JP4890938B2 - Gas separation tube housing structure - Google Patents

Gas separation tube housing structure Download PDF

Info

Publication number
JP4890938B2
JP4890938B2 JP2006141358A JP2006141358A JP4890938B2 JP 4890938 B2 JP4890938 B2 JP 4890938B2 JP 2006141358 A JP2006141358 A JP 2006141358A JP 2006141358 A JP2006141358 A JP 2006141358A JP 4890938 B2 JP4890938 B2 JP 4890938B2
Authority
JP
Japan
Prior art keywords
gas separation
container
separation pipe
housing structure
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006141358A
Other languages
Japanese (ja)
Other versions
JP2007307518A (en
Inventor
憲一 野田
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2006141358A priority Critical patent/JP4890938B2/en
Publication of JP2007307518A publication Critical patent/JP2007307518A/en
Application granted granted Critical
Publication of JP4890938B2 publication Critical patent/JP4890938B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、主として選択透過膜型反応器に好適に採用されるガス分離管収容構造体に関する。   The present invention relates to a gas separation tube housing structure that is suitably used mainly for a selectively permeable membrane reactor.

従来、多成分混合ガスから特定のガス成分のみを得る方法として、有機又は無機のガス分離膜によって分離する方法(膜分離法)が知られている。関連する従来技術として、多孔質基体の一表面にパラジウム若しくはパラジウム合金、又はシリカからなるガス分離膜が被覆形成された管状の水素ガス分離体(水素ガス分離管)が開示されている(例えば、特許文献1〜3参照)。また、多孔質基体の一表面にDDR(Deca−Dodecasil 3R)型ゼオライトからなるガス分離膜が被覆形成された管状の二酸化炭素ガス分離体(二酸化炭素ガス分離管)が開示されている(例えば、特許文献4,5参照)。また、多孔質基体の一表面に炭素やLaGaOからなるガス分離膜が被覆形成された管状の酸素ガス分離体(酸素ガス分離管)が開示されている(例えば、特許文献6,7、非特許文献1参照)。このようなガス分離体では、ガス分離膜のみでは機械強度が不十分であるため、ガス分離膜を、例えば管状の多孔質基体に被覆形成している。 Conventionally, as a method for obtaining only a specific gas component from a multi-component mixed gas, a method of separating with an organic or inorganic gas separation membrane (membrane separation method) is known. As a related prior art, a tubular hydrogen gas separator (hydrogen gas separation tube) in which a gas separation membrane made of palladium, a palladium alloy, or silica is coated on one surface of a porous substrate is disclosed (for example, Patent Literatures 1 to 3). Further, a tubular carbon dioxide gas separator (carbon dioxide gas separation pipe) in which a gas separation membrane made of DDR (Deca-Dodecasil 3R) zeolite is formed on one surface of a porous substrate is disclosed (for example, (See Patent Documents 4 and 5). Moreover, a tubular oxygen gas separator (oxygen gas separation tube) in which a gas separation membrane made of carbon or LaGaO 3 is coated on one surface of a porous substrate is disclosed (for example, Patent Documents 6 and 7, Patent Document 1). In such a gas separator, since the mechanical strength is insufficient only with the gas separation membrane, the gas separation membrane is coated on, for example, a tubular porous substrate.

このようなガス分離管が収容されたガス分離管収容構造体は、金属製の容器内にガス分離管を配置し、ガス分離管の一方の側より被処理ガス(混合ガス)を導入し、特定のガスのみがガス分離管を透過し、ガス分離管の他方の側より精製された透過ガスを取り出す構造を有する。従って、混合ガス側と透過ガス側とを気密に分離して、ガス分離管を金属製容器の透過ガス取出口に気密に接続する必要がある。このため、ガス分離管と透過ガス取出口に接続する金属フランジとの接合部から混合ガスが透過ガス側に漏洩しないことが重要となる。   The gas separation pipe housing structure in which such a gas separation pipe is housed arranges the gas separation pipe in a metal container, introduces a gas to be treated (mixed gas) from one side of the gas separation pipe, Only a specific gas permeates through the gas separation pipe, and a purified permeated gas is taken out from the other side of the gas separation pipe. Therefore, it is necessary to hermetically separate the mixed gas side and the permeate gas side and connect the gas separation pipe to the permeate gas outlet of the metal container in an airtight manner. For this reason, it is important that the mixed gas does not leak to the permeate gas side from the joint between the gas separation pipe and the metal flange connected to the permeate gas outlet.

ガス分離管の透過ガス側(内部)と混合ガス側(外部)を気密的に隔離した状態でガス分離管と容器を接合したものとしては、例えば図4に示すように、筒状のガス分離管12の両端部を、容器23の内面にガラス等の緻密体を用いた気密接合部16によって接合したガス分離管収容構造体40がある。しかしながら、容器23とガス分離管12の膨張率に差があると、加温・加熱状況下で使用するような場合にはガス分離管12や容器23に応力が発生し、これらが破損する等の不具合を生ずる可能性もある。   As shown in FIG. 4, for example, as shown in FIG. 4, the cylindrical gas separation is performed by joining the gas separation tube and the container in a state where the permeate gas side (inside) and the mixed gas side (outside) of the gas separation tube are hermetically separated. There is a gas separation pipe housing structure 40 in which both ends of the pipe 12 are joined to the inner surface of the container 23 by an airtight joint 16 using a dense body such as glass. However, if there is a difference between the expansion rates of the container 23 and the gas separation pipe 12, stress is generated in the gas separation pipe 12 and the container 23 when they are used under heating and heating conditions, etc. There is also a possibility of causing a malfunction.

このような不具合の発生を回避すべく、ガス分離管12の一方の端部を気密接合部26によって容器43に接合し、他方の端部を蓋状フランジ等の蓋状封止部材(蓋状接合部材4a)によって封止したガス分離管収容構造体50(図5)や、ガス分離管12の一方の端部を環状フランジ等の環状接合部材4bによって容器53に接合し、他方の端部を蓋状フランジ等の蓋状封止部材(蓋状接合部材4a)によって封止したガス分離管収容構造体60(図6)等が開示されている(例えば、特許文献2,8,9参照)。 In order to avoid such a problem, one end of the gas separation pipe 12 is joined to the container 43 by the airtight joint 26 , and the other end is joined to a lid-like sealing member such as a lid-like flange (a lid-like member). The gas separation pipe housing structure 50 (FIG. 5) sealed by the joining member 4a) and one end of the gas separation pipe 12 are joined to the container 53 by the annular joining member 4b such as an annular flange, and the other end. A gas separation tube housing structure 60 (FIG. 6) and the like sealed with a lid-like sealing member (lid-like joining member 4a) such as a lid-like flange is disclosed (see, for example, Patent Documents 2, 8, and 9). ).

通常、図5及び図6に示すような構成を有するガス分離管収容構造体50,60の接合部材(蓋状接合部材4a、環状接合部材4b)の外径は、ガス分離管12の外径よりも大きい。従って、ガス分離管12を容器43,53内に収容する場合には、容器43,53の内径を、接合部材(蓋状接合部材4a、環状接合部材4b)の外径よりも大きくしなければならない。   Usually, the outer diameters of the joining members (the lid-like joining member 4a and the annular joining member 4b) of the gas separation pipe housing structures 50, 60 having the configuration shown in FIGS. 5 and 6 are the outer diameters of the gas separation pipe 12. Bigger than. Therefore, when the gas separation pipe 12 is accommodated in the containers 43 and 53, the inner diameters of the containers 43 and 53 must be made larger than the outer diameters of the joining members (the lid-like joining member 4a and the annular joining member 4b). Don't be.

一方で、混合ガスから目的のガスを透過させる際に問題となる、濃度分極によるフラックス低下を抑制するためには、容器内周面とガス分離管外周面の距離を小さくすることが効果的ある。また、図7に示すように、ガス分離管12と容器63の間に触媒5を配設したガス分離管収容構造体70については、透過膜型反応器(メンブレンリアクタ)として使用することができる。このようなメンブレンリアクタについても、容器内周面とガス分離管外周面の距離Dが大きいと、使用する触媒量が必要以上に多くなるため、容器63とガス分離管12の間を適当な距離まで小さくすることが望ましい。しかしながら、容器63の内径がフランジ(蓋状フランジ4a、環状フランジ4b)の外径よりも大きくせざるを得ない状況下においては、容器内周面とガス分離管外周面の距離Dを小さくするのにも限界がある。
特許第3213430号公報 特開2003−126662号公報 特開2005−118767号公報 特開2003−159518号公報 特開2004−105942号公報 特開2003−286018号公報 特開2001−93325号公報 特開2002−187706号公報 特開2004−19879号公報 K.Okamoto et.al.,ACS Symp.Ser.,Vol.744,p314(2000).
On the other hand, becomes a problem when transmitting the desired gas from a gas mixture, in order to suppress the decrease flux by concentration polarization, it is effective to reduce the distance of the container inner peripheral surface and the gas separation pipe outer peripheral surface is there. Further, as shown in FIG. 7, the gas separation pipe housing structure 70 in which the catalyst 5 is disposed between the gas separation pipe 12 and the container 63 can be used as a permeable membrane reactor (membrane reactor). . Such membrane reactors also the distance D 4 of the container inner peripheral surface and the gas separation tube outer peripheral surface is large, the amount of catalyst is increased more than necessary to use a suitable between the container 63 and the gas separation pipe 12 It is desirable to reduce the distance. However, an inner diameter of the flange (lid-like flange 4a, an annular flange 4b) of the container 63 Under large forced circumstances than the outer diameter of the smaller distance D 4 of the container inner peripheral surface and the gas separation pipe outer peripheral surface There is a limit to doing it.
Japanese Patent No. 3213430 JP 2003-126662 A JP 2005-118767 A JP 2003-159518 A JP 2004-105942 A JP 2003-286018 A JP 2001-93325 A JP 2002-187706 A Japanese Patent Laid-Open No. 2004-1987 K. Okamoto et. al. , ACS Symp. Ser. , Vol. 744, p314 (2000).

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、分離能に優れているとともに、コンパクトに設計可能であり、限られた狭小空間であっても配設することができるガス分離管収容構造体を提供することにある。   The present invention has been made in view of such problems of the prior art, and the problem is that the present invention is excellent in separability and can be designed in a compact manner in a limited narrow space. An object of the present invention is to provide a gas separation pipe housing structure that can be disposed even if it exists.

本発明者らは上記課題を達成すべく鋭意検討した結果、ガス分離管として有底筒状のものを使用するとともに、このガス分離管と容器を接合部材によって接合し、接合部材の外径よりも、容器の少なくともガス分離管を収容する部分の内径の方を小さくすることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors used a bottomed cylindrical gas separation tube, and joined the gas separation tube and the container with a joining member, from the outer diameter of the joining member. However, it has been found that the above problem can be achieved by reducing the inner diameter of at least the portion of the container that accommodates the gas separation pipe, and the present invention has been completed.

また、本発明者らは、ガス分離管として有底筒状のものを使用するとともに、このガス分離管と容器を、ガス分離管の開口部近傍の外周面と容器の内周面の間に配設される気密接合部によって接合することによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   In addition, the present inventors use a bottomed cylindrical tube as the gas separation tube, and connect the gas separation tube and the container between the outer peripheral surface near the opening of the gas separation tube and the inner peripheral surface of the container. It has been found that the above-mentioned problems can be achieved by joining with the airtight joint portion provided, and the present invention has been completed.

即ち、本発明によれば、以下に示すガス分離管収容構造体が提供される。   That is, according to the present invention, the following gas separation pipe housing structure is provided.

[1]有底筒状の基材、及び前記基材の少なくとも一の表面上に形成された選択透過膜を有する、一の開口部を持った有底筒状のガス分離管と、前記ガス分離管をその内部に収容する容器と、前記ガス分離管の前記開口部に配設され、前記ガス分離管の内部と外部を気密的に隔離した状態で前記ガス分離管と前記容器を接合する、その外径が前記ガス分離管の外径に比して大きい接合部材と、を備え、前記接合部材の外径に比して、前記容器の少なくとも前記ガス分離管を収容する部分の内径の方が小さく、前記容器内において、前記ガス分離管が配設された部分の、前記ガス分離管の外周面と前記容器の内周面の間の空隙部の容積a(cm )と、前記選択透過膜の面積b(cm )との比X(=a/b)が、0.1〜10であるガス分離管収容構造体であり、前記接合部材が、前記容器の外部に出た状態で前記容器と接合されている、または、前記容器の前記ガス分離管を収容する部分の内径よりも大きな内径を有する部分に収容されていることを特徴とするガス分離管収容構造体(以下、「第一のガス分離管収容構造体」ともいう)。 [1] A bottomed cylindrical gas separation pipe having a bottomed cylindrical base material, and a selectively permeable membrane formed on at least one surface of the base material, and having one opening, and the gas A container that accommodates the separation tube therein, and the gas separation tube and the container that are disposed in the opening of the gas separation tube and are hermetically separated from each other inside the gas separation tube A joining member having an outer diameter larger than the outer diameter of the gas separation pipe, and having an inner diameter of at least a portion of the container that accommodates the gas separation pipe as compared with the outer diameter of the joining member. it is rather small in the container, the portion in which the gas separation tube is arranged, the gap portion of the volume a between the inner peripheral surface of the outer peripheral surface and the container of the gas separation pipe (cm 3), A gas component having a ratio X (= a / b) to an area b (cm 2 ) of the permselective membrane of 0.1 to 10 A separation pipe housing structure, wherein the joining member is joined to the container in a state of coming out of the container, or has an inner diameter larger than an inner diameter of a portion of the container for housing the gas separation pipe. A gas separation tube housing structure (hereinafter, also referred to as “first gas separation tube housing structure”) characterized in that the gas separation tube housing structure is housed in a portion having the same .

[2]前記接合部材が、金属又はセラミックスからなるものである前記[1]に記載のガス分離管収容構造体。   [2] The gas separation pipe housing structure according to [1], wherein the joining member is made of metal or ceramics.

[3]有底筒状の基材、及び前記基材の少なくとも一の表面上に形成された選択透過膜を有する、一の開口部を持った有底筒状のガス分離管と、前記ガス分離管をその内部に収容する容器と、前記ガス分離管の前記開口部近傍の外周面と前記容器の内周面の間に配設され、前記ガス分離管の内部と外部を気密的に隔離した状態で前記ガス分離管と前記容器を接合する気密接合部と、を備え、前記気密接合部は、前記ガス分離管の開口部近傍の外周面と前記容器の内周面の間に配設されてなるガス分離管収容構造体(以下、「第二のガス分離管収容構造体」ともいう)。 [3] A bottomed cylindrical base material, and a bottomed cylindrical gas separation pipe having a single opening having a permselective membrane formed on at least one surface of the base material, and the gas A container that houses the separation tube therein, and is disposed between the outer peripheral surface in the vicinity of the opening of the gas separation tube and the inner peripheral surface of the container, so that the inside and the outside of the gas separation tube are hermetically isolated. An airtight joint that joins the gas separation pipe and the container in a state where the gas separation pipe is joined, and the airtight joint is disposed between the outer peripheral surface in the vicinity of the opening of the gas separation pipe and the inner peripheral surface of the container. It has been made gas separation tube receiving structure (hereinafter, also referred to as "second gas separation tube receiving structure").

[4]前記ガス分離管の外周面と前記容器の内周面の間に配設される触媒を更に備えた前記[1]〜[3]のいずれかに記載のガス分離管収容構造体。   [4] The gas separation pipe housing structure according to any one of [1] to [3], further including a catalyst disposed between an outer peripheral surface of the gas separation pipe and an inner peripheral surface of the container.

[5]前記基材が、セラミックスからなるものである前記[1]〜[4]のいずれかに記載のガス分離管収容構造体。   [5] The gas separation tube housing structure according to any one of [1] to [4], wherein the base material is made of ceramics.

]前記選択透過膜が、水素、酸素、窒素、一酸化炭素、二酸化炭素、及び水蒸気からなる群より選択される少なくとも一種を選択的に透過可能な膜である前記[1]〜[]のいずれかに記載のガス分離管収容構造体。 [ 6 ] The [1] to [ 5 ], wherein the permselective membrane is a membrane that can selectively permeate at least one selected from the group consisting of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, and water vapor. ] The gas separation pipe accommodation structure in any one of.

]前記選択透過膜が、パラジウム又はパラジウム合金からなる膜である前記[1]〜[]のいずれかに記載のガス分離管収容構造体。 [ 7 ] The gas separation tube housing structure according to any one of [1] to [ 5 ], wherein the selectively permeable membrane is a membrane made of palladium or a palladium alloy.

]前記選択透過膜が、ゼオライトからなる膜である前記[1]〜[]のいずれかに記載のガス分離管収容構造体。 [ 8 ] The gas separation tube housing structure according to any one of [1] to [ 5 ], wherein the selectively permeable membrane is a membrane made of zeolite.

]前記選択透過膜が、炭素からなる膜である前記[1]〜[]のいずれかに記載のガス分離管収容構造体。 [ 9 ] The gas separation tube housing structure according to any one of [1] to [ 5 ], wherein the selectively permeable membrane is a membrane made of carbon.

10]前記選択透過膜が、シリカからなる膜である前記[1]〜[]のいずれかに記載のガス分離管収容構造体。 [ 10 ] The gas separation tube housing structure according to any one of [1] to [ 5 ], wherein the selectively permeable membrane is a membrane made of silica.

11]前記選択透過膜の膜厚が、0.05〜10μmである前記[1]〜[10]のいずれかに記載のガス分離管収容構造体。 [ 11 ] The gas separation tube housing structure according to any one of [1] to [ 10 ], wherein the selectively permeable membrane has a thickness of 0.05 to 10 μm.

本発明の第一及び第二のガス分離管収容構造体は、分離能に優れているとともに、コンパクトに設計可能であり、限られた狭小空間であっても配設することができるといった効果を奏するものである。   The first and second gas separation pipe housing structures of the present invention are excellent in separation performance, can be designed compactly, and can be arranged even in a limited narrow space. It is what you play.

以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、以下の実施の形態に対し適宜変更、改良等が加えられたものも本発明の範囲に入ることが理解されるべきである。以降、単に「本発明(本実施形態)のガス分離管収容構造体」というときは、第一のガス分離管収容構造体と第二のガス分離管収容構造体のいずれをも意味する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described below, but the present invention is not limited to the following embodiment, and is based on the ordinary knowledge of those skilled in the art without departing from the gist of the present invention. It should be understood that modifications and improvements as appropriate to the following embodiments also fall within the scope of the present invention. Hereinafter, the term “gas separation pipe housing structure of the present invention (this embodiment)” means both the first gas separation pipe housing structure and the second gas separation pipe housing structure.

図1は、本発明の第一のガス分離管収容構造体の一実施形態を模式的に示す断面図である。図1に示すように、本実施形態の第一のガス分離管収容構造体10は、ガス分離管2、容器3、及び接合部材(環状接合部材4)を備えたものである。   FIG. 1 is a cross-sectional view schematically showing an embodiment of the first gas separation pipe housing structure of the present invention. As shown in FIG. 1, the first gas separation pipe housing structure 10 of the present embodiment includes a gas separation pipe 2, a container 3, and a joining member (annular joining member 4).

ガス分離管2は、有底筒状の基材、及びこの基材の少なくとも一の表面上に形成された選択透過膜を備えたものであり、一の開口部1を有する有底筒状の構成部材である。ガス分離管の長手方向(底部〜開口部方向)に直行する断面形状は、円形であることが好ましいが、楕円形等他の形状であっても構わない。ガス分離管の底部の形状としては、半球形、円錐形、円板形及びこれらの類似形状等を例示することができる。また、ガス分離管の外径Dは特に限定されないが、通常、1〜50mmφ、好ましくは2〜30mmφである。また、ガス分離管の全長Lについても特に限定されないが、通常、0.05〜1m、好ましくは0.1〜0.5mである。 The gas separation tube 2 includes a bottomed cylindrical base material and a permselective membrane formed on at least one surface of the base material, and has a bottomed cylindrical shape having one opening 1. It is a structural member. The cross-sectional shape perpendicular to the longitudinal direction (bottom to opening direction) of the gas separation tube is preferably circular, but may be other shapes such as an ellipse. Examples of the shape of the bottom of the gas separation tube include a hemispherical shape, a conical shape, a disc shape, and similar shapes thereof. Although not limited outer diameter D 3 is particularly gas separation tube, usually, 1~50Mmfai, preferably 2~30Mmfai. Moreover, although it does not specifically limit about the full length L of a gas separation pipe, Usually, 0.05-1m, Preferably it is 0.1-0.5m.

ガス分離管2を構成する基材は、一の端部が閉じた有底筒状(袋管状)の部材である。この基材は、単独では機械強度が弱く自立困難な選択透過膜を支持するものである。基材は、ガスの透過を妨げないような、多孔質構造のものであることが好ましい。基材が多孔質構造である場合、基材の、選択透過膜を形成する面の平均細孔径は、0.01〜1μmであることが好ましく、0.05〜0.6μmであることが更に好ましい。平均細孔径が0.01μm未満であると、ガスが通過するときの抵抗が増大する場合と選択透過膜の密着性が低下する場合がある。一方、平均細孔径が1μmを超えると、選択透過膜にピンホールが生じ易く、細孔を埋めるために必要な膜厚が増大するからである。   The base material constituting the gas separation pipe 2 is a bottomed tubular (bag tubular) member having one end closed. This substrate alone supports a permselective membrane that has low mechanical strength and is difficult to stand by itself. The substrate is preferably of a porous structure that does not prevent gas permeation. When the substrate has a porous structure, the average pore diameter of the surface of the substrate on which the permselective membrane is formed is preferably 0.01 to 1 μm, and more preferably 0.05 to 0.6 μm. preferable. When the average pore diameter is less than 0.01 μm, the resistance when the gas passes increases and the adhesion of the selectively permeable membrane may decrease. On the other hand, if the average pore diameter exceeds 1 μm, pinholes are likely to occur in the selectively permeable membrane, and the film thickness necessary for filling the pores increases.

基材の材質としては、被処理ガス(混合ガス)と反応し難く、高温条件下での使用が可能である点から、セラミックスであることが好ましい。特に、選択透過膜が金属からなる場合には、高温で選択透過膜と基材が反応し難いことから、基材の材質がセラミックスであることが好ましい。なお、本明細書においては、基材本体が金属製であっても、選択透過膜と接触する基材の表面部分が主としてセラミックスからなるものであれば、この基材は「セラミックスからなる基材」の概念に含まれるものとする。基材の材質となるセラミックスとしては、アルミナ、ジルコニア、シリカ、ムライト、スピネル、炭化珪素、若しくは窒化珪素、又はこれらのうち少なくとも一つを含んだ複合体や混合物等を例示することができる。セラミックス製の基材は、例えば、特開昭62−273030号公報に記載する方法等により作製することができる。   The material of the base material is preferably ceramics because it hardly reacts with the gas to be treated (mixed gas) and can be used under high temperature conditions. In particular, when the permselective membrane is made of a metal, it is difficult for the permselective membrane and the base material to react at a high temperature. In the present specification, even if the base material body is made of metal, if the surface portion of the base material that comes into contact with the permselective membrane is mainly made of ceramics, the base material is “a base material made of ceramics”. To be included in the concept. Examples of the ceramic that is the material of the substrate include alumina, zirconia, silica, mullite, spinel, silicon carbide, silicon nitride, or a composite or mixture containing at least one of these. The ceramic substrate can be produced by, for example, the method described in JP-A-62-273030.

選択透過膜は、基材の少なくとも一の表面上に膜状に配設されている。選択透過膜は、基材の外側に形成されていても、内側に形成されていても、或いは内外両面に形成されていてもよいが、基材の少なくとも外側に形成されていることがより好ましい。また、選択透過膜の一部は、基材の細孔の一部に入り込んでいてもよい。選択透過膜を基材の表面上に被覆形成するには、公知の方法によればよい。例えば、メッキ法、真空蒸着法、CVD法、スパッタリング法、水熱法、ゾルゲル法等を用いることができる。   The permselective membrane is disposed in a film shape on at least one surface of the substrate. The permselective membrane may be formed on the outer side of the substrate, on the inner side, or on both the inner and outer surfaces, but is more preferably formed on at least the outer side of the substrate. . Further, a part of the permselective membrane may enter a part of the pores of the base material. In order to coat the permselective membrane on the surface of the substrate, a known method may be used. For example, a plating method, a vacuum evaporation method, a CVD method, a sputtering method, a hydrothermal method, a sol-gel method, or the like can be used.

選択透過膜の具体例としては、水素、酸素、窒素、一酸化炭素、二酸化炭素、及び水蒸気からなる群より選択される少なくとも一種を選択的に透過可能な膜を挙げることができる。選択透過膜の膜厚は、その使用目的により適宜設定されるため、特に限定されないが、一般的に高フラックスを得るためには10μm以下であることが好ましい。また、選択透過膜が薄すぎると膜にピンホール等の欠陥が生じ易くなることから、膜厚は0.05μm以上であることが好ましい。   Specific examples of the selectively permeable membrane include a membrane that can selectively permeate at least one selected from the group consisting of hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, and water vapor. The thickness of the permselective membrane is not particularly limited because it is appropriately set depending on the purpose of use, but it is generally preferably 10 μm or less in order to obtain a high flux. Further, if the permselective membrane is too thin, defects such as pinholes are liable to occur in the membrane, so the thickness is preferably 0.05 μm or more.

これらの選択透過膜のうち、例えば水素選択透過膜としては、パラジウム膜やパラジウム合金膜及びシリカ膜を好適例として挙げることができる。また、二酸化炭素透過膜としては、DDR型ゼオライト膜を好適例として挙げることができる。また、酸素選択透過膜としては、炭素膜やLaGaO膜を好適例として挙げることができる。DDR型ゼオライト膜、及びその製造方法等の詳細については、例えば特許文献4,5等に記載されている。なお、ゼオライトには、非常に多くの種類が存在することが知られている。このため、選択透過膜を構成するゼオライトとしては、上記のDDR型ゼオライト以外にも、例えばMFI型ゼオライト、FAU型ゼオライト、MOR型ゼオライト、A型ゼオライト等の他のゼオライトも好適に用いることができる。 Among these permselective membranes, for example, as a hydrogen permselective membrane, a palladium membrane, a palladium alloy membrane, and a silica membrane can be cited as preferred examples. Moreover, as a carbon dioxide permeation | transmission film | membrane, a DDR type | mold zeolite film can be mentioned as a suitable example. Moreover, as a selective oxygen permeable film, a carbon film or a LaGaO 3 film can be cited as a suitable example. Details of the DDR type zeolite membrane and the production method thereof are described in, for example, Patent Documents 4 and 5. In addition, it is known that there are very many types of zeolite. For this reason, in addition to the above-mentioned DDR type zeolite, other zeolites such as MFI type zeolite, FAU type zeolite, MOR type zeolite, and A type zeolite can be suitably used as the zeolite constituting the permselective membrane. .

特に水素分離膜には、通常、特定の金属が含有されている。選択透過膜に含有される金属は、水素を選択的に透過させる金属であればよいが、パラジウム(Pd)、パラジウム合金、又はパラジウム(Pd)と銀(Ag)或いは銅(Cu)を主成分とする金属は水素の透過速度が大きく、好ましい。パラジウム合金は、例えば、Journal of Membrane Science,56(1991)315−325:“Hydrogen Permeable Palladium−Silver Alloy Membrane Supported on Porous Ceramics”、特開昭63−295402号公報等の公知文献に記載されているように、パラジウム以外の金属の含量が全体の10〜50質量%であることが好ましい。パラジウムを合金化する主目的は、パラジウムの水素脆化防止と高温時の分離効率向上のためである。また、パラジウム以外の金属として銀、又は銅を含有することは、パラジウムの水素脆化防止のために好ましい。   In particular, a hydrogen separation membrane usually contains a specific metal. The metal contained in the permselective membrane may be any metal that selectively permeates hydrogen, but palladium (Pd), palladium alloy, or palladium (Pd) and silver (Ag) or copper (Cu) as main components. The metal is preferable because of its high hydrogen permeation rate. Palladium alloys are described, for example, in Journal of Membrane Science, 56 (1991) 315-325: “Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics”, Jpn. Thus, it is preferable that the content of metals other than palladium is 10 to 50 mass% of the whole. The main purpose of alloying palladium is to prevent hydrogen embrittlement of palladium and improve the separation efficiency at high temperatures. Moreover, containing silver or copper as a metal other than palladium is preferable for preventing hydrogen embrittlement of palladium.

接合部材は、接合強度を有する必要があるため、その主要部分が、金属、セラミックス、又は金属とセラミックスの複合体等からなるものであることが好ましい。なお、接合部材としては、取り扱いの容易さ等から、円盤や円筒形状を基本とした構造の部材(フランジ)を使用することが好ましい。また、環状接合部材4とガス分離管2は、溶接、金属ロウ、ガラス、樹脂、ゴム、グランドパッキン等によって接合することができる。接合部に耐蝕性や耐熱性が要求される場合には、溶接、金属ロウ、ガラス、グランドパッキン等によって接合することが好ましい。特に、選択透過膜の膜厚が薄い場合には、熱応力によるガス分離管2の破損を避けるため、特開2003−126662号公報等の公知文献に記載されているような、グランドパッキンとフランジを使用した接合方法を採用することが好ましい。なお、接合部材の外径とは、ガス分離管の概鉛直方向に接合部材を切断した場合における、接合部材断面の対角線のうち、最も長い寸法をいう。   Since the joining member needs to have joining strength, it is preferable that the main part is made of metal, ceramics, a composite of metal and ceramics, or the like. In addition, as a joining member, it is preferable to use the member (flange) of the structure based on a disk or a cylindrical shape from the ease of handling etc. The annular joining member 4 and the gas separation pipe 2 can be joined by welding, metal brazing, glass, resin, rubber, gland packing, or the like. When corrosion resistance or heat resistance is required for the joint, it is preferable to join by welding, metal brazing, glass, gland packing, or the like. In particular, when the selectively permeable membrane is thin, in order to avoid damage to the gas separation tube 2 due to thermal stress, a gland packing and a flange as described in a publicly known document such as JP-A-2003-126662 are disclosed. It is preferable to employ a joining method using In addition, the outer diameter of a joining member means the longest dimension among the diagonal lines of a joining member cross section when a joining member is cut | disconnected in the substantially perpendicular direction of a gas separation pipe.

容器3,13,23は、ガス分離管2を収容可能なものであれば、その材質等については特に限定されないが、通常は金属等によって構成されている。なお、通常、外部から混合ガスを流入可能な流入孔や、外部へと透過ガスを流出可能な流出孔が形成されている。   The materials of the containers 3, 13, and 23 are not particularly limited as long as they can accommodate the gas separation pipe 2, but are usually made of metal or the like. Normally, an inflow hole through which the mixed gas can flow from the outside and an outflow hole through which the permeated gas can flow out are formed.

環状接合部材4は、ガス分離管2の開口部1に配設される部材であり、通常、ガスの流入出が可能な孔部が形成された環状構造の部材である。この環状接合部材4は、ガス分離管2の内部と外部を気密的に隔離した状態で、ガス分離管2と容器を接合している。環状接合部材4と容器は、例えばガスケットやフェルール等の適当なシール材を介したねじ止めや溶接等により接合されている。   The annular joint member 4 is a member disposed in the opening 1 of the gas separation pipe 2 and is usually a member having an annular structure in which a hole portion through which gas can flow in and out is formed. The annular joining member 4 joins the gas separation pipe 2 and the container in a state where the inside and the outside of the gas separation pipe 2 are hermetically separated. The annular joining member 4 and the container are joined together by screwing or welding via an appropriate sealing material such as a gasket or ferrule.

高温条件下でガス分離管収容構造体を使用する場合、基材の破損防止等の観点から、使用温度範囲内における、環状接合部材4と基材の熱膨張係数の差が、30%以内であることが好ましい。環状接合部材4と基材の熱膨張係数の差を30%以内とすることにより、高温条件下における透過ガスのリーク発生や基材の破損等をより効果的に防止することができる。   When using the gas separation tube housing structure under high temperature conditions, the difference in the thermal expansion coefficient between the annular bonding member 4 and the base material within the operating temperature range is within 30% from the viewpoint of preventing damage to the base material. Preferably there is. By setting the difference in the thermal expansion coefficient between the annular bonding member 4 and the base material to be within 30%, it is possible to more effectively prevent the occurrence of permeated gas leakage and the base material damage under high temperature conditions.

容器3内において、ガス分離管2が配設された部分(ガス分離管の全長Lの範囲内)の、ガス分離管2の外周面と容器3の内周面の間の空隙部の容積a(cm)と、選択透過膜の面積b(cm)との比X(=a/b)が、0.1〜10であることが好ましい。Xの値が10を超えると、容器内周面とガス分離管外周面の距離Dが大きくなるため、濃度分極が大きくなり、選択透過膜のフラックスが低下する場合がある。また、容器3を加熱して使用する場合には、容器が無駄に大きく(太く)なり、熱効率が低下する場合がある。一方、Xの値が0.1未満では、ガス分離管2の外周面と容器3の内周面の間に触媒5を配設して透過膜型反応器(メンブレンリアクタ)とした場合、触媒量が少な過ぎるため、反応が進行し難くなる場合がある。また、容器内周面とガス分離管外周面の距離Dが小さくなるため、容器3へのガス分離管2の取り付け等の取り扱いが難しくなる場合がある。 The volume a of the space between the outer peripheral surface of the gas separation tube 2 and the inner peripheral surface of the container 3 at the portion where the gas separation tube 2 is disposed (within the range of the total length L of the gas separation tube) in the container 3. The ratio X (= a / b) between (cm 3 ) and the area b (cm 2 ) of the selectively permeable membrane is preferably 0.1 to 10. When the value of X exceeds 10, the distance D 4 of the container inner peripheral surface and the gas separation tube outer circumference is increased, the concentration polarization increases, there is a case where the flux of the selectively permeable membrane is reduced. Moreover, when heating and using the container 3, a container becomes uselessly large (thick), and thermal efficiency may fall. On the other hand, when the value of X is less than 0.1, the catalyst 5 is disposed between the outer peripheral surface of the gas separation pipe 2 and the inner peripheral surface of the container 3 to form a permeable membrane reactor (membrane reactor). Since there is too little quantity, reaction may become difficult to advance. Further, since the distance D 4 of the container inner peripheral surface and the gas separation tube outer peripheral surface is reduced, in some cases the handling of the attachment, such as a gas separation tube 2 to the container 3 becomes difficult.

ガス分離管2を構成する基材が多孔質セラミックスからなるものである場合を想定すると、この基材の熱膨張係数は0.5×10−6〜11×10−6/℃である。そのため、環状接合部材を構成する金属材料の具体例としては、パーマロイ、コバール、インバー、スーパーインバー、モリブデン、タングステン、鉄・ニッケル合金等を挙げることができ、特に、パーマロイが好ましい。また、環状接合部材を構成するセラミックス材料の具体例としては、アルミナ、ジルコニア、シリカ、ムライト、スピネル、炭化珪素、若しくは窒化珪素、又はこれらのうち少なくとも一つを含んだ複合体や混合物等を挙げることができる。また、環状接合部材として、金属とセラミックスを組み合わせたもの、金属とセラミックスの複合体を使用してもよい。 Assuming that the base material constituting the gas separation tube 2 is made of porous ceramics, the thermal expansion coefficient of this base material is 0.5 × 10 −6 to 11 × 10 −6 / ° C. Therefore, specific examples of the metal material constituting the annular joining member include permalloy, kovar, invar, super invar, molybdenum, tungsten, iron / nickel alloy, and the like, and particularly, permalloy is preferable. Further, specific examples of the ceramic material constituting the annular joint member include alumina, zirconia, silica, mullite, spinel, silicon carbide, silicon nitride, or a composite or mixture containing at least one of these. be able to. Further, as the annular joining member, a combination of metal and ceramic, or a composite of metal and ceramic may be used.

本実施形態の第一のガス分離管収容構造体10は、接合部材の外径Dに比して、容器3の少なくともガス分離管2を収容する部分の内径(ガス分離管収容部の容器内径D)の方が小さく(D>D)、環状フランジ4が、容器3の外部に出た状態でガス分離管2と容器3を接合している。このため、容器内周面とガス分離管外周面の距離Dを小さくすることができる。従って、これまでガス分離の際に問題となっていた濃度分極によるフラックス低下を効果的に抑制することが可能である。なお、本実施形態の第一のガス分離管収容構造体10では、容器内周面とガス分離管外周面の距離Dを、通常、0.5〜20mm、好ましくは1〜10mmとすることができる。 The first gas separator tube receiving structure 10 of the present embodiment, the outer diameter than the D 1, the container having an inner diameter (gas separation tube housing portion that houses at least a gas separation tube 2 of the container 3 of the joining members The inner diameter D 2 ) is smaller (D 1 > D 2 ), and the gas separation pipe 2 and the container 3 are joined with the annular flange 4 protruding to the outside of the container 3. Therefore, it is possible to reduce the distance D 4 of the container inner peripheral surface and the gas separation pipe outer peripheral surface. Therefore, it is possible to effectively suppress a flux decrease due to concentration polarization, which has been a problem in gas separation until now. Incidentally, that the first gas separation tube receiving structure 10 of the present embodiment, the distance D 4 of the container inner peripheral surface and the gas separation pipe outer peripheral surface, usually, 0.5 to 20 mm, and preferably 1~10mm Can do.

また、本実施形態の第一のガス分離管収容構造体10は、ガス分離管2の一方の端部のみが容器3に固定されており、他方の端部は容器3に固定される必要がない。従って、熱サイクルの負荷に起因するガス分離管2の膨張・収縮による破損が極めて生じ難く、長期間の使用が可能であるという効果を奏する。   In the first gas separation pipe housing structure 10 of the present embodiment, only one end of the gas separation pipe 2 is fixed to the container 3, and the other end needs to be fixed to the container 3. Absent. Therefore, the gas separation pipe 2 is hardly damaged due to expansion / contraction due to the load of the thermal cycle, and it is possible to use it for a long time.

更に、図1に示すように、ガス分離管2の外周面と容器3の内周面の間に触媒5を配設することにより、触媒5の使用量を適量にしつつ、反応効率に優れたメンブレンリアクタとすることができる。なお、配設する触媒5の種類は、公知のものを使用すればよく、反応によって最適なものを選択することができる。具体的には、例えばメタンの水蒸気改質であれば、ニッケルやルテニウム等を挙げることができる。   Furthermore, as shown in FIG. 1, by disposing the catalyst 5 between the outer peripheral surface of the gas separation pipe 2 and the inner peripheral surface of the container 3, the reaction amount is excellent while making the amount of the catalyst 5 used an appropriate amount. It can be a membrane reactor. In addition, what is necessary is just to use the kind of catalyst 5 to arrange | position, and the optimal thing can be selected by reaction. Specifically, nickel, ruthenium, etc. can be mentioned, for example, in the case of steam reforming of methane.

図2は、本発明の第一のガス分離管収容構造体の他の実施形態を模式的に示す断面図である。図2に示す第一のガス分離管収容構造体20の容器13は、ガス分離管収容部13aと接合部材収容部13bに区分されている。このため、ガス分離管収容部13a内には、主としてガス分離管2が収容される。また、接合部材収容部13bには、環状の接合部材4が収容される。このような構成を採用することにより、本実施形態の第一のガス分離管収容構造体20は、接合部材の外径Dに比して、ガス分離管収容部の容器内径Dの方が小さくなっている。従って、容器内周面とガス分離管外周面の距離Dを小さくすることができ、これまでガス分離の際に問題となっていた濃度分極によるフラックス低下を効果的に抑制することが可能である。 FIG. 2 is a cross-sectional view schematically showing another embodiment of the first gas separation pipe housing structure of the present invention. The container 13 of the first gas separation tube housing structure 20 shown in FIG. 2 is divided into a gas separation tube housing portion 13a and a joining member housing portion 13b. For this reason, the gas separation pipe 2 is mainly accommodated in the gas separation pipe accommodating portion 13a. Further, the annular joining member 4 is accommodated in the joining member accommodating portion 13b. By adopting such a configuration, the first gas separation tube receiving structure 20 of the present embodiment is different from the outer diameter D 1 of the joint member, towards the container inside diameter D 2 of the gas separation tube housing Is getting smaller. Therefore, it is possible to reduce the distance D 4 of the container inner peripheral surface and the gas separation pipe outer peripheral surface, heretofore can be effectively suppressed decrease flux by concentration polarization which has been a problem in gas separation is there.

次に、本発明の第二のガス分離管収容構造体の一実施形態について説明する。図3は、本発明の第二のガス分離管収容構造体の一実施形態を模式的に示す断面図である。図3に示すように、本実施形態の第二のガス分離管収容構造体30は、ガス分離管2、容器23、及び気密接合部6を備えたものである。ガス分離管2及び容器23については、第一のガス分離管収容構造体と同様のものを用いることができる。   Next, an embodiment of the second gas separation pipe housing structure of the present invention will be described. FIG. 3 is a cross-sectional view schematically showing an embodiment of the second gas separation pipe housing structure of the present invention. As shown in FIG. 3, the second gas separation pipe housing structure 30 of the present embodiment includes the gas separation pipe 2, the container 23, and the airtight joint 6. About the gas separation pipe 2 and the container 23, the thing similar to a 1st gas separation pipe accommodation structure can be used.

気密接合部6は、ガス分離管2の開口部1近傍の外周面と容器23の内周面の間に配設されている。この気密接合部6は、例えば緻密体によって形成されている部分である。緻密体の具体例としては、ガラス、セメント、樹脂等を挙げることができる。気密接合部6は、ガス分離管2の内部と外部を気密的に隔離した状態で、ガス分離管2と容器23を接合している。   The airtight joint 6 is disposed between the outer peripheral surface near the opening 1 of the gas separation pipe 2 and the inner peripheral surface of the container 23. The hermetic joint 6 is a portion formed by a dense body, for example. Specific examples of the dense body include glass, cement, and resin. The airtight joint 6 joins the gas separation pipe 2 and the container 23 in a state where the inside and the outside of the gas separation pipe 2 are hermetically separated.

図3に示すような構成とすることにより、本実施形態の第二のガス分離管収容構造体30は、容器内周面とガス分離管外周面の距離Dを小さくすることができる。従って、これまでガス分離の際に問題となっていた濃度分極によるフラックス低下を効果的に抑制することが可能である。また、ガス分離管2の外周面と容器3の内周面の間に触媒5を更に配設することにより、触媒5の使用量を適量にしつつ、反応効率に優れたメンブレンリアクタとすることができる。なお、配設する触媒5については、第一のガス分離管収容構造体と同様のものを用いることができる。 By the structure as shown in FIG. 3, the second gas separation tube receiving structure 30 of the present embodiment, it is possible to reduce the distance D 4 of the container inner peripheral surface and the gas separation pipe outer peripheral surface. Therefore, it is possible to effectively suppress a flux decrease due to concentration polarization, which has been a problem in gas separation until now. Further, by further disposing the catalyst 5 between the outer peripheral surface of the gas separation pipe 2 and the inner peripheral surface of the container 3, a membrane reactor having excellent reaction efficiency can be obtained while making the amount of the catalyst 5 used appropriate. it can. In addition, about the catalyst 5 to arrange | position, the thing similar to a 1st gas separation pipe accommodation structure can be used.

また、本実施形態の第二のガス分離管収容構造体30は、ガス分離管2の一方の端部のみが容器23に固定されており、他方の端部は容器23に固定される必要がない。従って、熱サイクルの負荷に起因するガス分離管2の膨張・収縮による破損が極めて生じ難く、長期間の使用が可能であるという効果を奏する。   In the second gas separation pipe housing structure 30 of this embodiment, only one end of the gas separation pipe 2 is fixed to the container 23 and the other end needs to be fixed to the container 23. Absent. Therefore, the gas separation pipe 2 is hardly damaged due to expansion / contraction due to the load of the thermal cycle, and it is possible to use it for a long time.

なお、ガス分離管を容器から容易に脱着・交換できるという点を重視する場合は、第二のガス分離管収容構造体に比して、第一のガス分離管収容構造体の方がより好ましい。一方、よりコンパクトに設計可能であるという点を重視する場合は、第一のガス分離管収容構造体に比して、第二のガス分離管収容構造体の方がより好ましい。   In the case where importance is attached to the point that the gas separation pipe can be easily detached and replaced from the container, the first gas separation pipe housing structure is more preferable than the second gas separation pipe housing structure. . On the other hand, when importance is attached to the point that it is possible to design more compactly, the second gas separation pipe housing structure is more preferable than the first gas separation pipe housing structure.

また、図1〜3には容器中にガス分離管が1本配設されているものを示したが、容器中にガス分離管が複数本配設される場合においても、有底筒状のガス分離管を用いることにより、ガス分離管が1本の場合と同様の考え方に従って、分離能に優れているとともに、コンパクトに設計可能であり、限られた狭小空間であっても配設することができるガス分離管収容構造体を設計することが可能である。   1 to 3 show one gas separation pipe disposed in the container, but even when a plurality of gas separation pipes are disposed in the container, By using a gas separation tube, according to the same concept as in the case of a single gas separation tube, it has excellent separation performance, can be designed compactly, and should be installed even in a limited space. It is possible to design a gas separation pipe housing structure capable of

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

(実施例1)
内径10mm×全長100mmの有底円筒状のアルミナ製基材に、その厚さが2μmとなるようにパラジウム(Pd)を成膜して、有底円筒状の水素分離管を作製した。この水素分離管の開口部に金属製のフランジ(接合部材)を取り付けて水素分離管モジュールを得た。得られた水素分離管モジュールのフランジを、水素分離管がその内部に収容されるように内径20mmの容器に接続することによって、図1に示すような構成(但し、触媒は配設されていない)の水素分離管収容構造体(実施例1)を作製した。
Example 1
A palladium (Pd) film was formed on a bottomed cylindrical alumina substrate having an inner diameter of 10 mm and a total length of 100 mm so as to have a thickness of 2 μm, thereby preparing a bottomed cylindrical hydrogen separation tube. A metal flange (joining member) was attached to the opening of the hydrogen separation tube to obtain a hydrogen separation tube module. The flange of the obtained hydrogen separation tube module is connected to a container having an inner diameter of 20 mm so that the hydrogen separation tube is accommodated in the inside thereof, so that the configuration shown in FIG. 1 (however, no catalyst is provided) ) Hydrogen separation tube housing structure (Example 1).

(実施例2)
内径30mm×全長300mmの有底円筒状のアルミナ製基材に、その厚さが2μmとなるようにパラジウム(Pd)を成膜して、有底円筒状の水素分離管を作製した。この水素分離管の開口部に金属製のフランジ(接合部材)を取り付けて水素分離管モジュールを得た。得られた水素分離管モジュールのフランジを、水素分離管がその内部に収容されるように内径40mmの容器に接続することによって、図1に示すような構成(但し、触媒は配設されていない)の水素分離管収容構造体(実施例2)を作製した。
(Example 2)
A palladium (Pd) film was formed on a bottomed cylindrical alumina substrate having an inner diameter of 30 mm and a total length of 300 mm so as to have a thickness of 2 μm, thereby preparing a bottomed cylindrical hydrogen separation tube. A metal flange (joining member) was attached to the opening of the hydrogen separation tube to obtain a hydrogen separation tube module. The flange of the obtained hydrogen separation tube module is connected to a container having an inner diameter of 40 mm so that the hydrogen separation tube is accommodated in the inside thereof, so that the configuration shown in FIG. 1 (however, no catalyst is provided) ) Was prepared (Example 2).

(実施例3)
内径30mm×全長300mmの有底円筒状のアルミナ製基材に、その厚さが2μmとなるようにパラジウム(Pd)を成膜して、有底円筒状の水素分離管を作製した。この水素分離管の開口部に外径60mmの金属製のフランジ(接合部材)を取り付けて水素分離管モジュールを得た。得られた水素分離管モジュールのフランジを、水素分離管がその内部に収容されるように、水素分離管を収容する部分の内径が40mm、及びフランジを収容する部分の内径が70mmの容器に接続することによって、図2に示すような構成(但し、触媒は配設されていない)の水素分離管収容構造体(実施例3)を作製した。
(Example 3)
A palladium (Pd) film was formed on a bottomed cylindrical alumina substrate having an inner diameter of 30 mm and a total length of 300 mm so as to have a thickness of 2 μm, thereby preparing a bottomed cylindrical hydrogen separation tube. A metal flange (joining member) having an outer diameter of 60 mm was attached to the opening of the hydrogen separation tube to obtain a hydrogen separation tube module. The flange of the obtained hydrogen separation tube module is connected to a container having an inner diameter of 40 mm for accommodating the hydrogen separation tube and an inner diameter of 70 mm for accommodating the flange so that the hydrogen separation tube is accommodated therein. As a result, a hydrogen separation tube housing structure (Example 3) having a configuration as shown in FIG. 2 (where no catalyst was disposed) was produced.

(比較例1)
内径10mm×全長100mmの円筒状のアルミナ製基材に、その厚さが2μmとなるようにパラジウム(Pd)を成膜して、円筒状の水素分離管を作製した。この水素分離管の一方の開口部に外径35mmの金属製の蓋状フランジ(接合部材)を取り付け、他方の開口部に外径35mmの金属製の環状フランジ(接合部材)を取り付けて水素分離管モジュールを得た。得られた水素分離管モジュールの環状フランジを、水素分離管がその内部に収容されるように内径70mmの容器に接続することによって、図6に示すような構成の水素分離管収容構造体(比較例1)を作製した。
(Comparative Example 1)
Palladium (Pd) was deposited on a cylindrical alumina substrate having an inner diameter of 10 mm and a total length of 100 mm so that the thickness was 2 μm, thereby producing a cylindrical hydrogen separation tube. A hydrogen lid flange (joining member) with an outer diameter of 35 mm is attached to one opening of the hydrogen separation tube, and a metal annular flange (joining member) with an outer diameter of 35 mm is attached to the other opening to separate hydrogen. A tube module was obtained. By connecting the annular flange of the obtained hydrogen separation tube module to a container having an inner diameter of 70 mm so that the hydrogen separation tube is accommodated therein, a hydrogen separation tube accommodating structure (comparison) shown in FIG. Example 1) was prepared.

(比較例2)
内径30mm×全長300mmの円筒状のアルミナ製基材に、その厚さが2μmとなるようにパラジウム(Pd)を成膜して、円筒状の水素分離管を作製した。この水素分離管一方の開口部に外径90mmの金属製の蓋状フランジ(接合部材)を取り付け、他方の開口部に外径90mmの金属製の環状フランジ(接合部材)を取り付けて水素分離管モジュールを得た。得られた水素分離管モジュールの環状フランジを、水素分離管がその内部に収容されるように内径120mmの容器に接続することによって、図6に示すような構成の水素分離管収容構造体(比較例2)を作製した。
(Comparative Example 2)
Palladium (Pd) was formed on a cylindrical alumina substrate having an inner diameter of 30 mm and a total length of 300 mm so as to have a thickness of 2 μm to produce a cylindrical hydrogen separation tube. The hydrogen separation pipe is attached with a metal lid flange (joining member) with an outer diameter of 90 mm at one opening and a metal annular flange (joining member) with an outer diameter of 90 mm at the other opening. Got a module. By connecting the annular flange of the obtained hydrogen separation tube module to a container having an inner diameter of 120 mm so that the hydrogen separation tube is accommodated therein, a hydrogen separation tube accommodation structure having a configuration as shown in FIG. Example 2) was prepared.

[水素分離回収試験(1)]:500℃に加熱した、実施例1〜3、及び比較例1,2の水素分離管収容構造体のそれぞれに、水素:窒素=1:1(体積比)の混合ガスを流入させて水素の分離回収を行い、それぞれの水素分離管収容構造体の水素回収率を測定した。その結果を表1に示す。表1に示すように、実施例1と比較例1、及び実施例2,3と比較例2を比較した場合、実施例では比較例と比べて水素回収率が5〜7%上昇することが分かった。   [Hydrogen separation and recovery test (1)]: Hydrogen: nitrogen = 1: 1 (volume ratio) in each of the hydrogen separation tube housing structures of Examples 1 to 3 and Comparative Examples 1 and 2 heated to 500 ° C. The mixed gas was introduced and hydrogen was separated and recovered, and the hydrogen recovery rate of each hydrogen separation tube housing structure was measured. The results are shown in Table 1. As shown in Table 1, when Example 1 and Comparative Example 1 and Examples 2 and 3 and Comparative Example 2 are compared, the hydrogen recovery rate may increase by 5 to 7% in the Example as compared to the Comparative Example. I understood.

Figure 0004890938
Figure 0004890938

(実施例4〜6、比較例3,4)
実施例1〜3、及び比較例1,2の水素分離管収容構造体のそれぞれの、容器と水素分離管との間に、ペレット状のルテニウム−アルミナ触媒を充填することにより、触媒充填済の水素分離管収容構造体(実施例4〜6、比較例3,4)を作製した。
(Examples 4 to 6, Comparative Examples 3 and 4)
By filling a pellet-shaped ruthenium-alumina catalyst between the container and the hydrogen separation pipe of each of the hydrogen separation pipe housing structures of Examples 1 to 3 and Comparative Examples 1 and 2, the catalyst filled Hydrogen separation tube housing structures (Examples 4 to 6, Comparative Examples 3 and 4) were produced.

[水素分離回収試験(2)]:実施例4〜6、及び比較例3,4の水素分離管収容構造体を550℃に加熱して、メタン:水蒸気=1:3(体積比)の混合ガスを流入させて改質反応を生起させ、生成した水素を分離回収した。それぞれの水素分離管収容構造体の水素回収率を測定した結果を表2に示す。表2に示すように、実施例4と比較例3、及び実施例5,6と比較例4を比較した場合、実施例では比較例と比べてメタン転化率が8〜14%上昇することが分かった。   [Hydrogen separation / recovery test (2)]: The hydrogen separation tube housing structures of Examples 4 to 6 and Comparative Examples 3 and 4 were heated to 550 ° C. and mixed with methane: water vapor = 1: 3 (volume ratio). A reforming reaction was caused by injecting gas, and the produced hydrogen was separated and recovered. Table 2 shows the result of measuring the hydrogen recovery rate of each hydrogen separation tube housing structure. As shown in Table 2, when Example 4 and Comparative Example 3 and Examples 5 and 6 and Comparative Example 4 are compared, the methane conversion rate in the Examples may increase by 8 to 14% compared to the Comparative Example. I understood.

Figure 0004890938
Figure 0004890938

(実施例7)
内径10mm×全長100mmの有底円筒状のアルミナ製基材に、その厚さが1μmとなるようにDDR型ゼオライトを成膜して、有底円筒状の二酸化炭素分離管を作製した。二酸化炭素分離管がその内部に収容されるように、この二酸化炭素分離管の開口部を、低融点ガラスを用いて内径20mmの容器に接続することによって、図3に示すような構成(但し、触媒は配設されていない)の二酸化炭素分離管収容構造体(実施例7)を作製した。
(Example 7)
A DDR type zeolite film was formed on a bottomed cylindrical alumina substrate having an inner diameter of 10 mm and a total length of 100 mm so as to have a thickness of 1 μm to produce a bottomed cylindrical carbon dioxide separation tube. By connecting the opening of the carbon dioxide separation tube to a container having an inner diameter of 20 mm using low-melting glass so that the carbon dioxide separation tube is accommodated therein, a configuration as shown in FIG. A carbon dioxide separation tube housing structure (Example 7) was prepared.

(比較例5)
内径10mm×全長100mmの円筒状のアルミナ製基材に、その厚さが1μmとなるようにDDR型ゼオライトを成膜して、円筒状の二酸化炭素分離管を作製した。この二酸化炭素分離管の一方の開口部に外径35mmのアルミナ緻密体製の蓋状フランジ(接合部材)を取り付け、他方の開口部に外径35mmのアルミナ緻密体製の環状フランジ(接合部材)を取り付けて二酸化炭素分離管モジュールを得た。得られた二酸化炭素分離管モジュールの環状フランジを、二酸化炭素分離管がその内部に収容されるように内径70mmの容器に接続することによって、図6に示すような構成の二酸化炭素分離管収容構造体(比較例5)を作製した。
(Comparative Example 5)
A DDR type zeolite film was formed on a cylindrical alumina substrate having an inner diameter of 10 mm and a total length of 100 mm so as to have a thickness of 1 μm to produce a cylindrical carbon dioxide separation tube. A lid flange (joining member) made of an alumina dense body having an outer diameter of 35 mm is attached to one opening of the carbon dioxide separator, and an annular flange (joining member) made of an alumina dense body having an outer diameter of 35 mm is attached to the other opening. To obtain a carbon dioxide separation tube module. The annular flange of the obtained carbon dioxide separation tube module is connected to a container having an inner diameter of 70 mm so that the carbon dioxide separation tube is accommodated therein, whereby a carbon dioxide separation tube accommodation structure configured as shown in FIG. A body (Comparative Example 5) was prepared.

[二酸化炭素分離回収試験]:実施例7、及び比較例5の二酸化炭素分離管収容構造体のそれぞれに、室温条件下で、二酸化炭素:メタン=1:1(体積比)の混合ガスを流入させて二酸化炭素の分離回収を行い、それぞれの二酸化炭素分離管収容構造体の二酸化炭素回収率を測定した。その結果を表3に示す。表3に示すように、実施例7と比較例5を比較した場合、実施例では比較例と比べて二酸化炭素回収率が3%上昇することが分かった。   [Carbon dioxide separation and recovery test]: A mixed gas of carbon dioxide: methane = 1: 1 (volume ratio) was introduced into each of the carbon dioxide separation tube housing structures of Example 7 and Comparative Example 5 at room temperature. The carbon dioxide was separated and recovered, and the carbon dioxide recovery rate of each carbon dioxide separation tube housing structure was measured. The results are shown in Table 3. As shown in Table 3, when Example 7 and Comparative Example 5 were compared, it was found that the carbon dioxide recovery rate increased by 3% in the Example as compared with the Comparative Example.

Figure 0004890938
Figure 0004890938

本発明のガス分離管収容構造体は、例えば、燃料電池用水素精製機、炭化水素の改質による水素製造装置、二酸化炭素分離によるメタンの精製装置、酸素分離による酸素富化装置、メンブレンリアクタ等として好適である。   The gas separation pipe housing structure of the present invention includes, for example, a fuel cell hydrogen purifier, a hydrogen production device by hydrocarbon reforming, a methane purification device by carbon dioxide separation, an oxygen enrichment device by oxygen separation, a membrane reactor, etc. It is suitable as.

本発明の第一のガス分離管収容構造体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the 1st gas separation pipe accommodation structure of this invention. 本発明の第一のガス分離管収容構造体の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the 1st gas separation pipe accommodation structure of this invention. 本発明の第二のガス分離管収容構造体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the 2nd gas separation pipe accommodation structure of this invention. 従来のガス分離管収容構造体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the conventional gas separation pipe accommodation structure. 従来のガス分離管収容構造体の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the conventional gas separation pipe accommodation structure. 従来のガス分離管収容構造体の更に他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the conventional gas separation pipe accommodation structure. 従来のガス分離管収容構造体の更に他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the conventional gas separation pipe accommodation structure.

符号の説明Explanation of symbols

1:開口部、2,12:ガス分離管、3,13,23:容器、4:接合部材、4a:蓋状接合部材、4b:環状接合部材、5:触媒、6,16,26:気密接合部、10,20:第一のガス分離管収容構造体、30:第二のガス分離管収容構造体、40,50,60,70:ガス分離管収容構造体、13a:ガス分離管収容部、13b:接合部材収容部、D:接合部材の外径、D:ガス分離管収容部の容器内径、D:ガス分離管の外径、D:容器内周面とガス分離管外周面の距離、L:ガス分離管の全長 1: opening, 2, 12: gas separation pipe, 3, 13, 23: container, 4: joining member, 4a: lid-like joining member, 4b: annular joining member, 5: catalyst, 6, 16, 26: airtight Joint part, 10, 20: first gas separation pipe housing structure, 30: second gas separation pipe housing structure, 40, 50, 60, 70: gas separation pipe housing structure, 13a: gas separation pipe housing Part, 13b: joining member accommodating part, D 1 : outer diameter of joining member, D 2 : container inner diameter of gas separation pipe accommodating part, D 3 : outer diameter of gas separation pipe, D 4 : container inner peripheral surface and gas separation Distance of pipe outer peripheral surface, L: total length of gas separation pipe

Claims (11)

有底筒状の基材、及び前記基材の少なくとも一の表面上に形成された選択透過膜を有する、一の開口部を持った有底筒状のガス分離管と、
前記ガス分離管をその内部に収容する容器と、
前記ガス分離管の前記開口部に配設され、前記ガス分離管の内部と外部を気密的に隔離した状態で前記ガス分離管と前記容器を接合する、その外径が前記ガス分離管の外径に比して大きい接合部材と、を備え、
前記接合部材の外径に比して、前記容器の少なくとも前記ガス分離管を収容する部分の内径の方が小さく、
前記容器内において、前記ガス分離管が配設された部分の、前記ガス分離管の外周面と前記容器の内周面の間の空隙部の容積a(cm )と、
前記選択透過膜の面積b(cm )との比X(=a/b)が、0.1〜10であるガス分離管収容構造体であり、前記接合部材が、前記容器の外部に出た状態で前記容器と接合されている、または、前記容器の前記ガス分離管を収容する部分の内径よりも大きな内径を有する部分に収容されていることを特徴とするガス分離管収容構造体。
A bottomed cylindrical base material, and a bottomed cylindrical gas separation tube having a single opening, having a permselective membrane formed on at least one surface of the base material;
A container for accommodating the gas separation pipe therein;
The gas separation pipe is disposed at the opening of the gas separation pipe, and the gas separation pipe and the container are joined in an airtightly separated state from the inside and outside of the gas separation pipe. A joining member larger than the diameter,
Than the outer diameter of the joint member, towards the inside diameter of the portion accommodating at least said gas separation tube of the container is rather small,
In the container, the volume a (cm 3 ) of the gap between the outer peripheral surface of the gas separation pipe and the inner peripheral surface of the container at the portion where the gas separation pipe is disposed ,
A gas separation tube housing structure in which a ratio X (= a / b) to an area b (cm 2 ) of the permselective membrane is 0.1 to 10, and the joining member is exposed to the outside of the container. A gas separation pipe housing structure, wherein the gas separation pipe housing structure is joined to the container in a closed state or is housed in a portion having an inner diameter larger than the inner diameter of the portion of the container housing the gas separation tube.
前記接合部材が、金属又はセラミックスからなるものである請求項1に記載のガス分離管収容構造体。   The gas separation pipe housing structure according to claim 1, wherein the joining member is made of metal or ceramics. 有底筒状の基材、及び前記基材の少なくとも一の表面上に形成された選択透過膜を有する、一の開口部を持った有底筒状のガス分離管と、
前記ガス分離管をその内部に収容する容器と、
前記ガス分離管の前記開口部近傍の外周面と前記容器の内周面の間に配設され、前記ガス分離管の内部と外部を気密的に隔離した状態で前記ガス分離管と前記容器を接合する気密接合部と、を備え
前記気密接合部は、前記ガス分離管の開口部近傍の外周面と前記容器の内周面の間に配設されてなるガス分離管収容構造体。
A bottomed cylindrical base material, and a bottomed cylindrical gas separation tube having a single opening, having a permselective membrane formed on at least one surface of the base material;
A container for accommodating the gas separation pipe therein;
The gas separation pipe and the container are disposed between an outer peripheral surface near the opening of the gas separation pipe and an inner peripheral surface of the container, and the inside and the outside of the gas separation pipe are hermetically separated. An airtight joint to be joined ,
The airtight junction, the gas separation pipe inner peripheral surface disposed has been made gas separation tube receiving structure during the outer peripheral surface and the container near the opening of the.
前記ガス分離管の外周面と前記容器の内周面の間に配設される触媒を更に備えた請求項1〜3のいずれか一項に記載のガス分離管収容構造体。   The gas separation pipe accommodation structure according to any one of claims 1 to 3, further comprising a catalyst disposed between an outer peripheral surface of the gas separation pipe and an inner peripheral surface of the container. 前記基材が、セラミックスからなるものである請求項1〜4のいずれか一項に記載のガス分離管収容構造体。   The gas separation pipe accommodation structure according to any one of claims 1 to 4, wherein the base material is made of ceramics. 前記選択透過膜が、水素、酸素、窒素、一酸化炭素、二酸化炭素、及び水蒸気からなる群より選択される少なくとも一種を選択的に透過可能な膜である請求項1〜のいずれか一項に記載のガス分離管収容構造体。 The permselective membrane, hydrogen, oxygen, nitrogen, carbon monoxide, carbon dioxide, and any one of claims 1 to 5 which is a selectively permeable membrane at least one selected from the group consisting of steam 2. A gas separation tube housing structure according to 1. 前記選択透過膜が、パラジウム又はパラジウム合金からなる膜である請求項1〜のいずれか一項に記載のガス分離管収容構造体。 The gas separation tube housing structure according to any one of claims 1 to 5 , wherein the permselective membrane is a membrane made of palladium or a palladium alloy. 前記選択透過膜が、ゼオライトからなる膜である請求項1〜のいずれか一項に記載のガス分離管収容構造体。 The gas permeation tube housing structure according to any one of claims 1 to 5 , wherein the permselective membrane is a membrane made of zeolite. 前記選択透過膜が、炭素からなる膜である請求項1〜のいずれか一項に記載のガス分離管収容構造体。 The gas permeation tube housing structure according to any one of claims 1 to 5 , wherein the permselective membrane is a membrane made of carbon. 前記選択透過膜が、シリカからなる膜である請求項1〜のいずれか一項に記載のガス分離管収容構造体。 The gas permeation tube housing structure according to any one of claims 1 to 5 , wherein the permselective membrane is a membrane made of silica. 前記選択透過膜の膜厚が、0.05〜10μmである請求項1〜10のいずれか一項に記載のガス分離管収容構造体。 The gas separation tube housing structure according to any one of claims 1 to 10 , wherein the selectively permeable membrane has a thickness of 0.05 to 10 µm.
JP2006141358A 2006-05-22 2006-05-22 Gas separation tube housing structure Active JP4890938B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006141358A JP4890938B2 (en) 2006-05-22 2006-05-22 Gas separation tube housing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141358A JP4890938B2 (en) 2006-05-22 2006-05-22 Gas separation tube housing structure

Publications (2)

Publication Number Publication Date
JP2007307518A JP2007307518A (en) 2007-11-29
JP4890938B2 true JP4890938B2 (en) 2012-03-07

Family

ID=38840850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141358A Active JP4890938B2 (en) 2006-05-22 2006-05-22 Gas separation tube housing structure

Country Status (1)

Country Link
JP (1) JP4890938B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620843B2 (en) * 2011-02-09 2014-11-05 大陽日酸株式会社 Membrane element, manufacturing method thereof, and membrane module
JP2012236134A (en) * 2011-05-11 2012-12-06 Hitachi Zosen Corp Carbon dioxide separation system
KR101252569B1 (en) * 2011-05-31 2013-04-09 한국에너지기술연구원 Module configuration of hydrogen purification separation membrane module for the reduce of concentration polarization
JP2018509293A (en) 2015-03-24 2018-04-05 アーストロマ カンパニー リミテッド Fluid separation device including fluid separation membrane and fluid separation membrane module
KR101794885B1 (en) 2015-03-24 2017-11-09 주식회사 아스트로마 Carbon dioxide separating tube and fluid separating device including the same
KR101677492B1 (en) * 2015-03-24 2016-11-18 주식회사 아스트로마 Apparatus for separating fluid
WO2024029568A1 (en) * 2022-08-02 2024-02-08 日本碍子株式会社 Separation membrane module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106517A (en) * 1983-11-14 1985-06-12 Mitsubishi Mining & Cement Co Ltd Gas separating apparatus and its preparation
JP2002293656A (en) * 2001-03-30 2002-10-09 Kyocera Corp Porous composite and its manufacturing method
JP4253459B2 (en) * 2002-03-27 2009-04-15 日本碍子株式会社 Carbon film structure and manufacturing method thereof
JP2004105942A (en) * 2002-07-22 2004-04-08 Ngk Insulators Ltd Ddr type zeolite membrane, gas separating method and gas separating apparatus
JP2005044709A (en) * 2003-07-25 2005-02-17 Iwatani Internatl Corp Hydrogen-containing gas generating device

Also Published As

Publication number Publication date
JP2007307518A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
JP4890938B2 (en) Gas separation tube housing structure
US7708812B2 (en) Hydrogen gas separator fixing structure and hydrogen gas separating device using the same
US5674301A (en) Hydrogen preparing apparatus
JP3933907B2 (en) Gas separator fixing structure and gas separator using the same
US6913736B2 (en) Metal gas separation membrane module design
US7018446B2 (en) Metal gas separation membrane
JP5057685B2 (en) Hydrogen separation device and hydrogen production device
US6916454B2 (en) Metal gas separation membrane
JP5757243B2 (en) Silica-based hydrogen separation material and method for producing the same, and hydrogen separation module and hydrogen production apparatus including the same
JP4181128B2 (en) Membrane module for fluid separation
JP7430498B2 (en) Methanol production method
US20180118566A1 (en) Hydrogen separation membrane
JP2014114179A (en) Molded catalyst and hydrogen production apparatus
JP5149050B2 (en) Hydrogen separator
JP5757186B2 (en) Fluid separation material and manufacturing method thereof
JP6118205B2 (en) Fluid separation material and fluid separation module
WO2024029569A1 (en) Separation membrane module
WO2024029568A1 (en) Separation membrane module
WO2023153134A1 (en) Reactor
WO2023153133A1 (en) Reactor
JP5410937B2 (en) Hydrogen production equipment
TW202412924A (en) Separation membrane module
WO2023113601A1 (en) Sealing method for the sealing of a metal sleeve to an inorganic membrane, sealed inorganic membrane, and use of a sealed inorganic membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111213

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111215

R150 Certificate of patent or registration of utility model

Ref document number: 4890938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3