JP3970992B2 - Hydrogen separator - Google Patents

Hydrogen separator Download PDF

Info

Publication number
JP3970992B2
JP3970992B2 JP27245297A JP27245297A JP3970992B2 JP 3970992 B2 JP3970992 B2 JP 3970992B2 JP 27245297 A JP27245297 A JP 27245297A JP 27245297 A JP27245297 A JP 27245297A JP 3970992 B2 JP3970992 B2 JP 3970992B2
Authority
JP
Japan
Prior art keywords
hydrogen
hydrogen separator
gas
separator
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27245297A
Other languages
Japanese (ja)
Other versions
JPH11116204A (en
Inventor
淳司 左近
孝行 川江
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP27245297A priority Critical patent/JP3970992B2/en
Publication of JPH11116204A publication Critical patent/JPH11116204A/en
Application granted granted Critical
Publication of JP3970992B2 publication Critical patent/JP3970992B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、水素混合ガスより水素ガスのみを選択的に透過する水素分離膜を用いた水素分離装置の構造に関する。
【0002】
【従来の技術】
水素ガスは石油化学の基本素材ガスとして大量に使用され、またクリーンなエネルギー源として大きな期待が寄せられている。純度の高い水素ガスは、天然ガス、ナフサ等を原料として触媒により水素を含有するガスに変換し、その水素含有ガスから更に水素ガスを分離して得られる。
【0003】
具体的には、パラジウム又はパラジウム合金が水素ガスのみを選択的に透過する性質を利用して分離することができる。
通常は、セラミックス等のチューブ状多孔質基体の表面にパラジウム又はパラジウム合金の薄膜を被着した水素分離体が用いられる(特開昭62-273030号公報)。
【0004】
更に、このような水素分離体の処理能力の向上を図るべく、単位体積当たりの水素分離体の膜面積を向上することが行われており、複数の貫通孔を形成した一体構造(以下、モノリスという。)の多孔質基体を用い、貫通孔の内表面にパラジウム薄膜を被着した、いわゆるモノリスタイプの水素分離体が開示されている(特開平8-40703号公報)。
【0005】
ところで、パラジウムの水素分離能は、5〜10気圧、300〜500℃の高温高圧においてのみ発揮されるため、セラミックスからなる水素分離体の両端を当該水素分離体を収容する金属からなる密閉容器に固定すると、両者の熱膨張率の相違により水素分離体等が破損するおそれがある。
このため、水素分離体の一端のみを密閉容器と固定して、吊り下げ状に支持し、非支持側の端部を非固定の状態とすることにより水素分離体と密閉容器との熱膨張差を許容した水素分離装置が開示されている(特開平6-191802号公報)。
【0006】
【発明が解決しようとする課題】
しかしながら、上述の吊り下げ状の支持をモノリスタイプの水素分離体を用いた水素分離装置に適用しようとすると、以下に示すような問題点が生ずる。
【0007】
従前のチューブタイプの水素分離体では、チューブ状多孔質基体の外表面にパラジウム膜が成膜され、図2に示すように、導入口36から被処理ガスを密閉容器34内に導入すると、被処理ガス中に含まれる水素ガスはチューブ状の水素分離体35の内壁側に透過し、上室42を経由して導出口38から回収されるとともに、処理残ガスは回収口37から排出される。
【0008】
これに対しモノリスタイプの水素分離体55では、水素分離体55の単位体積当たりの膜面積を向上するべく、多孔質基体の貫通孔の内表面にパラジウム膜を成膜することが必須となり、図3に示すように、導入口56から被処理ガスを密閉容器54内に導入すると上室62を経由して水素分離体55の支持側の端部から貫通孔内に流入し、水素ガスはパラジウム膜を透過して水素分離体55の外周部へ放出される。
【0009】
従って、水素分離体55の非支持側の端部に更に隔壁を設けるか、或いは水素分離体55の非支持側の端部をフランジにより容器54外に連通する配管と接続する等の構造としなければ、分離した水素ガスと処理残ガスが混合してしまう。
しかしながら、このような構造では水素分離体の両端が密閉容器と固定されることになり水素分離体と密閉容器との熱膨張差に伴う不具合を回避することができない。
即ち、本発明ではモノリスタイプの水素分離体を用いた水素分離装置において、水素分離体の破損等、水素分離体と密閉容器との熱膨張差に伴う不具合を回避することを目的とする。
【0010】
【課題を解決するための手段】
本発明は、多孔質基体の長手方向に多数の貫通孔を並列して形成し、当該貫通孔の内表面に水素分離膜を被着してなる複数基の水素分離体と、被処理ガスの導入口、分離残ガスを回収するための回収口、及び分離した水素ガスを取り出すための導出口を有する密閉容器と、からなる水素分離装置において、前記水素分離体の一端を、前記密閉容器を上下2室に分離するように設けられた隔壁板に固定し、吊り下げ状に支持し、各水素分離体の多数の貫通孔を被処理ガス導入路と分離残ガス回収路の2つの貫通孔群に区分するとともに、前記各水素分離体の非支持側端部を冠着部材により空隙部を有して封着することにより、水素分離体の支持側端部の貫通孔から導入した被処理ガスを水素分離体内を往復させるように挿通して、前記支持側端部の貫通孔から回収することにより水素分離体と密閉容器との熱膨張差を許容することを特徴とする水素分離装置である。
【0011】
上記の水素分離装置においては、水素分離膜が、パラジウム又はパラジウムを含有する合金よりなることが好ましい。
【0012】
また、本発明の水素分離装置においては、密閉容器の上室において、導入口と被処理ガス導入路及び、回収口と分離残ガス回収路を管状部材で連通し、分離した水素ガスを下室に設けられた導出口より回収することが好ましい。
【0013】
【発明の実施の形態】
本発明は、水素分離装置の構造に係るものであるので、まず、一般的な水素分離装置の構成を図示の例により概説する。
水素分離装置は、例えば図4に示すように、容器本体72と蓋体73とからなる密閉容器74内に、複数本の水素分離体75を収容して構成される。
【0014】
容器本体72は上端開口部の外周縁部に外向フランジ79を有する有底筒体で、容器74外部に連通する導入口76、回収口77が形成されており、蓋体73は開口端の外周縁部に外向フランジ80を有するドーム型で、蓋体73の頂部中央には容器74外部に連通する導出口78が形成されている。
容器本体72と蓋体73は、外向フランジ79,80間に隔壁板81を気密的に挟持して容器74内部を上室82、下室83に区画した密閉容器74を構成する。
【0015】
水素分離体75はチューブ状の多孔質基体の外表面にパラシウム又はパラジウム合金の薄膜を被着したものであり、前記隔壁板81に上部開口端が上室82に開口した状態で気密的に固定され、下室83内に吊り下げ状に支持される。
なお、下部開口端は冠着部材により気密的に封止される。
【0016】
かかる構成の水素分離装置71においては、導入口76から被処理ガスが密閉容器74の下室83内に供給され、被処理ガス中の水素ガスのみが水素分離体75外表面の分離膜を選択的に透過して水素分離体75内部に流入し、上部開口端から上室82を経由して導出口78より回収される。
一方、被処理ガス中の水素以外のガス成分は、分離膜を透過することなく回収口77より排出される。
【0017】
本発明の水素分離装置は、上述のような水素分離装置においてモノリスタイプの水素分離体を用いたものであって、水素分離体の支持側端部の貫通孔から導入した被処理ガスを水素分離体内を往復させるように挿通して、前記支持側端部の貫通孔から回収するものである。
このようにすることで、モノリスタイプの水素分離体であっても、非支持側端部の貫通孔から被処理ガスを回収する必要がなくなるため、非支持側端部を管状部材や隔壁で拘束されることがなく、水素分離体と密閉容器との熱膨張差に伴う不具合を回避することができる。
【0018】
被処理ガスを水素分離体内を往復させるように挿通し得る構造の例としては、水素分離体の多数の貫通孔を被処理ガス導入路(以下、導入路という。)と分離残ガス回収路(以下、回収路という。)の2群に区分するとともに、前記各水素分離体の非支持側端部を冠着部材により空隙部を有して封着する構造が挙げられる。
【0019】
以下、上記構造を具体的に説明する。
まず、多数の貫通孔を有するモノリスにおいて、約半数の貫通孔群を導入路、残りの貫通孔群を回収路に割り当てて区分する。
次に、導入路に割り当てた貫通孔群の、水素分離体の支持側端面の開口部から被処理ガスを導入すると、被処理ガスは導入路を通って水素分離体の非支持側端部に達する。
【0020】
ここで、非支持側端部は空隙部を有した状態で冠着部材により封着されているため、被処理ガスは当該空隙部を通過して、より低圧である回収路に流入し、再び水素分離体内を通って、回収路に割り当てた貫通孔群の支持側端面の開口部から回収される。
【0021】
このように被処理ガスは、水素分離体内を往復するように挿通され、この過程において、被処理ガスに含まれる水素ガスのみが貫通孔内周面に被着された水素分離膜を透過してモノリス外部へ分離されることになる。
なお、上記のように被処理ガスを挿通した場合においても、被処理ガスと水素分離膜の接触面積は等しいため、水素分離体の処理能力が損なわれることはない。
また、水素分離は高温高圧条件下で行われるため、常に被処理ガス導入側が高圧となっており、処理残ガスが導入路側に逆流することもない。
【0022】
上記構造において、冠着部材とは、水素分離体の非支持側の端部を気密的に封止する部材であって、例えば、水素分離体に嵌合しうる凹部を有する円盤状の部材などを用いることができる。
冠着部材を構成する材質は、水素分離時の高温・高圧に耐え、気密性を確保できる限りにおいて特に限定されず、無機接着材等を用いることができるが、信頼性が高い点において、ろう材を用いることが好ましい。
【0023】
前記冠着部材は、水素分離体端部に嵌合し、或いは螺着する等の方法で接合することができるが、いずれの場合も気密性を確保するため、ろう材等により目封じをすることが必要である。
また、水素分離体の端面と冠着部材とは密着させず、被処理ガスが通過し得る程度の間隙部を有して接合しなければならない。
間隙部をどの程度設けるかは、水素分離体の仕様及び水素分離の条件等により適宜決定されるべきであるが、例えば、モノリスタイプの水素分離体であれば、水素分離体端面と数 mm程度の空隙を設ければよい。
【0024】
一方、水素分離体の支持側端面は多数の貫通孔を導入路側と回収路側の2群に確実に区分する必要があるため、貫通孔群の間を封止部材により気密的に隔絶することが好ましい。
この際に、図5(a)、(b)に示すように、1の貫通孔93aの開口部上面に封止部材92が位置すると、導入路側94と回収路側95が隔絶できず、被処理ガスと分離残ガスが混合してしまうため、貫通孔93の開口部を回避するように封止部材92を配設する必要がある。
【0025】
上述の条件を満たす限りにおいて、封止部材の形状、配置方法については特に限定されず、図6(a)に示す平板体、図6(b)に示す波型の板状体の他、図6(c)に示すように、水素分離体91端面の中心側96と外周側97に分割してもよい。
また、図6(a)、(b)に示す如く、モノリス91の貫通孔の配列パターンをブロック化して封止部材92の配設スペース98を確保しておくことにより、封止部材92を配設し易くすることも可能である。
【0026】
なお、導入路側と回収路側の貫通孔の数は均等であることが好ましいが、必ずしも厳密に2分割されている必要はない。
封止部材を構成する材質としては、セラミック、金属、耐熱樹脂等を用いることができ、高い気密性を確保できる点において、金属を用いることが好ましい。
【0027】
【実施例】
次に、本発明を図示の実施例に基づき更に詳細に説明するが、本発明はこれらの実施例に限られるものではない。
なお、本発明においては、特に言及しない場合においても、各部材間の接合面はいずれもろう材等により気密的に接合されているものとする。
【0028】
(実施例1) 図1に示す水素分離装置1は、容器本体2と蓋体3とからなる密閉容器4内に、6本のモノリスタイプの水素分離体5を収容して構成され、3本の脚22により床面に据えつけられる。
蓋体3には容器4外部に連通する導入口6及び回収口7、容器本体2には容器4外部に連通する導出口8が形成されており、容器本体2と蓋体3は、外向フランジ9,10間に隔壁板11を気密的に挟持して容器4内部を上室12、下室13に区画している。
【0029】
水素分離体5の一端は、隔壁板11に対し嵌合的に固定されているソケット14に接合されており、ソケット14内に垂直に挿入された平板体の封止部材20により、約半数の貫通孔(導入路)は導入口6に、残りの貫通孔(回収路)は回収口7に連通するように構成されている。
なお、水素分離体5の非支持側の端部は冠着部材15により封着される。
【0030】
本実施例においては、被処理ガスが導入口6から集合管19、管状部材18を経て、封止部材20により区分されたソケット14内に供給され、各水素分離体5の上部開口端から約半数の貫通孔内に流入する。
被処理ガス中の水素以外のガス成分は、分離膜を透過することなく、水素分離体5の非支持側の端部に達し、冠着部材15の空隙部を通過して、より低圧である回収路に流入する。そして、再び水素分離体5内を通って、支持端側の貫通孔から管状部材16、集合管17を経て回収口7より回収される。
一方、被処理ガス中の水素ガスは貫通孔内表面の分離膜を選択的に透過して水素分離体5外部に流出し、下室13に設けられている導出口8から容器4外へ導かれる。
【0031】
【発明の効果】
以上説明したように、本発明の水素分離装置によれば、モノリスタイプの水素分離体を用いた場合においても、水素分離体と密閉容器との熱膨張の差に起因する水素分離装置の損傷を防止することができる。
【図面の簡単な説明】
【図1】 本発明に係る水素分離装置の一の実施例を示す正面断面図である。
【図2】 チューブタイプの水素分離体を示す概略図である。
【図3】 モノリスタイプの水素分離体を示す概略図である。
【図4】 一般的な水素分離装置の例を示す正面断面図である。
【図5】 封止部材の配設方法の一の実施例を示す上面図(a)、概略斜視図(b)である。
【図6】 封止部材の配設方法の他の実施例を示す上面図(a)、(b)、(c)である。
【図7】 モノリスの貫通孔の配列をブロック化した実施例を示す上面図(a)、(b)である。
【符号の説明】
1…水素分離装置、2…容器本体、3…蓋体、4…密閉容器、5…水素分離体、6…導入口、7…回収口、8…導出口、9,10…外向フランジ、11…隔壁板、12…上室、13…下室、14…ソケット、15…冠着部材、16…管状部材、17…集合管、18…管状部材、19…集合管、20…封止部材、22…脚、23…ドレンバルブ、34…密閉容器、35…水素分離体、36…導入口、37…回収口、38…導出口、41…隔壁板、42…上室、54…密閉容器、55…水素分離体、56…導入口、61…隔壁板、62…上室、71…水素分離装置、72…容器本体、73…蓋体、74…密閉容器、75…水素分離体、76…導入口、77…回収口、78…導出口、79,80…外向フランジ、81…隔壁板、82…上室、83…下室、91…水素分離体(モノリス)、92…封止部材、93…貫通孔、93a…1の貫通孔、94…導入路側、95…回収路側、96…中心側、97…外周側、98…封止部材配設スペース。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a hydrogen separator using a hydrogen separation membrane that selectively permeates only hydrogen gas from a hydrogen mixed gas.
[0002]
[Prior art]
Hydrogen gas is used in large quantities as a basic raw material gas for petrochemicals, and high expectations are placed on it as a clean energy source. High-purity hydrogen gas is obtained by converting natural gas, naphtha or the like into a gas containing hydrogen using a catalyst, and further separating the hydrogen gas from the hydrogen-containing gas.
[0003]
Specifically, it can be separated by utilizing the property that palladium or a palladium alloy selectively transmits only hydrogen gas.
Usually, a hydrogen separator in which a thin film of palladium or a palladium alloy is deposited on the surface of a tubular porous substrate such as ceramics is used (Japanese Patent Laid-Open No. 62-273030).
[0004]
Further, in order to improve the processing capacity of such a hydrogen separator, the membrane area of the hydrogen separator per unit volume is improved, and an integrated structure (hereinafter referred to as a monolithic structure) in which a plurality of through holes are formed. A so-called monolithic hydrogen separator is disclosed in which a palladium thin film is deposited on the inner surface of a through-hole (Japanese Patent Laid-Open No. 8-40703).
[0005]
By the way, the hydrogen separation ability of palladium is exhibited only at a high temperature and a high pressure of 5 to 10 atmospheres and 300 to 500 ° C. Therefore, both ends of the hydrogen separator made of ceramics are sealed in a sealed container made of metal containing the hydrogen separator. If fixed, the hydrogen separator may be damaged due to the difference in thermal expansion coefficient between the two.
For this reason, only one end of the hydrogen separator is fixed to the sealed container and supported in a suspended form, and the end on the non-supporting side is set to an unfixed state, whereby the difference in thermal expansion between the hydrogen separator and the sealed container is achieved. Has been disclosed (Japanese Patent Laid-Open No. 6-191802).
[0006]
[Problems to be solved by the invention]
However, when the above-described suspended support is applied to a hydrogen separator using a monolith type hydrogen separator, the following problems occur.
[0007]
In the conventional tube-type hydrogen separator, a palladium membrane is formed on the outer surface of the tubular porous substrate. When the gas to be treated is introduced into the sealed container 34 from the inlet 36 as shown in FIG. The hydrogen gas contained in the processing gas permeates to the inner wall side of the tubular hydrogen separator 35 and is recovered from the outlet port 38 via the upper chamber 42 and the processing residual gas is discharged from the recovery port 37. .
[0008]
On the other hand, in the case of the monolith type hydrogen separator 55, in order to improve the membrane area per unit volume of the hydrogen separator 55, it is essential to form a palladium membrane on the inner surface of the through hole of the porous substrate. 3, when the gas to be treated is introduced into the sealed container 54 from the introduction port 56, it flows into the through hole from the support side end of the hydrogen separator 55 via the upper chamber 62, and the hydrogen gas is palladium It passes through the membrane and is discharged to the outer periphery of the hydrogen separator 55.
[0009]
Therefore, a partition should be provided at the end of the non-supporting side of the hydrogen separator 55, or the end of the non-supporting side of the hydrogen separator 55 should be connected to a pipe communicating with the outside of the container 54 by a flange. In this case, the separated hydrogen gas and the processing residual gas are mixed.
However, in such a structure, both ends of the hydrogen separator are fixed to the sealed container, and it is not possible to avoid problems associated with the difference in thermal expansion between the hydrogen separator and the sealed container.
That is, an object of the present invention is to avoid problems associated with a difference in thermal expansion between a hydrogen separator and a sealed container, such as damage to the hydrogen separator, in a hydrogen separator using a monolith type hydrogen separator.
[0010]
[Means for Solving the Problems]
The present invention provides a plurality of hydrogen separators formed by forming a large number of through holes in parallel in the longitudinal direction of a porous substrate, and depositing a hydrogen separation membrane on the inner surface of the through holes, and a gas to be processed. In a hydrogen separator comprising an inlet, a recovery port for recovering separated separation gas, and an outlet for extracting separated hydrogen gas, one end of the hydrogen separator is connected to the sealed container. It is fixed to a partition plate provided so as to be separated into two upper and lower chambers, and is supported in a suspended form. A large number of through holes of each hydrogen separator are divided into two through holes of a treated gas introduction path and a separation residual gas recovery path. The untreated side ends of each of the hydrogen separators are sealed with a gap portion by a crowning member and sealed to be treated through the through holes in the support side ends of the hydrogen separators. Gas is passed through the hydrogen separator to reciprocate, and the support side end A hydrogen separation apparatus characterized by allowing the difference in thermal expansion between the compressor housing hydrogen separator by recovering from the through-hole.
[0011]
In the hydrogen-separation device, the hydrogen separation membrane, has preferably be made of an alloy containing palladium or palladium.
[0012]
In the hydrogen separator of the present invention, in the upper chamber of the sealed container, the introduction port, the gas introduction path to be processed, and the recovery port and the separation residual gas recovery path are communicated with each other by a tubular member, and the separated hydrogen gas is It is preferable to collect from the outlet provided in the.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Since the present invention relates to the structure of a hydrogen separator, first, the configuration of a general hydrogen separator will be outlined with reference to the illustrated example.
For example, as shown in FIG. 4, the hydrogen separator is configured by accommodating a plurality of hydrogen separators 75 in a sealed container 74 including a container body 72 and a lid 73.
[0014]
The container main body 72 is a bottomed cylindrical body having an outward flange 79 on the outer peripheral edge of the upper end opening, and is formed with an introduction port 76 and a recovery port 77 communicating with the outside of the container 74, and the lid 73 is located outside the open end. A dome shape having an outward flange 80 at the peripheral edge, and a lead-out port 78 communicating with the outside of the container 74 is formed at the center of the top of the lid 73.
The container main body 72 and the lid 73 constitute a sealed container 74 in which the partition plate 81 is hermetically sandwiched between the outward flanges 79 and 80 and the inside of the container 74 is partitioned into an upper chamber 82 and a lower chamber 83.
[0015]
The hydrogen separator 75 is formed by depositing a thin film of palladium or a palladium alloy on the outer surface of a tubular porous substrate, and is hermetically fixed to the partition plate 81 with the upper opening end opened to the upper chamber 82. Then, it is supported in a suspended manner in the lower chamber 83.
Note that the lower opening end is hermetically sealed by the crown member.
[0016]
In the hydrogen separator 71 configured as described above, the gas to be processed is supplied from the inlet 76 into the lower chamber 83 of the sealed container 74, and only the hydrogen gas in the gas to be processed selects the separation membrane on the outer surface of the hydrogen separator 75. Permeated and flows into the hydrogen separator 75 and is collected from the outlet 78 through the upper chamber 82 from the upper opening end.
On the other hand, gas components other than hydrogen in the gas to be treated are discharged from the recovery port 77 without passing through the separation membrane.
[0017]
The hydrogen separator according to the present invention uses a monolith type hydrogen separator in the hydrogen separator as described above, and hydrogen-separates the gas to be treated introduced from the through hole at the support side end of the hydrogen separator. It is inserted so as to reciprocate inside the body, and is recovered from the through hole at the support side end.
In this way, even in the case of a monolith type hydrogen separator, there is no need to collect the gas to be treated from the through-hole at the non-support side end, so the non-support side end is constrained by a tubular member or partition wall. Therefore, it is possible to avoid problems associated with the difference in thermal expansion between the hydrogen separator and the sealed container.
[0018]
As an example of a structure in which the gas to be processed can be inserted so as to reciprocate in the hydrogen separator, a large number of through holes of the hydrogen separator are provided with a gas to be processed introduction path (hereinafter referred to as an introduction path) and a separation residual gas recovery path ( Hereinafter, the structure is divided into two groups of recovery paths), and the non-support side end portions of the respective hydrogen separators are sealed with a gap portion by a crowning member.
[0019]
The above structure will be specifically described below.
First, in a monolith having a large number of through-holes, about half of the through-hole groups are assigned to the introduction path, and the remaining through-hole groups are assigned to the recovery path.
Next, when the gas to be treated is introduced from the opening on the support side end face of the hydrogen separator in the through hole group assigned to the introduction path, the gas to be treated passes through the introduction path to the non-support side end of the hydrogen separator. Reach.
[0020]
Here, since the non-support side end portion is sealed with the crown member in a state having a gap portion, the gas to be processed passes through the gap portion and flows into the recovery path having a lower pressure, and again It passes through the hydrogen separator and is recovered from the opening on the support side end face of the through hole group assigned to the recovery path.
[0021]
In this way, the gas to be treated is inserted so as to reciprocate in the hydrogen separator, and in this process, only the hydrogen gas contained in the gas to be treated permeates through the hydrogen separation membrane deposited on the inner peripheral surface of the through hole. It will be separated outside the monolith.
Even when the gas to be processed is inserted as described above, the processing area of the hydrogen separator is not impaired because the contact area between the gas to be processed and the hydrogen separation membrane is equal.
Further, since hydrogen separation is performed under high temperature and high pressure conditions, the gas to be treated introduction side is always at a high pressure, and the residual gas does not flow back to the introduction path side.
[0022]
In the above structure, the crown member is a member that hermetically seals the non-supporting end of the hydrogen separator, such as a disk-shaped member having a recess that can be fitted into the hydrogen separator. Can be used.
The material constituting the crown member is not particularly limited as long as it can withstand high temperatures and high pressures during hydrogen separation and can ensure airtightness, and an inorganic adhesive can be used. It is preferable to use a material.
[0023]
The crown member can be joined to the end of the hydrogen separator, or can be joined by screwing or the like, but in any case, it is sealed with a brazing material to ensure airtightness. It is necessary.
In addition, the end face of the hydrogen separator and the crown member should not be brought into close contact with each other and should be joined with a gap that allows the gas to be processed to pass through.
How much gap is to be provided should be determined appropriately depending on the specifications of the hydrogen separator and the hydrogen separation conditions, etc. For example, in the case of a monolith type hydrogen separator, the end face of the hydrogen separator is about several millimeters. What is necessary is just to provide this space | gap.
[0024]
On the other hand, since the support-side end face of the hydrogen separator needs to reliably divide a large number of through holes into two groups of the introduction path side and the recovery path side, the through hole groups may be hermetically isolated by a sealing member. preferable.
At this time, as shown in FIGS. 5 (a) and 5 (b), when the sealing member 92 is positioned on the upper surface of the opening of one through-hole 93a, the introduction path side 94 and the recovery path side 95 cannot be isolated from each other. Since the gas and the separation residual gas are mixed, it is necessary to dispose the sealing member 92 so as to avoid the opening of the through hole 93.
[0025]
As long as the above-described conditions are satisfied, the shape and arrangement method of the sealing member are not particularly limited, and in addition to the flat plate shown in FIG. 6A and the corrugated plate shown in FIG. 6 (c), it may be divided into a center side 96 and an outer peripheral side 97 of the end face of the hydrogen separator 91.
In addition, as shown in FIGS. 6A and 6B, the arrangement pattern of the through holes of the monolith 91 is blocked to secure an arrangement space 98 for the sealing member 92, thereby arranging the sealing member 92. It is also possible to make it easier to install.
[0026]
In addition, although it is preferable that the number of through-holes on the introduction path side and the recovery path side is equal, it is not necessarily required to be strictly divided into two.
As a material constituting the sealing member, ceramic, metal, heat-resistant resin, or the like can be used, and it is preferable to use metal in terms of ensuring high airtightness.
[0027]
【Example】
Next, the present invention will be described in more detail based on the illustrated embodiments, but the present invention is not limited to these embodiments.
In the present invention, even if not particularly mentioned, the joint surfaces between the members are all hermetically joined by a brazing material or the like.
[0028]
(Example 1) A hydrogen separator 1 shown in FIG. 1 is configured by accommodating six monolithic hydrogen separators 5 in a sealed container 4 including a container body 2 and a lid 3. The leg 22 is installed on the floor surface.
The lid 3 is formed with an introduction port 6 and a recovery port 7 communicating with the outside of the container 4, and the container body 2 is formed with a lead-out port 8 communicating with the outside of the container 4. The container body 2 and the lid 3 are formed with outward flanges. A partition plate 11 is hermetically sandwiched between 9 and 10 to partition the inside of the container 4 into an upper chamber 12 and a lower chamber 13.
[0029]
One end of the hydrogen separator 5 is joined to a socket 14 that is fitted and fixed to the partition plate 11, and about half of the members are separated by a flat plate sealing member 20 that is inserted vertically into the socket 14. The through hole (introduction path) communicates with the introduction port 6, and the remaining through hole (recovery path) communicates with the recovery port 7.
Note that the end of the hydrogen separator 5 on the non-supporting side is sealed by a crowning member 15.
[0030]
In this embodiment, the gas to be treated is supplied from the inlet 6 through the collecting pipe 19 and the tubular member 18 into the socket 14 divided by the sealing member 20, and from the upper open end of each hydrogen separator 5. It flows into half of the through holes.
Gas components other than hydrogen in the gas to be treated reach the non-supporting end of the hydrogen separator 5 without passing through the separation membrane, pass through the gap of the crown member 15, and have a lower pressure. It flows into the recovery path. Then, it passes through the hydrogen separator 5 again, and is recovered from the recovery port 7 through the tubular member 16 and the collecting tube 17 from the through hole on the support end side.
On the other hand, the hydrogen gas in the gas to be treated selectively permeates the separation membrane on the inner surface of the through hole, flows out of the hydrogen separator 5, and is guided out of the container 4 from the outlet 8 provided in the lower chamber 13. It is burned.
[0031]
【The invention's effect】
As described above, according to the hydrogen separator of the present invention, even when a monolith type hydrogen separator is used, damage to the hydrogen separator due to the difference in thermal expansion between the hydrogen separator and the sealed container is prevented. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing one embodiment of a hydrogen separator according to the present invention.
FIG. 2 is a schematic view showing a tube-type hydrogen separator.
FIG. 3 is a schematic view showing a monolith type hydrogen separator.
FIG. 4 is a front sectional view showing an example of a general hydrogen separator.
FIG. 5 is a top view (a) and a schematic perspective view (b) showing an embodiment of a method for disposing a sealing member.
FIGS. 6A and 6B are top views (a), (b), and (c) showing another embodiment of a method for arranging a sealing member. FIGS.
FIGS. 7A and 7B are top views (a) and (b) showing an embodiment in which the arrangement of the through holes of the monolith is blocked.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Hydrogen separator, 2 ... Container main body, 3 ... Cover body, 4 ... Sealed container, 5 ... Hydrogen separator, 6 ... Inlet port, 7 ... Recovery port, 8 ... Outlet port, 9, 10 ... Outward flange, 11 DESCRIPTION OF SYMBOLS ... Partition plate, 12 ... Upper chamber, 13 ... Lower chamber, 14 ... Socket, 15 ... Crowning member, 16 ... Tubular member, 17 ... Collecting pipe, 18 ... Tubular member, 19 ... Collecting pipe, 20 ... Sealing member, 22 ... Leg, 23 ... Drain valve, 34 ... Sealed container, 35 ... Hydrogen separator, 36 ... Inlet port, 37 ... Recovery port, 38 ... Outlet port, 41 ... Partition plate, 42 ... Upper chamber, 54 ... Sealed vessel, 55 ... Hydrogen separator, 56 ... Inlet, 61 ... Partition plate, 62 ... Upper chamber, 71 ... Hydrogen separator, 72 ... Container body, 73 ... Lid, 74 ... Sealed container, 75 ... Hydrogen separator, 76 ... Inlet port, 77 ... Recovery port, 78 ... Outlet port, 79, 80 ... Outward flange, 81 ... Partition plate, 82 ... Upper chamber, 83 ... Chamber 91, hydrogen separator (monolith) 92, sealing member, 93, through-hole, 93 a, 1 through-hole, 94, introduction path side, 95, recovery path side, 96, center side, 97, outer peripheral side, 98 ... Space for arranging sealing member.

Claims (3)

多孔質基体の長手方向に多数の貫通孔を並列して形成し、当該貫通孔の内表面に水素分離膜を被着してなる複数基の水素分離体と、
被処理ガスの導入口、分離残ガスを回収するための回収口、及び分離した水素ガスを取り出すための導出口を有する密閉容器と、
からなる水素分離装置において、
前記水素分離体の一端を、前記密閉容器を上下2室に分離するように設けられた隔壁板に固定し、吊り下げ状に支持し、
各水素分離体の多数の貫通孔を被処理ガス導入路と分離残ガス回収路の2つの貫通孔群に区分するとともに、前記各水素分離体の非支持側端部を冠着部材により空隙部を有して封着することにより、水素分離体の支持側端部の貫通孔から導入した被処理ガスを水素分離体内を往復させるように挿通して、前記支持側端部の貫通孔から回収することにより水素分離体と密閉容器との熱膨張差を許容することを特徴とする水素分離装置。
A plurality of hydrogen separators formed by forming a large number of through holes in parallel in the longitudinal direction of the porous substrate, and depositing a hydrogen separation membrane on the inner surface of the through holes;
A sealed container having an inlet for the gas to be treated, a recovery port for recovering the separation residual gas, and an outlet for extracting the separated hydrogen gas;
A hydrogen separator comprising:
One end of the hydrogen separator is fixed to a partition plate provided so as to separate the sealed container into two upper and lower chambers, and is supported in a suspended manner .
A number of through-holes of each hydrogen separator are divided into two through-hole groups of a gas to be treated introduction path and a separation residual gas recovery path, and an unsupported end of each hydrogen separator is formed into a gap by a crowning member. The gas to be treated introduced from the through hole at the support side end of the hydrogen separator is inserted so as to reciprocate in the hydrogen separator and recovered from the through hole at the support side end. By doing so, the hydrogen separation apparatus is allowed to allow a difference in thermal expansion between the hydrogen separator and the sealed container.
水素分離膜が、パラジウム又はパラジウムを含有する合金よりなる請求項1に記載の水素分離装置。  The hydrogen separator according to claim 1, wherein the hydrogen separation membrane is made of palladium or an alloy containing palladium. 密閉容器の上室において、導入口と被処理ガス導入路及び、回収口と分離残ガス回収路を管状部材で連通し、かつ、分離した水素ガスを下室に設けられた導出口より回収する請求項1又は2に記載の水素分離装置。 In the upper chamber of the closed container, the introduction port, the gas to be treated introduction path, the recovery port, and the separation residual gas recovery path are connected with a tubular member, and the separated hydrogen gas is recovered from the outlet port provided in the lower chamber. The hydrogen separator according to claim 1 or 2.
JP27245297A 1997-10-06 1997-10-06 Hydrogen separator Expired - Fee Related JP3970992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27245297A JP3970992B2 (en) 1997-10-06 1997-10-06 Hydrogen separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27245297A JP3970992B2 (en) 1997-10-06 1997-10-06 Hydrogen separator

Publications (2)

Publication Number Publication Date
JPH11116204A JPH11116204A (en) 1999-04-27
JP3970992B2 true JP3970992B2 (en) 2007-09-05

Family

ID=17514125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27245297A Expired - Fee Related JP3970992B2 (en) 1997-10-06 1997-10-06 Hydrogen separator

Country Status (1)

Country Link
JP (1) JP3970992B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4414911B2 (en) * 2005-02-18 2010-02-17 三井造船株式会社 Cylindrical membrane module
MY175507A (en) * 2013-02-01 2020-06-30 Ngk Insulators Ltd Method for using ceramic filter, and filter device

Also Published As

Publication number Publication date
JPH11116204A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
KR101753319B1 (en) Modular flow system
US4713174A (en) Mounting arrangement for a tube-type filter element
US6332913B1 (en) Membrane module for selective gas separation
JP5582670B2 (en) Microsystem capillary separation
DK177264B1 (en) Hydrogen separation membrane
US6569227B2 (en) Hydrogen purification devices, components and fuel processing systems containing the same
KR100572281B1 (en) Hydrogen purification devices, components and fuel processing systems containing the same
EP1563894A1 (en) Multi-tube separation membrane module
US20060037476A1 (en) Hydrogen purification devices, components and fuel processing systems containing the same
US20080210088A1 (en) Hydrogen purification membranes, components and fuel processing systems containing the same
JPH0620512B2 (en) Mixture separation device by pervaporation method
KR100668647B1 (en) Membrane module for hydrogen purification
JPH06154562A (en) Device for separating fluid mixture forming plate module
JP3970992B2 (en) Hydrogen separator
JP2006511337A (en) Membrane module for fluid separation
US5037461A (en) Filtration apparatus
JP2005506268A (en) Hydrogen purification module
US8728181B2 (en) Staged system for producing purified hydrogen from a reaction gas mixture comprising a hydrocarbon compound
JP4427131B2 (en) Methanol synthesis catalyst equipment
JP2003144859A (en) Gas separating device
KR960000005B1 (en) Apparatus for de dusting gases
JP2002532218A (en) Modular filter with at least one inlet for the liquid to be filtered, an outlet for the filtrate and at least one filter module
JP4014701B2 (en) Hydrogen separator
JPH11300172A (en) Support for gas separation membrane, structure for gas purification, and gas purification apparatus
JP2004105822A (en) Gas-liquid separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070607

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees