給され、被処理ガス中の水素ガスのみが分離体105外表面の分離膜を選択的に透過して分離体105内部に流入し、上部開口端から上室112を経由して導出口108より回収される。
一方、被処理ガス中の水素以外のガス成分は、分離膜を透過することなく回収口107より排出される。
【0018】
本発明の水素分離装置は、上述のような水素分離装置においてモノリスタイプの水素分離体を用いたものであって、水素分離体の非支持側の開口端を管状部材で密閉容器外部に連通するとともに、当該管状部材にも水素分離体の熱膨張を許容する可撓部を設けたものである。
かかる構造により、非支持側の端部を管状部材に拘束されるモノリスタイプの水素分離体であっても、水素分離体と密閉容器との熱膨張差に伴う不具合を回避することができる。
【0019】
前記可撓部は、密閉容器外部と水素分離体の非支持側の開口端を連通する管状部材の一部に可撓性をもたせることにより、密閉容器の水素分離体の長手方向への熱膨張に対し、管状部材が屈曲して水素分離体と密閉容器との熱膨張差を吸収するように構成すればよい。
例えば、管状部材の水素分離体の長手方向と直交する部分に可撓性のあるフレキシブルホースを接続して可撓部を設けることが好ましい。
【0020】
フレキシブルホースとしては、金属製のベローズの両端をフランジ構造とした市販のものを用いることができ、ブレード付きのものを用いることが更に好ましい。
このブレードは金属網からなる管状体であり、ベローズ表面を被覆するとともに、フランジ若しくはベローズに両開口端が固着されているものである。
ベローズのみのフレキシブルホースでは耐圧強度にやや問題があり、5〜10気圧の高圧ガスが流入した際にその内圧で破損するおそれもあるが、ブレードにより被覆されたフレキシブルホースであれば、ホース長手方向への伸張は若干抑制されるものの、耐圧強度を確保することができる。
【0021】
【実施例】
次に、本発明を図示の実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。
(実施例1) 図1に示す水素分離装置1は、容器本体2と蓋体3とからなる密閉容器4内に、6本のモノリスタイプの水素分離体5を収容して構成され、3本の脚22により床面に据えられる。
蓋体3には容器4外部に連通する導入口6、容器本体2には容器4外部に連通する回収口7及び導出口8が形成されており、容器本体2と蓋体3は、外向フランジ9,10間に隔壁板11を気密的に挟持して容器4内部を上室12、下室13に区画している。
【0022】
各分離体5には両端面の貫通孔を収束するようにソケット14,15が冠着されている。
支持側のソケット14は隔壁板11を貫通し、ボルト20と嵌合的に固定されるが、ソケット外周部と隔壁板との接触面を目止めして、上室・下室間の気密性を保持するようにする。
非支持側のソケット15は分離体5と同軸方向に8Aのブレード付きフレキシブルホース16が直結される。
フレキシブルホース16は密閉容器4と分離体5との長手方向への熱膨張を緩衝する効果は乏しいが、横方向の発生応力を緩和する効果がある。
【0023】
6本のフレキシブルホース16は、リング状金属管17にフランジで接合することにより収束され、L字管18を経由して20Aのブレード付きフレキシブルホース19に接続される。
このフレキシブルホース19は、分離体5の長手方向に対し直交するように配設されているため、上下方向に屈曲することが可能である。即ち、本実施例における可撓部であり、高温時には容器4と分離体5との熱膨張差を吸収するように屈曲する。
【0024】
本実施例においては、導入口6から被処理ガスが密閉容器4の上室12内に供給され、各分離体5の上部開口端から分離体5の貫通孔内に流入する。被処理ガス中の水素ガスは貫通孔内表面の分離膜を選択的に透過して分離体5外部に流出し、下室13に設けられている導出口8から容器4外へ導かれる。
一方、被処理ガス中の水素以外のガス成分は、分離膜を透過することなく貫通孔を通過して分離体5下端に接続された配管16〜19を通過して回収口7より容器4外部に排出される。
なお、図に示すように、分離体5を金属製の有底容器21内に収容して保護することが好ましいが、本実施例においては有底容器21は必須ではない。
【0025】
(実施例2) 図2に示す水素分離装置31も、実施例1と類似の構成であるが、分離体35を直接隔壁板41に固定するのではなく、隔壁板41に有底容器51を吊り下げ固定し、有底容器51の底部に分離体35を固定した点に特徴がある。即ち、本実施例においては分離体35の下端が支持側、上端が非支持側となっている。
【0026】
本実施例においては、導入口36から配管49〜46を通じて被処理ガスが各分離体35の上部開口端から分離体35の貫通孔内に流入する。被処理ガス中の水素ガスは貫通孔内表面の分離膜を選択的に透過して分離体35外部に流出し、有底容器51から上室42に導かれ、導出口38から容器34外へ放出される。
一方、被処理ガス中の水素以外のガス成分は、分離膜を透過することなく貫通孔を通過して分離体5下端に有底容器51を貫通するように接続されたソケット45を通過して下室43に流入し、回収口37より容器34外部に排出される。
【0027】
本実施例は、フレキシブルホース49が可撓部となる点については実施例1と同様であるが、有底容器51が分離体の保護の他、分離体の支持、上室と下室との隔壁の役割も担っているため、必須構成要件となる点において相違する。
なお、ソケット44は上下方向への自由度を確保するように支持板50に緩挿された状態で支持されるとともに、支持板50には分離体35から流出した水素ガスを上室に導くための孔部が穿設される。
【0028】
【発明の効果】
以上説明したように、本発明の水素分離装置によれば、モノリスタイプの水素分離体を用いた場合においても、水素分離体と密閉容器との熱膨張の差に起因する水素分離装置の損傷を防止することができる。
【図面の簡単な説明】
【図1】 本発明に係る水素分離装置の一の実施例を示す正面断面図である。
【図2】 本発明に係る水素分離装置の他の実施例を示す正面断面図である。
【図3】 チューブタイプの水素分離体を示す概略図である。
【図4】 モノリスタイプの水素分離体を示す概略図である。
【図5】 一般的な水素分離装置の例を示す正面断面図である。
【符号の説明】
1…水素分離装置、2…容器本体、3…蓋体、4…密閉容器、5…水素分離体、6…導入口、7…回収口、8…導出口、9,10…外向フランジ、11…隔壁板、12…上室、13…下室、14,15…ソケット、16…フレキシブルホース、17…リング状金属管、18…L字管、19…フレキシブルホース、20…ボルト、21…有底容器、22…脚、23…ドレンバルブ、31…水素分離装置、32…容器本体、33…蓋体、34…密閉容器、35…水素分離体、36…導入口、37…回収口、38…導出口、39,40…外向フランジ、41…隔壁板、42…上室、43…下室、44,45…ソケット、46…フレキシブルホース、47…リング状金属管、48…L字管、49…フレキシブルホース、50…支持板、51…有底容器、52…脚、53…ドレンバルブ、64…密閉容器、65…水素分離体、66…導入口、67…回収口、68…導出口、71…隔壁板、72…上室、84…密閉容器、85…水素分離体、86…導入口、91…隔壁板、92…上室、101…水素分離装置、102…容器本体、103…蓋体、104…密閉容器、1055…水素分離体、106…導入口、107…回収口、108…導出口、109,110…外向フランジ、111…隔壁板、112…上室、113…下室。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a hydrogen separator using a hydrogen separation membrane that selectively permeates only hydrogen gas from a hydrogen mixed gas.
[0002]
[Prior art]
Hydrogen gas is used in large quantities as a basic raw material gas for petrochemicals, and high expectations are placed on it as a clean energy source. High-purity hydrogen gas is obtained by converting natural gas, naphtha or the like into a gas containing hydrogen using a catalyst, and further separating the hydrogen gas from the hydrogen-containing gas.
[0003]
Specifically, it can be separated by utilizing the property that palladium or a palladium alloy selectively transmits only hydrogen gas.
Usually, a hydrogen separator in which a thin film of palladium or a palladium alloy is deposited on the surface of a tubular porous substrate such as ceramics is used (Japanese Patent Laid-Open No. 62-273030).
[0004]
Further, in order to improve the processing capacity of such a hydrogen separator, the membrane area of the hydrogen separator per unit volume is improved, and an integrated structure (hereinafter referred to as a monolithic structure) in which a plurality of through holes are formed. A so-called monolithic hydrogen separator is disclosed in which a palladium thin film is deposited on the inner surface of a through-hole (Japanese Patent Laid-Open No. 8-40703).
[0005]
By the way, the hydrogen separation ability of palladium is exhibited only at a high temperature and a high pressure of 5 to 10 atmospheres and 300 to 500 ° C. Therefore, both ends of the hydrogen separator made of ceramics are sealed in a sealed container made of metal containing the hydrogen separator. If fixed, the hydrogen separator may be damaged due to the difference in thermal expansion coefficient between the two.
For this reason, only one end of the hydrogen separator is fixed to the sealed container and supported in a suspended form, and the end on the non-supporting side is set to an unfixed state, whereby the difference in thermal expansion between the hydrogen separator and the sealed container is achieved. Has been disclosed (Japanese Patent Laid-Open No. 6-191802).
[0006]
[Problems to be solved by the invention]
However, when the above-described suspended support is applied to a hydrogen separator using a monolith type hydrogen separator, the following problems occur.
[0007]
In the conventional tube-type hydrogen separator, a palladium membrane is formed on the outer surface of the tubular porous substrate. When the gas to be treated is introduced into the sealed container 64 from the inlet 66 as shown in FIG. Hydrogen gas contained in the processing gas permeates to the inner wall side of the tubular hydrogen separator 65 and is recovered from the outlet 68 through the upper chamber 72, and the processing residual gas is discharged from the recovery port 67. .
[0008]
On the other hand, in the monolith type hydrogen separator 85, in order to improve the membrane area per unit volume of the separator 85, it is essential to form a palladium membrane on the inner surface of the through hole of the porous substrate. As shown in FIG. 5, when the gas to be treated is introduced into the sealed container 84 from the introduction port 86, it flows into the through hole from the support side end of the separator 85 via the upper chamber 92, and the hydrogen gas passes through the palladium membrane. The light is transmitted to the outer peripheral portion of the separator 85.
[0009]
Accordingly, a partition wall is further provided at the end of the non-support side of the separator 85, or the end of the non-support side of the separator 85 is connected to a pipe communicating with the outside of the container 84 by a flange. The separated hydrogen gas and residual processing gas are mixed.
However, in such a structure, both ends of the hydrogen separator are fixed to the sealed container, and it is not possible to avoid problems associated with the difference in thermal expansion between the hydrogen separator and the sealed container.
That is, an object of the present invention is to avoid problems associated with a difference in thermal expansion between a hydrogen separator and a sealed container, such as damage to the hydrogen separator, in a hydrogen separator using a monolith type hydrogen separator.
[0010]
[Means for Solving the Problems]
The present invention provides a plurality of hydrogen separators formed by forming a large number of through holes in parallel in the longitudinal direction of a porous substrate, and depositing a hydrogen separation membrane on the inner surface of the through holes, and a gas to be processed. In a hydrogen separator comprising an inlet, a recovery port for recovering separated separation gas, and an outlet for extracting separated hydrogen gas, the hydrogen separator or the hydrogen separator is individually One end of the built-in bottomed container is fixed to a partition plate provided so as to separate the sealed container into two upper and lower chambers, and is supported in a suspended form, thereby reducing the thermal expansion difference between the hydrogen separator and the sealed container. While allowing, a part of a tubular member connected to the non-supporting end of the plurality of hydrogen separators and communicating with the introduction port or the recovery port is orthogonal to the longitudinal direction of the hydrogen separator. to, Fran both ends of the metal bellows By connecting the flexible hose has a structure, a hydrogen separation apparatus characterized in that a flexible portion that allows the thermal expansion difference between the sealed container and the hydrogen separator.
[0011]
In the hydrogen-separation device, the hydrogen separation membrane, has preferably be made of an alloy containing palladium or palladium.
[0013]
Further, the present invention provides a plurality of hydrogen separators formed by forming a large number of through holes in parallel in the longitudinal direction of a porous substrate and depositing a hydrogen separation membrane on the inner surface of the through holes, and an upper chamber In the hydrogen separation apparatus, the hydrogen separator is provided with an inlet for introducing the gas to be treated and a discharge port for taking out the separated hydrogen gas, and a closed vessel provided with a recovery port for recovering the separation residual gas in the lower chamber. One end of a bottomed container with a separate built-in container is fixed to a partition plate provided so as to separate the sealed container into two upper and lower chambers, and is supported in a suspended form, whereby the heat of the hydrogen separator and the sealed container is Allowing differential expansion, each open end of the bottomed container in which the plurality of hydrogen separators are individually housed in the sealed container is supported in a suspended manner with respect to the partition plate so as to communicate with the upper chamber. While fixing, only the lower ends of the plurality of hydrogen separators communicate with the lower chamber A tubular member is connected to the bottom of the bottomed container and the upper ends of the plurality of hydrogen separators communicate with the inlet, and the length of the hydrogen separator is partially connected to the tubular member. By connecting a flexible hose with a flange structure at both ends of a metal bellows so as to be orthogonal to the direction, a flexible portion allowing a thermal expansion difference between the hydrogen separator and the sealed container was provided. It is the hydrogen separator characterized.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Since the present invention relates to the structure of a hydrogen separator, first, the configuration of a general hydrogen separator will be outlined with reference to the illustrated example.
For example, as shown in FIG. 5, the hydrogen separator is configured by accommodating a plurality of hydrogen separators 105 in a sealed container 104 including a container body 102 and a lid 103.
[0015]
The container main body 102 is a bottomed cylindrical body having an outward flange 109 at the outer peripheral edge of the upper end opening, and is formed with an introduction port 106 and a recovery port 107 communicating with the outside of the container 104, and the lid 103 is located outside the open end. A dome shape having an outward flange 110 at the periphery, and a lead-out port 108 communicating with the outside of the container 104 is formed at the center of the top of the lid 103.
The container main body 102 and the lid 103 constitute a sealed container 104 in which the partition plate 111 is hermetically sandwiched between the outward flanges 109 and 110 and the inside of the container 104 is partitioned into an upper chamber 112 and a lower chamber 113.
[0016]
The hydrogen separator 105 is formed by depositing a thin film of palladium or palladium alloy on the outer surface of a tubular porous substrate, and is airtightly fixed to the partition plate 111 with the upper opening end opened to the upper chamber 112. Then, it is supported in a suspended manner in the lower chamber 113.
Note that the lower opening end is hermetically sealed by the crown member.
[0017]
In the hydrogen separator 101 having such a configuration, the gas to be processed is supplied from the inlet 106 into the lower chamber 113 of the sealed container 104, and only the hydrogen gas in the gas to be processed selectively selects the separation membrane on the outer surface of the separator 105. And then flows into the separator 105 and is recovered from the outlet 108 through the upper chamber 112 from the upper opening end.
On the other hand, gas components other than hydrogen in the gas to be treated are discharged from the recovery port 107 without passing through the separation membrane.
[0018]
The hydrogen separator of the present invention uses a monolith type hydrogen separator in the hydrogen separator as described above, and the open end on the non-support side of the hydrogen separator is communicated with the outside of the sealed container by a tubular member. In addition, the tubular member is provided with a flexible portion that allows thermal expansion of the hydrogen separator.
With such a structure, even with a monolith type hydrogen separator whose end on the non-support side is constrained by a tubular member, problems associated with the difference in thermal expansion between the hydrogen separator and the sealed container can be avoided.
[0019]
The flexible part has thermal expansion in the longitudinal direction of the hydrogen separator of the sealed container by providing flexibility to a part of the tubular member that communicates the outside of the sealed container and the open end of the non-support side of the hydrogen separator. On the other hand, the tubular member may be bent to absorb the difference in thermal expansion between the hydrogen separator and the sealed container.
For example, it is preferable to provide a flexible portion by connecting a flexible hose to a portion of the tubular member perpendicular to the longitudinal direction of the hydrogen separator.
[0020]
As the flexible hose, a commercially available one having a flange structure at both ends of a metal bellows can be used, and it is more preferable to use one with a blade.
This blade is a tubular body made of a metal net, covers the bellows surface, and has both open ends fixed to the flange or bellows.
The bellows-only flexible hose has a slight problem with pressure resistance, and it may be damaged by the internal pressure when a high-pressure gas of 5 to 10 atmospheres flows, but if it is a flexible hose covered with a blade, the hose longitudinal direction Although the expansion to is slightly suppressed, the pressure strength can be ensured.
[0021]
【Example】
Next, the present invention will be described in more detail based on the illustrated embodiments, but the present invention is not limited to these embodiments.
(Example 1) A hydrogen separator 1 shown in FIG. 1 is configured by accommodating six monolithic hydrogen separators 5 in a sealed container 4 including a container body 2 and a lid 3. It is set on the floor surface by the legs 22.
The lid 3 is formed with an introduction port 6 that communicates with the outside of the container 4, and the container body 2 is formed with a collection port 7 and a discharge port 8 that communicate with the outside of the container 4, and the container body 2 and the lid 3 have an outward flange A partition plate 11 is hermetically sandwiched between 9 and 10 to partition the inside of the container 4 into an upper chamber 12 and a lower chamber 13.
[0022]
Each separator 5 is fitted with sockets 14 and 15 so as to converge through holes on both end faces.
The socket 14 on the support side penetrates the partition plate 11 and is fixed to the bolt 20 by fitting. However, the contact surface between the outer periphery of the socket and the partition plate is kept close to the airtightness between the upper chamber and the lower chamber. To hold.
The socket 15 on the non-support side is directly connected to a flexible hose 16 with a blade of 8A in the same direction as the separator 5.
The flexible hose 16 has an effect of buffering the thermal expansion in the longitudinal direction of the sealed container 4 and the separator 5 but has an effect of relaxing the generated stress in the lateral direction.
[0023]
The six flexible hoses 16 are converged by joining to the ring-shaped metal tube 17 with a flange, and are connected to a 20A bladed flexible hose 19 via an L-shaped tube 18.
Since this flexible hose 19 is disposed so as to be orthogonal to the longitudinal direction of the separator 5, it can be bent in the vertical direction. That is, it is a flexible part in a present Example, and it bends so that the thermal expansion difference of the container 4 and the isolation | separation body 5 may be absorbed at the time of high temperature.
[0024]
In the present embodiment, the gas to be treated is supplied from the inlet 6 into the upper chamber 12 of the sealed container 4 and flows into the through hole of the separator 5 from the upper opening end of each separator 5. The hydrogen gas in the gas to be treated selectively permeates the separation membrane on the inner surface of the through hole, flows out of the separator 5, and is led out of the container 4 from the outlet 8 provided in the lower chamber 13.
On the other hand, gas components other than hydrogen in the gas to be treated pass through the through-holes without passing through the separation membrane, pass through the pipes 16 to 19 connected to the lower end of the separator 5, and pass through the recovery port 7 to the outside of the container 4. To be discharged.
As shown in the figure, it is preferable that the separator 5 is housed in a metal bottomed container 21 for protection, but the bottomed container 21 is not essential in this embodiment.
[0025]
(Embodiment 2) The hydrogen separator 31 shown in FIG. 2 has a configuration similar to that of Embodiment 1, but the separator 35 is not directly fixed to the partition plate 41, but the bottomed container 51 is attached to the partition plate 41. It is characterized in that it is suspended and fixed, and the separator 35 is fixed to the bottom of the bottomed container 51. That is, in this embodiment, the lower end of the separator 35 is the support side and the upper end is the non-support side.
[0026]
In the present embodiment, the gas to be processed flows from the inlet 36 through the pipes 49 to 46 into the through holes of the separator 35 from the upper opening end of each separator 35. The hydrogen gas in the gas to be treated selectively permeates the separation membrane on the inner surface of the through hole, flows out of the separator 35, is guided from the bottomed container 51 to the upper chamber 42, and is discharged from the outlet 38 to the outside of the container 34. Released.
On the other hand, gas components other than hydrogen in the gas to be processed pass through the socket 45 connected to pass through the bottomed container 51 at the lower end of the separator 5 without passing through the separation membrane. It flows into the lower chamber 43 and is discharged from the collection port 37 to the outside of the container 34.
[0027]
The present embodiment is the same as the first embodiment in that the flexible hose 49 becomes a flexible portion, but the bottomed container 51 is not only for protecting the separated body, but also for supporting the separated body, and between the upper chamber and the lower chamber. Since it also plays the role of a partition, it is different in that it becomes an essential component.
The socket 44 is supported while being loosely inserted into the support plate 50 so as to ensure a degree of freedom in the vertical direction, and the support plate 50 guides hydrogen gas flowing out from the separator 35 to the upper chamber. Are formed.
[0028]
【The invention's effect】
As described above, according to the hydrogen separator of the present invention, even when a monolith type hydrogen separator is used, damage to the hydrogen separator due to the difference in thermal expansion between the hydrogen separator and the sealed container is prevented. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing one embodiment of a hydrogen separator according to the present invention.
FIG. 2 is a front sectional view showing another embodiment of the hydrogen separator according to the present invention.
FIG. 3 is a schematic view showing a tube-type hydrogen separator.
FIG. 4 is a schematic view showing a monolith type hydrogen separator.
FIG. 5 is a front sectional view showing an example of a general hydrogen separator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hydrogen separator, 2 ... Container main body, 3 ... Cover body, 4 ... Sealed container, 5 ... Hydrogen separator, 6 ... Inlet port, 7 ... Recovery port, 8 ... Outlet port, 9, 10 ... Outward flange, 11 ... partition plate, 12 ... upper chamber, 13 ... lower chamber, 14, 15 ... socket, 16 ... flexible hose, 17 ... ring-shaped metal tube, 18 ... L-shaped tube, 19 ... flexible hose, 20 ... bolt, 21 ... yes Bottom container, 22 ... Leg, 23 ... Drain valve, 31 ... Hydrogen separator, 32 ... Container body, 33 ... Lid, 34 ... Sealed container, 35 ... Hydrogen separator, 36 ... Inlet, 37 ... Recovery port, 38 Deriving port 39, 40 Outward flange, 41 Partition wall, 42 Upper chamber, 43 Lower chamber, 44, 45 Socket, 46 Flexible hose, 47 Ring-shaped metal tube, 48 L-shaped tube, 49 ... Flexible hose, 50 ... Support plate, 51 ... Bottomed container 52 ... Leg, 53 ... Drain valve, 64 ... Sealed container, 65 ... Hydrogen separator, 66 ... Inlet port, 67 ... Recovery port, 68 ... Outlet port, 71 ... Partition plate, 72 ... Upper chamber, 84 ... Sealed vessel, 85 ... Hydrogen separator, 86 ... Inlet, 91 ... Partition plate, 92 ... Upper chamber, 101 ... Hydrogen separator, 102 ... Container body, 103 ... Lid, 104 ... Sealed container, 1055 ... Hydrogen separator, 106 ... Inlet 107, recovery port 108, outlet, 109, 110 outward flange, 111 partition plate, 112 upper chamber, 113 lower chamber.

Claims (4)

多孔質基体の長手方向に多数の貫通孔を並列して形成し、当該貫通孔の内表面に水素分離膜を被着してなる複数基の水素分離体と、
被処理ガスの導入口、分離残ガスを回収するための回収口、及び分離した水素ガスを取り出すための導出口を有する密閉容器と、
からなる水素分離装置において、
前記水素分離体若しくは当該水素分離体を個別に内蔵した有底容器の一端を、前記密閉容器を上下2室に分離するように設けられた隔壁板に固定し、吊り下げ状に支持することにより水素分離体と密閉容器との熱膨張差を許容するとともに、
前記複数基の水素分離体の非支持側の端部に接続された、前記導入口若しくは回収口と連通する管状部材の一部に水素分離体の長手方向に対して直交するように、金属製のベローズの両端をフランジ構造としたフレキシブルホースを接続することにより、水素分離体と密閉容器との熱膨張差を許容する可撓部を設けたことを特徴とする水素分離装置。
A plurality of hydrogen separators formed by forming a large number of through holes in parallel in the longitudinal direction of the porous substrate, and depositing a hydrogen separation membrane on the inner surface of the through holes;
A sealed container having an inlet for the gas to be treated, a recovery port for recovering the separation residual gas, and an outlet for extracting the separated hydrogen gas;
A hydrogen separator comprising:
By fixing one end of the hydrogen separator or a bottomed container individually containing the hydrogen separator to a partition plate provided so as to separate the sealed container into two upper and lower chambers, and supporting it in a suspended form While allowing the thermal expansion difference between the hydrogen separator and the sealed container,
It is made of metal so as to be orthogonal to the longitudinal direction of the hydrogen separator in a part of the tubular member connected to the non-support side end of the plurality of hydrogen separators and communicating with the introduction port or the recovery port . A hydrogen separation apparatus comprising a flexible portion that allows a difference in thermal expansion between a hydrogen separator and a sealed container by connecting a flexible hose having flange structures at both ends of the bellows .
水素分離膜が、パラジウム又はパラジウムを含有する合金よりなる請求項1に記載の水素分離装置。  The hydrogen separator according to claim 1, wherein the hydrogen separation membrane is made of palladium or an alloy containing palladium. 上室に導入口、下室に回収口及び導出口を設けた密閉容器に、複数基の水素分離体の各上端のみを、上室と連通するように隔壁板に対し、吊り下げ状に支持・固定するとともに、前記複数基の水素分離体の各下端を、回収口と連通するように管状部材に接続した請求項1又は2に記載の水素分離装置。 In a sealed container with an inlet in the upper chamber and a recovery port and outlet in the lower chamber, only the upper ends of multiple hydrogen separators are supported in a suspended manner on the partition plate so as to communicate with the upper chamber The hydrogen separator according to claim 1 or 2 , wherein the hydrogen separator is fixed and each lower end of the plurality of hydrogen separators is connected to a tubular member so as to communicate with the recovery port . 多孔質基体の長手方向に多数の貫通孔を並列して形成し、当該貫通孔の内表面に水素分離膜を被着してなる複数基の水素分離体と、
上室に被処理ガスの導入口及び分離した水素ガスを取り出すための導出口、下室に分離残ガスを回収するための回収口を設けた密閉容器と、
からなる水素分離装置において、
前記水素分離体を個別に内蔵した有底容器の一端を、前記密閉容器を上下2室に分離するように設けられた隔壁板に固定し、吊り下げ状に支持することにより水素分離体と密閉容器との熱膨張差を許容
前記密閉容器に、前記複数基の水素分離体を個別に内蔵した有底容器の各開口端を、上室と連通するように隔壁板に対し、吊り下げ状に支持・固定するとともに、前記複数基の水素分離体の下端のみを下室と連通するように前記有底容器底部に固定し、かつ、前記複数基の水素分離体の上端を、前記導入口と連通するように管状部材を接続し、前記管状部材の一部に水素分離体の長手方向に対して直交するように、金属製のベローズの両端をフランジ構造としたフレキシブルホースを接続することにより、水素分離体と密閉容器との熱膨張差を許容する可撓部を設けたことを特徴とする水素分離装置。
A plurality of hydrogen separators formed by forming a large number of through holes in parallel in the longitudinal direction of the porous substrate, and depositing a hydrogen separation membrane on the inner surface of the through holes;
An airtight container provided with an inlet for the gas to be treated in the upper chamber and an outlet for extracting the separated hydrogen gas, and a recovery port for recovering the separation residual gas in the lower chamber;
A hydrogen separator comprising:
One end of a bottomed container in which the hydrogen separator is individually incorporated is fixed to a partition plate provided so as to separate the sealed container into two upper and lower chambers, and supported in a suspended form to be sealed from the hydrogen separator. to allow for thermal expansion difference between the container,
In the closed container, each open end of the bottomed container in which the plurality of hydrogen separators are individually incorporated is supported and fixed in a suspended manner with respect to the partition plate so as to communicate with the upper chamber. A tubular member is connected so that only the lower end of the hydrogen separator is fixed to the bottom of the bottomed container so as to communicate with the lower chamber, and the upper ends of the plurality of hydrogen separators are communicated with the inlet. Then, by connecting a flexible hose having a flange structure at both ends of the metal bellows so as to be orthogonal to the longitudinal direction of the hydrogen separator, a part of the tubular member is connected to the hydrogen separator and the sealed container. A hydrogen separation apparatus, characterized in that a flexible portion allowing a difference in thermal expansion is provided.
JP27245197A 1997-10-06 1997-10-06 Hydrogen separator Expired - Fee Related JP4014701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27245197A JP4014701B2 (en) 1997-10-06 1997-10-06 Hydrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27245197A JP4014701B2 (en) 1997-10-06 1997-10-06 Hydrogen separator

Publications (2)

Publication Number Publication Date
JPH11116203A JPH11116203A (en) 1999-04-27
JP4014701B2 true JP4014701B2 (en) 2007-11-28

Family

ID=17514113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27245197A Expired - Fee Related JP4014701B2 (en) 1997-10-06 1997-10-06 Hydrogen separator

Country Status (1)

Country Link
JP (1) JP4014701B2 (en)

Also Published As

Publication number Publication date
JPH11116203A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
US6494937B1 (en) Hydrogen purification devices, components and fuel processing systems containing the same
US5614001A (en) Hydrogen separator, hydrogen separating apparatus and method for manufacturing hydrogen separator
TW563270B (en) Hydrogen purification devices, components and fuel processing systems containing the same
DK178650B1 (en) The hydrogen-separerings-membrane device
CN100562485C (en) Steam reforming fuel processor
KR100542551B1 (en) Hydrogen-selective metal membrane modules and method of forming the same
JP5241982B2 (en) Method and apparatus for supplying gas phase reactants into a reaction chamber
TWI265818B (en) Hydrogen purification devices, components, and fuel processing systems containing the same
US20080210088A1 (en) Hydrogen purification membranes, components and fuel processing systems containing the same
US20060037476A1 (en) Hydrogen purification devices, components and fuel processing systems containing the same
JP4014701B2 (en) Hydrogen separator
FR2673708A1 (en) SEPARATOR OPERATING IN WEIGHING.
JP4890938B2 (en) Gas separation tube housing structure
JPH03165810A (en) Device for and method of removing gas impurities from hermetically sealed vacuum state
JP3970992B2 (en) Hydrogen separator
TW495373B (en) A fuel processor, hydrogen-selective metal membrane modules, method of forming the same and a hydrogen purification assembly comprising the same
US6071327A (en) Method of separating iodine gas
JP2756071B2 (en) Hydrogen gas separation device
JPH07323277A (en) Water purifying cartridge
JPH03198816A (en) Rice cooker
JP6653144B2 (en) Hydrogen purification method
JPS62246699A (en) Metal hydride container
JPS62282617A (en) Membrane module for separation gas
JP2004181372A (en) Membrane module
JPS6228391B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110921

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120921

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130921

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees